Sample records for baseline interferometry applied

  1. Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.

  2. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  3. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.

    2014-10-20

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even withmore » current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.« less

  4. Star Scheduling Mode—A New Observing Strategy for Monitoring Weak Southern Radio Sources with the AuScope VLBI Array

    NASA Astrophysics Data System (ADS)

    McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei

    2017-11-01

    The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.

  5. Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo

    2015-05-01

    There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.

  6. Monitoring Ground Deformation Using Persistent Scatters Interferometry (PSI) and Small Baselines (SBAS) Techniques Integrated in the ESA RSS Service: The Case Study of Valencia, Rome and South Sardinia

    NASA Astrophysics Data System (ADS)

    Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo

    2015-05-01

    This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.

  7. Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping, and outer field suppression

    NASA Astrophysics Data System (ADS)

    Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.

    2018-07-01

    Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.

  8. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  9. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km

    NASA Technical Reports Server (NTRS)

    Blewitt, Geoffrey

    1989-01-01

    A technique for resolving the ambiguities in the GPS carrier phase data (which are biased by an integer number of cycles) is described which can be applied to geodetic baselines up to 2000 km in length and can be used with dual-frequency P code receivers. The results of such application demonstrated that a factor of 3 improvement in baseline accuracy could be obtained, giving centimeter-level agreement with coordinates inferred by very-long-baseline interferometry in the western United States. It was found that a method using pseudorange data is more reliable than one using ionospheric constraints for baselines longer than 200 km. It is recommended that future GPS networks have a wide spectrum of baseline lengths (ranging from baselines shorter than 100 km to those longer than 1000 km) and that GPS receivers be used which can acquire dual-frequency P code data.

  10. A publication database for optical long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain

    2010-07-01

    Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.

  11. Intensity Interferometry: Imaging Stars with Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.

  12. Very-long-baseline interferometry techniques applied to problems of geodesy, geophysics, planetary science, astronomy, and general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Counselman, C.C. III

    1973-09-01

    Very-long-baseline interferometry (VLBI) techniques have already been used to determine the vector separations between antennas thousands of kilometers apart to within 2 m and the directions of extragalactic radio sources to 0.1'', and to track an artificial satellite of the earth and the Apollo Lunar Rover on the surface of the Moon. The relative loostions of the Apollo Lunar Surface Experiment Package (ALSEP) transmitters on the lunar surface are being measured within 1 m, and the Moon's libration is being messured to 1'' of selenocentric src. Attempts are under way to measure the solar gravitational deflection of radio waves moremore » accurately than previously possible, by means of VLBI. A wide variety of scientific problems is being attacked by VLBI techniques, which may soon be two orders of magnitude more accurate than at present. (auth)« less

  13. Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2016-05-01

    Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes

  14. EFPI sensor utilizing optical spectrum analyzer with tunable laser: detection of baseline oscillations faster than spectrum acquisition rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.

  15. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  16. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  17. Very long baseline interferometry using a communication satellite

    NASA Technical Reports Server (NTRS)

    Swenson, G. W., Jr.

    1975-01-01

    A planned experiment is discussed in long-baseline interferometry, using the Communications Technology Satellite to transmit the base-band signal from one telescope to another for real-time correlation. A 20 megabit data rate is planned, calling for a delay-line of 10 MHz bandwidth and controllable delay up to 275 milliseconds. A number of sources will be studied on baselines from Ontario to West Virginia and California.

  18. Detection of atmospheric pressure loading using very long baseline interferometry measurements

    NASA Technical Reports Server (NTRS)

    Vandam, T. M.; Herring, T. A.

    1994-01-01

    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  19. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  20. OVoG Inversion for the Retrieval of Agricultural Crop Structure by Means of Multi-Baseline Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Pichierri, Manuele; Hajnsek, Irena

    2015-04-01

    In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.

  1. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  2. Using Optical Interferometry for GEO Satellites Imaging: An Update

    DTIC Science & Technology

    2016-05-27

    of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...night. These baseline lengths correspond to a resolution of ∼4 m at geostationary altitude. This is the first multiple-baseline interferometric...detection of a satellite. Keywords: geostationary satellites, optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  3. EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioja, M.; Dodson, R.; Malarecki, J.

    2011-11-15

    Space very long baseline interferometry (S-VLBI) observations at high frequencies hold the prospect of achieving the highest angular resolutions and astrometric accuracies, resulting from the long baselines between ground and satellite telescopes. Nevertheless, space-specific issues, such as limited accuracy in the satellite orbit reconstruction and constraints on the satellite antenna pointing operations, limit the application of conventional phase referencing. We investigate the feasibility of an alternative technique, source frequency phase referencing (SFPR), to the S-VLBI domain. With these investigations we aim to contribute to the design of the next generation of S-VLBI missions. We have used both analytical and simulationmore » studies to characterize the performance of SFPR in S-VLBI observations, applied to astrometry and increased coherence time, and compared these to results obtained using conventional phase referencing. The observing configurations use the specifications of the ASTRO-G mission for their starting point. Our results show that the SFPR technique enables astrometry at 43 GHz, using alternating observations with 22 GHz, regardless of the orbit errors, for most weathers and under a wide variety of conditions. The same applies to the increased coherence time for the detection of weak sources. Our studies show that the capability to carry out simultaneous dual frequency observations enables application to higher frequencies, and a general improvement of the performance in all cases, hence we recommend its consideration for S-VLBI programs.« less

  4. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  5. A recent history of science cases for optical interferometry

    NASA Astrophysics Data System (ADS)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre

    2018-04-01

    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  6. Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry

    NASA Astrophysics Data System (ADS)

    Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil

    2018-04-01

    The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.

  7. Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Allenby, R. J.; Frey, H. V.

    1979-01-01

    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.

  8. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  9. Detection of a Geostationary Satellite with the Navy Prototype Optical Interferometer

    DTIC Science & Technology

    2010-07-01

    USA 86001 USA ABSTRACT We have detected a satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical...available at the time of our observations, resolves out structures larger than ∼ 1.5 m at the geostationary distance, while a typical size for the solar... satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical Interferometer (NPOI) to observe the

  10. Tropospheric delay ray tracing applied in VLBI analysis

    NASA Astrophysics Data System (ADS)

    Eriksson, David; MacMillan, D. S.; Gipson, John M.

    2014-12-01

    Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI (very long baseline interferometry) analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium-Range Weather Forecasts data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption is not true, we have instead determined the ray trace delay along the signal path through the troposphere for each VLBI quasar observation. We determined the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA Goddard Space Flight Center Goddard Earth Observing System version 5 numerical weather model. When applied in VLBI analysis, baseline length repeatabilities were improved compared with using the VMF1 mapping function model for 72% of the baselines and site vertical repeatabilities were better for 11 of 13 sites during the 2 week CONT11 observing period in September 2011. When applied to a larger data set (2011-2013), we see a similar improvement in baseline length and also in site position repeatabilities for about two thirds of the stations in each of the site topocentric components.

  11. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  12. An Atomic Clock with 10 (exp -18) Instability

    DTIC Science & Technology

    2013-09-13

    experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and

  13. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  14. Comparison of non-invasive methods for the assessment of haemodynamic drug effects in healthy male and female volunteers: sex differences in cardiovascular responsiveness.

    PubMed Central

    Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F

    1995-01-01

    1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and specific approach for the detection of pulse pressure changes. A battery of non-invasive tests appears useful for the characterization of cardiovascular drugs. Gender differences may not pose a relevant problem for the study of acute haemodynamic effects of cardiovascular drugs. Images Figure 1 PMID:7640140

  15. Crustal deformation at very long baseline interferometry sites due to seasonal air-mass and ground water variations

    NASA Technical Reports Server (NTRS)

    Stolz, A.; Larden, D. R.

    1980-01-01

    The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.

  16. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; hide

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  17. Extragalactic radio sources - Accurate positions from very-long-baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Rogers, A. E. E.; Counselman, C. C., III; Hinteregger, H. F.; Knight, C. A.; Robertson, D. S.; Shapiro, I. I.; Whitney, A. R.; Clark, T. A.

    1973-01-01

    Relative positions for 12 extragalactic radio sources have been determined via wide-band very-long-baseline interferometry (wavelength of about 3.8 cm). The standard error, based on consistency between results from widely separated periods of observation, appears to be no more than 0.1 sec for each coordinate of the seven sources that were well observed during two or more periods. The uncertainties in the coordinates determined for the other five sources are larger, but in no case exceed 0.5 sec.

  18. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgered, G.; Davis, J.L.; Herring, T.A.

    1991-04-10

    An important source of error in very-long-baseline interferometry (VLBI) estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. The authors present and discuss the method of using data from a water vapor readiometer (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data of Kalman filtering to correct for atmospheric propagation delay atmore » the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The lengths of the baselines range from 919 to 7,941 km. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. The use of WVR data yielded a 13% smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the best minimum elevation angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass. For use of WVR data along with accurate determinations of total surface pressure, the best minimum is about 20{degrees}; for use of a model for the wet delay based on the humidity and temperature at the ground, the best minimum is about 35{degrees}.« less

  19. A novel type of very long baseline astronomical intensity interferometer

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.

    2013-12-01

    This article presents a novel type of very long baseline astronomical interferometer that uses the fluctuations, as a function of time, of the intensity measured by a quadratic detector, which is a common type of astronomical detector. The theory on which the technique is based is validated by laboratory experiments. Its outstanding principal advantages comes from the fact that the angular structure of an astronomical object is simply determined from the visibility of the minima of the spectrum of the intensity fluctuations measured by the detector, as a function of the frequency of the fluctuations, while keeping the spacing between mirrors constant. This would allow a simple setup capable of high angular resolutions because it could use an extremely large baseline. Another major interest is that it allows for a more efficient use of telescope time because observations at a single baseline are sufficient, while amplitude and intensity interferometers need several observations at different baselines. The fact that one does not have to move the telescopes would also allow detecting faster time variations because having to move the telescopes sets a lower limit to the time variations that can be detected. The technique uses wave interaction effects and thus has some characteristics in common with intensity interferometry. A disadvantage of the technique, like in intensity interferometry, is that it needs strong sources if observing at high frequencies (e.g. the visible). This is a minor disadvantage in the radio region. At high frequencies, this disadvantage is mitigated by the fact that, like in intensity interferometry, the requirements of the optical quality of the mirrors used are far less severe than in amplitude interferometry so that poor quality large reflectors (e.g. Cherenkov telescopes) can be used in the optical region.

  20. Baseline-dependent averaging in radio interferometry

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.; Willis, A. G.; Salvini, S.

    2018-05-01

    This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.

  1. Studies of regional and global tectonics and the rotation of the earth using very-long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1989-01-01

    Progress in the areas of data analysis, atmospheric delay calibration and software conversion is reported. Over 800 very long baseline interferometry (VLBI) experiments were analyzed in the last 6 months. Reprocessing of the Mark III VLBI data set is almost completed. Results of analysis of the water-vapor radiometer (WVR) data were submitted and a preprint of a related paper is attached. Work on conversion of the VLBI analysis software from HP1000 to Unix based workstations is continuing.

  2. Solar VLBI

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.; Kuijpers, J.

    1986-01-01

    In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed.

  3. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  4. Optical long baseline intensity interferometry: prospects for stellar physics

    NASA Astrophysics Data System (ADS)

    Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin

    2018-06-01

    More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.

  5. Plans for phase coherent long baseline interferometry for geophysical applications using the Anik-B communications satellite

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.

    1980-01-01

    A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.

  6. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  7. Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Robertson, D. S.

    1975-01-01

    The use of very-long-baseline interferometry (VLBI) observations for the estimation of geodetic and astrometric parameters is discussed. Analytic models for the dependence of delay and delay rate on these parameters are developed and used for parameter estimation by the method of weighted least squares. Results are presented from approximately 15,000 delay and delay-rate observations, obtained in a series of nineteen VLBI experiments involving a total of five stations on two continents. The closure of baseline triangles is investigated and found to be consistent with the scatter of the various baseline-component results. Estimates are made of the wobble of the earth's pole and of the irregularities in the earth's rotation rate. Estimates are also made of the precession constant and of the vertical Love number, for which a value of 0.55 + or - 0.05 was obtained.

  8. Implications of very long baseline interferometry measurements on North American intra-plate crustal deformation

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1979-01-01

    Very Long Baseline Interferometry experiments over the last 1-3/4 years between Owens Valley, CA and Haystack, MA Radio Observatories suggest an upper limit of east-west crustal deformation between the two sites of about 1 cm/yr. In view of the fact that the baseline between the two sites traverses most of the major geological provinces of the United States, this low rate of crustal deformation has direct relevance to intra-plate crustal tectonics. The most active region traversed by this baseline is the Basin and Range province, which was estimated by various researchers to be expanding in an east-west direction at rates of .3 to 1.5 cm/yr. The Colorado Plateau and Rocky Mountain system also appear to be expanding, but at a somewhat lower rate, while east of the Rocky Mountains, the predominant stress appears to be compressional, nearly horizontal, and east to northeast trending.

  9. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  10. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  11. An analysis and demonstration of clock synchronization by VLBI. [Very Long Baseline Interferometry for Deep Space Net

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1974-01-01

    A prototype of a semi-real time system for synchronizing the Deep Space Net station clocks by radio interferometry was successfully demonstrated on August 30, 1972. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time sync estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 ns rms were achieved between Deep Space Stations 11 and 12, both at Goldstone, Calif. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to baseline and source position uncertainties and atmospheric effects are reached. These limitations are under 10 ns for transcontinental baselines.

  12. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  13. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data

    NASA Astrophysics Data System (ADS)

    Boehm, Johannes; Werl, Birgit; Schuh, Harald

    2006-02-01

    In the analyses of geodetic very long baseline interferometry (VLBI) and GPS data the analytic form used for mapping of the atmosphere delay from zenith to the line of site is most often a three-parameter continued fraction in 1/sin(elevation). Using the 40 years reanalysis (ERA-40) data of the European Centre for Medium-Range Weather Forecasts for the year 2001, the b and c coefficients of the continued fraction form for the hydrostatic mapping functions have been redetermined. Unlike previous mapping functions based on data from numerical weather models (isobaric mapping functions (Niell, 2000) and Vienna mapping functions (VMF) (Boehm and Schuh, 2004)), the new c coefficients are dependent on the day of the year, and unlike the Niell mapping functions (Niell, 1996) they are no longer symmetric with respect to the equator (apart from the opposite phase for the two hemispheres). Compared to VMF, this causes an effect on the VLBI or GPS station heights that is constant and as large as 2 mm at the equator and that varies seasonally between 4 mm and 0 mm at the poles. The updated VMF, based on these new coefficients and called VMF1 hereinafter, yields slightly better baseline length repeatabilities for VLBI data. The hydrostatic and wet mapping functions are applied in various combinations with different kinds of a priori zenith delays in the analyses of all VLBI International VLBI Service for Geodesy and Astrometry (IVS)-R1 and IVS-R4 24-hour sessions of 2002 and 2003; the investigations concentrate on baseline length repeatabilities, as well as on absolute changes of station heights.

  14. Global astrometry with the space interferometry mission

    NASA Technical Reports Server (NTRS)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  15. Three recipes for improving the image quality with optical long-baseline interferometers: BFMC, LFF, and DPSC

    NASA Astrophysics Data System (ADS)

    Millour, Florentin A.; Vannier, Martin; Meilland, Anthony

    2012-07-01

    We present here three recipes for getting better images with optical interferometers. Two of them, Low- Frequencies Filling and Brute-Force Monte Carlo were used in our participation to the Interferometry Beauty Contest this year and can be applied to classical imaging using V2 and closure phases. These two addition to image reconstruction provide a way of having more reliable images. The last recipe is similar in its principle as the self-calibration technique used in radio-interferometry. We call it also self-calibration, but it uses the wavelength-differential phase as a proxy of the object phase to build-up a full-featured complex visibility set of the observed object. This technique needs a first image-reconstruction run with an available software, using closure-phases and squared visibilities only. We used it for two scientific papers with great success. We discuss here the pros and cons of such imaging technique.

  16. The European VLBI network

    NASA Technical Reports Server (NTRS)

    Schilizzi, R. T.

    1980-01-01

    The capabilities of the European very long baseline interferometry (VLBI) network are summarized. The range of baseline parameters, sensitivities, and recording and other equipment available are included. Plans for upgrading the recording facilities and the use of geostationary satellites for signal transfer and clock synchronization are discussed.

  17. Spaceborne radar interferometry for coastal DEM construction

    USGS Publications Warehouse

    Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.

    2005-01-01

    Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.

  18. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  19. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  20. Precision Selenodesy via Differential Very-Long-Baseline Interferometry. Ph.D. Thesis; [Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    King, R. W., Jr.

    1975-01-01

    The technique of differential very-long baseline interferometry was used to measure the relative positions of the ALSEP transmitters at the Apollo 12, 14, 15, 16, and 17 lunar landing sites with uncertainties less than 0.005 of geocentric arc. These measurements yielded improved determinations of the selenodetic coordinates of the Apollo landing sites, and of the physical libration of the moon. By means of a new device, the differential Doppler receiver (DDR), instrumental errors were reduced to less than the equivalent of 0.001. DDRs were installed in six stations of the NASA spaceflight tracking and data network and used in an extensive program of observations beginning in March 1973.

  1. Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre

    2018-04-01

    This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  2. Interferometry in the era of time-domain astronomy

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean

    2018-04-01

    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  3. International data transfer for space very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Wiercigroch, Alexandria B.

    1994-01-01

    Space very long baseline interferometry (SVLBI) experiments using a TDRSS satellite have successfully demonstrated the capability of using spacecraft to extend the effective baseline length of VLBI observations beyond the diameter of the Earth, thereby improving the resolution for imaging of active galactic nuclei at centimeter wavelengths. As a result, two spacecraft dedicated to SVLBI, VSOP (Japan) and RadioAstron (Russia), are scheduled to be launched into high Earth orbit in 1996 and 1997. The success of these missions depends on the cooperation of the international community in providing support from ground tracking stations, ground radio telescopes, and correlation facilities. The timely exchange and monitoring of data among the participants requires a well-designed and automated international data transfer system. In this paper, we will discuss the design requirements, data types and flows, and the operational responsibilities associated with the SVLBI data transfer system.

  4. A real-time interferometer technique for compressible flow research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.

  5. Magnetostriction Measured by Holographic Interferometry with the Simple and Inexpensive "Arrowhead" Setup

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.

    2012-01-01

    Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…

  6. Spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.

  7. THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.

    2012-08-15

    The first Search for Extra-Terrestrial Intelligence (SETI) conducted with very long baseline interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hr at 1230-1544 MHz with the Australian Long Baseline Array. The data set was searched for signals appearing on all interferometer baselines above five times the noise limit. Amore » total of 222 potential SETI signals were detected and by using automated data analysis techniques were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW Hz{sup -1} on the power output of any isotropic emitter located in the Gliese 581 system within this frequency range. This study shows that VLBI is ideal for targeted SETI including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array.« less

  8. VizieR Online Data Catalog: VLBA observations of the COSMOS field (Herrera Ruiz+, 2017)

    NASA Astrophysics Data System (ADS)

    Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R. P.; Best, P. N.; Brisken, W.; Schinnerer, E.; Smolcic, V.; Delvecchio, I.; Momjian, E.; Bomans, D.; Scoville, N. Z.; Carilli, C.

    2017-07-01

    Wide-field Very Long Baseline Interferometry observations were made of all known radio sources in the COSMOS field at 1.4GHz using the Very Long Baseline Array (VLBA). We also collected complementary multiwavelength information from the literature for the VLBA detected sources. (2 data files).

  9. IRIS-S - Extending geodetic very long baseline interferometry observations to the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Nothnagel, A.; Nicolson, G. D.; Schuh, H.

    1988-12-01

    High-accuracy geodetic very long baseline interferometry measurements between the African, Eurasian, and North American plates have been analyzed to determine the terrestrial coordinates of the Hartebeesthoek observatory to better than 10 cm, to determine the celestial coordinates of eight Southern Hemisphere radio sources with milliarc second (mas) accuracy, and to derive quasi-independent polar motion, UTI, and nutation time series. Comparison of the earth orientation time series with ongoing International Radio Interferometric Surveying project values shows agreement at about the 1 mas of arc level in polar motion and nutation and 0.1 ms of time in UTI. Given the independence of the observing sessions and the unlikeliness of common systematic error sources, this level of agreement serves to bound the total errors in both measurement series.

  10. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.

  11. Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.

    2012-01-01

    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).

  12. Very Long Baseline Interferometry: Dependencies on Frequency Stability

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald

    2018-04-01

    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  13. Scandinavia studies of recent crustal movements and the space geodetic baseline network

    NASA Technical Reports Server (NTRS)

    Anderson, A. J.

    1980-01-01

    A brief review of crustal movements within the Fenno-Scandia shield is given. Results from postglacial studies, projects for measuring active fault regions, and dynamic ocean loading experiments are presented. The 1979 Scandinavian Doppler Campaign Network is discussed. This network includes Doppler translocation baseline determination of future very long baseline interferometry baselines to be measured in Scandinavia. Intercomparison of earlier Doppler translocation measurements with a high precision terrestrial geodetic baseline in Scandinavia has yielded internal agreement of 6 cm over 887 km. This is a precision of better than 1 part in to the 7th power.

  14. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1991-01-01

    Very Long Baseline Interferometry (VLBI) now has the capacity to monitor geodetic positions with precisions of a few 1 mm over continental baselines. For tectonic applications, one of the major products of the VLBI program is the determination of the rate of change of station locations. Vector site velocities are now routinely produced. One of the novel techniques, VLBI Euler poles, is discussed.

  15. Image Reconstruction from Sparse Irregular Intensity Interferometry Measurements of Fourier Magnitude

    DTIC Science & Technology

    2013-09-01

    of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each

  16. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  17. Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-08-01

    Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.

  18. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  19. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.

  20. A demonstration of real-time connected element interferometry for spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry is a technique of observing a celestial radio source at two spatially separated antennas, and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. A connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, CA tracking complex is developed. Fiber optic links are used to transmit the data at 112 Mbit/sec to a common site for processing. A real-time correlator to process these data in real-time is implemented. The architecture of the system is described, and observational data is presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  1. HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR ATMOSPHERIC CALIBRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioja, M.; Dodson, R., E-mail: maria.rioja@icrar.org

    2011-04-15

    We describe a new method which achieves high-precision very long baseline interferometry (VLBI) astrometry in observations at millimeter (mm) wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method source-frequency phase referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using themore » Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 and 3C273 and 1308+326 and 1308+328 under various conditions. We conclude that this method is widely applicable to mm-VLBI observations of many target sources, and unique in providing bona fide astrometrically registered images and high-precision relative astrometric measurements in mm-VLBI using existing and newly built instruments, including space VLBI.« less

  2. Web-based Teaching Radio Interferometer for Africa

    NASA Astrophysics Data System (ADS)

    Carignan, Claude; Libert, Yannick

    2016-10-01

    This presentation describes the web-based Teaching Radio Interferometer being built on the campus of the University of Cape Town, in South Africa, to train the future users of the African VLBI (Very Long Baseline Interferometry) Network (AVN).

  3. Research and Development in Very Long Baseline Interferometry (VLBI)

    NASA Technical Reports Server (NTRS)

    Himwich, William E.

    2004-01-01

    Contents include the following: 1.Observation coordination. 2. Data acquisition system control software. 3. Station support. 4. Correlation, data processing, and analysis. 5. Data distribution and archiving. 6. Technique improvement and research. 7. Computer support.

  4. Probing the solar corona with very long baseline interferometry.

    PubMed

    Soja, B; Heinkelmann, R; Schuh, H

    2014-06-20

    Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.

  5. Application of Extended Kalman Filter in Persistant Scatterer Interferometry to Enhace the Accuracy of Unwrapping Process

    NASA Astrophysics Data System (ADS)

    Tavakkoli Estahbanat, A.; Dehghani, M.

    2017-09-01

    In interferometry technique, phases have been modulated between 0-2π. Finding the number of integer phases missed when they were wrapped is the main goal of unwrapping algorithms. Although the density of points in conventional interferometry is high, this is not effective in some cases such as large temporal baselines or noisy interferograms. Due to existing noisy pixels, not only it does not improve results, but also it leads to some unwrapping errors during interferogram unwrapping. In PS technique, because of the sparse PS pixels, scientists are confronted with a problem to unwrap phases. Due to the irregular data separation, conventional methods are sterile. Unwrapping techniques are divided in to path-independent and path-dependent in the case of unwrapping paths. A region-growing method which is a path-dependent technique has been used to unwrap PS data. In this paper an idea of EKF has been generalized on PS data. This algorithm is applied to consider the nonlinearity of PS unwrapping problem as well as conventional unwrapping problem. A pulse-pair method enhanced with singular value decomposition (SVD) has been used to estimate spectral shift from interferometric power spectral density in 7*7 local windows. Furthermore, a hybrid cost-map is used to manage the unwrapping path. This algorithm has been implemented on simulated PS data. To form a sparse dataset, A few points from regular grid are randomly selected and the RMSE of results and true unambiguous phases in presented to validate presented approach. The results of this algorithm and true unwrapped phases were completely identical.

  6. Speckle interferometry applied to asteroids and other solar system objects

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Hege, E. K.

    1985-01-01

    The application of speckle interferometry to asteroids and other solar system objects is discussed. The assumption of a triaxial ellipsoid rotating about its shortest axis is the standard model. Binary asteroids, 433 Eros, 532 Herculina, 511 Davida, and Pallas are discussed.

  7. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  8. Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands

    NASA Astrophysics Data System (ADS)

    Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.

    2017-06-01

    Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.

  9. An Overview of the StarLight Mission

    NASA Technical Reports Server (NTRS)

    Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley

    2004-01-01

    An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.

  10. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  11. Evolution in High Spatial Resolution Imaging of Faint, Complex Objects

    NASA Astrophysics Data System (ADS)

    van Belle, G.

    The astrophysical community has been working at the task of obtaining image information of the smallest structures in the sky via the use of optical interferometry for well over a century. A richly diverse family of technology architectures has been explored over the years, and yet the current family of facilities are all striking similar. Although there may be other, heretofore undeployed, architectures that support the goal of collecting image information at the highest resolutions, we expect dramatic advances at the component level of long-baseline interferometry to be the best avenue for advancing the technique, rather than entirely new architectures.

  12. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Towards the First Flight

    NASA Technical Reports Server (NTRS)

    Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.; hide

    2016-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.

  13. Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay

    NASA Technical Reports Server (NTRS)

    Elgered, G.; Davis, J. L.; Herring, T. A.; Shapiro, I. I.

    1991-01-01

    An important source of error in VLBI estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. This paper presents and discusses the method of using data from a water vapor radiomete (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13 percent smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the 'best' minimum elevationi angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass.

  14. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  15. Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Tercjak, Monika; Brzeziński, Aleksander

    2016-06-01

    Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.

  16. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1985-01-01

    The current technical objectives for the geodynamics program consist of (1) optimal utilization of laser and Very Long Baseline Interferometry (VLBI) observations for reference frames for geodynamics; (2) utilization of range difference observations in geodynamics; and (3) estimation techniques in crustal deformation analysis.

  17. Application of virtual phase-shifting speckle-interferometry for detection of polymorphism in the Chlamydia trachomatis omp1 gene

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.

    2018-04-01

    Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.

  18. Interferometry on a Balloon; Paving the Way for Space-based Interferometers

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  19. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  20. Residual stress measurement in silicon sheet by shadow moire interferometry

    NASA Technical Reports Server (NTRS)

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.

    1987-01-01

    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  1. Measuring ocean coherence time with dual-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1992-01-01

    Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.

  2. Rapid Ice Loss at Vatnajokull,Iceland Since Late 1990s Constrained by Synthetic Aperture Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2012-12-01

    Synthetic aperture radar interferometry time series is applied over Vatnajokull, Iceland by using 15 years ERS data. Ice loss at Vatnajokull accelerates since late 1990s especially after 21th century. Clear uplift signal due to ice mass loss is detected. The rebound signal is generally linear and increases a little bit after 2000. The relative annual velocity (GPS station 7485 as reference) is about 12 mm/yr at the ice cap edge, which matches the previous studies using GPS. The standard deviation compared to 11 GPS stations in this area is about 2 mm/yr. A relative-value modeling method ignoring the effect of viscous flow is chosen assuming elastic half space earth. The final ice loss estimation - 83 cm/yr - matches the climatology model with ground observations. Small Baseline Subsets is applied for time series analysis. Orbit error coupling with long wavelength phase trend due to horizontal plate motion is removed based on a second polynomial model. For simplicity, we do not consider atmospheric delay in this area because of no complex topography and small-scale turbulence is eliminated well after long-term average when calculating the annual mean velocity. Some unwrapping error still exits because of low coherence. Other uncertainties can be the basic assumption of ice loss pattern and spatial variation of the elastic parameters. It is the first time we apply InSAR time series for ice mass balance study and provide detailed error and uncertainty analysis. The successful of this application proves InSAR as an option for mass balance study and it is also important for validation of different ice loss estimation techniques.

  3. Multiple Beam Interferometry in Elementary Teaching

    ERIC Educational Resources Information Center

    Tolansky, S.

    1970-01-01

    Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…

  4. Trapped strontium ion optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.

    2017-11-01

    Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.

  5. Gravity sensing using Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.

    2017-12-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  6. Gravity sensing using Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, Dennis; Wodey, Étienne; Meiners, Christian; Tell, Dorothee; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2017-04-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13 g and beyond in reach. We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1 .10-8 m/s2 / Hz1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <=10-13 , potentially surpassing the best experiments to date.

  7. Holographic interferometry applied to the measurement of displacements of the interior points of transparent bodies.

    PubMed

    Sciammarella, C A; Gilbert, J A

    1976-09-01

    Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.

  8. An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)

    NASA Technical Reports Server (NTRS)

    Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.

    1990-01-01

    Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.

  9. Meter-wavelength observations of pulsars using very long baseline interferometry. Ph.D. Thesis - Maryland Univ., College Park; [with particular attention to the Crab nebula

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R.

    1974-01-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.

  10. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  11. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network

    NASA Astrophysics Data System (ADS)

    An, T.; Sohn, B. W.; Imai, H.

    2018-02-01

    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  12. Laser Interferometry Method as a Novel Tool in Endotoxins Research.

    PubMed

    Arabski, Michał; Wąsik, Sławomir

    2017-01-01

    Optical properties of chemical substances are widely used at present for assays thereof in a variety of scientific disciplines. One of the measurement techniques applied in physical sciences, with a potential for novel applications in biology, is laser interferometry. This method enables to record the diffusion properties of chemical substances. Here we describe the novel application of laser interferometry in chitosan interactions with lipopolysaccharide by detection of colistin diffusion. The proposed model could be used in simple measurements of polymer interactions with endotoxins and/or biological active compounds, like antibiotics.

  13. Methodology for heritage conservation in Belgium based on multi-temporal interferometry

    NASA Astrophysics Data System (ADS)

    Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.

    2017-09-01

    Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For this building, damage is assessed by means of PSInSAR.

  14. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2014-06-12

    interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849

  15. VLBI Phase-Referenced Observations on Southern Hemisphere HIPPARCOS Radio Start

    NASA Technical Reports Server (NTRS)

    Guirado, J. C.; Preston, R. A.; Jones, D. L.; Lestrade, J. F.; Reynolds, J. E.; Jauncey, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.; Lovell, J. E. J.; hide

    1995-01-01

    Presented are multiepoch Very Long Baseline Interferometry (VLBI) observations on Southern Hemisphere radio stars phase-referenced to background radio sources. The differential astrometry analysis results in high-precision determinations of proper motions and parallaxes. The astrophysical implications and astrometric consequences of these results are discussed.

  16. A New Test of Plate Tectonics.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1989-01-01

    Discussed are two techniques that can be used to directly test the theory that the plates which make up the crust of the earth are still moving. Described are the use of satellite laser ranging and very long baseline interferometry. Samples of data and their analysis are provided. (CW)

  17. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  18. VizieR Online Data Catalog: Parallaxes of high mass star forming regions (Reid+, 2014)

    NASA Astrophysics Data System (ADS)

    Reid, M. J.; Menten, K. M.; Brunthaler, A.; Zheng, X. W.; Dame, T. M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; Hachisuka, K.; Choi, Y. K.; Immer, K.; Moscadelli, L.; Rygl, K. L. J.; Bartkiewicz, A.

    2016-04-01

    Table1 lists the parallaxes and proper motions of 103 regions of high-mass star formation measured with Very Long Baseline Interferometry (VLBI) techniques, using the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), the Japanese VLBI Exploration of Radio Astrometry (VERA; http://veraserver.mtk.nao.ac.jp) project, and the European VLBI Network (EVN). We have include three red supergiants (NML Cyg, S Per, VY CMa) as indicative of high-mass star forming regions. (2 data files).

  19. Preliminary result of the analysis of T Sagittarrii data and modeling

    NASA Astrophysics Data System (ADS)

    Menut, Jean-Luc; Chesneau, Olivier; Lopez, Bruno; Berruyer, Nicole; Graser, Uwe; Niccolini, Gilles; Dutrey, Anne; Perrin, Guy S.

    2004-10-01

    This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.

  20. Measuring Crustal Deformation in the American West.

    ERIC Educational Resources Information Center

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)

  1. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  2. Picometer Level Modeling of a Shared Vertex Double Corner Cube in the Space Interferometry Mission Kite Testbed

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M.; Dekens, Frank G.

    2006-01-01

    The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.

  3. Mapping Forest Height in Gabon Using UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Lidar Fusion

    NASA Astrophysics Data System (ADS)

    Simard, M.; Denbina, M. W.

    2017-12-01

    Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.

  4. SPECS: the kilometer-baseline far-IR interferometer in NASA's space science roadmap

    NASA Astrophysics Data System (ADS)

    Leisawitz, David T.; Abel, Tom; Allen, Ronald J.; Benford, Dominic J.; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal J., II; Fischer, Jacqueline; Harwit, Martin; Hyde, Tristram T.; Kuchner, Marc J.; Leitner, Jesse A.; Lorenzini, Enrico C.; Mather, John C.; Menten, Karl M.; Moseley, Samuel H., Jr.; Mundy, Lee G.; Nakagawa, Takao; Neufeld, David A.; Pearson, John C.; Rinehart, Stephen A.; Roman, Juan; Satyapal, Shobita; Silverberg, Robert F.; Stahl, H. Philip; Swain, Mark R.; Swanson, Theodore D.; Traub, Wesley A.; Wright, Edward L.; Yorke, Harold W.

    2004-10-01

    Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.

  5. Time frequency requirements for radio interferometric earth physics

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Fliegel, H. F.

    1973-01-01

    Two systems of VLBI (Very Long Baseline Interferometry) are now applicable to earth physics: an intercontinental baseline system using antennas of the NASA Deep Space Network, now observing at one-month intervals to determine UTI for spacecraft navigation; and a shorter baseline system called ARIES (Astronomical Radio Interferometric Earth Surveying), to be used to measure crustal movement in California for earthquake hazards estimation. On the basis of experience with the existing DSN system, a careful study has been made to estimate the time and frequency requirements of both the improved intercontinental system and of ARIES. Requirements for the two systems are compared and contrasted.

  6. MERI: an ultra-long-baseline Moon-Earth radio interferometer.

    NASA Astrophysics Data System (ADS)

    Burns, J. O.

    Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.

  7. Observational Model for Precision Astrometry with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Milman, Mark H.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain. Over a narrow field of view SIM is expected to achieve a mission accuracy of 1 microarcsecond. In this mode SIM will search for planetary companions to nearby stars by detecting the astrometric "wobble" relative to a nearby reference star. In its wide-angle mode, SIM will provide 4 microarcsecond precision absolute position measurements of stars, with parallaxes to comparable accuracy, at the end of its 5-year mission. The expected proper motion accuracy is around 3 microarcsecond/year, corresponding to a transverse velocity of 10 m/ s at a distance of 1 kpc. The basic astrometric observable of the SIM instrument is the pathlength delay. This measurement is made by a combination of internal metrology measurements that determine the distance the starlight travels through the two arms of the interferometer, and a measurement of the white light stellar fringe to find the point of equal pathlength. Because this operation requires a non-negligible integration time, the interferometer baseline vector is not stationary over this time period, as its absolute length and orientation are time varying. This paper addresses how the time varying baseline can be "regularized" so that it may act as a single baseline vector for multiple stars, as required for the solution of the astrometric equations.

  8. Continental hydrology loading observed by VLBI measurements

    NASA Astrophysics Data System (ADS)

    Eriksson, David; MacMillan, D. S.

    2014-07-01

    Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3-15 mm in the vertical component and 1-2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70-80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 0.05 for GRACE and 1.39 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.

  9. Crustal dynamics project observing plan for highly mobile systems 1981 - 1986

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1980-01-01

    Measurement of crustal motion in the western United States and other tectonically active regions makes use of fixed, movable and highly mobile satellite laser ranging and very long baseline interferometry systems. Measurement of the rotational dynamics of the Earth as well as regional deformation and plate motion are discussed.

  10. Surface Accuracy and Pointing Error Prediction of a 32 m Diameter Class Radio Astronomy Telescope

    NASA Astrophysics Data System (ADS)

    Azankpo, Severin

    2017-03-01

    The African Very-long-baseline interferometry Network (AVN) is a joint project between South Africa and eight partner African countries aimed at establishing a VLBI (Very-Long-Baseline Interferometry) capable network of radio telescopes across the African continent. An existing structure that is earmarked for this project, is a 32 m diameter antenna located in Ghana that has become obsolete due to advances in telecommunication. The first phase of the conversion of this Ghana antenna into a radio astronomy telescope is to upgrade the antenna to observe at 5 GHz to 6.7 GHz frequency and then later to 18 GHz within a required performing tolerance. The surface and pointing accuracies for a radio telescope are much more stringent than that of a telecommunication antenna. The mechanical pointing accuracy of such telescopes is influenced by factors such as mechanical alignment, structural deformation, and servo drive train errors. The current research investigates the numerical simulation of the surface and pointing accuracies of the Ghana 32 m diameter radio astronomy telescope due to its structural deformation mainly influenced by gravity, wind and thermal loads.

  11. Mission definition study for a VLBI station utilizing the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burke, B. F.

    1982-01-01

    The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.

  12. A coherent fiber link for very long baseline interferometry.

    PubMed

    Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide

    2015-11-01

    We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.

  13. A demonstration of a transportable radio interferometric surveying system with 3-cm accuracy on a 307-m base line

    NASA Technical Reports Server (NTRS)

    Ong, K. M.; Macdoran, P. F.; Thomas, J. B.; Fliegel, H. F.; Skjerve, L. J.; Spitzmesser, D. J.; Batelaan, P. D.; Paine, S. R.; Newsted, M. G.

    1976-01-01

    A precision geodetic measurement system (Aries, for Astronomical Radio Interferometric Earth Surveying) based on the technique of very long base line interferometry has been designed and implemented through the use of a 9-m transportable antenna and the NASA 64-m antenna of the Deep Space Communications Complex at Goldstone, California. A series of experiments designed to demonstrate the inherent accuracy of a transportable interferometer was performed on a 307-m base line during the period from December 1973 to June 1974. This short base line was chosen in order to obtain a comparison with a conventional survey with a few-centimeter accuracy and to minimize Aries errors due to transmission media effects, source locations, and earth orientation parameters. The base-line vector derived from a weighted average of the measurements, representing approximately 24 h of data, possessed a formal uncertainty of about 3 cm in all components. This average interferometry base-line vector was in good agreement with the conventional survey vector within the statistical range allowed by the combined uncertainties (3-4 cm) of the two techniques.

  14. Optical interferometry study of film formation in lubrication of sliding and/or rolling contacts

    NASA Technical Reports Server (NTRS)

    Stejskal, E. O.; Cameron, A.

    1972-01-01

    Seventeen fluids of widely varying physical properties and molecular structure were chosen for study. Film thickness and traction were measured simultaneously in point contacts by interferometry, from which a new theory of traction was proposed. Film thickness was measured in line contacts by interferometry and electrical capacitance to establish correlation between these two methods. An interferometric method for the absolute determination of refractive index in the contact zone was developed and applied to point contact fluid entrapments. Electrical capacitance was used to study the thickness and properties of the soft surface film which sometimes forms near a metal-fluid interface.

  15. Coseismic Displacement Analysis of the 12 November 2017 MW 7.3 Sarpol-E Zahab (iran) Earthquake from SAR Interferometry, Burst Overlap Interferometry and Offset Tracking

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi

    2018-04-01

    Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.

  16. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  17. Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR

    NASA Technical Reports Server (NTRS)

    Lavalle, M.; Hensley, S.; Simard, M.

    2011-01-01

    We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.

  18. Research in geodesy and geophysics based upon radio-interferometric observations of extragalactic radio sources. Final report, December 1984-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, T.A.; Davis, J.L.; Gwinn, C.R.

    1986-10-01

    This report consists of a collection of reprints and preprints. Subjects included: description of Mk-III system for very-long-baseline interferometry (VLBI); geodetic results from the Mk-I and Mk-III systems for VLBI; effects of modeling atmospheric propagation on estimates of baseline length and station height; an improved model for the dry propagation delay; corrections to IAU 1980 nutation series based on VLBI data and geophysical interpretation of those corrections; and a review of the contributions of VLBI to geodynamic studies.

  19. An advanced algorithm for deformation estimation in non-urban areas

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-09-01

    This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.

  20. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.

    PubMed

    Scrimgeour, Jan; Curtis, Jennifer E

    2012-06-18

    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.

  1. Resolving microstructures in Z pinches with intensity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less

  2. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.; Wittkowski, M.

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument in prism mode within the framework of the Science Demonstration Time (SDT) program in Feb. 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m.As we show by means of radiative transfer modelin with the code DUSTY [3], the wavelength dependence of the visibility and the N-band spectrum measured with MIDI can be interpreted as thesignature of a circumstellar dust shell which is dominated by silicate dust.

  3. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  4. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  5. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Earth Orientation › VLBI-based Products USNO Logo USNO Navigation Earth determine Earth Orientation Parameters (EOP) is Very Long Baseline Interferometry (VLBI). USNO provides both

  6. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.

  7. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  8. International mission planning for space Very Long Baseline Interferometry

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.

    1994-01-01

    Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.

  9. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less

  10. Merging of an EET CInSAR DEM with the SRTM DEM

    NASA Astrophysics Data System (ADS)

    Wegmuller, Urs; Wiesmann, Andreas; Santoro, Maurizio

    2010-03-01

    Cross-interferometry (CInSAR) using ERS-2 and ENVISAT ASAR SAR data acquired in the ERS like mode IS2 at VV-polarization with perpendicular baselines of approximately 2 kilometers permits generation of digital elevation models (DEMs). Thanks to the long perpendicular baselines CInSAR has a good potential to generate accurate DEMs over relatively flat terrain. Over sloped terrain the topographic phase gradients get very high and the signals decorrelate if the carrier frequency difference and the baseline effects do not compensate any more. As a result phase unwrapping gets very difficult so that often no reliable solution is obtained for hilly terrain, resulting in DEMs with significant spatial gaps.Spatial gaps in ERS-2 ENVISAT Tandem (EET) CInSAR DEMs over hilly terrain are clearly an important limitation to the utility of these DEMs. On the other hand the high quality achieved over relatively flat terrain is of high interest. As an attempt to significantly improve the utility of the "good information" contained in the CInSAR DEM we developed a methodology to merge a CInSAR DEM with another available DEM, e.g. the SRTM DEM.The methodology was applied to an area in California, USA, including relatively flat terrain belonging to the Mohave desert as well as hilly to mountainous terrain of the San Gabriel and Tehachapi Mountains.

  11. Ambient Vibration and Earthquake-Data Analyses of a 62-STORY Building Using System Identification and Seismic Interferometry

    NASA Astrophysics Data System (ADS)

    Kalkan, E.; Fletcher, J. B.; Ulusoy, H. S.; Baker, L. A.

    2014-12-01

    A 62-story residential tower in San Francisco—the tallest all-residential building in California—was recently instrumented by the USGS's National Strong Motion Project in collaboration with the Strong Motion Instrumentation Program of the California Geological Survey to monitor the motion of a tall building built with specifically engineered features (including buckling-restrained braces, outrigger columns and a tuned liquid damper) to reduce its sway from seismic and wind loads. This 641-ft tower has been outfitted with 72 uni-axial accelerometers, spanning through 26 different levels of the building. For damage detection and localization through structural health monitoring, we use local micro-earthquake and ambient monitoring (background noises) to define linear-elastic (undamaged) dynamic properties of the superstructure including its modal parameters (fundamental frequencies, mode shapes and modal damping values) and shear-wave propagation profile and wave attenuation inside the building, which need to be determined in advance of strong shaking. In order to estimate the baseline modal parameters, we applied a frequency domain decomposition method. Using this method, the first three bending modes in the reference east-west direction, the first two bending modes in the reference north-south direction, and the first two torsional modes were identified. The shear-wave propagation and wave attenuation inside the building were computed using deconvolution interferometry. The data used for analyses are from ambient vibrations having 20 minutes duration, and earthquake data from a local M4.5 event located just north east of Geyserville, California. We show that application of deconvolution interferometry to data recorded inside a building is a powerful technique for monitoring structural parameters, such as velocities of traveling waves, frequencies of normal modes, and intrinsic attenuation (i.e., damping). The simplicity and similarity of the deconvolved waveforms from ambient vibrations and a small magnitude event also suggest that a one-dimensional shear velocity model is sufficiently accurate to represent the wave propagation charactersistics inside the building.

  12. Search for violations of quantum mechanics

    DOE PAGES

    Ellis, John; Hagelin, John S.; Nanopoulos, D. V.; ...

    1984-07-01

    The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this study we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0-K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2 × 10 -21 GeV on contributionsmore » to the single particle “hamiltonian” which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. Finally, an appendix contains model estimates of the magnitude of effects violating quantum mechanics.« less

  13. Multiple baseline radar interferometry applied to coastal land cover classification and change analyses

    USGS Publications Warehouse

    Ramsey, Elijah W.; Lu, Z.; Rangoonwala, A.; Rykhus, Russ

    2006-01-01

    ERS-1 and ERS-2 SAR data were collected in tandem over a four-month period and used to generate interferometric coherence, phase, and intensity products that we compared to a classified land cover coastal map of Big Bend, Florida. Forests displayed the highest intensity, and marshes the lowest. The intensity for fresh marsh and forests progressively shifted while saline marsh intensity variance distribution changed with the season. Intensity variability suggested instability between temporal comparisons. Forests, especially hardwoods, displayed lower coherences and marshes higher. Only marshes retained coherence after 70 days. Coherence was more responsive to land cover class than intensity and provided discrimination in winter. Phase distributions helped reveal variation in vegetation structure, identify broad land cover classes and unique within-class variations, and estimate water-level changes. Copyright ?? 2006 by V. H. Winston & Son, Inc. All rights reserved.

  14. Seasonal station variations in the Vienna VLBI terrestrial reference frame VieTRF16a

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Madzak, Matthias

    2017-04-01

    The special analysis center of the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS) at TU Wien (VIE) routinely analyses the VLBI measurements and estimates its own Terrestrial Reference Frame (TRF) solutions. We present our latest solution VieTRF16a (1979.0 - 2016.5) computed with the software VieVS version 3.0. Several recent updates of the software have been applied, e.g., the estimation of annual and semi-annual station variations as global parameters. The VieTRF16a is determined in the form of the conventional model (station position and its linear velocity) simultaneously with the celestial reference frame and Earth orientation parameters. In this work, we concentrate on the seasonal station variations in the residual time series and compare our TRF with the three combined TRF solutions ITRF2014, DTRF2014 and JTRF2014.

  15. High dynamic range imaging by pupil single-mode filtering and remapping

    NASA Astrophysics Data System (ADS)

    Perrin, G.; Lacour, S.; Woillez, J.; Thiébaut, É.

    2006-12-01

    Because of atmospheric turbulence, obtaining high angular resolution images with a high dynamic range is difficult even in the near-infrared domain of wavelengths. We propose a novel technique to overcome this issue. The fundamental idea is to apply techniques developed for long baseline interferometry to the case of a single-aperture telescope. The pupil of the telescope is broken down into coherent subapertures each feeding a single-mode fibre. A remapping of the exit pupil allows interfering all subapertures non-redundantly. A diffraction-limited image with very high dynamic range is reconstructed from the fringe pattern analysis with aperture synthesis techniques, free of speckle noise. The performances of the technique are demonstrated with simulations in the visible range with an 8-m telescope. Raw dynamic ranges of 1:106 can be obtained in only a few tens of seconds of integration time for bright objects.

  16. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  17. Holographic interferometry of transparent media with reflection from imbedded test objects

    NASA Technical Reports Server (NTRS)

    Prikryl, I.; Vest, C. M.

    1981-01-01

    In applying holographic interferometry, opaque objects blocking a portion of the optical beam used to form the interferogram give rise to incomplete data for standard computer tomography algorithms. An experimental technique for circumventing the problem of data blocked by opaque objects is presented. The missing data are completed by forming an interferogram using light backscattered from the opaque object, which is assumed to be diffuse. The problem of fringe localization is considered.

  18. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  19. Radio stars - A possible link between the Hipparcos optical reference frame and an extra-galactic very long baseline interferometry reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Slade, M. A.

    1983-01-01

    The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.

  20. Astrometric Detection of a Low Mass Companion Orbiting the Star AB Doradus

    NASA Technical Reports Server (NTRS)

    Soderhjelm, S.; Guirado, J. C.; Reynolds, J. E.; Lestrade, J. F.; Preston, R. A.; Jauncey, D. L.; Jones, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.; hide

    1997-01-01

    We report submilliarsecond-precise astrometric measurement for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and Hipparos satellite data. Our astrometric analysis results in the precise determination of the kinematics of this star, that reveals an orbital motion readily explained as caused by the gravitational interaction with a low-mass companion.

  1. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  2. Spatial phase-shift dual-beam speckle interferometry.

    PubMed

    Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin

    2018-01-20

    The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

  3. Analyzing refractive index profiles of confined fluids by interferometry.

    PubMed

    Kienle, Daniel F; Kuhl, Tonya L

    2014-12-02

    This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.

  4. Applied Optics Golden Anniversary commemorative reviews: introduction.

    PubMed

    Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C

    2013-01-01

    Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.

  5. Correlation of scanning microwave interferometry and digital X-ray images for damage detection in ceramic composite armor

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William

    2012-05-01

    Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.

  6. DEM generation in cloudy-rainy mountainous area with multi-baseline SAR interferometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong'an; Zhang, Yonghong; Jiang, Decai; Kang, Yonghui

    2018-03-01

    Conventional singe baseline InSAR is easily affected by atmospheric artifacts, making it difficult to generate highprecision DEM. To solve this problem, in this paper, a multi-baseline interferometric phase accumulation method with weights fixed by coherence is proposed to generate higher accuracy DEM. The mountainous area in Kunming, Yunnan Province, China is selected as study area, which is characterized by cloudy weather, rugged terrain and dense vegetation. The multi-baseline InSAR experiments are carried out by use of four ALOS-2 PALSAR-2 images. The generated DEM is evaluated by Chinese Digital Products of Fundamental Geographic Information 1:50000 DEM. The results demonstrate that: 1) the proposed method can reduce atmospheric artifacts significantly; 2) the accuracy of InSAR DEM generated by six interferograms satisfies the standard of 1:50000 DEM Level Three and American DTED-1.

  7. 2016 Summer Series - Mark Kasevich: Quantum Mechanics at Macroscopic Scales

    NASA Image and Video Library

    2016-06-09

    The underpinning of the universe is quantum mechanics. It can be used to explain the observed particle and wave nature of atoms. Atom interferometry uses the wave characteristics of atoms to investigate fundamental physics and advance our understanding of the macroscopic world. NASA is working with Dr. Mark Kasevich to apply this technology to advance astrophysics and improve navigation. In his seminar, Kasevich will delve into the world of atom interferometry, gravitational waves and quantum sensors.

  8. Separated fringe packet observations with the Chara Array. II. ω Andromeda, HD 178911, and ξ Cephei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, C. D.; Ten Brummelaar, T. A.; Turner, N. H.

    When observed with optical long-baseline interferometers, components of a binary star that are sufficiently separated produce their own interferometric fringe packets; these are referred to as separated fringe packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and themore » SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda, HD 178911, and ξ Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963 ± 0.049 M {sub ☉} and 0.860 ± 0.051 M {sub ☉} and 39.54 ± 1.85 mas for ω Andromeda, for HD 178911 of 0.802 ± 0.055 M {sub ☉} and 0.622 ± 0.053 M {sub ☉} with 28.26 ± 1.70 mas, and masses of 1.045 ± 0.031 M {sub ☉} and 0.408 ± 0.066 M {sub ☉} and 38.10 ± 2.81 mas for ξ Cephei.« less

  9. Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen

    2017-06-01

    We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.

  10. Extended Envelopes around Galactic Cepheids. III. Y Ophiuchi and α Persei from Near-Infrared Interferometry with CHARA/FLUOR

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Aufdenberg, Jason P.; Kervella, Pierre; Foresto, Vincent Coudé du; ten Brummelaar, Theo A.; McAlister, Harold A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.

    2007-08-01

    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade-Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a nonpulsating yellow supergiant (α Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of α Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with characteristics similar to CSEs found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSEs, detected by near-infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE nondetection around a nonpulsating supergiant in the instability strip, α Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.

  11. Testing of the Gemini secondary mirrors

    NASA Astrophysics Data System (ADS)

    Otto, Wolfgang

    1999-09-01

    The first 1-m secondary mirror for the Gemini 8-m telescopes project was delivered by Zeiss in 1998, and 2nd mirror will be delivered in the summer of 1999. For first use during commissioning we produced an extreme lightweight Zerodur solution prefabricated at Schott. To reach the 85 percent weight reduction a novel etching technique was used. INterferometric testing was done performing full aperture measurements using a concave matrix. In progress with the fabrication process of the matrix we applied 3D-mechanical measurements, IR-interferometry, and VIS-interferometry using null lenses to reach the final intrinsic quality of 6 nm rms. For interferometric testing of the secondaries phase shifting interferometry with a tunable laser diode was applied. The optical test results of the secondaries show, that the mirrors are well within specification. The finally achieved intrinsic surface quality is 17 nm rms for Unit 1 and 13 nm rms for Unit 2, dominated by cutting effects which were introduced by removing the oversize at the inner and outer edge of the mirror after the final polishing step.

  12. Source signature estimation from multimode surface waves via mode-separated virtual real source method

    NASA Astrophysics Data System (ADS)

    Gao, Lingli; Pan, Yudi

    2018-05-01

    The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.

  13. An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Morimoto, Takeshi; Kikuchi, Hiroshi; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Ishida, Ryohei; Sakamoto, Yuji; Yoshida, Kazuya; Hobara, Yasuhide; Sano, Takuki; Abe, Takumi; Kawasaki, Zen-Ichiro

    2016-08-01

    The Global Lightning and sprIte MeasurementS (GLIMS) mission has been conducted at the Exposed Facility of Japanese Experiment Module (JEM-EF) of the International Space Station for more than 30 months. This paper focuses on an electromagnetic (EM) payload of JEM-GLIMS mission, the very high frequency (VHF) broadband digital InTerFerometer (VITF). The JEM-GLIMS mission is designed to conduct comprehensive observations with both EM and optical payloads for lightning activities and related transient luminous events. Its nominal operation continued from November 2012 to December 2014. The extended operation followed for eight months. Through the operation period, the VITF collected more than two million VHF EM waveforms in almost 18,700 datasets. The number of VITF observations synchronized with optical signal is 8049. Active VHF radiations are detected in about 70 % of optical observations without obvious regional or seasonal dependency. Estimations of the EM direction-of-arrival (DOA) are attempted using the broadband digital interferometry. Some results agree with the optical observations, even though DOA estimation is problematic because of a very short antenna baseline and multiple pulses over a short time period, namely burst-type EM waveforms. The world's first lightning observations by means of space-borne VHF interferometry are achieved in this mission. This paper summarizes VITF instruments, the recorded VHF EM signals, and the results of DOA estimations by means of digital interferometry as a preliminary report after termination of the mission.[Figure not available: see fulltext.

  14. Land deformation in Saint Louis, Missouri measured by ALOS InSAR and PolINSAR validated with DGPS base stations

    NASA Astrophysics Data System (ADS)

    Ghulam, A.

    2011-12-01

    DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.

  15. Observations of the Sea Ice Cover Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1995-01-01

    The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.

  16. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    NASA Astrophysics Data System (ADS)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  17. Differential tracking data types for accurate and efficient Mars planetary navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Border, J. S.

    1991-01-01

    Ways in which high-accuracy differential observations of two or more deep space vehicles can dramatically extend the power of earth-based tracking over conventional range and Doppler tracking are discussed. Two techniques - spacecraft-spacecraft differential very long baseline interferometry (S/C-S/C Delta(VLBI)) and same-beam interferometry (SBI) - are discussed. The tracking and navigation capabilities of conventional range, Doppler, and quasar-relative Delta(VLBI) are reviewed, and the S/C-S/C Delta (VLBI) and SBI types are introduced. For each data type, the formation of the observable is discussed, an error budget describing how physical error sources manifest themselves in the observable is presented, and potential applications of the technique for Space Exploration Initiative scenarios are examined. Requirements for spacecraft and ground systems needed to enable and optimize these types of observations are discussed.

  18. Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter

    NASA Technical Reports Server (NTRS)

    Lay, R.

    1977-01-01

    The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.

  19. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  20. The TANAMI Program

    DTIC Science & Technology

    2010-06-01

    Sternwartstrasse 7, 96049 Bamberg, Germany 3 CRESST/ NASA Goddard Space Flight Center, Greenbelt, ~’iID 20771, USA 4 USRA, 10211 Wincopin Circle, Suite...program and present early results on the 75 sources currently being monitored. 1. Introduction Very Long Baseline Interferometry (VLBI) observations...wavelength studies (e.g., Abdo et al. 2010a, Chang et al. 2010) be - sides probing emission processes along AGN jets (e.g., Muller et al. 2010, Hungwe

  1. Processing and interpretation of experiments in the microwave interferometry of shock waves in a weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.

    1990-12-01

    The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.

  2. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.

  3. Application of SPM interferometry in MEMS vibration measurement

    NASA Astrophysics Data System (ADS)

    Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun

    2007-12-01

    The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.

  4. An evaluation of water vapor radiometer data for calibration of the wet path delay in very long baseline interferometry experiments

    NASA Technical Reports Server (NTRS)

    Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.

    1991-01-01

    The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.

  5. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  6. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  7. Crustal dynamics project data analysis, 1988: VLBI geodetic results, 1979 - 1987

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D.

    1989-01-01

    The results obtained by the Goddard VLBI (very long base interferometry) Data Analysis Team from the analysis of 712 Mark 3 VLBI geodetic data sets acquired from fixed and mobile observing sites through the end of 1987 are reported. A large solution, GLB401, was used to obtain earth rotation parameters and site velocities. A second large solution, GLB405, was used to obtain baseline evolutions. Radio source positions were estimated globally while nutation offsets were estimated from each data set. Site positions are tabulated on a yearly basis from 1979 through 1988. The results include 55 sites and 270 baselines.

  8. Mission feasibility study of a very long baseline interferometer utilizing the space shuttle

    NASA Technical Reports Server (NTRS)

    Burke, B. F.

    1978-01-01

    An introductory overview of very long baseline interferometry (VLBI) as it exists and is used today is given and the scientific advances that have been achieved with this technique in the past decade are described. The report briefly reviews developments now in progress that will improve ground station VLBI in the next few years, and the limitations that still will exist. The advantages and the scientific return on investment that may be expected from a VLBI terminal in space are described. Practical problems that have to be faced range from system design through hardware implementation, to data recovery and analysis.

  9. Crustal Dynamics Project data analysis, 1990

    NASA Technical Reports Server (NTRS)

    Caprette, D. S.; Ma, C.; Ryan, J. W.

    1990-01-01

    The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.

  10. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    NASA Astrophysics Data System (ADS)

    Masera, D.; Bocca, P.; Grazzini, A.

    2011-07-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  11. A programmable broadband low frequency active vibration isolation system for atom interferometry.

    PubMed

    Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng

    2014-09-01

    Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.

  12. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.

    PubMed

    Podoleanu, Adrian Gh; Bradu, Adrian

    2013-08-12

    Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

  13. 2006 Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan; hide

    2006-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  14. Interferometry of chemically peculiar stars: theoretical predictions versus modern observing facilities

    NASA Astrophysics Data System (ADS)

    Shulyak, D.; Paladini, C.; Causi, G. Li; Perraut, K.; Kochukhov, O.

    2014-09-01

    By means of numerical experiments we explore the application of interferometry to the detection and characterization of abundance spots in chemically peculiar (CP) stars using the brightest star ε UMa as a case study. We find that the best spectral regions to search for spots and stellar rotation signatures are in the visual domain. The spots can clearly be detected already at a first visibility lobe and their signatures can be uniquely disentangled from that of rotation. The spots and rotation signatures can also be detected in near-infrared at low spectral resolution but baselines longer than 180 m are needed for all potential CP candidates. According to our simulations, an instrument like VEGA (or its successor e.g. Fibered and spectrally Resolved Interferometric Equipment New Design) should be able to detect, in the visual, the effect of spots and spots+rotation, provided that the instrument is able to measure V2 ≈ 10-3, and/or closure phase. In infrared, an instrument like AMBER but with longer baselines than the ones available so far would be able to measure rotation and spots. Our study provides necessary details about strategies of spot detections and the requirements for modern and planned interferometric facilities essential for CP star research.

  15. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    NASA Astrophysics Data System (ADS)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  16. Kinetic Titration Series with Biolayer Interferometry

    PubMed Central

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  17. Kinetic titration series with biolayer interferometry.

    PubMed

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.

  18. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.

  19. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  20. Space beam combiner for long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  1. Designing the Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    While infrared astronomy has revolutionized our understanding of galaxies, stars, and planets, further progress on major questions is stymied by the inescapable fact that the spatial resolution of single-aperture telescopes degrades at long wavelengths. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter boom interferometer to operate in the FIR (30-90 micron) on a high altitude balloon. The long baseline will provide unprecedented angular resolution (approx. 5") in this band. In order for BETTII to be successful, the gondola must be designed carefully to provide a high level of stability with optics designed to send a collimated beam into the cryogenic instrument. We present results from the first 5 months of design effort for BETTII. Over this short period of time, we have made significant progress and are on track to complete the design of BETTII during this year.

  2. Monitoring of Sea Ice Dynamic by Means of ERS-Envisat Tandem Cross-Interferometry

    NASA Astrophysics Data System (ADS)

    Pasquali, Paolo; Cantone, Alessio; Barbieri, Massimo; Engdahl, Marcus

    2010-03-01

    The interest in the monitoring of sea ice masses has increased greatly over the past decades for a variety of reasons. These include:- Navigation in northern latitude waters;- transportation of petroleum;- exploitation of mineral deposits in the Arctic, and- the use of icebergs as a source of fresh water.The availability of ERS-Envisat 28minute tandem acquisitions from dedicated campaigns, covering large areas in the northern latitudes with large geometrical baseline and very short temporal separation, allows the precise estimation of sea ice displacement fields with an accuracy that cannot be obtained on large scale from any other instrument. This article presents different results of sea ice dynamic monitoring over northern Canada obtained within the "ERS-Envisat Tandem Cross-Interferometry Campaigns: CInSAR processing and studies over extended areas" project from data acquired during the 2008-2009 Tandem campaign..

  3. Satellite SAR interferometric techniques applied to emergency mapping

    NASA Astrophysics Data System (ADS)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.

  4. Retrieval of phase-derivative discontinuities in digital speckle pattern interferometry fringes using the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Federico, Alejandro; Kaufmann, Guillermo H.

    2004-08-01

    We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.

  5. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  6. Forward scattering in two-beam laser interferometry

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Sasso, C. P.

    2018-04-01

    A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.

  7. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  8. Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis.

    PubMed

    Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C

    1983-01-07

    The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.

  9. Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR

    NASA Astrophysics Data System (ADS)

    Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos

    2013-08-01

    This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).

  10. 2D strain mapping using scanning transmission electron microscopy Moiré interferometry and geometrical phase analysis.

    PubMed

    Pofelski, A; Woo, S Y; Le, B H; Liu, X; Zhao, S; Mi, Z; Löffler, S; Botton, G A

    2018-04-01

    A strain characterization technique based on Moiré interferometry in a scanning transmission electron microscope (STEM) and geometrical phase analysis (GPA) method is demonstrated. The deformation field is first captured in a single STEM Moiré hologram composed of multiple sets of periodic fringes (Moiré patterns) generated from the interference between the periodic scanning grating, fixing the positions of the electron probe on the sample, and the crystal structure. Applying basic principles from sampling theory, the Moiré patterns arrangement is then simulated using a STEM electron micrograph reference to convert the experimental STEM Moiré hologram into information related to the crystal lattice periodicities. The GPA method is finally applied to extract the 2D relative strain and rotation fields. The STEM Moiré interferometry enables the local information to be de-magnified to a large length scale, comparable to what can be achieved in dark-field electron holography. The STEM Moiré GPA method thus extends the conventional high-resolution STEM GPA capabilities by providing comparable quantitative 2D strain mapping with a larger field of view (up to a few microns). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed

    Farinas, J; Verkman, A S

    1996-12-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.

  12. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  13. Centimeter repeatability of the VLBI estimates of European baselines

    NASA Technical Reports Server (NTRS)

    Rius, Antonio; Zarraoa, Nestor; Sardon, Esther; Ma, Chopo

    1992-01-01

    In the last three years, the European Geodetic Very Long Baseline Interferometry (VLBI) Network has grown to a total of six fixed antennas placed in Germany, Italy, Spain and Sweden, all equipped with the standard geodetic VLBI instrumentation and data recording systems. During this period of time, several experiments have been carried out using this interferometer providing data of very high quality due to the excellent sensitivity and performance of the European stations. The purpose of this paper is to study the consistency of the VLBI geodetic results on the European baselines with respect to the different degrees of freedom in the analysis procedure. Used to complete this study were both real and simulated data sets, two different software packages (OCCAM 3.0 and CALC 7.4/SOLVE), and a variety of data analysis strategies.

  14. Assessing deformation and morphology of Arctic landfast sea ice using InSAR to support use and management of coastal ice

    NASA Astrophysics Data System (ADS)

    Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.

    2016-12-01

    Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.

  15. Phase Calibration for the Block 1 VLBI System

    NASA Technical Reports Server (NTRS)

    Roth, M. G.; Runge, T. F.

    1983-01-01

    Very Long Baseline Interferometry (VLBI) in the DSN provides support for spacecraft navigation, Earth orientation measurements, and synchronization of network time and frequency standards. An improved method for calibrating instrumental phase shifts has recently been implemented as a computer program in the Block 1 system. The new calibration program, called PRECAL, performs calibrations over intervals as small as 0.4 seconds and greatly reduces the amount of computer processing required to perform phase calibration.

  16. (abstract) A VLBI Test of Tropospheric Delay Calibration with WVRs

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.; Teitelbaum, L. P.; Keihm, S. J.; Resch, G. M.; Mahoney, M. J.; Treuhaft, R. N.

    1994-01-01

    Dual frequency (S/X band) very long baseline interferometry (VLBI) observations were used to test troposphere calibration by water vapor radiometers (WVRs). Comparison of the VLBI and WVR measurements show a statistical agreement (specifically, their structure functions agree) on time scales less than 700 seconds. On longer time scales, VLBI instrumental errors become important. The improvement in VLBI residual delays from WVR calibration was consistent with the measured level of tropospheric fluctuations.

  17. International VLBI Service for Geodesy and Astrometry 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Baver, Karen D. (Editor); Behrend, Dirk (Editor); Armstrong, Kyla L. (Editor)

    2015-01-01

    IVS is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: 1. To provide a service to support geodetic, geophysical and astrometric research and operational activities. 2. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. 3. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  18. Shuttle VLBI experiment. Technical working group summary report

    NASA Technical Reports Server (NTRS)

    Morgan, S. H. (Editor); Roberts, D. H. (Editor)

    1982-01-01

    The gain in interferometric resolution of extragalactic sources at radio frequencies which can be achieved by placing a very long baseline interferometry (VLBI) antenna in space is quantitatively described and a VLBI demonstration experiment using a large deployable antenna, which if realized could be a very acceptable first venture for VLBI in space is discussed. A tutorial on VLBI, a summary of the technology available for the experiment, and a preliminary mission scenario are included.

  19. UAVSAR derived 3-D surface deformation from repeat-pass interferometry and pixel tracking at the Slumgullion Landslide

    NASA Astrophysics Data System (ADS)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Wang, T.

    2016-12-01

    In order to provide surface geodetic measurements with dense spatial resolution (pixel spacing < 10 m) spanning timescales from days to years, we develop and validate methods for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently with peak rates of up to 2 cm/day. To better understand the seasonal variation in the velocity observed at the landslide, we have collected UAVSAR acquisitions in approximately week-long pairs along four look directions during three key phases of the landslide's seasonal cycle: (1) during the slow season (fall or winter), (2) during the acceleration phase (spring), and (3) during the deceleration phase (summer). First, we process the UAVSAR data using conventional 2-pass techniques, which permit the highest resolution images. We process 160 SLC images to form 80 interferograms along four look directions acquired between 2011—2016, which are combined to create 20 weeklong 3-D surface deformation measurements. However, due to the rapid deformation rates, the formation of image pairs with temporal baselines longer than 10 days fail because the change in phase from one pixel to the next exceeds half the radar wavelength ( 24 cm). In order to measure the surface deformation year-round using the pairs of SAR images with temporal baselines on the order of several months to years, which span the time periods between the week-long acquisition pairs, we use the pixel offsets measured between two SAR amplitude images. Pixel offsets provide surface displacement measurements perpendicular to- (range) and parallel to- (azimuth) the along-track direction of flight. A comparison with concurrent GPS measurements validates these methods. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields.

  20. An analysis and demonstration of clock synchronization by VLBI

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1972-01-01

    A prototype of a semireal-time system for synchronizing the DSN station clocks by radio interferometry was successfully demonstrated. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time synchronization estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 nsec rms were achieved between DSS 11 and DSS 12, both at Goldstone, California. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to position uncertainties of baseline and source and atmospheric effects are reached. These limitations are under ten nsec for transcontinental baselines.

  1. Applications and development of new algorithms for displacement analysis using InSAR time series

    NASA Astrophysics Data System (ADS)

    Osmanoglu, Batuhan

    Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.

  2. Not all pure entangled states are useful for sub-shot-noise interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyllus, Philipp; Smerzi, Augusto; Guehne, Otfried

    2010-07-15

    We investigate the connection between the shot-noise limit in linear interferometers and particle entanglement. In particular, we ask whether sub-shot-noise sensitivity can be reached with all pure entangled input states of N particles if they can be optimized with local operations. Results on the optimal local transformations allow us to show that for N=2 all pure entangled states can be made useful for sub-shot-noise interferometry while for N>2 this is not the case. We completely classify the useful entangled states available in a bosonic two-mode interferometer. We apply our results to several states, in particular to multiparticle singlet states andmore » to cluster states. The latter turn out to be practically useless for sub-shot-noise interferometry. Our results are based on the Cramer-Rao bound and the Fisher information.« less

  3. A novel plasmonic interferometry and the potential applications

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  4. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  5. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  6. Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.

    2004-01-01

    In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.

  7. From master slave interferometry to complex master slave interferometry: theoretical work

    NASA Astrophysics Data System (ADS)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2018-03-01

    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  8. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement

    NASA Astrophysics Data System (ADS)

    Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong

    2017-11-01

    Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.

  9. Mapping small elevation changes over large areas - Differential radar interferometry

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.

    1989-01-01

    A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.

  10. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  11. Measuring finite-range phase coherence in an optical lattice using Talbot interferometry

    PubMed Central

    Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig

    2017-01-01

    One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941

  12. Estimation of seismic attenuation in carbonate rocks using three different methods: Application on VSP data from Abu Dhabi oilfield

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2016-06-01

    In this study a relationship between the seismic wavelength and the scale of heterogeneity in the propagating medium has been examined. The relationship estimates the size of heterogeneity that significantly affects the wave propagation at a specific frequency, and enables a decrease in the calculation time of wave scattering estimation. The relationship was applied in analyzing synthetic and Vertical Seismic Profiling (VSP) data obtained from an onshore oilfield in the Emirate of Abu Dhabi, United Arab Emirates. Prior to estimation of the attenuation, a robust processing workflow was applied to both synthetic and recorded data to increase the Signal-to-Noise Ratio (SNR). Two conventional methods of spectral ratio and centroid frequency shift methods were applied to estimate the attenuation from the extracted seismic waveforms in addition to a new method based on seismic interferometry. The attenuation profiles derived from the three approaches demonstrated similar variation, however the interferometry method resulted in greater depth resolution, differences in attenuation magnitude. Furthermore, the attenuation profiles revealed significant contribution of scattering on seismic wave attenuation. The results obtained from the seismic interferometry method revealed estimated scattering attenuation ranges from 0 to 0.1 and estimated intrinsic attenuation can reach 0.2. The subsurface of the studied zones is known to be highly porous and permeable, which suggest that the mechanism of the intrinsic attenuation is probably the interactions between pore fluids and solids.

  13. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  14. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  15. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem too strong to be plausible, but parameters describing a two-layer compare reasonably well to a field-measured probability distribution of tree heights in the area.

  16. Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.

    PubMed

    Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie

    2018-01-01

    The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.

  17. Tori, Discs, and Winds: The First Ten Years of AGN Interferometry

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.

    Infrared (IR) interferometry has made significant progress over the last 10 years to a level that active galactic nuclei (AGN) are now routine targets for long-baseline interferometers. Almost 50 different objects have been studied today in the near-IR and mid-IR. This allowed for detailed characterisation of the dusty environment of the actively growing black holes. It was possible to show directly that the dust must be arranged in clumps, as had been indirectly inferred from theory and unresolved observations. The dust composition seems to undergo significant evolution from galactic scales to the AGN environment, with the hottest dust close to the sublimation front being dominated by large graphite grains. While the overall distribution of the dusty mass is quite diverse from object to object, indications have been found that the dust distribution may depend on AGN luminosity, with more powerful AGN potentially showing more compact dust structures. Arguably the most exciting discovery was the fact that the bulk of the mid-IR emission in Seyfert galaxies emerges from the polar region of the AGN, which is difficult to reconcile with classical torus models. An alternative model is currently being debated that consists of a dusty disc plus a dusty wind driven by radiation pressure from the central source. This finding has major implications for our understanding of AGN unification and will become a focus of the upcoming generation of instruments at the VLTI. More recently, an application of interferometry to cosmology was proposed to measure precise geometric distances to AGN in the Hubble flow. Further exploration of this method may open up interferometry to a new scientific community.

  18. Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    NASA Technical Reports Server (NTRS)

    Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)

    1972-01-01

    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.

  19. Astrometry VLBI in Space (AVS)

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Reyes, George

    1995-01-01

    This paper describes a proposal for a new space radio astronomy mission for astrometry using Very Long Baseline Interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are improving the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames. This study will also assess the impact of this mission on astrophysics astrometry and geophysics.

  20. Relationships of earthquakes (and earthquake-associated mass movements) and polar motion as determined by Kalman filtered, Very-Long-Baseline-Interferometry

    NASA Technical Reports Server (NTRS)

    Preisig, Joseph Richard Mark

    1988-01-01

    A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.

  1. Taking the Measure of Massive Stars and their Environments with the CHARA Array Long-baseline Interferometer

    NASA Astrophysics Data System (ADS)

    Gies, Douglas R.

    2017-11-01

    Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.

  2. The self-calibration method for multiple systems at the CHARA Array

    NASA Astrophysics Data System (ADS)

    O'Brien, David

    The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry

  3. Observations of precipitable water vapor fluctuations in convective boundary layer via microwave interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, X.M.; Carlos, R.C.; Kirkland, M.W.

    1999-07-01

    At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less

  4. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    NASA Astrophysics Data System (ADS)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  5. Precisely determined the surface displacement by the ionospheric mitigation using the L-band SAR Interferometry over Mt.Baekdu

    NASA Astrophysics Data System (ADS)

    Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee

    2016-04-01

    Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.

  6. Monitoring the englacial fracture state using virtual-reflector seismology

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.

    2017-12-01

    Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.

  7. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  8. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.

    2016-10-01

    We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.

  9. The Era After the ELT: Optical Interferometry With Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.

    2007-12-01

    The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.

  10. Separated Fringe Packet Observations with the CHARA Array. I. Methods and New Orbits for χ Draconis, HD 184467, and HD 198084

    NASA Astrophysics Data System (ADS)

    Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; McAlister, H. A.; Raghavan, D.; Turner, N. H.; Sturmann, L.; Sturmann, J.; Ridgway, S. T.

    2010-06-01

    We present the modification of the orbits of χ Draconis and HD 184467, and a completely new orbit for HD 198084, including data taken at the Center for High Angular Resolution Astronomy (CHARA) Array. These data were obtained using a modification of the technique of separated fringe packets (SFPs). The accuracy of the SFP data surpasses that of data taken by speckle, but the technique is much more time and labor intensive. Additionally, using SFPs with the CHARA Array, it is possible to obtain separations below the detection range of speckle interferometry (>=30 mas) above the range in "classic" long-baseline interferometry where fringes from a binary overlap are no longer separated (<=10 mas). Using spectroscopic binary systems with published speckle orbits, we are able to test our new measurements against their ephemerides to calibrate the method as well as produce entirely new orbits for systems with no current astrometric observations.

  11. On marginally resolved objects in optical interferometry

    NASA Astrophysics Data System (ADS)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  12. Physicochemical characterization and failure analysis of military coating systems

    NASA Astrophysics Data System (ADS)

    Keene, Lionel Thomas

    Modern military coating systems, as fielded by all branches of the U.S. military, generally consist of a diverse array of organic and inorganic components that can complicate their physicochemical analysis. These coating systems consist of VOC-solvent/waterborne automotive grade polyurethane matrix containing a variety of inorganic pigments and flattening agents. The research presented here was designed to overcome the practical difficulties regarding the study of such systems through the combined application of several cross-disciplinary techniques, including vibrational spectroscopy, electron microscopy, microtomy, ultra-fast laser ablation and optical interferometry. The goal of this research has been to determine the degree and spatial progression of weathering-induced alteration of military coating systems as a whole, as well as to determine the failure modes involved, and characterizing the impact of these failures on the physical barrier performance of the coatings. Transmission-mode Fourier Transform Infrared (FTIR) spectroscopy has been applied to cross-sections of both baseline and artificially weathered samples to elucidate weathering-induced spatial gradients to the baseline chemistry of the coatings. A large discrepancy in physical durability (as indicated by the spatial progression of these gradients) has been found between older and newer generation coatings. Data will be shown implicating silica fillers (previously considered inert) as the probable cause for this behavioral divergence. A case study is presented wherein the application of the aforementioned FTIR technique fails to predict the durability of the coating system as a whole. The exploitation of the ultra-fast optical phenomenon of femtosecond (10-15S) laser ablation is studied as a potential tool to facilitate spectroscopic depth profiling of composite materials. Finally, the interferometric technique of Phase Shifting was evaluated as a potential high-sensitivity technique applied to the problem of determining internal stress evolution in curing and aging coatings.

  13. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  14. Fourier Transformation Theory for Averaged Functions, with Application to Very Long Baseline Radio Interferometry.

    DTIC Science & Technology

    1981-02-01

    primary parameters affecting the SNR. For an earth-based interferometer, the physical aperture may usually be constructed adequately large to keep the...bandwidth Av cent--.c. on vo0 by an interferometer with frequency characteristic F(v) and primary power pattern G(s-s ) (defined as the product of the...infinitely narrow beam for the primary power pattern, G(g- 0 ) = (;-S )] we have where we have assumed a flat frequency response and included as a

  15. Adverse Effects in Dual-Star Interferometry

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark

    2008-01-01

    Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews: the keys aspects of the dual-star approach and implementation; the main contributors to the

  16. Effect of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1

    NASA Astrophysics Data System (ADS)

    Scherneck, Hans-Georg; Haas, Rüdiger

    We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.

  17. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed Central

    Farinas, J; Verkman, A S

    1996-01-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620

  18. Incoherent averaging of phase singularities in speckle-shearing interferometry.

    PubMed

    Mantel, Klaus; Nercissian, Vanusch; Lindlein, Norbert

    2014-08-01

    Interferometric speckle techniques are plagued by the omnipresence of phase singularities, impairing the phase unwrapping process. To reduce the number of phase singularities by physical means, an incoherent averaging of multiple speckle fields may be applied. It turns out, however, that the results may strongly deviate from the expected √N behavior. Using speckle-shearing interferometry as an example, we investigate the mechanism behind the reduction of phase singularities, both by calculations and by computer simulations. Key to an understanding of the reduction mechanism during incoherent averaging is the representation of the physical averaging process in terms of certain vector fields associated with each speckle field.

  19. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  20. Holographic Moire, An Optical Tool For The Determination Of Displacements, Strains, Contours, And Slopes Of Surfaces

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1982-06-01

    In conventional holographic interferometry, the observed fringe patterns are determined by the object displacement and deformation, and by the illumination and observation configurations. The obtained information may not be in the most convenient form for further data processing. To overcome this problem, and to create new possibilities, holographic fringe patterns can be changed by modifying the optical setup. As a result of these modifications, well-known procedures of the moire method can be applied to holographic interferometry. Components of displacement and components of the strain tensor can be isolated and measured separately. Surface contours and slopes can also be determined.

  1. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  2. Statistical study of generalized nonlinear phase step estimation methods in phase-shifting interferometry.

    PubMed

    Langoju, Rajesh; Patil, Abhijit; Rastogi, Pramod

    2007-11-20

    Signal processing methods based on maximum-likelihood theory, discrete chirp Fourier transform, and spectral estimation methods have enabled accurate measurement of phase in phase-shifting interferometry in the presence of nonlinear response of the piezoelectric transducer to the applied voltage. We present the statistical study of these generalized nonlinear phase step estimation methods to identify the best method by deriving the Cramér-Rao bound. We also address important aspects of these methods for implementation in practical applications and compare the performance of the best-identified method with other bench marking algorithms in the presence of harmonics and noise.

  3. Application of optical interferometry in focused acoustic field measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing; Sun, Min; Cao, Yonggang; Zhu, Jiang

    2018-07-01

    Optical interferometry has been successfully applied in measuring acoustic pressures in plane-wave fields and spherical-wave fields. In this paper, the "effective" refractive index for focused acoustic fields was developed, through numerical simulation and experiments, the feasibility of the optical method in measuring acoustic fields of focused transducers was proved. Compared with the results from a membrane hydrophone, it was concluded that the optical method has good spatial resolution and is suitable for detecting focused fields with fluctuant distributions. The influences of a few factors (the generated lamb wave, laser beam directivity, etc.) were analyzed, and corresponding suggestions were proposed for effective application of this technology.

  4. Tidal atmospheric and ocean loading in VLBI analysis

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Schindelegger, Michael; Böhm, Johannes

    2016-04-01

    In VLBI (Very Long Baseline Interferometry) analysis, reductions for tidal atmospheric and ocean loading are commonly used according to the IERS Conventions. In this presentation we examine such loading corrections from contemporary geophysical models within routine VLBI processing and discuss the internal consistency of the applied corrections for various effects. In detail, two gravitational ocean tide models, FES2004 and the recent FES2012 atlas with a much finer horizontal resolution and an improved description of hydrodynamic processes, are employed. Moreover, the contribution of atmospheric tidal loading is also re-considered based on data taken from two providers of station displacements, Goddard Space Flight Center and the TU Wien group. Those two models differ in terms of the underlying meteorological data, which can be a reason for inconsistency of VLBI reductions and may lead to systematics in the VLBI products at tidal frequencies. We validate this assumption in terms of Earth rotation parameters, by a tidal analysis of diurnal and semi-diurnal universal time and semi-diurnal polar motion variations as determined with the Vienna VLBI Software. Applying the loading models in a consistent way still leads to unexplained residuals at about 4-5 μas in the diurnal polar motion band, thus limiting the possibility of assessing geophysical models at this particular frequency.

  5. Application of time-variable process noise in terrestrial reference frames determined from VLBI data

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Gross, Richard S.; Abbondanza, Claudio; Chin, Toshio M.; Heflin, Michael B.; Parker, Jay W.; Wu, Xiaoping; Balidakis, Kyriakos; Nilsson, Tobias; Glaser, Susanne; Karbon, Maria; Heinkelmann, Robert; Schuh, Harald

    2018-05-01

    In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level.

  6. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  7. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  8. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NASA Astrophysics Data System (ADS)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  9. Digital Moiré based transient interferometry and its application in optical surface measurement

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  10. P-REx: The Piston Reconstruction Experiment for infrared interferometry

    NASA Astrophysics Data System (ADS)

    Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio

    2018-03-01

    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.

  11. Using Radar Interferometry (DinSAR) to Evaluate Land Subsidence Caused by Excessive Groundwater Withdrawal in Morocco

    NASA Astrophysics Data System (ADS)

    Durham, M. C.; Milewski, A.; El Kadiri, R.

    2013-12-01

    The combination of natural, anthropogenic, and climate change impacts on the water resources of the Middle East and North Africa (MENA) region has devastated its water resources well beyond its current and projected populations. The increased exploitation of groundwater resources in the past half-century coupled with successive droughts has resulted in the acceleration of subsidence rates in the Souss and Massa basins in Morocco. We have completed a preliminary investigation of these impacts on the Souss and Massa basins (~27,000 km2) in the southwestern part of Morocco. This area is characterized by a semi-arid climate (annual precipitation 70-250 mm/year) with agriculture, tourism, and commercial fishing as the primary economic activities, all of which require availability of adequate freshwater resources. Additionally the primary groundwater aquifer (Plio-Quaternary Plain Aquifer), an unconfined aquifer formed mostly of sand and gravel, is being harvested by >20,000 wells at a rate of 650 MCM/yr., exceeding the rate of recharge by 260 MCM/year. Intense development over the past 50 years has exposed the aquifer to a serious risk of groundwater table drawdown (0.5m-2.5m/yr.), land subsidence, loss of artesian pressure, salinization, salt water intrusions along the coast, and deterioration of water quality across the watershed. Differential Interferometry Synthetique Aperture Radar (DInSAR) was utilized to measure ground subsidence induced by groundwater withdrawal. Land subsidence caused by excessive groundwater extraction was determined using a threefold methodology: (1) extraction of subsidence and land deformation patterns using radar interferometry, (2) correlation of the high subsidence areas within the basins to possible natural and anthropogenic factors (e.g. sea level rise, unconsolidated lithological formations distribution, urbanization, excessive groundwater extraction), and (3) forecasting the future of the Souss and Massa basins over the next century if both subsidence and groundwater extraction continue at present rates. Interferometric processing (persistent scatter and small baseline subset) was conducted using ENVI's SARscape program with 168 archived ENVISAT SLC images and 350 ERS1/2 SLC images acquired through the European Space Agency. Radar interferometry results are spatially and temporally consistent with groundwater extraction rates. This analysis has provided insight into the impacts that land subsidence will have on the infrastructure, the population, and the economy of the Souss and Massa basins. Our results could be used to develop management plans for modulating these adverse effects and could be vital to the Moroccan economy and the livelihood of the citizens that inhabit the basins. More broadly, this approach could be applied to other areas within the MENA region facing similar impacts.

  12. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2) to be used for repeated time-sensitive tomography, even though volcanic tremor frequently obscures ambient noise analyses. However, the noise characteristics and the wavefield in Hawai'i in general remain to be investigated in more detail in order to measure unbiased temporal velocity changes.

  13. Electronic speckle-pattern interferometry (ESPI) applied to the study of mechanical behavior of human jaws

    NASA Astrophysics Data System (ADS)

    Roman, Juan F.; Moreno de las Cuevas, Vincente; Salgueiro, Jose R.; Suarez, David; Fernandez, Paula; Gallas, Mercedes; Blanchard, Alain

    1996-01-01

    The study of the mechanical behavior of the human jaw during chewing is helpful in several specific medical fields that cover the maxillo-facial area. In this work, electronic speckle pattern interferometry has been applied to study dead jaw bones under external stress which simulates the deformations induced during chewing. Fringes obtained after subtraction of two images of the jaw, the image of the relaxed jaw and that of the jaw under stress, give us information about the most stressed zones. The interferometric analysis proposed here is attractive as it can be done in real time with the jaw under progressive stress. Image processing can be applied for improving the quality of fringes. This research can be of help in orthognathic surgery, for example in diagnosis and treatment of fractured jaws, in oral surgery, and in orthodontics because it would help us to know the stress dispersion when we insert an osseointegrated implant or place an orthodontic appliance, respectively. Studying fragments of human jaw some results about its elasticity and flexibility were obtained.

  14. Moon-Based INSAR Geolocation and Baseline Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Ruan, Zhixing; Lv, Mingyang; Dou, Changyong; Chen, Zhaoning

    2016-07-01

    Earth observation platform is a host, the characteristics of the platform in some extent determines the ability for earth observation. Currently most developing platforms are satellite, in contrast carry out systematic observations with moon based Earth observation platform is still a new concept. The Moon is Earth's only natural satellite and is the only one which human has reached, it will give people different perspectives when observe the earth with sensors from the moon. Moon-based InSAR (SAR Interferometry), one of the important earth observation technology, has all-day, all-weather observation ability, but its uniqueness is still a need for analysis. This article will discuss key issues of geometric positioning and baseline parameters of moon-based InSAR. Based on the ephemeris data, the position, liberation and attitude of earth and moon will be obtained, and the position of the moon-base SAR sensor can be obtained by coordinate transformation from fixed seleno-centric coordinate systems to terrestrial coordinate systems, together with the Distance-Doppler equation, the positioning model will be analyzed; after establish of moon-based InSAR baseline equation, the different baseline error will be analyzed, the influence of the moon-based InSAR baseline to earth observation application will be obtained.

  15. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  16. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore themore » robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.« less

  17. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  18. Dynamical Imaging with Interferometry

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy; Chael, Andrew A.; Rosen, Julian; Shiokawa, Hotaka; Roelofs, Freek; Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    2017-12-01

    By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ∼ 20 s and exhibits intrahour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.

  19. Geodetic measurement of deformation in the Loma Prieta, California earthquake with Very Long Baseline Interferometry (VLBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, T.A.; Ma, C.; Sauber, J.M.

    Following the Loma Prieta earthquake, two mobile Very Long Baseline Interferometry (VLBI) systems operated by the NASA Crustal Dynamics Project and the NOAA National Geodetic Survey were deployed at three previously established VLBI sites in the earthquake area: Fort Ord (near Monterey), the Presidio (in San Francisco) and Point Reyes. From repeated VLBI occupations of these sites since 1983, the pre-earthquake rates of deformation have been determined with respect to a North American reference frame with 1{sigma} formal standard errors of {approximately}1 mm/yr. The VLBI measurements immediately following the earthquake showed that the Fort Ord site was displaced 49 {plusmore » minus} 4 mm at an azimuth of 11 {plus minus} 4{degree} and that the Presidio site was displaced 12 {plus minus} 5 mm at an azimuth of 148 {plus minus} 13{degree}. No anomalous change was detected at Point Reyes with 1{sigma} uncertainty of 4 mm. The estimated displacements at Fort Ord and the Presidio are consistent with the static displacements predicted on the basis of a coseismic slip model in which slip on the southern segment is shallower than slip on the more northern segment is shallower than slip on the more northern segment of the fault rupture. The authors also give the Cartesian positions at epoch 1990.0 of a set of VLBI fiducial stations and the three mobile sites in the vicinity of the earthquake.« less

  20. Experimental 3-D residual stress measurement in rails with thermal annealing

    DOT National Transportation Integrated Search

    1999-07-01

    This report describes a novel method to determine residual stresses in railroad rails. The method uses thermal annealing to relieve the internal stresses in rail slices while advanced techniques (Miore and Twyman/Green interferometry) are applied to ...

  1. A Strategic Independent Geodetic VLBI Network for Europe

    NASA Astrophysics Data System (ADS)

    Dale, Denise; Combrinck, Ludwig; de Witt, Alet

    2014-12-01

    Irregularities of the rotation of the Earth in space are described by the Earth Orientation Parameters (EOPs). An independent EOP network, applying the Very Long Baseline Interferometry (VLBI) technique and using the Vienna VLBI Software (VieVS), are strategically essential for Europe to minimize its reliance on foreign global support in terms of required infrastructure for the realization of such a network. The generation of independent EOPs is already achievable by countries such as the USA, the People's Republic of China, and the Russian Federation due to their large extent of land mass that allows for long baselines in both the North-South and East-West directions and thus allows for accurate determination of all EOPs. These three countries need not rely on foreign partnerships to generate EOPs, as they all have independent geodetic VLBI networks capable of determining EOPs for precise positioning, navigation, and satellite launch/orbital purposes. They also have or are developing independent Global Navigation Satellite Systems (GNSS) constellations; so does the European Union (EU). Accurate EOPs are essential for long-term orbital maintenance of GNSS constellations, leaving the EU GALILEO GNSS vulnerable and reliant on the three superpowers. Generation of accurate EOPs by Europe is not possible due to its much smaller land mass and thus smaller achievable baselines. Even though there are many radio telescopes spread across Europe, these are separated by relatively short distances. The proposed stations that will be used to investigate this independent EOP network for Europe are the WETTZELL radio telescope in Germany, two German owned radio telescopes, TIGOCONC in Concepción, Chile, and OHIGGINS in Antarctica, as well as the HartRAO radio telescope in South Africa.

  2. THE KCAL VERA 22 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net

    2012-02-15

    We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less

  3. Speckle interferometry of asteroids. I - 433 Eros

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.

    1985-01-01

    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  4. Fringe localization requirements for three-dimensional flow visualization of shock waves in diffuse-illumination double-pulse holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1982-01-01

    A theory of fringe localization in rapid-double-exposure, diffuse-illumination holographic interferometry was developed. The theory was then applied to compare holographic measurements with laser anemometer measurements of shock locations in a transonic axial-flow compressor rotor. The computed fringe localization error was found to agree well with the measured localization error. It is shown how the view orientation and the curvature and positional variation of the strength of a shock wave are used to determine the localization error and to minimize it. In particular, it is suggested that the view direction not deviate from tangency at the shock surface by more than 30 degrees.

  5. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  6. Preliminary investigation of Zagros thrust-fold-belt deformation using SAR interferometry

    NASA Technical Reports Server (NTRS)

    Nilforoushan, Faramarz; Talbot, Christopher J.; Fielding, Eric J.

    2005-01-01

    Most of the Zagros deformation resulting from the convergence of Arabia and Eurasia takes place in the Southeast Zagros. To apply the SAR interferometry geodetic technique, a few ERS 1 & 2 satellite images were used to map this continuing deformation proven by GPS. Interferograms over 7 years show surprisingly high coherence. The unwrapped phases display a high correlation with topography reflecting atmospheric noise in addition to the desired tectonic signal. We estimate two simple linear trends and remove them from interferograms. The preliminary results show local uplift rates with a likely minimum of 1-2 mm/yr. These early crude results will be tested by more data in project No. 3174.

  7. High-speed real-time heterodyne interferometry using software-defined radio.

    PubMed

    Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A

    2018-01-10

    This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.

  8. Heisenberg principle applied to the analysis of speckle interferometry fringes

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Sciammarella, F. M.

    2003-11-01

    Optical techniques that are used to measure displacements utilize a carrier. When a load is applied the displacement field modulates the carrier. The accuracy of the information that can be recovered from the modulated carrier is limited by a number of factors. In this paper, these factors are analyzed and conclusions concerning the limitations in information recovery are illustrated with examples taken from experimental data.

  9. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  10. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  11. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  12. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  13. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    NASA Astrophysics Data System (ADS)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  14. Adverse effects in dual-feed interferometry

    NASA Astrophysics Data System (ADS)

    Colavita, M. Mark

    2009-11-01

    Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.

  15. Precise time transfer using MKIII VLBI technology

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.

    1984-01-01

    It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.

  16. Recollimation shocks in the relativistic outflows of active galactic nuclei. Doctoral Thesis Award Lecture 2014

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.

    2015-06-01

    We analysed the single-dish radio light curves of the blazar CTA 102 during its major flare around April 2006. The modelling of these data revealed a possible travelling shock-recollimation shock interaction during the flare. To verify this hypothesis, we used multi-epoch and multi-frequency very-long baseline interferometry (VLBI) observations and performed a detailed kinematic and spectral analysis. The results confirmed the hypothesis of a shock-shock interaction causing the 2006 radio flare and provided indications for additional recollimation shocks farther downstream.

  17. High-resolution lithospheric imaging with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees

    2010-10-01

    In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the data. On the final reflectivity image, we observe a discontinuity in the reflections. We interpret this discontinuity as the Cheyenne Belt, a suture zone between Archean and Proterozoic terranes.

  18. Application of holography to flow visualization

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1984-01-01

    Laser holographic interferometry is being applied to many different types of aerodynamics problems. These include two and three dimensional flows in wind tunnels, ballistic ranges, rotor test chambers and turbine facilities. Density over a large field is measured and velocity, pressure, and mach number can be deduced.

  19. a Method of Generating dem from Dsm Based on Airborne Insar Data

    NASA Astrophysics Data System (ADS)

    Lu, W.; Zhang, J.; Xue, G.; Wang, C.

    2018-04-01

    Traditional methods of terrestrial survey to acquire DEM cannot meet the requirement of acquiring large quantities of data in real time, but the DSM can be quickly obtained by using the dual antenna synthetic aperture radar interferometry and the DEM generated by the DSM is more fast and accurate. Therefore it is most important to acquire DEM from DSM based on airborne InSAR data. This paper aims to the method that generate DEM from DSM accurately. Two steps in this paper are applied to acquire accurate DEM. First of all, when the DSM is generated by interferometry, unavoidable factors such as overlay and shadow will produce gross errors to affect the data accuracy, so the adaptive threshold segmentation method is adopted to remove the gross errors and the threshold is selected according to the coherence of the interferometry. Secondly DEM will be generated by the progressive triangulated irregular network densification filtering algorithm. Finally, experimental results are compared with the existing high-precision DEM results. The results show that this method can effectively filter out buildings, vegetation and other objects to obtain the high-precision DEM.

  20. A Michelson-type radio interferometer for university education

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Barrett, James; Shafto, Gene; Slechta, Jeff; Hasegawa, Tetsuo; Hayashi, Masahiko; Metchev, Stanimir

    2016-04-01

    We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ˜11 GHz (˜2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.

  1. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  2. Search for light scalar dark matter with atomic gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken

    2018-04-01

    We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.

  3. Michelson-type Radio Interferometer for University Education

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  4. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  5. Temporal intensity interferometry: photon bunching in three bright stars

    NASA Astrophysics Data System (ADS)

    Guerin, W.; Dussaux, A.; Fouché, M.; Labeyrie, G.; Rivet, J.-P.; Vernet, D.; Vakili, F.; Kaiser, R.

    2017-12-01

    We report the first intensity correlation measured with starlight since the historical experiments of Hanbury Brown and Twiss. The photon bunching g(2)(τ, r = 0), obtained in the photon-counting regime, was measured for three bright stars: α Boo, α CMi and β Gem. The light was collected at the focal plane of a 1-m optical telescope, transported by a multi-mode optical fibre, split into two avalanche photodiodes and correlated digitally in real time. For total exposure times of a few hours, we obtained contrast values around 2 × 10-3, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our set-up. Comparing our results with the measurement of Hanbury Brown et al. for α CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometres. This would enable microarcsec long-baseline interferometry in the optical, especially in the visible wavelengths, with a limiting magnitude of 10.

  6. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  7. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  8. A Trial for Detecting the Temporal Variation in Seismic Velocity Accompanied by a Slow Slip Event using Seismic Interferometry of Ambient Noise

    NASA Astrophysics Data System (ADS)

    Uemura, Miyuu; Ito, Yoshihiro; Ohta, Kazuaki; Hino, Ryota; Shinohara, Masanao

    2017-04-01

    Seismic interferometry is one of the most effective techniques to detect temporal variations in seismic velocity before or after a large earthquake. Some previous studies have been reported on seismic velocity reduction due to the occurrence of large earthquakes (e.g., Wegler et al., 2009; Yamada et al., 2010) as well as preceding them (e.g., Lockner et al., 1977; Yoshimitsu et al., 2009). However, there have only been a few studies thus far which attempt to detect seismic velocity changes associated with slow slip events (SSEs). In this study, we focus on applying seismic interferometry to ambient noise data from ocean bottom seismometers (OBSs) deployed near a subduction zone. Between the end of January 2011 and the largest foreshock occurring on March 9th that precedes the March 11, 2011 Tohoku-Oki earthquake, SSEs and low-frequency tremors were detected offshore Miyagi Prefecture (Ito et al., 2013, 2015; Katakami et al., 2016). We applied our seismic interferometry analysis using ambient noise to recordings from 17 OBS stations that were installed in the vicinity of the 2011 Tohoku-Oki earthquake source region, and only considered the recordings from before that major earthquake. All the OBSs are short-period seismometers with three components which have an eigenfrequency of 4.5 Hz. These OBSs were deployed offshore Miyagi Prefecture between November 2010 and April 2011. Before proceeding with the seismic interferometry analysis, we needed to estimate the two horizontal components of the original deployment orientation for 13 OBSs in (we could not estimate them for 4 OBSs). To obtain the OBS orientation, we used particle orbits of some direct P waves from selected tectonic earthquakes, in order to extract one vertical and two horizontal components. Then, the seismic interferometry analysis consisted of the following steps. First, we applied a band-pass filter of 0.25-2.0 Hz and one-bit technique to the ambient noise signal. Second, we calculated auto-correlation functions (ACFs) for the radial and transverse components using a 5-s time window with lag time from -30 s to 30 s, sampled at intervals of 0.1 s. Using either seven or sixteen days of continuous waveform records or the entire time period, we can construct either a 7-day ACF, a 16-day ACF, or a reference ACF. Finally, we calculated the Correlation Coefficients (CCs) between the 7-day ACF or the 16-day ACF and the reference ACF. There are three important points in our results. First, during the occurrence of the SSE, the values of the CCs decrease. Second, the changes in the values of the CCs display regional differences across the OBS network. Third, the locations of the stations for which the drop of the CC from a value of 1.0 is large corresponds to the seafloor region above the rupture area of the largest foreshock, whereas the locations of the stations for which the drop from the CC of the previous period is large corresponds to the seafloor above the slip area of the SSEs detected before that foreshock.

  9. THE FIRST VERY LONG BASELINE INTERFEROMETRY IMAGE OF A 44 GHz METHANOL MASER WITH THE KVN AND VERA ARRAY (KaVA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki

    2014-07-01

    We have carried out the first very long baseline interferometry (VLBI) imaging of a 44 GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151–1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds × 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ≈ 650 km corresponding to 100 Mλ in the uv-coverage.more » The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ∼5 mas × 2 mas, which corresponds to the linear size of ∼15 AU × 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ∼3.5 × 10{sup 8} to 1.0 × 10{sup 10} K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ∼50 mas. The 44 GHz class I methanol maser in IRAS 18151–1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.« less

  10. A statistical study of radio-source structure effects on astrometric very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1989-01-01

    Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.

  11. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  12. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, Clare; Kuribayashi-Coleman, Andrew; Stevenson, James

    We apply the new constraints from atom-interferometry searches for screening mechanisms to the symmetron model, finding that these experiments exclude a previously unexplored region of the parameter space. We discuss the possibility of networks of domain walls forming in the vacuum chamber, and how this could be used to discriminate between models of screening.

  14. Holography Of Art Objects

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.

    1980-05-01

    In time, holography will have a major impact on all types of displays. Priceless, one of a kind artifacts can be copied and disseminated for esthetic and education purposes. Additionally, holography interferometry can safely test artifacts for incipient faults or damage, allowing corrective measures to be applied at an early stage.

  15. International Seminar on Laser and Opto-Electronic Technology in Industry: State-of-the-Art Review, Xiamen, People's Republic of China, June 25-28, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    Ke, Jingtang; Pryputniewicz, Ryszard J.

    Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.

  16. Fractional-order Fourier analysis for ultrashort pulse characterization.

    PubMed

    Brunel, Marc; Coetmellec, Sébastien; Lelek, Mickael; Louradour, Frédéric

    2007-06-01

    We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fractional-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces.

  17. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2007-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  18. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  19. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.

    PubMed

    Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue

    2016-11-15

    We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.

  20. Diffractive optical element in materials testing

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik

    1998-09-01

    The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.

  1. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    NASA Astrophysics Data System (ADS)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  2. Combinations of Earth Orientation Observations: SPACE94, COMB94, and POLE94

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1995-01-01

    A Kalman filter has been used to combine all publicly available, independently determined measurements of the Earth's orientation taken by the modern, space-geodetic techniques of very long baseline interferometry, satellite laser ranging, lunar laser ranging, and the global positioning system. Prior to combining the data, tidal terms were removed from the UT1 measurements, outlying data points were deleted, series-specific corrections were applied for bias and rate, and the stated uncertainties of the measurements were adjusted by multiplying them by series-specific scale factors. Values for these bias- rate corrections and uncertainty scale factors were determined by an iterative, round-robin procedure wherein each data set is compared, in turn, to a combination of all other data sets. When applied to the measurements, the bias-rate corrections thus determined make the data sets agree with each other in bias and rate, and the uncertainty scale factors thus determined make the residual of each series (when differenced with a combination of all others) have a reduced chi-square of one. The corrected and adjusted series are then placed within an IERS reference frame by aligning them with the IERS Earth orientation series EOP (IERS)90C04. The result of combining these corrected, adjusted and aligned series is designated SPCE94 and spans October 6.0, 1976 to January 27.0, 1995 at daily intervals.

  3. Ultra-low noise large-area InGaAs quad photoreceiver with low crosstalk for laser interferometry space antenna

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Datta, Shubhashish; Rue, Jim; Livas, Jeffrey; Silverberg, Robert; Guzman Cervantes, Felipe

    2012-07-01

    Quad photoreceivers, namely a 2 x 2 array of p-i-n photodiodes followed by a transimpedance amplifier (TIA) per diode, are required as the front-end photonic sensors in several applications relying on free-space propagation with position and direction sensing capability, such as long baseline interferometry, free-space optical communication, and biomedical imaging. It is desirable to increase the active area of quad photoreceivers (and photodiodes) to enhance the link gain, and therefore sensitivity, of the system. However, the resulting increase in the photodiode capacitance reduces the photoreceiver's bandwidth and adds to the excess system noise. As a result, the noise performance of the front-end quad photoreceiver has a direct impact on the sensitivity of the overall system. One such particularly challenging application is the space-based detection of gravitational waves by measuring distance at 1064 nm wavelength with ~ 10 pm/√Hz accuracy over a baseline of millions of kilometers. We present a 1 mm diameter quad photoreceiver having an equivalent input current noise density of < 1.7 pA/√Hz per quadrant in 2 MHz to 20 MHz frequency range. This performance is primarily enabled by a rad-hard-by-design dualdepletion region InGaAs quad photodiode having 2.5 pF capacitance per quadrant. Moreover, the quad photoreceiver demonstrates a crosstalk of < -45 dB between the neighboring quadrants, which ensures an uncorrected direction sensing resolution of < 50 nrad. The sources of this primarily capacitive crosstalk are presented.

  4. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  5. Modeling of nutation-precession: Very long baseline interferometry results

    NASA Astrophysics Data System (ADS)

    Herring, T. A.; Mathews, P. M.; Buffett, B. A.

    2002-04-01

    Analysis of over 20 years of very long baseline interferometry data (VLBI) yields estimates of the coefficients of the nutation series with standard deviations ranging from 5 microseconds of arc (μas) for the terms with periods <400 days to 38 μas for the longest-period terms. The largest deviations between the VLBI estimates of the amplitudes of terms in the nutation series and the theoretical values from the Mathews-Herring-Buffett (MHB2000) nutation series are 56 +/- 38 μas (associated with two of the 18.6 year nutations). The amplitudes of nutational terms with periods <400 days deviate from the MHB2000 nutation series values at the level standard deviation. The estimated correction to the IAU-1976 precession constant is -2.997 +/- 0.008 mas yr-1 when the coefficients of the MHB2000 nutation series are held fixed and is consistent with that inferred from the MHB2000 nutation theory. The secular change in the obliquity of the ecliptic is estimated to be -0.252 +/- 0.003 mas yr-1. When the coefficients of the largest-amplitude terms in the nutation series are estimated, the precession constant correction and obliquity rate are estimated to be -2.960 +/- 0.030 and -0.237 +/- 0.012 mas yr-1. Significant variations in the freely excited retrograde free core nutation mode are observed over the 20 years. During this time the amplitude has decreased from ~300 +/- 50 μas in the mid-1980s to nearly zero by the year 2000. There is evidence that the amplitude of the mode in now increasing again.

  6. A conceptual design for an exoplanet imager

    NASA Astrophysics Data System (ADS)

    Hyland, David C.; Winkeller, Jon; Mosher, Robert; Momin, Anif; Iglesias, Gerardo; Donnellan, Quentin; Stanley, Jerry; Myers, Storm; Whittington, William G.; Asazuma, Taro; Slagle, Kami; Newton, Lindsay; Bourgeois, Scott; Tejeda, Donny; Young, Brian; Shaver, Nick; Cooper, Jacob; Underwood, Dennis; Perkins, James; Morea, Nathan; Goodnight, Ryan; Colunga, Aaron; Peltier, Scott; Singleton, Zane; Brashear, John; McPherson, Ronald; Guillory, Winston; Patel, Sunil; Stovall, Rachel; Meyer, Ryall; Eberle, Patrick; Morrison, Cole; Mong, Chun Yu

    2007-09-01

    This paper reports the results of a design study for an exoplanet imaging system. The design team consisted of the students in the "Electromagnetic Sensing for Space-Bourne Imaging" class taught by the principal author in the Spring, 2005 semester. The design challenge was to devise a space system capable of forming 10X10 pixel images of terrestrial-class planets out to 10 parsecs, observing in the 9.0 to 17.0 microns range. It was presumed that this system would operate after the Terrestrial Planet Finder had been deployed and had identified a number of planetary systems for more detailed imaging. The design team evaluated a large number of tradeoffs, starting with the use of a single monolithic telescope, versus a truss-mounted sparse aperture, versus a formation of free-flying telescopes. Having selected the free-flyer option, the team studied a variety of sensing technologies, including amplitude interferometry, intensity correlation imaging (ICI, based on the Brown-Twiss effect and phase retrieval), heterodyne interferometry and direct electric field reconstruction. Intensity correlation imaging was found to have several advantages. It does not require combiner spacecraft, nor nanometer-level control of the relative positions, nor diffraction-limited optics. Orbit design, telescope design, spacecraft structural design, thermal management and communications architecture trades were also addressed. A six spacecraft design involving non-repeating baselines was selected. By varying the overall scale of the baselines it was found possible to unambiguously characterize an entire multi-planet system, to image the parent star and, for the largest base scales, to determine 10X10 pixel images of individual planets.

  7. Interferometric detection of freeze-thaw displacements of Alaskan permafrost using ERS-1 data

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Gabriel, Andrew K.

    1993-01-01

    The possibility of making large scale (50 km) measurements of motions of the earth's surface with high resolution (10 m) and very high accuracy (1 cm) from multipass SAR interferometry was established in 1989. Other experiments have confirmed the viability and usefulness of the method. Work is underway in various groups to measure displacements from volcanic activity, seismic events, glacier motion, and in the present study, freeze-thaw cycles in Alaskan permafrost. The ground is known to move significantly in these cycles, and provided that freezing does not cause image decorrelation, it should be possible to measure both ground swelling and subsidence. The authors have obtained data from multiple passes of ERS-1 over the Toolik Lake region of northern Alaska of suitable quality for interferometry. The data are processed into images, and single interferograms are formed in the usual manner. Phase unwrapping is performed, and the multipass baselines are estimated from the images using both orbit ephemerides and scene tie points. The phases are scaled by the baseline ratio, and a double-difference interferogram (DDI) is formed. It is found that there is a residual 'saddle-shape' phase error across the image, which is postulated to be caused by a small divergence (10(exp -2) deg.) in the orbits. A simulation of a DDI from divergent orbits confirms the shape and magnitude of the error. A two-dimensional least squares fit to the error is performed, which is used to correct the DDI. The final, corrected DDI shows significant phase (altitude) changes over the period of the observation.

  8. Evaluation of current tropospheric mapping functions by Deep Space Network very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Lanyi, G. E.

    1994-01-01

    To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.

  9. Physical and non-physical energy in scattered wave source-receiver interferometry.

    PubMed

    Meles, Giovanni Angelo; Curtis, Andrew

    2013-06-01

    Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.

  10. Biometric parameters in different stages of primary angle closure using low-coherence interferometry.

    PubMed

    Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen

    2015-03-01

    To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.

  11. Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.

    2017-12-01

    Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.

  12. Effect of Round Window Reinforcement on Hearing: A Temporal Bone Study With Clinical Implications for Surgical Reinforcement of the Round Window.

    PubMed

    Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L

    2016-06-01

    Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.

  13. Current Status of the Development of a Transportable and Compact VLBI System by NICT and GSI

    NASA Technical Reports Server (NTRS)

    Ishii, Atsutoshi; Ichikawa, Ryuichi; Takiguchi, Hiroshi; Takefuji, Kazuhiro; Ujihara, Hideki; Koyama, Yasuhiro; Kondo, Tetsuro; Kurihara, Shinobu; Miura, Yuji; Matsuzaka, Shigeru; hide

    2010-01-01

    MARBLE (Multiple Antenna Radio-interferometer for Baseline Length Evaluation) is under development by NICT and GSI. The main part of MARBLE is a transportable VLBI system with a compact antenna. The aim of this system is to provide precise baseline length over about 10 km for calibrating baselines. The calibration baselines are used to check and validate surveying instruments such as GPS receiver and EDM (Electro-optical Distance Meter). It is necessary to examine the calibration baselines regularly to keep the quality of the validation. The VLBI technique can examine and evaluate the calibration baselines. On the other hand, the following roles are expected of a compact VLBI antenna in the VLBI2010 project. In order to achieve the challenging measurement precision of VLBI2010, it is well known that it is necessary to deal with the problem of thermal and gravitational deformation of the antenna. One promising approach may be connected-element interferometry between a compact antenna and a VLBI2010 antenna. By measuring repeatedly the baseline between the small stable antenna and the VLBI2010 antenna, the deformation of the primary antenna can be measured and the thermal and gravitational models of the primary antenna will be able to be constructed. We made two prototypes of a transportable and compact VLBI system from 2007 to 2009. We performed VLBI experiments using theses prototypes and got a baseline length between the two prototypes. The formal error of the measured baseline length was 2.7 mm. We expect that the baseline length error will be reduced by using a high-speed A/D sampler.

  14. Inventory and state of activity of rockglaciers in the Ile and Kungöy Ranges of Northern Tien Shan from satellite SAR interferometry

    NASA Astrophysics Data System (ADS)

    Strozzi, Tazio; Caduff, Rafael; Kääb, Andreas; Bolch, Tobias

    2017-04-01

    The best visual expression of mountain permafrost are rockglaciers, which, in contrast to the permafrost itself, can be mapped and monitored directly using remotely sensed data. Studies carried out in various parts of the European Alps have shown surface acceleration of rockglaciers and even destabilization of several such landforms over the two last decades, potentially related to the changing permafrost creep conditions. Changes in rockglacier motion are therefore believed to be the most indicative short- to medium-term response of rockglaciers to environmental changes and thus an indicator of mountain permafrost conditions in general. The ESA DUE GlobPermafrost project develops, validates and implements EO products to support research communities and international organizations in their work on better understanding permafrost characteristics and dynamics. Within this project we are building up a worldwide long-term monitoring network of active rockglacier motion investigated using remote sensing techniques. All sites are analysed through a uniform set of data and methods, and results are thus comparable. In order to quantify the rate of movement and the relative changes over time we consider two remote sensing methods: (i) matching of repeat optical data and (ii) satellite radar interferometry. In this contribution, we focus on the potential of recent high spatial resolution SAR data for the analysis of periglacial processes in mountain environments with special attention to the Ile and Kungöy Ranges of Northern Tien Shan at the border between Kazakhstan and Kyrgyzstan, an area which contains a high number of large and comparably fast (> 1m/yr) rockglaciers and is of interest as dry-season water resource and source of natural hazards. As demonstrated in the past with investigations conducted in the Swiss Alps, the visual analysis of differential SAR interferograms can be employed for the rough estimation of the surface deformation rates of rockglaciers and other slope instabilities into different classes (e.g. cm/day, dm/month, cm/month and cm/yr). More sophisticated SAR interferometric approaches like Persistent Scatterer Interferometry (PSI) or Short Baseline Interferometry (SBAS) are only able to detect points moving with velocities below a few cm/yr respectively several dm/yr in the Line-Of-Sight (LOS) direction, because of phase unwrapping issues. For our analysis in the Tien Shan we considered SAR interferograms with short baselines and acquisition time intervals between 1 day and approximately one year. Satellite images from the ERS-1/2 tandem mission in 1998-1999, ALOS-1 PALSAR-1 between 2006-2010 (46 days nominal repeat cycle), ALOS-2 PALSAR-2 between 2014 and 2016 (14 days nominal repeat cycle), and Sentinel-1 between 2015 and 2016 (12 days nominal repeat cycle) were used. Images acquired along both ascending and descending geometries and during summer (snow-free) and winter (frozen snow) conditions were employed. For topographic reference and orthorectification we computed in-house a Digital Elevation Model from TanDEM-X acquisitions of ascending and descending orbits. Phase unwrapping to derive the LOS displacement was attempted only locally for selected landforms with a moderate (e.g. < 50 cm/yr) rate of motion. Our inventory of rockglaciers and other periglacial processes in the Northern Tien Shan includes so far more than 500 objects over an area of more than 3000 km2. In future, our inventory will be compared to other existing inventories compiled in field or with air photos. In addition, the long-term monitoring of rockglacier motion will be performed taking advantage of the synergies between repeat optical and radar satellite data. The combined approach is useful for the confirmation of the activity, filling spatial and/or temporal gaps, computing the historical fast motion of rockglaciers from optical data and the slow motion from SAR interferometry, and to compare multi-annual rates of motion (optical data) with seasonal activities (SAR interferometry).

  15. Application of new radio tracking data types to critical spacecraft navigation problems

    NASA Technical Reports Server (NTRS)

    Ondrasik, V. J.; Rourke, K. H.

    1972-01-01

    Earth-based radio tracking data types are considered, which involve simultaneous or nearly simultaneous spacecraft tracking from widely separated tracking stations. These data types are conventional tracking instrumentation analogs of the very long baseline interferometry (VLBI) of radio astronomy-hence the name quasi-VLBI. A preliminary analysis of quasi-VLBI is presented using simplified tracking data models. The results of accuracy analyses are presented for a representative mission, Viking 1975. The results indicate that, contingent on projected tracking system accuracy, quasi-VLBI can be expected to significantly improve navigation performance over that expected from conventional tracking data types.

  16. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  17. Mark 3 wideband digital recorder in perspective

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. F.

    1980-01-01

    The tape recorder used for the Mark 3 data acquisition and processing system is compared with earlier very long baseline interferometry recorders. Wideband 33-1/3 kbpi digital channel characteristics of instrumentation recorders and of a modern video cassette recorder are illustrated. Factors which influenced selection of the three major commercial components (transport, heads, and tape) are discussed. A brief functional description and the reasons for development of efficient signal electronics and necessary auxiliary control electronics are given. The design and operation of a digital bit synchronizer is illustrated as an example of the high degree of simplicity achieved.

  18. THE OPTICS OF REFRACTIVE SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Narayan, Ramesh, E-mail: mjohnson@cfa.harvard.edu

    2016-08-01

    Newly recognized effects of refractive scattering in the ionized interstellar medium have broad implications for very long baseline interferometry (VLBI) at extreme angular resolutions. Building upon work by Blandford and Narayan, we present a simplified, geometrical optics framework, which enables rapid, semi-analytic estimates of refractive scattering effects. We show that these estimates exactly reproduce previous results based on a more rigorous statistical formulation. We then derive new expressions for the scattering-induced fluctuations of VLBI observables such as closure phase, and we demonstrate how to calculate the fluctuations for arbitrary quantities of interest using a Monte Carlo technique.

  19. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  20. Innovations in Delta Differential One-Way Range: from Viking to Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Border, James S.

    2009-01-01

    The Deep Space Network has provided the capability for very-long-baseline interferometry measurements in support of spacecraft navigation since the late 1970s. Both system implementation and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to much better performance. This paper provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support Mars Science Laboratory.

  1. Programs and Perspectives of Visible Long Baseline Interferometry VEGA/CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Nardetto, N.; Ligi, R.; Perraut, K.

    VEGA/CHARA is a visible spectro-interferometer installed on the CHARA Array at Mount Wilson Observatory. Combining high spectral resolution (6,000 or 30,000) and high angular resolution (0.3 mas), VEGA/CHARA opens a wide class of astrophysical topics in the stellar physics domain. Circumstellar environments and fundamental parameters with a high precision could be studied. We will present a review of recent results and discuss the programs currently engaged in the field of pulsating stars and more generally for the fundamental stellar parameters. Details could be found at http://www-n.oca.eu/vega/en/publications/index.htm.

  2. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  3. Theory of post-block 2 VLBI observable extraction

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen T.

    1992-01-01

    The algorithms used in the post-Block II fringe-fitting software called 'Fit' are described. The steps needed to derive the very long baseline interferometry (VLBI) charged-particle corrected group delay, phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are presented beginning with the set of complex fringe phasors as a function of observation frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II correlator. The output of Fit is the set of charged-particle corrected observables (along with ancillary information) in a form amenable to the software program 'Modest.'

  4. Shuttle GPS R/PA configuration and specification study

    NASA Technical Reports Server (NTRS)

    Booth, R. W. D.

    1979-01-01

    Changes in the technical specifications for a global positioning system (GPS) receiving system dedicated to space shuttle use are presented. Various hardware functions including acquisition, tracking, and measurement are emphasized. The anti-jam performance of the baseline GPS systems are evaluated. Other topics addressed include: the impact on R/PA design of the use of ground based transmitters; problems involved with the use of single channel tests sets; utility of various R/PA antenna interconnections topologies; the choice of the averaging interval for delta range measurements; and the use of interferometry techniques for the computation of orbiter attitude were undertaken.

  5. Navigation of the Galileo mission

    NASA Technical Reports Server (NTRS)

    Miller, L. J.; Miller, J. K.; Kirhofer, W. E.

    1983-01-01

    An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.

  6. Time series analysis of Mexico City subsidence constrained by radar interferometry

    NASA Astrophysics Data System (ADS)

    López-Quiroz, Penélope; Doin, Marie-Pierre; Tupin, Florence; Briole, Pierre; Nicolas, Jean-Marie

    2009-09-01

    In Mexico City, subsidence rates reach up to 40 cm/yr mainly due to soil compaction led by the over exploitation of the Mexico Basin aquifer. In this paper, we map the spatial and temporal patterns of the Mexico City subsidence by differential radar interferometry, using 38 ENVISAT images acquired between end of 2002 and beginning of 2007. We present the severe interferogram unwrapping problems partly due to the coherence loss but mostly due to the high fringe rates. These difficulties are overcome by designing a new methodology that helps the unwrapping step. Our approach is based on the fact that the deformation shape is stable for similar time intervals during the studied period. As a result, a stack of the five best interferograms can be used to compute an average deformation rate for a fixed time interval. Before unwrapping, the number of fringes is then decreased in wrapped interferograms using a scaled version of the stack together with the estimation of the atmospheric phase contribution related with the troposphere vertical stratification. The residual phase, containing less fringes, is more easily unwrapped than the original interferogram. The unwrapping procedure is applied in three iterative steps. The 71 small baseline unwrapped interferograms are inverted to obtain increments of radar propagation delays between the 38 acquisition dates. Based on the redundancy of the interferometric data base, we quantify the unwrapping errors and show that they are strongly decreased by iterations in the unwrapping process. A map of the RMS interferometric system misclosure allows to define the unwrapping reliability for each pixel. Finally, we present a new algorithm for time series analysis that differs from classical SVD decomposition and is best suited to the present data base. Accurate deformation time series are then derived over the metropolitan area of the city with a spatial resolution of 30 × 30 m.

  7. Fast radio burst search: cross spectrum vs. auto spectrum method

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan

    2018-06-01

    The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.

  8. Polinsar Experiments of Multi-Mode X-Band Data Over South Area of China

    NASA Astrophysics Data System (ADS)

    Lu, L.; Yan, Q.; Duan, M.; Zhang, Y.

    2012-08-01

    This paper makes the polarimetric and polarimetric interferometric synthetic aperture radar (PolInSAR) experiments with the high-resolution X-band data acquired by Multi-mode airborne SAR system over an area around Linshui, south of China containing tropic vegetation and urban areas. Polarimetric analysis for typical tropic vegetations and man-made objects are presented, some polarimetric descriptors sensitive to vegetations and man-made objects are selected. Then, the PolInSAR information contained in the data is investigated, considering characteristics of the Multi-mode-XSAR dataset, a dual-baseline polarimetric interferometry method is proposed in this paper. The method both guarantees the high coherence on fully polarimetric data and combines the benefits of short and long baseline that helpful to the phase unwrapping and height sensitivity promotion. PolInSAR experiment results displayed demonstrates Multi-mode-XSAR datasets have intuitive capabilities for amount of application of land classification, objects detection and DSM mapping.

  9. Precise interferometric tracking of the DSCS II geosynchronous orbiter

    NASA Astrophysics Data System (ADS)

    Border, J. S.; Donivan, F. F., Jr.; Shiomi, T.; Kawano, N.

    1986-01-01

    A demonstration of the precise tracking of a geosynchronous orbiter by radio metric techniques based on very-long-baseline interferometry (VLBI) has been jointly conducted by the Jet Propulsion Laboratory and Japan's Radio Research Laboratory. Simultaneous observations of a U.S. Air Force communications satellite from tracking stations in California, Australia, and Japan have determined the satellite's position with an accuracy of a few meters. Accuracy claims are based on formal statistics, which include the effects of errors in non-estimated parameters and which are supported by a chi-squared of less than one, and on the consistency of orbit solutions from disjoint data sets. A study made to assess the impact of shorter baselines and reduced data noise concludes that with a properly designed system, similar accuracy could be obtained for either a satellite viewed from stations located within the continental U.S. or for a satellite viewed from stations within Japanese territory.

  10. Measurement of horizontal motions in Alaska using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ma, C.; Sauber, J. M.; Clark, T. A.; Ryan, J. W.; Bell, L. J.; Gordon, D.; Himwich, W. E.

    1990-01-01

    Results are presented on an analysis of VLBI measurements performed between 1984 and 1990 by means of a network of 53 sites in Alaska, the Yukon Territory, and the conterminous United States to determine the extent of horizontal motions in Alaska. Results are presented in two ways, one showing the evolution of individual baselines and the other yielding site velocities; both approaches use VLBI data from other permanent stations in order to define a global reference frame. It was found that VLBI sites within the Alaska-Aleutian subduction boundary zone (Yakataga, Kodiak, and Sand Point) had higher instantaneous velocities relative to eastern North America than the interior sites of Alaska. The results of Yakataga data modeling suggests that the observed motion is the result of elastic straining of the overriding plate due to a locked main thrust zone with a component of oblique slip.

  11. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    PubMed

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  12. Butterflies' wings deformations using high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Mendoza Santoyo, Fernando; Aguayo, Daniel D.; de La Torre-Ibarra, Manuel H.; Salas-Araiza, Manuel D.

    2011-08-01

    A variety of efforts in different scientific disciplines have tried to mimic the insect's in-flight complex system. The gained knowledge has been applied to improve the performance of different flying artifacts. In this research report it is presented a displacement measurement on butterflies' wings using the optical noninvasive Digital Holographic Interferometry technique with out of plane sensitivity, using a high power cw laser and a high speed CMOS camera to record the unrepeatable displacement movements on these organic tissues. A series of digital holographic interferograms were recorded and the experimental results for several butterflies during flapping events. The relative unwrapped phase maps micro-displacements over the whole wing surface are shown in a wire-mesh representation. The difference between flying modes is remarkably depicted among them.

  13. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  14. Surface patterning of CRFP composites using femtosecond laser interferometry

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Moreira, R. D. F.; de Moura, M. F. S. F.; Vilar, R.

    2018-03-01

    We report on the surface patterning of carbon fiber-reinforced polymer (CFRP) composites using femtosecond laser interferometry. The effect of experimental processing parameters, such as the pulse energy and scanning speed, on the quality of the patterns is studied. Using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed and textured with the desired pattern. The period of the patterns can be controlled by changing the distance between the two interfering beams. On the other hand, the amplitude of the patterns can be controlled by changing the pulse energy or the number of laser pulses applied. In addition, sub-micron ripples are created on the carbon fibers surface allowing multiscale surface modification which may contribute to improve bonding between CFRP parts.

  15. Laboratory demonstration of Stellar Intensity Interferometry using a software correlator

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David

    2017-06-01

    In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.

  16. Noninvasive evaluation system of fractured bone based on speckle interferometry

    NASA Astrophysics Data System (ADS)

    Yamanada, Shinya; Murata, Shigeru; Tanaka, Yohsuke

    2010-11-01

    This paper presents a noninvasive evaluation system of fractured bone based on speckle interferometry using a modified evaluation index for higher performance, and the experiments are carried out to examine the feasibility in evaluating bone fracture healing and the influence of some system parameters on the performance. From experimental results, it is shown that the presence of fractured part of bone and the state of bone fracture healing are successfully estimated by observing fine speckle fringes on the object surface. The proposed evaluation index also can successfully express the difference between the cases with cut and without it. Since most system parameters are found not to affect the performance of the present technique, the present technique is expected to be applied to various patients that have considerable individual variability.

  17. DH and ESPI laser interferometry applied to the restoration shrinkage assessment

    NASA Astrophysics Data System (ADS)

    Campos, L. M. P.; Parra, D. F.; Vasconcelos, M. R.; Vaz, M.; Monteiro, J.

    2014-01-01

    In dental restoration postoperative marginal leakage is commonly associated to polymerization shrinkage effects. In consequence the longevity and quality of restorative treatment depends on the shrinkage mechanisms of the composite filling during the polymerization. In this work the development of new techniques for evaluation of those effects under light-induced polymerization of dental nano composite fillings is reported. The composite resins activated by visible light, initiate the polymerization process by absorbing light in wavelengths at about 470 nm. The techniques employed in the contraction assessment were digital holography (DH) and Electronic Speckle Pattern Interferometry (ESPI) based on laser interferometry. A satisfactory resolution was achieved in the non-contact displacement field measurements on small objects concerning the experimental dental samples. According to a specific clinical protocol, natural teeth were used (human mandibular premolars). A class I cavity was drilled and restored with nano composite material, according to Black principles. The polymerization was monitored by DH and ESPI in real time during the cure reaction of the restoration. The total displacement reported for the material in relation of the tooth wall was 3.7 μm (natural tooth). The technique showed the entire tooth surface (wall) deforming during polymerization shrinkage.

  18. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  19. Application of point-diffraction interferometry to testing infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Smartt, Raymond N.; Paez, Gonzalo

    2004-11-01

    Point-diffraction interferometry has found wide applications spanning much of the electromagnetic spectrum, including both near- and far-infrared wavelengths. Any telescopic, spectroscopic or other imaging system that converts an incident plane or spherical wavefront into an accessible point-like image can be tested at an intermediate image plane or at the principal image plane, in situ. Angular field performance can be similarly tested with inclined incident wavefronts. Any spatially coherent source can be used, but because of the available flux, it is most convenient to use a laser source. The simplicity of the test setup can allow testing of even large and complex fully-assembled systems. While purely reflective IR systems can be conveniently tested at visible wavelengths (apart from filters), catadioptric systems could be evaluated using an appropriate source and an IRPDI, with an imaging and recording system. PDI operating principles are briefly reviewed, and some more recent developments and interesting applications briefly discussed. Alternative approaches and recommended procedures for testing IR imaging systems, including the thermal IR, are suggested. An example of applying point-diffraction interferometry to testing a relatively low angular-resolution, optically complex IR telescopic system is presented.

  20. Atmospheric gradients from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.

    1995-01-01

    Azimuthal asymmetries in the atmospheric refractive index can lead to errors in estimated vertical and horizontal station coordinates. Daily average gradient effects can be as large as 50 mm of delay at a 7 deg elevation. To model gradients, the constrained estimation of gradient paramters was added to the standard VLBI solution procedure. Here the analysis of two sets of data is summarized: the set of all geodetic VLBI experiments from 1990-1993 and a series of 12 state-of-the-art R&D experiments run on consecutive days in January 1994. In both cases, when the gradient parameters are estimated, the overall fit of the geodetic solution is improved at greater than the 99% confidence level. Repeatabilities of baseline lengths ranging up to 11,000 km are improved by 1 to 8 mm in a root-sum-square sense. This varies from about 20% to 40% of the total baseline length scatter without gradient modeling for the 1990-1993 series and 40% to 50% for the January series. Gradients estimated independently for each day as a piecewise linear function are mostly continuous from day to day within their formal uncertainties.

  1. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  2. A Model of Relation between Fluctuation of Double Differential Total Ionospheric Electron Content and Angular Distance of the Two Satellites Observed by Same-beam VLBI

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Qing-hui, Liu

    2018-01-01

    Time delay and phase fluctuation are produced when the signals of a spacecraft are transmitted through the ionosphere of the earth, which give rise to a great influence on the measurement precision of VLBI (Very Long Baseline Interferometry). Using the 1-year same-beam VLBI data of 2 satellites (Rstar and Vstar) in the Japanese lunar exploration project SELENE, we obtained a model of the relation between the fluctuation of double differential total electron content in the ionosphere and the angular distance of the two satellites. For the 6 baselines, the root mean square r of fluctuation (in units of TECU) and the angular distance of the two satellites θ (in units of ∘) has a relation of r = 0.773θ + 0.562, and for the 4 VLBI stations, the relation is r = 0.554θ + 0.399 from the baselines inversion. The results can serve as a reference for the derivation of differential phase delay and for the occultation observation and study of planetary ionospheres.

  3. The goldstone real-time connected element interferometer

    NASA Technical Reports Server (NTRS)

    Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  4. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.

    2007-11-01

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument within the framework of the Science Demonstration Time (SDT) program in February 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m. All visibility measurements show a distinct wavelength dependence: a rather steep decrease between 8 and 10 μm, and a shallower monotonic increase longward of 10 μm. For the corresponding uniform disk diameter, this visibility shape translates into a diameter increase by a factor of 2 from 25 to 50 mas between 8 and 10 μm and an almost wavelength-independent diameter between 10 and 13 μm. As we show by means of radiative transfer modeling with the code dusty, this wavelength dependence measured with VLTI/MIDI can be interpreted as the mid-infrared signature of a circumstellar dust shell which is dominated by silicate dust.

  5. Applications of optical holography to applied mechanics.

    NASA Technical Reports Server (NTRS)

    Aprahamian, R.

    1972-01-01

    This paper provides a brief summary of applications of optical holography and holographic interferometry to applied solid mechanics. Basic equations commonly used in fringe interpretation are described and used to reduce the data contained on holographic interferograms. A comparison of data obtained holographically with analytical prediction is given wherever possible. Applications contained herein include front surface physics, study of bomb breakup, transverse wave propagation, study of mode shapes of panels at elevated temperatures, nondestructive testing, and vibration analysis.

  6. In-vivo measurements of the tear film on a cornea and a contact lens by use of interferometry

    NASA Astrophysics Data System (ADS)

    Licznerski, Tomasz J.; Kasprzak, Henryk T.; Kowalik, Waldemar

    1996-12-01

    The tear film fulfills several important functions in the eye. Apart of its physiologic functions like maintaining a moist environment for the epithelial cells of the cornea and conjunctiva, bacterial properties, transporting metabolic products etc., this film causes that the corneal surface has the optical quality. This smooth surface allows to apply interferometry for measurements. The paper presents tear's layer distribution on the soft contact lens and the cornea in comparison. Tv frame speed registration in the Twyman- Green interferometer was used to observe an unstable biomedical objects like the eye. The proposed method has the advantage of being noncontact and applies the low energy laser beam in interferometric set-up. This provides non- invasive testing of human cornea in vivo and enables observation the kinetics of its tear layer deterioration. The evaluation of non-invasive tear breakup time is possible by use of proposed setup. Further analysis of recorded interferograms helps to examine the matter of the breakup process and can be used for detection of the 'dry eye' symptoms.

  7. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images

    PubMed Central

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620

  8. Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry.

    PubMed

    Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng

    2018-01-08

    An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.

  9. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    PubMed

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

  10. Crustal dynamics project session 4 validation and intercomparison experiments 1979-1980 report

    NASA Technical Reports Server (NTRS)

    Liebrecht, P.; Kolenkiewicz, R.; Ryan, J.; Hothem, L.

    1983-01-01

    As part of the Crustal Dynamics Project, an experiment was performed to verify the ability of Satellite Laser Ranging (SLR), Very Long Baseline interferometry (VLBI) and Doppler Satellite Positioning System (Doppler) techniques to estimate the baseline distances between several locations. The Goddard Space Flight Center (GSFC) lasers were in operation at all five sites available to them. The ten baselines involved were analyzed using monthly orbits and various methods of selecting data. The standard deviation of the monthly SLR baseline lengths was at the 7 cm level. The GSFC VLBI (Mark III) data was obtained during three separate experiments. November 1979 at Haystack and Owens Valley, and April and July 1980 at Haystack, Owens Valley, and Fort Davis. Repeatability of the VLBI in determining baseline lengths was calculated to be at the 2 cm level. Jet Propulsion Laboratory (JPL) VLBI (Mark II) data was acquired on the Owens Valley to Goldstone baseline on ten occasions between August 1979 and November 1980. The repeatability of these baseline length determinations was calculated to be at the 5 cm level. National Geodetic Survey (NGS) Doppler data was acquired at all five sites in January 1980. Repeatability of the Doppler determined baseline lengths results were calculated at approximately 30 cm. An intercomparison between baseline distances and associated parameters was made utilizing SLR, VLBI, and Doppler results on all available baselines. The VLBI and SLR length determinations were compared on four baselines with a resultant mean difference of -1 cm and a maximum difference of 12 cm. The SLR and Doppler length determinations were compared on ten baselines with a resultant mean difference of about 30 cm and a maximum difference of about 60 cm. The VLBI and Doppler lengths from seven baselines showed a resultant mean difference of about 30 cm and maximum difference of about 1 meter. The intercomparison of baseline orientation parameters were consistent with past analysis.

  11. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    PubMed

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  12. A survey of stellar families: Multiplicity of solar-type stars

    NASA Astrophysics Data System (ADS)

    Raghavan, Deepak

    I present the results of a comprehensive assessment of companions to 454 solar- type stars within 25 pc. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. I have also obtained and included unpublished results from extensive radial velocity monitoring programs. The many sources utilized enable a thorough evaluation of stellar and brown dwarf companions. The results presented here include eight new companion discoveries, four of which are wide common proper motion pairs discovered by blinking archival images, and four more are from the spectroscopic data. The overall observed fractions of single, double, triple, and higher order systems are 57%±3%, 33%±2%, 8%±1%, and 3%±1%, respectively, counting all stellar and brown dwarf companions. The incompleteness analysis indicates that only a few undiscovered companions remain in this well-studied sample, showing that a majority of the solar-type stars are single. Bluer, more massive stars are more likely to have companions than redder, less massive ones. I confirm earlier expectations that more active stars are more likely to have companions. A preliminary, but important indication is that brown dwarfs, like planets, prefer stars with higher metallicity, tentatively suggesting that brown dwarfs may form like planets when they are companions to stars. The period distribution is unimodal and roughly Gaussian with peak and median values of about 300 years. The period-eccentricity relation shows a roughly flat distribution beyond the circularization limit of about 12 days. The mass- ratio distribution shows a clear discontinuity near a value of one, indicating a preference for twins, which are not confined to short orbital periods, suggesting that stars form by multiple formation mechanisms. The ratio of planet hosts among single, binary, and multiple systems are statistically indistinguishable, suggesting that planets are as likely to form around single stars as they are around components of binary or multiple systems at sufficiently wide separations. INDEX WORDS: Stellar multiplicity, Binary stars, Solar-type stars, Solar neighborhood, Exoplanet systems, Brown dwarfs, Survey, Long baseline interferometry, Radial velocity

  13. Speckle interferometry of asteroids

    NASA Technical Reports Server (NTRS)

    Drummond, Jack

    1988-01-01

    This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full.

  14. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  15. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    PubMed Central

    Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-01-01

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992–2010 from ERS-1/-2 and ENVISAT, and 2011–2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements. PMID:28252103

  16. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    PubMed

    Armaş, Iuliana; Mendes, Diana A; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-03-02

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.

  17. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

    NASA Astrophysics Data System (ADS)

    Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai

    2018-02-01

    Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

  18. Low-frequency interferometry: Design, calibration, and analysis towards detecting the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron Robert

    Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.

  19. HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR MULTI-FREQUENCY CALIBRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, Richard; Rioja, María J.; Molina, Sol N.

    In this paper we describe a new approach for millimeter Very Long Baseline Interferometry (mm-VLBI) calibration that provides bona-fide astrometric alignment of the millimeter-wavelength images from a single source, for the measurement of frequency-dependent effects, such as “core-shifts” near the black hole of active galactic nucleus jets. We achieve our astrometric alignment by solving first for the ionospheric (dispersive) contributions using wide-band centimeter-wavelength observations. Second, we solve for the tropospheric (non-dispersive) contributions by using fast frequency-switching at the target millimeter-wavelengths. These solutions can be scaled and transferred from low frequency to the high frequency. To complete the calibration chain anmore » additional step is required to remove a residual constant phase offset on each antenna. The result is an astrometric calibration and the measurement of the core-shift between 22 and 43 GHz for the jet in BL Lacertae to be −8 ± 5, 20 ± 6 μ as, in R.A. and decl., respectively. By comparison to conventional phase referencing at centimeter-wavelengths we are able to show that this core shift at millimeter-wavelengths is significantly less than what would be predicted by extrapolating the low-frequency result, which closely followed the predictions of the Blandford and Königl conical jet model. As such it would be the first demonstration for the association of the VLBI core with a recollimation shock, normally hidden at low frequencies due to the optical depth, which could be responsible for the γ -ray production in blazar jets.« less

  20. Spectroscopy, MOST photometry, and interferometry of MWC 314: is it an LBV or an interacting binary?

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Moffat, Anthony F. J.; Maltais-Tariant, Raphaël; Pablo, Herbert; Gies, Douglas R.; Saio, Hideyuki; St-Louis, Nicole; Schaefer, Gail; Miroshnichenko, Anatoly S.; Farrington, Chris; Aldoretta, Emily J.; Artigau, Étienne; Boyajian, Tabetha S.; Gordon, Kathryn; Jones, Jeremy; Matson, Rachel; McAlister, Harold A.; O'Brien, David; Raghavan, Deepak; Ramiaramanantsoa, Tahina; Ridgway, Stephen T.; Scott, Nic; Sturmann, Judit; Sturmann, Laszlo; Brummelaar, Theo ten; Thomas, Joshua D.; Turner, Nils; Vargas, Norm; Zharikov, Sergey; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2016-01-01

    MWC 314 is a bright candidate luminous blue variable (LBV) that resides in a fairly close binary system, with an orbital period of 60.753 ± 0.003 d. We observed MWC 314 with a combination of optical spectroscopy, broad-band ground- and space-based photometry, as well as with long baseline, near-infrared interferometry. We have revised the single-lined spectroscopic orbit and explored the photometric variability. The orbital light curve displays two minima each orbit that can be partially explained in terms of the tidal distortion of the primary that occurs around the time of periastron. The emission lines in the system are often double-peaked and stationary in their kinematics, indicative of a circumbinary disc. We find that the stellar wind or circumbinary disc is partially resolved in the K'-band with the longest baselines of the CHARA Array. From this analysis, we provide a simple, qualitative model in an attempt to explain the observations. From the assumption of Roche Lobe overflow and tidal synchronization at periastron, we estimate the component masses to be M1 ≈ 5 M⊙ and M2 ≈ 15 M⊙, which indicates a mass of the LBV that is extremely low. In addition to the orbital modulation, we discovered two pulsational modes with the MOST satellite. These modes are easily supported by a low-mass hydrogen-poor star, but cannot be easily supported by a star with the parameters of an LBV. The combination of these results provides evidence that the primary star was likely never a normal LBV, but rather is the product of binary interactions. As such, this system presents opportunities for studying mass-transfer and binary evolution with many observational techniques.

  1. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data

    NASA Astrophysics Data System (ADS)

    Ng, Alex Hay-Man; Ge, Linlin; Du, Zheyuan; Wang, Shuren; Ma, Chao

    2017-09-01

    This paper describes the simulation and real data analysis results from the recently launched SAR satellites, ALOS-2, Sentinel-1 and Radarsat-2 for the purpose of monitoring subsidence induced by longwall mining activity using satellite synthetic aperture radar interferometry (InSAR). Because of the enhancement of orbit control (pairs with shorter perpendicular baseline) from the new satellite SAR systems, the mine subsidence detection is now mainly constrained by the phase discontinuities due to large deformation and temporal decorrelation noise. This paper investigates the performance of the three satellite missions with different imaging modes for mapping longwall mine subsidence. The results show that the three satellites perform better than their predecessors. The simulation results show that the Sentinel-1A/B constellation is capable of mapping rapid mine subsidence, especially the Sentinel-1A/B constellation with stripmap (SM) mode. Unfortunately, the Sentinel-1A/B SM data are not available in most cases and hence real data analysis cannot be conducted in this study. Despite the Sentinel-1A/B SM data, the simulation and real data analysis suggest that ALOS-2 is best suited for mapping mine subsidence amongst the three missions. Although not investigated in this study, the X-band satellites TerraSAR-X and COSMO-SkyMed with short temporal baseline and high spatial resolution can be comparable with the performance of the Radarsat-2 and Sentinel-1 C-band data over the dry surface with sparse vegetation. The potential of the recently launched satellites (e.g. ALOS-2 and Sentinel-1A/B) for mapping longwall mine subsidence is expected to be better than the results of this study, if the data acquired from the ideal acquisition modes are available.

  2. Dual-Frequency VLBI Study of Centaurus A on Sub-Parsec Scales: The Highest-Resolution View of an Extragalactic Jet

    NASA Technical Reports Server (NTRS)

    Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.; hide

    2011-01-01

    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution

  3. Supernova 1986J Very Long Baseline Interferometry. II. The Evolution of the Shell and the Central Source

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Bartel, N.; Rupen, M. P.

    2010-04-01

    We present new Very Long Baseline Interferometry (VLBI) images of supernova (SN) 1986J, taken at 5, 8.4, and 22 GHz between t = 22 and 25 yr after the explosion. The shell expands vpropt 0.69±0.03. We estimate the progenitor's mass-loss rate at (4-10) × 10-5 M sun yr-1 (for v w = 10 km s-1). Two bright spots are seen in the images. The first, in the northeast, is now fading. The second, very near the center of the projected shell and unique to SN 1986J, is still brightening relative to the shell, and now dominates the VLBI images. It is marginally resolved at 22 GHz (diameter ~0.3 mas; ~5 × 1016 cm at 10 Mpc). The integrated VLA spectrum of SN 1986J shows an inversion point and a high-frequency turnover, both progressing downward in frequency and due to the central bright spot. The optically thin spectral index of the central bright spot is indistinguishable from that of the shell. The small proper motion of 1500 ± 1500 km s-1 of the central bright spot is consistent with our previous interpretation of it as being associated with the expected black-hole or neutron-star remnant. Now, an alternate scenario seems also plausible, where the central bright spot, like the northeast one, results when the shock front impacts on a condensation within the circumstellar medium (CSM). The condensation would have to be so dense as to be opaque at cm wavelengths (~103× denser than the average corresponding CSM) and fortuitously close to the center of the projected shell. We include a movie of the evolution of SN 1986J at 5 GHz from t = 0 to 25 yr.

  4. The IVS data input to ITRF2014

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya

    2015-01-01

    Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).

  5. Generalized interferometry - I: theory for interstation correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian

    2017-02-01

    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on Earth structure. Not making any restrictive assumptions on the nature of the wavefield sources, our theory can be applied to earthquake and ambient noise data, either separately or combined. This allows us (i) to locate earthquakes using interstation correlations and without knowledge of the origin time, (ii) to unify the earthquake-based two-station method and noise correlations without the need to exclude either of the two data types, and (iii) to eliminate the requirement to remove earthquake signals from noise recordings prior to the computation of correlation functions. In addition to the basic theory for acoustic wavefields, we present numerical examples for 2-D media, an extension to the most general viscoelastic case, and a method for the design of optimal processing schemes that eliminate the forward modelling error completely. This work is intended to provide a comprehensive theoretical foundation of full-waveform interferometry by correlation, and to suggest improvements to current passive monitoring methods.

  6. The role of Fizeau interferometry in planetary science

    NASA Astrophysics Data System (ADS)

    Conrad, Albert R.

    2016-08-01

    Historically, two types of interferometer have been used to the study of solar system objects: coaxial and Fizeau. While coaxial interferometers are well-suited to a wide range of galactic and extra-galactic science cases, solar system science cases are, in most cases, better carried out with Fizeau imagers. Targets of interest in our solar system are often bright and compact, and the science cases for these objects often call for a complete, or nearly complete, image at high angular resolution. For both methods, multiple images must be taken at varying baselines to reconstruct an image. However, with the Fizeau technique that number is far fewer than it is for the aperture synthesis method employed by co-axial interferometers. In our solar system, bodies rotate and their surfaces are sometimes changing over yearly, or even weekly, time scales. Thus, the need to be able to exploit the high angular resolution of an interferometer with only a handful of observations taken on a single night, as is the case for Fizeau interferometers, gives a key advantage to this technique. The aperture of the Large Binocular Telescope (LBT), two 8.4 circular mirrors separated center-to-center by 14.4 meters, is optimal for supporting Fizeau interferometry. The first of two Fizeau imagers planned for LBT, the LBT Interferometer (LBTI),1 saw first fringes in 2010 and has proven to be a valuable tool for solar system studies. Recent studies of Jupiters volcanic moon Io have yielded results that rely on the angular resolution provided by the full 23-meter baseline of LBT Future studies of the aurora at Jupiters poles and the shape and binarity of asteroids are planned. While many solar system studies can be carried out on-axis (i.e., using the target of interest as the beacon for both adaptive optics correction and fringe tracking), studies such as Io-in-eclipse, full disk of Jupiter and Mars, and binarity of Kuiper belt objects, require off-axis observations (i.e., using one or more nearby guide-moons or stars for adaptive optics correction and fringe tracking). These studies can be plagued by anisoplanatism, or cone effect. LINC-NIRVANA (LN),2 the first multi-conjugate adaptive optics system (MCAO) on an 8-meter class telescope in the northern hemisphere, provides a solution to the ill-effects of anisoplanatism. One of the LN ground layer wave front sensors was tested on LBT during 2014.3-5 Longer term, an upgrade planned for LN will establish its original role as the second LBT Fizeau imager. The full-disk study of several solar system bodies, most notably large and/or nearby bodies such as Jupiter and Mars which span tens of arcseconds, would be best studied with LN. We will review the past accomplishments of Fizeau interferometry with LBTI, present plans for using that instrument for future solar system studies, and, lastly, explore the unique solar system studies that require the LN MCAO system combined with Fizeau interferometry.

  7. VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)

    NASA Astrophysics Data System (ADS)

    Petrov, L.

    2014-06-01

    The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).

  8. Development of the Phase-up Technology of the Radio Telescopes: 6.7 GHz Methanol Maser Observations with Phased Hitachi 32 m and Takahagi 32 m Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.

    2017-11-01

    For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.

  9. Improved Calibration of Modeled Discharge and Storage Change in the Atchafalaya Floodplain Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug

    2011-01-01

    This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.

  10. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  11. Investigating the Capability to Extract Impulse Response Functions From Ambient Seismic Noise Using a Mine Collapse Event

    NASA Astrophysics Data System (ADS)

    Kwak, Sangmin; Song, Seok Goo; Kim, Geunyoung; Cho, Chang Soo; Shin, Jin Soo

    2017-10-01

    Using recordings of a mine collapse event (Mw 4.2) in South Korea in January 2015, we demonstrated that the phase and amplitude information of impulse response functions (IRFs) can be effectively retrieved using seismic interferometry. This event is equivalent to a single downward force at shallow depth. Using quantitative metrics, we compared three different seismic interferometry techniques—deconvolution, coherency, and cross correlation—to extract the IRFs between two distant stations with ambient seismic noise data. The azimuthal dependency of the source distribution of the ambient noise was also evaluated. We found that deconvolution is the best method for extracting IRFs from ambient seismic noise within the period band of 2-10 s. The coherency method is also effective if appropriate spectral normalization or whitening schemes are applied during the data processing.

  12. Extracting attosecond delays from spectrally overlapping interferograms

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  13. Experimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry

    PubMed Central

    Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can

    2016-01-01

    High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately. PMID:26738875

  14. Dimensional metrology of micro structure based on modulation depth in scanning broadband light interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.

  15. Nature of the optical information recorded in speckles

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1998-09-01

    The process of encoding displacement information in electronic Holographic Interferometry is reviewed. Procedures to extend the applicability of this technique to large deformations are given. The proposed techniques are applied and results from these experiments are compared with results obtained by other means. The similarity between the two sets of results illustrates the validity for the new techniques.

  16. Contribution of SAR interferometry (InSAR) to the study of alpine glaciers. The example of Forni Glacier (Central Alps, Italy): preliminary results

    NASA Astrophysics Data System (ADS)

    Sterzai, P.; Mancini, F.; Corazzato, C.; D Agata, C.; Diolaiuti, G.

    2003-04-01

    Aiming at reconstructing superficial velocity and volumetric variations of alpine glaciers, SAR interferometry (InSAR) technique is, for the first time in Italy, applied jointly with the glaciological classic field methods. This methodology with its quantitative results provides, together with other space geodesy techniques like GPS, some fundamental elements for the estimation of the climate forcing and the evaluation of the future glacier trend. InSAR is usually applied to antarctic glaciers and to other wide extralpine glaciers, detectable by the SAR orbits; in the Italian Alps, the limited surface area of the glaciers and the deformation of radar images due to strong relief effect, reduce the applicability of this tecnique. The chosen glacier is suitable for this kind of study both for its large size and for the many field data collected and available for the interferometric results validation. Forni Glacier is the largest valley glacier in the Italian Alps and represents a good example of long term monitoring of a valley glacier in the Central Alps. It is a north facing valley glacier formed by 3 ice streams, located in Italian Lombardy Alps (46 23 50 N, 10 35 00 E). In 2002 its area was approximately 13 km2, extending from 2500 to 3684 m a.s.l., with a maximum width of approximately 7500 m and a maximum length of about 5000 m. Available data include mass-balance measurements on the glacier tongue (from the hydrological year 1992-1993 up to now), frontal variations data from 1925 up to now, topographical profiling by means of GPS techniques and profiles of the glacier bed by geoelectrical surveys (VES) (Guglielmin et alii, 1995) and by seismic surveys (Merlanti et alii, 2001). In order to apply radar interferometry on this glacier eight ERS SAR RAW images have been purchased, in addition to the Digital Elevation Model from IGM (Geographic Military Institute), and repeat pass interferometry used. Combining the different passes, differential interferograms are computed and velocity map obtained. The validation of interferometric data was possible comparing them with the field glaciological data obtained by GPS velocity surveys in the years 1992-1993 (Vittuari and Smiraglia, unpublished) and 1996-1997, which resulted of about 20m/y. The InSAR results give further contributions in the estimation of the velocity field of Forni Glacier for a deeper understanding of the different flow lines of the glacier. Problems related to relief effect, loss of coherence, geometry of satellite imagery and geocoding, are also discussed.

  17. LISA Long-Arm Interferometry

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  18. Space Interferometry Science Working Group

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  19. Robust interferometry against imperfections based on weak value amplification

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua

    2018-06-01

    Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.

  20. A general theory of interference fringes in x-ray phase grating imaging.

    PubMed

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  1. CMP reflection imaging via interferometry of distributed subsurface sources

    NASA Astrophysics Data System (ADS)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  3. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  4. VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2016-01-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).

  5. Application of space technology to crustal dynamics and earthquake research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.

  6. Laser system development for gravitational-wave interferometry in space

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Yu, Anthony W.; Camp, Jordan B.; Krainak, Michael A.

    2018-02-01

    A highly stable and robust laser system is a key component of the space-based Laser Interferometer Space Antenna (LISA) mission, which is designed to detect gravitational waves from various astronomical sources. The baseline architecture for the LISA laser consists of a low-power, low-noise Nd:YAG non-planar ring oscillator (NPRO) followed by a diode-pumped Yb-fiber amplifier with 2 W output. We are developing such laser system at the NASA Goddard Space Flight Center (GSFC), as well as investigating other laser options. In this paper, we will describe our progress to date and plans to demonstrate a technology readiness level (TRL) 6 LISA laser system.

  7. Galileo Jupiter approach orbit determination

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Nicholson, F. T.

    1984-01-01

    Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).

  8. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  9. Glimpsing Matter at the Brink

    NASA Astrophysics Data System (ADS)

    Morris, Mark R.

    2004-04-01

    Most astronomers are comfortable with the notion of a black hole at the center of our Galaxy, but defining and measuring its size is an extremely difficult matter, mostly because it is so small from our distant vantage point. In his Perspective, Morris discusses results reported in the same issue by Bower et al. on new measurements of the size of the radio-emitting region immediately surrounding the Galactic black hole. By observing at the shortest possible wavelengths with very long baseline interferometry, the authors have been able to resolve the intrinsic size of the black hole region in spite of the interstellar interference that has plagued previous attempts.

  10. Geodetic measurement of deformation in the Loma Prieta, California earthquake with very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Ma, C.; Sauber, J. M.; Ryan, J. W.; Gordon, D.; Shaffer, D. B.; Carprette, D. S.; Vandenberg, N. R.

    1990-01-01

    VLBI measurements were conducted immediately after the Loma Prieta earthquake and compared with VLBI gathered at Monterey, San Francisco, and Point Reyes since 1983 to obtain preearthquake deformation rates with respect to a North American reference frame. The estimated displacements at Monterey and San Francisco are consistent with the static displacements predicted on the basis of a coseismic slip model in which slip on the southern segment is shallower than slip on the northern segment of the fault rupture. Cartesian positions are presented at epoch 1990.0 of a set of VLBI fiducial stations and the three mobile sites in the earthquake's vicinity.

  11. Measuring rapid ocean tidal earth orientation variations with very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Jacobs, C. S.; Gross, R. S.

    1993-01-01

    Ocean tidal effects on universal time and polar motion (UTPM) are investigated at four nearly diurnal (K(sub 1), P(sub 1), O(sub 1), and Q(sub 1)) and four nearly semidiurnal (K(sub 2), S(sub 2), M(sub 2), and N(sub 2)) frequencies by analyzing very long baseline interferometry (VLBI) data extending from 1978 to 1992. We discuss limitations of comparisons between experiment and theory for the retograde nearly diurnal polar motion components due to their degeneracy with prograde components of the nutation model. Estimating amplitudes of contributions to the modeled VLBI observables at these eight frequencies produces a statistically highly significant improvement of 7 mm to the residuals of a fit to the observed delays. Use of such an improved UTPM model also reduces the 14-30 mm scatter of baseline lengths about a time-linear model of tectonic motion by 3-14 mm, also withhigh significance levels. A total of 28 UTPM ocean tidal amplitudes can be unambiguously estimated from the data, with resulting UTI and PM magnitudes as large as 21 micro secs and 270 microarc seconds and formal uncertainties of the order of 0.3 micro secs and 5 microarc secs for UTI and PM, respectively. Empirically determined UTPM amplitudes and phases are com1pared to values calculated theoretically by Gross from Seiler's global ocean tide model. The discrepancy between theory and experiment is larger by a factor of 3 for UTI amplitudes (9 micro secs) than for prograde PM amplitudes (42 microarc secs). The 14-year VLBI data span strongly attenuates the influence of mismodeled effects on estimated UTPM amplitudes and phases that are not coherent with the eight frequencies of interest. Magnitudes of coherent and quasi-coherent systematic errors are quantified by means of internal consistency tests. We conclude that coherent systematic effects are many times larger than the formal uncertainties and can be as large as 4 micro secs for UTI and 60 microarc secs for polar motion. On the basis of such ealistic error estimates, 22 of the 31 fitted UTPM ocean tidal amplitudes differ from zero by more than 2 sigma.

  12. Measuring rapid ocean tidal earth orientation variations with very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Jacobs, C. S.; Gross, R. S.

    1993-11-01

    Ocean tidal effects on universal time and polar motion (UTPM) are investigated at four nearly diurnal (K1, P1, O1, and Q1) and four nearly semidiurnal (K2, S2, M2, and N2) frequencies by analyzing very long baseline interferometry (VLBI) data extending from 1978 to 1992. We discuss limitations of comparisons between experiment and theory for the retrograde nearly diurnal polar motion components due to their degeneracy with prograde components of the nutation model. Estimating amplitudes of contributions to the modeled VLBI observables at these eight frequencies produces a statistically highly significant improvement of 7 mm to the residuals of a fit to the observed delays. Use of such an improved UTPM model also reduces the 14-30 mm scatter of baseline lengths about a time-linear model of tectonic motion by 3-14 mm, also with high significance levels. A total of 28 UTPM ocean tidal amplitudes can be unambiguously estimated from the data, with resulting UT1 and PM magnitudes as large as 21 μs and 270 microarc seconds (μas) and formal uncertainties of the order of 0.3 μs and 5 μas for UTI and PM, respectively. Empirically determined UTPM amplitudes and phases are compared to values calculated theoretically by Gross from Seiler's global ocean tide model. The discrepancy between theory and experiment is larger by a factor of 3 for UT1 amplitudes (9 μs) than for prograde PM amplitudes (42 μas). The 14-year VLBI data span strongly attenuates the influence of mismodeled effects on estimated UTPM amplitudes and phases that are not coherent with the eight frequencies of interest. Magnitudes of coherent and quasi-coherent systematic errors are quantified by means of internal consistency tests. We conclude that coherent systematic effects are many times larger than the formal uncertainties and can be as large as 4 μs for UT1 and 60 μas for polar motion. On the basis of such realistic error estimates, 22 of the 31 fitted UTPM ocean tidal amplitudes differ from zero by more than 2σ.

  13. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    NASA Astrophysics Data System (ADS)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  14. Two configurations of miniature Mirau interferometry for swept-source OCT imaging: applications in dermatology and gastroendoscopy

    NASA Astrophysics Data System (ADS)

    Gorecki, Christophe

    2015-08-01

    The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.

  15. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    PubMed

    Jung, Hyung-Sup; Hong, Soo-Min

    2017-01-01

    Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  16. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry

    PubMed Central

    Jung, Hyung-Sup; Hong, Soo-Min

    2017-01-01

    Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake. PMID:29145475

  17. Deformation Studies and Elasticity Measurements of Hydrophobic Silica Aerogels using Double Exposure Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant; Sabale, Sandip; Chavan, Sugam

    2017-01-01

    Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.

  18. Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Wada, Hiroshi; Ando, Masayoshi; Takeuchi, Masataka; Sugawara, Hironori; Koike, Takuji; Kobayashi, Toshimitsu; Hozawa, Koji; Gemma, Takashi; Nara, Makoto

    2002-05-01

    ``Time-averaged holography'' and ``holographic interferometry'' enable recording of the complete vibration pattern of a surface within several seconds. The results appear in the form of fringes. Vibration amplitudes smaller than 100 nm are not readily measurable by these techniques, because such small amplitudes produce variations in gray level, but not fringes. In practice, to obtain clear fringes in these measurements, stimulus sound pressures higher than 100 dB SPL must be used. The phase of motion is also not obtainable from such fringe techniques. In this study, a sinusoidal phase modulation technique is described, which allows detection of both small amplitudes of motion and their phase from time-averaged speckle pattern interferometry. In this technique, the laser injection current is modulated and digital image processing is used to analyze the measured patterns. When the sound-pressure level of stimuli is between 70 and 85 dB SPL, this system is applied to measure the vibratory response of the tympanic membrane (TM) of guinea pig temporal bones at frequencies up to 4 kHz where complicated vibration modes are observed. The effect of the bulla on TM displacements is also quantified. Results indicate that this system is capable of measuring the nanometer displacements of the TM, produced by stimuli of 70 dB SPL.

  19. Controlled-source seismic interferometry with one way wave fields

    NASA Astrophysics Data System (ADS)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  20. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Ni, W.-T.; Wang, G.

    2013-01-01

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.

  1. Residual stresses of thin, short rectangular plates

    NASA Technical Reports Server (NTRS)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  2. Extension of electronic speckle correlation interferometry to large deformations

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    1998-07-01

    The process of fringe formation under simultaneous illumination in two orthogonal directions is analyzed. Procedures to extend the applicability of this technique to large deformation and high density of fringes are introduced. The proposed techniques are applied to a number of technical problems. Good agreement is obtained when the experimental results are compared with results obtained by other methods.

  3. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs to use a stack of SAR images to separate the deformation phase contributions from other spurious components (atmospheric, orbital, etc.). Historical/reference analyses of the period 2011-2014 have been performed to obtain such deformations and to have a start point for the next updates. In fact, starting from the reference analyses the deformation monitoring has then continued with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. In addition to this traditional monitoring service, the satellite interferometry analysis has been realized over specific time frame that have been selected on the bases of some important events (damages to structures, collapses, works etc.) and the analysis have been correlated with additional site information as weather conditions, critical meteorological events, historical information of the site, etc. The objective is to find a nominal behaviour of the site in response to critical events and/or related to natural degradation of infrastructures in order to prevent damages and guide maintenance activities. The first results of this cross correlated analysis showed that some deformation phenomena are identifiable by SAR satellite interferometric analysis and it has also been possible to validate them on field through a direct survey.

  4. Multi-frequency Phase Unwrap from Noisy Data: Adaptive Least Squares Approach

    NASA Astrophysics Data System (ADS)

    Katkovnik, Vladimir; Bioucas-Dias, José

    2010-04-01

    Multiple frequency interferometry is, basically, a phase acquisition strategy aimed at reducing or eliminating the ambiguity of the wrapped phase observations or, equivalently, reducing or eliminating the fringe ambiguity order. In multiple frequency interferometry, the phase measurements are acquired at different frequencies (or wavelengths) and recorded using the corresponding sensors (measurement channels). Assuming that the absolute phase to be reconstructed is piece-wise smooth, we use a nonparametric regression technique for the phase reconstruction. The nonparametric estimates are derived from a local least squares criterion, which, when applied to the multifrequency data, yields denoised (filtered) phase estimates with extended ambiguity (periodized), compared with the phase ambiguities inherent to each measurement frequency. The filtering algorithm is based on local polynomial (LPA) approximation for design of nonlinear filters (estimators) and adaptation of these filters to unknown smoothness of the spatially varying absolute phase [9]. For phase unwrapping, from filtered periodized data, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [1]. Simulations give evidence that the proposed algorithm yields state-of-the-art performance for continuous as well as for discontinues phase surfaces, enabling phase unwrapping in extraordinary difficult situations when all other algorithms fail.

  5. Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry

    PubMed Central

    Cartier, Sebastian; Kagias, Matias; Bergamaschi, Anna; Wang, Zhentian; Dinapoli, Roberto; Mozzanica, Aldo; Ramilli, Marco; Schmitt, Bernd; Brückner, Martin; Fröjdh, Erik; Greiffenberg, Dominic; Mayilyan, Davit; Mezza, Davide; Redford, Sophie; Ruder, Christian; Schädler, Lukas; Shi, Xintian; Thattil, Dhanya; Tinti, Gemma; Zhang, Jiaguo; Stampanoni, Marco

    2016-01-01

    MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented. PMID:27787252

  6. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  7. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  8. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2003-12-10

    We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.

  9. Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.

    PubMed

    Kukhtarev, Nickolai; Kukhtareva, Tatiana; Gallegos, Sonia C

    2011-03-01

    Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico. © 2011 Optical Society of America

  10. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  11. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  12. Fourier domain low coherence interferometry for detection of early colorectal cancer development in the AOM rat model

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Zhu, Yizheng; Lee, Jin; Sharma, Sheela; Wax, Adam

    2011-03-01

    We present Fourier domain low coherence interferometry (fLCI) applied to the detection of preneoplastic changes in the colon using the ex-vivo azoxymethane (AOM) rat carcinogenesis model. fLCI measures depth resolved spectral oscillations, also known as local oscillations, resulting from coherent fields induced by the scattering of cell nuclei. The depth resolution of fLCI permits nuclear morphology measurements within thick tissues, making the technique sensitive to the earliest stages of precancerous development. To achieve depth resolved spectroscopic analysis, we use the dual window method, which obtains simultaneously high spectral and depth resolution and yields access to the local oscillations. The results show highly statistically significant differences between the AOM-treated and control group samples. Further, the results suggest that fLCI may be used to detect the field effect of carcinogenesis, in addition to identifying specific areas where more advanced neoplastic development has occurred.

  13. Canceling the Gravity Gradient Phase Shift in Atom Interferometry.

    PubMed

    D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M

    2017-12-22

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  14. Distance measurement using frequency scanning interferometry with mode-hoped laser

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  15. Canceling the Gravity Gradient Phase Shift in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.

    2017-12-01

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  16. Measurement of elastic and thermal properties of composite materials using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra

    2015-08-01

    In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.

  17. TDRS orbit determination by radio interferometry

    NASA Technical Reports Server (NTRS)

    Pavloff, Michael S.

    1994-01-01

    In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.

  18. Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    PubMed Central

    Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel

    2015-01-01

    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991

  19. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  20. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  1. Prospects for UT1 Measurements from VLBI Intensive Sessions

    NASA Technical Reports Server (NTRS)

    Boehm, Johannes; Nilsson, Tobias; Schuh, Harald

    2010-01-01

    Very Long Baseline Interferometry (VLBI) Intensives are one-hour single baseline sessions to provide Universal Time (UT1) in near real-time up to a delay of three days if a site is not e-transferring the observational data. Due to the importance of UT1 estimates for the prediction of Earth orientation parameters, as well as any kind of navigation on Earth or in space, there is not only the need to improve the timeliness of the results but also their accuracy. We identify the asymmetry of the tropospheric delays as the major error source, and we provide two strategies to improve the results, in particular of those Intensives which include the station Tsukuba in Japan with its large tropospheric variation. We find an improvement when (1) using ray-traced delays from a numerical weather model, and (2) when estimating tropospheric gradients within the analysis of Intensive sessions. The improvement is shown in terms of reduction of rms of length-of-day estimates w.r.t. those derived from Global Positioning System observations

  2. A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC

    NASA Technical Reports Server (NTRS)

    Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.

  3. Investigation of baseline measurement resolution of a Si plate-based extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    Measurement of a wafer thickness is of a great value for fabrication and interrogation of MEMS/MOEMS devices, as well as conventional optical fiber sensors. In the current paper we investigate the abilities of the wavelength-scanning interferometry techniques for registering the baseline of an extrinsic fiber Fabry-Perot interferometer (EFPI) with the cavity formed by the two sides of a silicon plate. In order to enhance the resolution, an improved signal processing algorithm was developed. Various experiments, including contact and non-contact measurement of a silicon wafer thickness were performed, with the achieved resolutions from 10 to 20 pm. This enables one to use the described approach for high-precision measurement of geometric parameters of micro electro (electro-optic) mechanical systems for their characterization, utilization in sensing tasks and fabrication control. An ability of a Si plate-based EFPI interrogated by the developed technique to capture temperature variations of about 4 mK was demonstrated.

  4. The first simultaneous mapping of four 7 mm SiO maser lines using the OCTAVE system

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoaki; Kono, Yusuke; Suzuki, Syunsaku; Kanaguchi, Masahiro; Nishikawa, Takashi; Kawaguchi, Noriyuki; Hirota, Tomoya; Nagayama, Takumi; Kobayashi, Hideyuki; Imai, Hiroshi; Kuwahara, Sho; Kano, Amane; Oyadomari, Miyako; Chong, Sze Ning

    2016-12-01

    We report on simultaneous very long baseline interferometry (VLBI) mapping of 28SiO v = 1, 2, 3, and 29SiO v = 0 J = 1 → 0 maser lines at the 7 mm band toward the semi-regular variable star, W Hydrae (W Hya), using the new data acquisition system (OCTAVE-DAS), installed in the VLBI Exploration of Radio Astrometry (VERA) array and temporarily operated in the 45 m telescope of the Nobeyama Radio Observatory. Although these masers were spatially resolved, their compact maser spots were fortunately detected in the 1000 km baselines of VERA. We found the locations of the v = 3 maser emission which are unexpected from the currently proposed maser pumping models. Mapping of the 29SiO maser line in W Hya is the third result after those in WX Psc and R Leo. This paper shows the scientific implication of simultaneous VLBI observations of multiple SiO maser lines as realized by using the OCTAVE system.

  5. Physical properties and astrometry of radio-emitting brown dwarf TVLM 513-46546 revisited

    NASA Astrophysics Data System (ADS)

    Gawroński, Marcin P.; Goździewski, Krzysztof; Katarzyński, Krzysztof

    2017-04-01

    We present multi-epoch astrometric observations of the M9 ultracool dwarf TVLM513-46546 that is placed at the brown dwarf boundary. The new observations have been performed with the European Very Large Baseline Interferometry Network at 6 cm band. The target has been detected at seven epochs spanning three years, with measured quiescent emission flux in the range 180-300 μJy. We identified four short-duration flaring events (0.5-2 mJy) with very high circular polarization (˜75 per cent-100 per cent). Properties of the observed radio flares support the physical model of the source that is characterized by the electron cyclotron maser instability responsible for outbursts of radio emission. Combined with Very Long Baseline Array earlier data, our detections make it possible to refine the absolute parallax π =93.27^{+0.18}_{-0.17} mas. Our measurements rule out TVLM513-46546 companions more massive than Jupiter in orbits with periods longer than ˜1 yr.

  6. Advanced Imaging Methods for Long-Baseline Optical Interferometry

    NASA Astrophysics Data System (ADS)

    Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.

    2008-11-01

    We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.

  7. First faint dual-field off-axis observations in optical long baseline interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woillez, J.; Wizinowich, P.; Ragland, S.

    2014-03-10

    Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneouslymore » measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability.« less

  8. Monte Carlo Simulations for VLBI2010

    NASA Astrophysics Data System (ADS)

    Wresnik, J.; Böhm, J.; Schuh, H.

    2007-07-01

    Monte Carlo simulations are carried out at the Institute of Geodesy and Geophysics (IGG), Vienna, and at Goddard Space Flight Center (GSFC), Greenbelt (USA), with the goal to design a new geodetic Very Long Baseline Interferometry (VLBI) system. Influences of the schedule, the network geometry and the main stochastic processes on the geodetic results are investigated. Therefore schedules are prepared with the software package SKED (Vandenberg 1999), and different strategies are applied to produce temporally very dense schedules which are compared in terms of baseline length repeatabilities. For the simulation of VLBI observations a Monte Carlo Simulator was set up which creates artificial observations by randomly simulating wet zenith delay and clock values as well as additive white noise representing the antenna errors. For the simulation at IGG the VLBI analysis software OCCAM (Titov et al. 2004) was adapted. Random walk processes with power spectrum densities of 0.7 and 0.1 psec2/sec are used for the simulation of wet zenith delays. The clocks are simulated with Allan Standard Deviations of 1*10^-14 @ 50 min and 2*10^-15 @ 15 min and three levels of white noise, 4 psec, 8 psec and, 16 psec, are added to the artificial observations. The variations of the power spectrum densities of the clocks and wet zenith delays, and the application of different white noise levels show clearly that the wet delay is the critical factor for the improvement of the geodetic VLBI system. At GSFC the software CalcSolve is used for the VLBI analysis, therefore a comparison between the software packages OCCAM and CalcSolve was done with simulated data. For further simulations the wet zenith delay was modeled by a turbulence model. This data was provided by Nilsson T. and was added to the simulation work. Different schedules have been run.

  9. Optical Interferometry Motivation and History

    NASA Technical Reports Server (NTRS)

    Lawson, Peter

    2006-01-01

    A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.

  10. No Expanding Fireball: Resolving the Recurrent Nova RS Ophiuchi with Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Barry, R. K.; Traub, W. A.; Lane, B. F.; Akeson, R. L.; Ragland, S.; Schuller, P. A.; Le Coroller, H.; Berger, J.-P.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Koresko, C.; Carleton, N. P.; Lacasse, M. G.; Kern, P.; Malbet, F.; Perraut, K.; Kuchner, M. J.; Muterspaugh, M. W.

    2006-08-01

    Following the recent outburst of the recurrent nova RS Oph on 2006 February 12, we measured its near-infrared size using the IOTA, Keck, and PTI Interferometers at multiple epochs. The characteristic size of ~3 mas hardly changed over the first 60 days of the outburst, ruling out currently popular models whereby the near-infrared emission arises from hot gas in the expanding shock. The emission was also found to be significantly asymmetric, evidenced by nonzero closure phases detected by IOTA. The physical interpretation of these data depends strongly on the adopted distance to RS Oph. Our data can be interpreted as the first direct detection of the underlying RS Oph binary, lending support to the recent ``reborn red giant'' models of Hachisu & Kato. However, this result hinges on an RS Oph distance of <~540 pc, in strong disagreement with the widely adopted distance of ~1.6 kpc. At the farther distance, our observations imply instead the existence of a nonexpanding, dense, and ionized circumbinary gaseous disk or reservoir responsible for the bulk of the near-infrared emission. Longer baseline infrared interferometry is uniquely suited to distinguish between these models and to ultimately determine the distance, binary orbit, and component masses for RS Oph, one of the closest known (candidate) Type 1a supernova progenitor systems.

  11. Impact of seasonal and postglacial surface displacement on global reference frames

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; King, Matt; Memin, Anthony; Shabala, Stanislav; Watson, Christopher

    2014-05-01

    The calculation of actual station positions requires several corrections which are partly recommended by the International Earth Rotation and Reference Systems Service (IERS) Conventions (e.g., solid Earth tides and ocean tidal loading) as well as other corrections, e.g. accounting for hydrology and atmospheric loading. To investigate the pattern of omitted non-linear seasonal motion we estimated empirical harmonic models for selected stations within a global solution of suitable Very Long Baseline Interferometry (VLBI) sessions as well as mean annual models by stacking yearly time series of station positions. To validate these models we compare them to displacement series obtained from the Gravity Recovery and Climate Experiment (GRACE) data and to hydrology corrections determined from global models. Furthermore, we assess the impact of the seasonal station motions on the celestial reference frame as well as on Earth orientation parameters derived from real and also artificial VLBI observations. In the second part of the presentation we apply vertical rates of the ICE-5G_VM2_2012 vertical land movement grid on vertical station velocities. We assess the impact of postglacial uplift on the variability in the scale given different sampling of the postglacial signal in time and hence on the uncertainty in the scale rate of the estimated terrestrial reference frame.

  12. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    PubMed

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  13. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    PubMed Central

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  14. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  15. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  16. Investigating the Origin of Natural and Anthropogenic Deformation across the Nile Delta Using Radar Interferometry, GRACE, Modeling, and Field data

    NASA Astrophysics Data System (ADS)

    Gebremichael, E.; Sultan, M.; Becker, R.; El Bastawesy, M.; Cherif, O.; Emil, M.; Ahmed, M.; Fathy, K.; Karki, S.; Chouinard, K.

    2016-12-01

    We applied an integrated approach (radar interferometry, flood simulation, GRACE, GIS) to investigate the nature and distribution of land deformation in the Nile Delta and to identify the natural and anthropogenic controlling factors. Our methodology involved: (1) applying persistent scatterer interferometry (PSI) across the entire Delta (scenes: 108 level 0 scenes; Tracks: 4 tracks; time period: 2003-2010); (2) correcting the interferometry output for various phase contributing errors (e.g., atmosphere, orbit, etc.) and calibrating/validating the output against 3 GNSS GPS stations (2 in Alexandria, 1 in Helwan); (3) conducting spatial correlation (in a GIS environment) of the radar outputs with relevant remote sensing, subsurface, and geologic datasets; (4) simulating flood depth and inundation to investigate the spatial extent and depth of the Holocene sediments using the HEC-RAS software (inputs: DEM and monthly discharge data; period: 1871-1902), (5) identifying subsurface structures by processing 712 gridded field gravity data points in Geosoft Oasis Montaj software (Bouguer anomaly analysis), and (6) analyzing monthly (2002-2015) GRACE-derived TWS solutions (0.5° x 0.5° CSR mascons). Our findings include: (1) three main structural trends (E-W, NW-SE and NE-SW trending) were mapped across the Delta, (2) areas of high subsidence coincide with the distribution of relatively thick recent sediments (<3000 years), probably due to sediment compaction, in three settings: (a) areas susceptible to flooding from the Damietta and Rosetta branches (e.g., east Damietta branch; latitude 30.8° to 31.2°; longitude 31.2° to 31.6°), (b) areas susceptible to sediment deposition at bifurcation locations of primary channels (e.g., near Cairo) and, (c) areas where mapped faults intersect Damietta and Rosetta channels, change their course, and cause ponding of surface water and sediment deposition, (3) extraction of gas from the Abu Madi gas field in north central delta contributes to observed subsidence (mean rate: 4.4 mm/yr) and high TWS depletion (3.3 mm/yr), and (4) excessive extraction of groundwater from areas west of the Nile Valley, areas where newly reclaimed land are irrigated by groundwater is causing high subsidence rates (mean rate: 5.4 mm/yr) and TWS depletion (2.9 mm/yr).

  17. Troposphere gradients from the ECMWF in VLBI analysis

    NASA Astrophysics Data System (ADS)

    Boehm, Johannes; Schuh, Harald

    2007-06-01

    Modeling path delays in the neutral atmosphere for the analysis of Very Long Baseline Interferometry (VLBI) observations has been improved significantly in recent years by the use of elevation-dependent mapping functions based on data from numerical weather models. In this paper, we present a fast way of extracting both, hydrostatic and wet, linear horizontal gradients for the troposphere from data of the European Centre for Medium-range Weather Forecasts (ECMWF) model, as it is realized at the Vienna University of Technology on a routine basis for all stations of the International GNSS (Global Navigation Satellite Systems) Service (IGS) and International VLBI Service for Geodesy and Astrometry (IVS) stations. This approach only uses information about the refractivity gradients at the site vertical, but no information from the line-of-sight. VLBI analysis of the CONT02 and CONT05 campaigns, as well as all IVS-R1 and IVS-R4 sessions in the first half of 2006, shows that fixing these a priori gradients improves the repeatability for 74% (40 out of 54) of the VLBI baseline lengths compared to fixing zero or constant a priori gradients, and improves the repeatability for the majority of baselines compared to estimating 24-h offsets for the gradients. Only if 6-h offsets are estimated, the baseline length repeatabilities significantly improve, no matter which a priori gradients are used.

  18. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  19. Thermal loading in the laser holography nondestructive testing of a composite structure

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Kurtz, R. L.

    1975-01-01

    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.

  20. Forest biomass change estimated from height change in interferometric SAR height models.

    PubMed

    Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin

    2014-12-01

    There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.

  1. Engineering processes for the African VLBI network

    NASA Astrophysics Data System (ADS)

    Thondikulam, Venkatasubramani L.; Loots, Anita; Gaylard, Michael

    2013-04-01

    The African VLBI Network (AVN) is an initiative by the SKA-SA and HartRAO, business units of the National Research Foundation (NRF), Department of Science and Technology (DST), South Africa. The aim is to fill the existing gap of Very Long Baseline Interferometry (VLBI)-capable radio telescopes in the African continent by a combination of new build as well as conversion of large redundant telecommunication antennas through an Inter-Governmental collaborative programme in Science and Technology. The issue of human capital development in the Continent in the techniques of radio astronomy engineering and science is a strong force to drive the project and is expected to contribute significantly to the success of Square Kilometer Array (SKA) in the Continent.

  2. Monitoring of Earth Rotation by VLBI

    NASA Technical Reports Server (NTRS)

    Ma., Chopo; Macmillan, D. S.

    2000-01-01

    Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.

  3. Frequency References for Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.

    2012-01-01

    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.

  4. Frequency standards requirements of the NASA deep space network to support outer planet missions

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Chao, C. C.

    1974-01-01

    Navigation of Mariner spacecraft to Jupiter and beyond will require greater accuracy of positional determination than heretofore obtained if the full experimental capabilities of this type of spacecraft are to be utilized. Advanced navigational techniques which will be available by 1977 include Very Long Baseline Interferometry (VLBI), three-way Doppler tracking (sometimes called quasi-VLBI), and two-way Doppler tracking. It is shown that VLBI and quasi-VLBI methods depend on the same basic concept, and that they impose nearly the same requirements on the stability of frequency standards at the tracking stations. It is also shown how a realistic modelling of spacecraft navigational errors prevents overspecifying the requirements to frequency stability.

  5. Subparsec-scale structure and evolution of Centaurus A (NGC5128).

    PubMed Central

    Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L

    1995-01-01

    We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet. PMID:11607599

  6. Subparsec-scale structure and evolution of Centaurus A (NGC5128).

    PubMed

    Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L

    1995-12-05

    We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.

  7. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  8. Quantum detection of wormholes.

    PubMed

    Sabín, Carlos

    2017-04-06

    We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measurements after long propagation lengths for a wide range of throat radii and distances to the wormhole, even if the detection takes place very far away from the throat, where the spacetime is very close to a flat geometry. We use realistic parameters from state-of-the-art long-baseline laser interferometry, both Earth-based and space-borne. The scheme is, in principle, robust to optical losses and initial mixedness.

  9. Modeling PSInSAR time series without phase unwrapping

    USGS Publications Warehouse

    Zhang, L.; Ding, X.; Lu, Z.

    2011-01-01

    In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.

  10. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  11. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  13. Holographic analysis as an inspection method for welded thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl

    1990-01-01

    The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.

  14. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  15. Monitoring the tidal response of a sea levee with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan

    2017-03-01

    Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.

  16. Residual Stress Analysis Based on Acoustic and Optical Methods.

    PubMed

    Yoshida, Sanichiro; Sasaki, Tomohiro; Usui, Masaru; Sakamoto, Shuichi; Gurney, David; Park, Ik-Keun

    2016-02-16

    Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  17. Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection

    NASA Technical Reports Server (NTRS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.

    2015-01-01

    Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.

  18. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  19. Robust interferometric imaging via prior-less phase recovery: redundant spacing calibration with generalized-closure phases

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid

    2017-01-01

    Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, redundant spacing calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-signal-to-noise ratio set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyse the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.

  20. Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim

    NASA Astrophysics Data System (ADS)

    de Wit, W. J.; Hoare, M. G.; Oudmaijer, R. D.; Nürnberger, D. E. A.; Wheelwright, H. E.; Lumsden, S. L.

    2011-02-01

    Context. Establishing the importance of circumstellar disks and their properties is crucial to fully understand massive star formation. Aims: We aim to spatially resolve the various components that make-up the accretion environment of a massive young stellar object (⪉100 AU), and reproduce the emission from near-infrared to millimeter wavelengths using radiative transfer codes. Methods: We apply mid-infrared spectro-interferometry to the massive young stellar object CRL 2136. The observations were performed with the Very Large Telescope Interferometer and the MIDI instrument at a 42 m baseline probing angular scales of 50 milli-arcseconds. We model the observed visibilities in parallel with diffraction-limited images at both 24.5 μm and in the N-band (with resolutions of 0.6´´and 0.3´´, respectively), as well as the spectral energy distribution. Results: The arcsec-scale spatial information reveals the well-resolved emission from the dusty envelope. By simultaneously modelling the spatial and spectral data, we find that the bulk of the dust emission occurs at several dust sublimation radii (approximately 170 AU). This reproduces the high mid-infrared fluxes and at the same time the low visibilities observed in the MIDI data for wavelengths longward of 8.5 μm. However, shortward of this wavelength the visibility data show a sharp up-turn indicative of compact emission. We discuss various potential sources of this emission. We exclude a dust disk being responsible for the observed spectral imprint on the visibilities. A cool supergiant star and an accretion disk are considered and both shown to be viable origins of the compact mid-infrared emission. Conclusions: We propose that CRL 2136 is embedded in a dusty envelope, which truncates at several times the dust sublimation radius. A dust torus is manifest in the equatorial region. We find that the spectro-interferometric N-band signal can be reproduced by either a gaseous disk or a bloated central star. If the disk extends to the stellar surface, it accretes at a rate of 3.0 × 10-3 M⊙ yr-1. Based on observations with the VLTI, proposal 381.C-0607.

  1. Generation of deformation time series from SAR data sequences in areas affected by large dynamics: insights from Sierra Negra caldera, Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manconi, Andrea; Pepe, Antonio; Lanari, Riccardo

    2010-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is a remote sensing technique that allows producing spatially dense deformation maps of the Earth surface, with centimeter accuracy. To this end, the phase difference of SAR image pairs acquired before and after a deformation episode is properly exploited. This technique, originally applied to investigate single deformation events, has been further extended to analyze the temporal evolution of the deformation field through the generation of displacement time-series. A well-established approach is represented by the Small BAseline Subset (SBAS) technique (Berardino et al., 2002), whose capability to analyze deformation events at low and full spatial resolution has largely been demonstrated. However, in areas where large and/or rapid deformation phenomena occur, the exploitation of the differential interferograms, thus also of the displacement time-series, can be strongly limited by the presence of significant misregistration errors and/or very high fringe rates, making unfeasible the phase unwrapping step. In this work, we propose advances on the generation of deformation time-series in areas affected by large deformation dynamics. We present an extension of the amplitude-based Pixel-Offset analyses by applying the SBAS strategy, in order to move from the investigation of single (large) deformation events to that of dynamic phenomena. The above-mentioned method has been tested on an ENVISAT SAR data archive (Track 61, Frames 7173-7191) related to the Galapagos Islands, focusing on Sierra Negra caldera (Galapagos Islands), an active volcanic area often characterized by large and rapid deformation events leading to severe image misregistration effects (Yun et al., 2007). Moreover, we present a cross-validation of the retrieved deformation estimates comparing our results to continuous GPS measurements and to synthetic deformation obtained by independently modeling the interferometric phase information when available. References: P. Berardino et al., (2002), A new algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, 11, pp. 2375-2383. S-H. Yun et al., (2007), Interferogram formation in the presence of complex and large deformation, Geophys. Res. Lett., vol. 34, L12305.

  2. A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure

    NASA Astrophysics Data System (ADS)

    Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.

    2016-08-01

    Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.

  3. Digital Holographic Interferometry for Airborne Particle Characterization

    DTIC Science & Technology

    2015-03-19

    Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c

  4. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    ERIC Educational Resources Information Center

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  5. Intellectual property in holographic interferometry

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-08-01

    This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.

  6. Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.

    PubMed

    Guo, L; Wong, P L; Guo, F; Liu, H C

    2014-09-10

    This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems.

  7. The Path to Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.

    2016-01-01

    For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.

  8. Sentinel-1 TOPS interferometry for along-track displacement measurement

    NASA Astrophysics Data System (ADS)

    Jiang, H. J.; Pei, Y. Y.; Li, J.

    2017-02-01

    The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.

  9. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9] CQG 31 115010 2014 [10] MST 26 139 2014.

  10. Introduction

    NASA Astrophysics Data System (ADS)

    de Graauw, T.

    2010-09-01

    As this editorial is written, we have seven antennas at the Chajnantor plateau, the "High Site". Seven antennas means twenty-one baselines, i.e. more than twice as many as we had only two months ago. As you know, the bonus we have in interferometry is that the the number of baselines increases roughly with the square of the available antennas. The image quality can be further enhanced, because the projection of a celestial source onto the existing baselines changes due to the rotation of the Earth. A large number of baselines is important but not sufficient to fulfill one important promise of ALMA, namely to provide crisp images. Unlike the sharp images from the Hubble Space Telescope, images from ground based optical or radio telescopes are blurred by the Earth's atmosphere. It is the Holy Grail of observing astronomy to overcome such atmospheric effects. Recently, ALMA has made a big step toward this goal by using Water Vapor Radiometers operating at 183 GHz to measure the amount of atmospheric water vapor at any instant in the line of sight of each antenna, and applying a corresponding correction to the astronomical data received. This not only improves the image quality, it is essential for using ALMA at its lowest wavelengths of around 0.3mm and at baselines exceeding several kilometers. Achieving this has a been a collaborative effort involving many parts of the project and there are all to be congratulated. JAO has now moved into our new Santiago Central Office in Vitacura next to the ESO premises, ending a phase of two years were Santiago based staff was distributed in two different buildings. This new ALMA office will also host the ALMA archive. Although ALMA users are normally not expected to come to Chile to observe, there will be office space for visitors, since ALMA has been and will always be a cooperation of people from many countries and many fields of science and engineering. This newsletter contains a list of workshops, schools and conferences dealing with ALMA, reflecting the interest of the astronomical community in our project. I invite everybody to join these events in order to discuss the exciting science made possible with ALMA, and to learn how to use this instrument in an efficient way. After all, the first call for ALMA observing proposals will be released very soon. After having served as ALMA Project Engineer since 2004, Rick Murowinski has decided to go back to Canada. We thank him for his important contributions to our project during very crucial years and wish him all the best for his future career.

  11. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  12. Interstellar scintillations of PSR B1919+21: space-ground interferometry

    NASA Astrophysics Data System (ADS)

    Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.

    2017-07-01

    We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.

  13. Single baseline GLONASS observations with VLBI: data processing and first results

    NASA Astrophysics Data System (ADS)

    Tornatore, V.; Haas, R.; Duev, D.; Pogrebenko, S.; Casey, S.; Molera Calvés, G.; Keimpema, A.

    2011-07-01

    Several tests to observe signals transmitted by GLONASS (GLObal NAvigation Satellite System) satellites have been performed using the geodetic VLBI (Very Long Baseline Interferometry) technique. The radio telescopes involved in these experiments were Medicina (Italy) and Onsala (Sweden), both equipped with L-band receivers. Observations at the stations were performed using the standard Mark4 VLBI data acquisition rack and Mark5A disk-based recorders. The goals of the observations were to develop and test the scheduling, signal acquisition and processing routines to verify the full tracking pipeline, foreseeing the cross-correlation of the recorded data on the baseline Onsala-Medicina. The natural radio source 3c286 was used as a calibrator before the starting of the satellite observation sessions. Delay models, including the tropospheric and ionospheric corrections, which are consistent for both far- and near-field sources are under development. Correlation of the calibrator signal has been performed using the DiFX software, while the satellite signals have been processed using the narrow band approach with the Metsaehovi software and analysed with a near-field delay model. Delay models both for the calibrator signals and the satellites signals, using the same geometrical, tropospheric and ionospheric models, are under investigation to make a correlation of the satellite signals possible.

  14. MODEST - JPL GEODETIC AND ASTROMETRIC VLBI MODELING AND PARAMETER ESTIMATION PROGRAM

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1994-01-01

    Observations of extragalactic radio sources in the gigahertz region of the radio frequency spectrum by two or more antennas, separated by a baseline as long as the diameter of the Earth, can be reduced, by radio interferometry techniques, to yield time delays and their rates of change. The Very Long Baseline Interferometric (VLBI) observables can be processed by the MODEST software to yield geodetic and astrometric parameters of interest in areas such as geophysical satellite and spacecraft tracking applications and geodynamics. As the accuracy of radio interferometry has improved, increasingly complete models of the delay and delay rate observables have been developed. MODEST is a delay model (MOD) and parameter estimation (EST) program that takes into account delay effects such as geometry, clock, troposphere, and the ionosphere. MODEST includes all known effects at the centimeter level in modeling. As the field evolves and new effects are discovered, these can be included in the model. In general, the model includes contributions to the observables from Earth orientation, antenna motion, clock behavior, atmospheric effects, and radio source structure. Within each of these categories, a number of unknown parameters may be estimated from the observations. Since all parts of the time delay model contain nearly linear parameter terms, a square-root-information filter (SRIF) linear least-squares algorithm is employed in parameter estimation. Flexibility (via dynamic memory allocation) in the MODEST code ensures that the same executable can process a wide array of problems. These range from a few hundred observations on a single baseline, yielding estimates of tens of parameters, to global solutions estimating tens of thousands of parameters from hundreds of thousands of observations at antennas widely distributed over the Earth's surface. Depending on memory and disk storage availability, large problems may be subdivided into more tractable pieces that are processed sequentially. MODEST is written in FORTRAN 77, C-language, and VAX ASSEMBLER for DEC VAX series computers running VMS. It requires 6Mb of RAM for execution. The standard distribution medium for this package is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Instructions for use and sample input and output data are available on the distribution media. This program was released in 1993 and is a copyrighted work with all copyright vested in NASA.

  15. Alaska Crustal Deformation: Finite Element Modeling Constrained by Geologic and Very Long Baseline Interferometry Data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc

    1995-01-01

    We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench, and Thompson Creek faults and with the normal faulting observed in NW Alaska near Nome. The nonrigid behavior of our finite element solution produces patterns of motion that would not have been expected from rigid block models: strike-slip faults can exist in a continuum that has motion mostly perpendicular to their strikes, and faults can exhibit along-strike differences in magnitudes and directions.

  16. Development and applications of optical interferometric micrometrology in the Angstrom and subangstrom range

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Abel, Phillip B.

    1988-01-01

    The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.

  17. Differential interferometry for measurement of density fluctuations and fluctuation-induced transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2010-10-15

    Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less

  18. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  19. Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization

    NASA Astrophysics Data System (ADS)

    Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.

    2002-09-01

    Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.

  20. Phase coherence and Andreev reflection in topological insulator devices

    DOE PAGES

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; ...

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less

Top