Precision Geodesy via Radio Interferometry.
Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F
1972-10-27
Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.
NASA Astrophysics Data System (ADS)
McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei
2017-11-01
The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.
Baseline-dependent averaging in radio interferometry
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.; Willis, A. G.; Salvini, S.
2018-05-01
This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.
Extragalactic radio sources - Accurate positions from very-long-baseline interferometry observations
NASA Technical Reports Server (NTRS)
Rogers, A. E. E.; Counselman, C. C., III; Hinteregger, H. F.; Knight, C. A.; Robertson, D. S.; Shapiro, I. I.; Whitney, A. R.; Clark, T. A.
1973-01-01
Relative positions for 12 extragalactic radio sources have been determined via wide-band very-long-baseline interferometry (wavelength of about 3.8 cm). The standard error, based on consistency between results from widely separated periods of observation, appears to be no more than 0.1 sec for each coordinate of the seven sources that were well observed during two or more periods. The uncertainties in the coordinates determined for the other five sources are larger, but in no case exceed 0.5 sec.
NASA Technical Reports Server (NTRS)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.
Very long baseline interferometry using a radio telescope in Earth orbit
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.
1987-01-01
Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.
Very Long Baseline Interferometry: Dependencies on Frequency Stability
NASA Astrophysics Data System (ADS)
Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald
2018-04-01
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
VLBI Phase-Referenced Observations on Southern Hemisphere HIPPARCOS Radio Start
NASA Technical Reports Server (NTRS)
Guirado, J. C.; Preston, R. A.; Jones, D. L.; Lestrade, J. F.; Reynolds, J. E.; Jauncey, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.; Lovell, J. E. J.;
1995-01-01
Presented are multiepoch Very Long Baseline Interferometry (VLBI) observations on Southern Hemisphere radio stars phase-referenced to background radio sources. The differential astrometry analysis results in high-precision determinations of proper motions and parallaxes. The astrophysical implications and astrometric consequences of these results are discussed.
Web-based Teaching Radio Interferometer for Africa
NASA Astrophysics Data System (ADS)
Carignan, Claude; Libert, Yannick
2016-10-01
This presentation describes the web-based Teaching Radio Interferometer being built on the campus of the University of Cape Town, in South Africa, to train the future users of the African VLBI (Very Long Baseline Interferometry) Network (AVN).
NASA Technical Reports Server (NTRS)
Edwards, C. D.
1990-01-01
Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.
NASA Technical Reports Server (NTRS)
Tapping, K. F.; Kuijpers, J.
1986-01-01
In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed.
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
Surface Accuracy and Pointing Error Prediction of a 32 m Diameter Class Radio Astronomy Telescope
NASA Astrophysics Data System (ADS)
Azankpo, Severin
2017-03-01
The African Very-long-baseline interferometry Network (AVN) is a joint project between South Africa and eight partner African countries aimed at establishing a VLBI (Very-Long-Baseline Interferometry) capable network of radio telescopes across the African continent. An existing structure that is earmarked for this project, is a 32 m diameter antenna located in Ghana that has become obsolete due to advances in telecommunication. The first phase of the conversion of this Ghana antenna into a radio astronomy telescope is to upgrade the antenna to observe at 5 GHz to 6.7 GHz frequency and then later to 18 GHz within a required performing tolerance. The surface and pointing accuracies for a radio telescope are much more stringent than that of a telecommunication antenna. The mechanical pointing accuracy of such telescopes is influenced by factors such as mechanical alignment, structural deformation, and servo drive train errors. The current research investigates the numerical simulation of the surface and pointing accuracies of the Ghana 32 m diameter radio astronomy telescope due to its structural deformation mainly influenced by gravity, wind and thermal loads.
International data transfer for space very long baseline interferometry
NASA Technical Reports Server (NTRS)
Wiercigroch, Alexandria B.
1994-01-01
Space very long baseline interferometry (SVLBI) experiments using a TDRSS satellite have successfully demonstrated the capability of using spacecraft to extend the effective baseline length of VLBI observations beyond the diameter of the Earth, thereby improving the resolution for imaging of active galactic nuclei at centimeter wavelengths. As a result, two spacecraft dedicated to SVLBI, VSOP (Japan) and RadioAstron (Russia), are scheduled to be launched into high Earth orbit in 1996 and 1997. The success of these missions depends on the cooperation of the international community in providing support from ground tracking stations, ground radio telescopes, and correlation facilities. The timely exchange and monitoring of data among the participants requires a well-designed and automated international data transfer system. In this paper, we will discuss the design requirements, data types and flows, and the operational responsibilities associated with the SVLBI data transfer system.
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Nothnagel, A.; Nicolson, G. D.; Schuh, H.
1988-12-01
High-accuracy geodetic very long baseline interferometry measurements between the African, Eurasian, and North American plates have been analyzed to determine the terrestrial coordinates of the Hartebeesthoek observatory to better than 10 cm, to determine the celestial coordinates of eight Southern Hemisphere radio sources with milliarc second (mas) accuracy, and to derive quasi-independent polar motion, UTI, and nutation time series. Comparison of the earth orientation time series with ongoing International Radio Interferometric Surveying project values shows agreement at about the 1 mas of arc level in polar motion and nutation and 0.1 ms of time in UTI. Given the independence of the observing sessions and the unlikeliness of common systematic error sources, this level of agreement serves to bound the total errors in both measurement series.
NASA Astrophysics Data System (ADS)
Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.
2018-07-01
Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.
International mission planning for space Very Long Baseline Interferometry
NASA Technical Reports Server (NTRS)
Ulvestad, James S.
1994-01-01
Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions.
A coherent fiber link for very long baseline interferometry.
Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide
2015-11-01
We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.
Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C
1983-01-07
The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.
NASA Technical Reports Server (NTRS)
Lestrade, J.-F.; Preston, R. A.; Slade, M. A.
1983-01-01
The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.
VizieR Online Data Catalog: Parallaxes of high mass star forming regions (Reid+, 2014)
NASA Astrophysics Data System (ADS)
Reid, M. J.; Menten, K. M.; Brunthaler, A.; Zheng, X. W.; Dame, T. M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; Hachisuka, K.; Choi, Y. K.; Immer, K.; Moscadelli, L.; Rygl, K. L. J.; Bartkiewicz, A.
2016-04-01
Table1 lists the parallaxes and proper motions of 103 regions of high-mass star formation measured with Very Long Baseline Interferometry (VLBI) techniques, using the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), the Japanese VLBI Exploration of Radio Astrometry (VERA; http://veraserver.mtk.nao.ac.jp) project, and the European VLBI Network (EVN). We have include three red supergiants (NML Cyg, S Per, VY CMa) as indicative of high-mass star forming regions. (2 data files).
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.
1985-01-01
Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.
VizieR Online Data Catalog: VLBA observations of the COSMOS field (Herrera Ruiz+, 2017)
NASA Astrophysics Data System (ADS)
Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R. P.; Best, P. N.; Brisken, W.; Schinnerer, E.; Smolcic, V.; Delvecchio, I.; Momjian, E.; Bomans, D.; Scoville, N. Z.; Carilli, C.
2017-07-01
Wide-field Very Long Baseline Interferometry observations were made of all known radio sources in the COSMOS field at 1.4GHz using the Very Long Baseline Array (VLBA). We also collected complementary multiwavelength information from the literature for the VLBA detected sources. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Counselman, C.C. III
1973-09-01
Very-long-baseline interferometry (VLBI) techniques have already been used to determine the vector separations between antennas thousands of kilometers apart to within 2 m and the directions of extragalactic radio sources to 0.1'', and to track an artificial satellite of the earth and the Apollo Lunar Rover on the surface of the Moon. The relative loostions of the Apollo Lunar Surface Experiment Package (ALSEP) transmitters on the lunar surface are being measured within 1 m, and the Moon's libration is being messured to 1'' of selenocentric src. Attempts are under way to measure the solar gravitational deflection of radio waves moremore » accurately than previously possible, by means of VLBI. A wide variety of scientific problems is being attacked by VLBI techniques, which may soon be two orders of magnitude more accurate than at present. (auth)« less
Astrometry VLBI in Space (AVS)
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Reyes, George
1995-01-01
This paper describes a proposal for a new space radio astronomy mission for astrometry using Very Long Baseline Interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are improving the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames. This study will also assess the impact of this mission on astrophysics astrometry and geophysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, T.A.; Davis, J.L.; Gwinn, C.R.
1986-10-01
This report consists of a collection of reprints and preprints. Subjects included: description of Mk-III system for very-long-baseline interferometry (VLBI); geodetic results from the Mk-I and Mk-III systems for VLBI; effects of modeling atmospheric propagation on estimates of baseline length and station height; an improved model for the dry propagation delay; corrections to IAU 1980 nutation series based on VLBI data and geophysical interpretation of those corrections; and a review of the contributions of VLBI to geodynamic studies.
Time frequency requirements for radio interferometric earth physics
NASA Technical Reports Server (NTRS)
Thomas, J. B.; Fliegel, H. F.
1973-01-01
Two systems of VLBI (Very Long Baseline Interferometry) are now applicable to earth physics: an intercontinental baseline system using antennas of the NASA Deep Space Network, now observing at one-month intervals to determine UTI for spacecraft navigation; and a shorter baseline system called ARIES (Astronomical Radio Interferometric Earth Surveying), to be used to measure crustal movement in California for earthquake hazards estimation. On the basis of experience with the existing DSN system, a careful study has been made to estimate the time and frequency requirements of both the improved intercontinental system and of ARIES. Requirements for the two systems are compared and contrasted.
A demonstration of real-time connected element interferometry for spacecraft navigation
NASA Technical Reports Server (NTRS)
Edwards, C.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.
1992-01-01
Connected element interferometry is a technique of observing a celestial radio source at two spatially separated antennas, and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. A connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, CA tracking complex is developed. Fiber optic links are used to transmit the data at 112 Mbit/sec to a common site for processing. A real-time correlator to process these data in real-time is implemented. The architecture of the system is described, and observational data is presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.
Trapped strontium ion optical clock
NASA Astrophysics Data System (ADS)
Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.
2017-11-01
Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1974-01-01
A prototype of a semi-real time system for synchronizing the Deep Space Net station clocks by radio interferometry was successfully demonstrated on August 30, 1972. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time sync estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 ns rms were achieved between Deep Space Stations 11 and 12, both at Goldstone, Calif. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to baseline and source position uncertainties and atmospheric effects are reached. These limitations are under 10 ns for transcontinental baselines.
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2015-08-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network
NASA Astrophysics Data System (ADS)
An, T.; Sohn, B. W.; Imai, H.
2018-02-01
The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.
NASA Technical Reports Server (NTRS)
Allenby, R. J.
1979-01-01
Very Long Baseline Interferometry experiments over the last 1-3/4 years between Owens Valley, CA and Haystack, MA Radio Observatories suggest an upper limit of east-west crustal deformation between the two sites of about 1 cm/yr. In view of the fact that the baseline between the two sites traverses most of the major geological provinces of the United States, this low rate of crustal deformation has direct relevance to intra-plate crustal tectonics. The most active region traversed by this baseline is the Basin and Range province, which was estimated by various researchers to be expanding in an east-west direction at rates of .3 to 1.5 cm/yr. The Colorado Plateau and Rocky Mountain system also appear to be expanding, but at a somewhat lower rate, while east of the Rocky Mountains, the predominant stress appears to be compressional, nearly horizontal, and east to northeast trending.
NASA Astrophysics Data System (ADS)
Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.
2015-06-01
Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.
TDRS orbit determination by radio interferometry
NASA Technical Reports Server (NTRS)
Pavloff, Michael S.
1994-01-01
In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.
Fast radio burst search: cross spectrum vs. auto spectrum method
NASA Astrophysics Data System (ADS)
Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan
2018-06-01
The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.
Application of new radio tracking data types to critical spacecraft navigation problems
NASA Technical Reports Server (NTRS)
Ondrasik, V. J.; Rourke, K. H.
1972-01-01
Earth-based radio tracking data types are considered, which involve simultaneous or nearly simultaneous spacecraft tracking from widely separated tracking stations. These data types are conventional tracking instrumentation analogs of the very long baseline interferometry (VLBI) of radio astronomy-hence the name quasi-VLBI. A preliminary analysis of quasi-VLBI is presented using simplified tracking data models. The results of accuracy analyses are presented for a representative mission, Viking 1975. The results indicate that, contingent on projected tracking system accuracy, quasi-VLBI can be expected to significantly improve navigation performance over that expected from conventional tracking data types.
NASA Technical Reports Server (NTRS)
Shapiro, I. I.; Counselman, C. C., III
1975-01-01
The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.
1989-01-01
Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.
NASA Technical Reports Server (NTRS)
Ong, K. M.; Macdoran, P. F.; Thomas, J. B.; Fliegel, H. F.; Skjerve, L. J.; Spitzmesser, D. J.; Batelaan, P. D.; Paine, S. R.; Newsted, M. G.
1976-01-01
A precision geodetic measurement system (Aries, for Astronomical Radio Interferometric Earth Surveying) based on the technique of very long base line interferometry has been designed and implemented through the use of a 9-m transportable antenna and the NASA 64-m antenna of the Deep Space Communications Complex at Goldstone, California. A series of experiments designed to demonstrate the inherent accuracy of a transportable interferometer was performed on a 307-m base line during the period from December 1973 to June 1974. This short base line was chosen in order to obtain a comparison with a conventional survey with a few-centimeter accuracy and to minimize Aries errors due to transmission media effects, source locations, and earth orientation parameters. The base-line vector derived from a weighted average of the measurements, representing approximately 24 h of data, possessed a formal uncertainty of about 3 cm in all components. This average interferometry base-line vector was in good agreement with the conventional survey vector within the statistical range allowed by the combined uncertainties (3-4 cm) of the two techniques.
Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel
2015-01-01
Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate. PMID:26263991
The first VLBI detection of a spiral DRAGN core
NASA Astrophysics Data System (ADS)
Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian
2018-07-01
We present the first observation of 0313-192, the archetypal spiral DRAGN, at very long baseline interferometry (VLBI) resolutions. Spiral DRAGNs are Double-lobed Radio sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X bands using the Very Long Baseline Array, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the south-west of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 deg. The VLBI-detected radio jet components are extremely well aligned with the larger scale radio source suggesting little to no jet disruption or interaction with the interstellar medium of the host galaxy.
NASA Astrophysics Data System (ADS)
Fromm, C. M.
2015-06-01
We analysed the single-dish radio light curves of the blazar CTA 102 during its major flare around April 2006. The modelling of these data revealed a possible travelling shock-recollimation shock interaction during the flare. To verify this hypothesis, we used multi-epoch and multi-frequency very-long baseline interferometry (VLBI) observations and performed a detailed kinematic and spectral analysis. The results confirmed the hypothesis of a shock-shock interaction causing the 2006 radio flare and provided indications for additional recollimation shocks farther downstream.
A novel type of very long baseline astronomical intensity interferometer
NASA Astrophysics Data System (ADS)
Borra, Ermanno F.
2013-12-01
This article presents a novel type of very long baseline astronomical interferometer that uses the fluctuations, as a function of time, of the intensity measured by a quadratic detector, which is a common type of astronomical detector. The theory on which the technique is based is validated by laboratory experiments. Its outstanding principal advantages comes from the fact that the angular structure of an astronomical object is simply determined from the visibility of the minima of the spectrum of the intensity fluctuations measured by the detector, as a function of the frequency of the fluctuations, while keeping the spacing between mirrors constant. This would allow a simple setup capable of high angular resolutions because it could use an extremely large baseline. Another major interest is that it allows for a more efficient use of telescope time because observations at a single baseline are sufficient, while amplitude and intensity interferometers need several observations at different baselines. The fact that one does not have to move the telescopes would also allow detecting faster time variations because having to move the telescopes sets a lower limit to the time variations that can be detected. The technique uses wave interaction effects and thus has some characteristics in common with intensity interferometry. A disadvantage of the technique, like in intensity interferometry, is that it needs strong sources if observing at high frequencies (e.g. the visible). This is a minor disadvantage in the radio region. At high frequencies, this disadvantage is mitigated by the fact that, like in intensity interferometry, the requirements of the optical quality of the mirrors used are far less severe than in amplitude interferometry so that poor quality large reflectors (e.g. Cherenkov telescopes) can be used in the optical region.
A Michelson-type radio interferometer for university education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, James; Shafto, Gene; Slechta, Jeff; Hasegawa, Tetsuo; Hayashi, Masahiko; Metchev, Stanimir
2016-04-01
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ˜11 GHz (˜2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.
Michelson-type Radio Interferometer for University Education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.
2013-01-01
Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.
High resolution imaging at Palomar
NASA Technical Reports Server (NTRS)
Kulkarni, Shrinivas R.
1992-01-01
For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.
NASA Astrophysics Data System (ADS)
Pushkarev, A. B.; Kovalev, Y. Y.
2015-10-01
We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.
NASA Astrophysics Data System (ADS)
Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.
2017-11-01
For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.
Information Content in Radio Waves: Student Investigations in Radio Science
NASA Astrophysics Data System (ADS)
Jacobs, K.; Scaduto, T.
2013-12-01
We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.
Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgered, G.; Davis, J.L.; Herring, T.A.
1991-04-10
An important source of error in very-long-baseline interferometry (VLBI) estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. The authors present and discuss the method of using data from a water vapor readiometer (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data of Kalman filtering to correct for atmospheric propagation delay atmore » the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The lengths of the baselines range from 919 to 7,941 km. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. The use of WVR data yielded a 13% smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the best minimum elevation angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass. For use of WVR data along with accurate determinations of total surface pressure, the best minimum is about 20{degrees}; for use of a model for the wet delay based on the humidity and temperature at the ground, the best minimum is about 35{degrees}.« less
Probing the solar corona with very long baseline interferometry.
Soja, B; Heinkelmann, R; Schuh, H
2014-06-20
Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.
Intensity Interferometry: Imaging Stars with Kilometer Baselines
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.
Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter
NASA Technical Reports Server (NTRS)
Lay, R.
1977-01-01
The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.
THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampadarath, H.; Morgan, J. S.; Tingay, S. J.
2012-08-15
The first Search for Extra-Terrestrial Intelligence (SETI) conducted with very long baseline interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hr at 1230-1544 MHz with the Australian Long Baseline Array. The data set was searched for signals appearing on all interferometer baselines above five times the noise limit. Amore » total of 222 potential SETI signals were detected and by using automated data analysis techniques were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW Hz{sup -1} on the power output of any isotropic emitter located in the Gliese 581 system within this frequency range. This study shows that VLBI is ideal for targeted SETI including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array.« less
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1991-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.
MERI: an ultra-long-baseline Moon-Earth radio interferometer.
NASA Astrophysics Data System (ADS)
Burns, J. O.
Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.
DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niinuma, K.; Kino, M.; Doi, A.
2015-07-01
We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale correspondsmore » to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.« less
South African Student Constructed Indlebe Radio Telescope
NASA Astrophysics Data System (ADS)
McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter
2017-01-01
The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable. Currently, we are comparing the observed transit times of Sag A with the calculable predications in order to obtain information over these two factors, with a view to better understanding them.
Time-dependent gravity in southern California, May 1974 - Apr 1979
NASA Technical Reports Server (NTRS)
Whitcomb, J. H.; Franzen, W. O.; Given, J. W.; Pechman, J. C.; Ruff, L. J.
1979-01-01
Gravity measurements were coordinated with the long baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project which used radio interferometry with extra-galactic radio sources. Gravity data from 28 of the stations had a single reading standard deviation of 11 microgal which gives a relative single determination between stations a standard deviation of 16 microgal. The largest gravity variation observed, 80 microgal, correlated with nearby waterwell variations and with smoothed rainfall. Smoothed rainfall data appeared to be a good indicator of the qualitative response of gravity to changing groundwater levels at other suprasediment stations, but frequent measurement of gravity at a station was essential until the quantitative calibration of the station's response to groundwater variations was accomplished.
Centaurus A, the core of the problem
NASA Technical Reports Server (NTRS)
Tingay, S. J.; Jauncey, D. L.; Preston, R. A.; Reynolds, J. E.; Meier, D. L.; Tzioumis, A. K.; Jones, D. L.; King, E. A.; Amy, S. W.; Biggs, J. D.
1994-01-01
The bright, peculiar elliptical galaxy Centaurus A (NGC 5128, PKS 1322-427) was one of the first extragalactic radio sources to be optically identified (Bolton et al. 1949). At a distance of 4 Mpc, Centaurus A is the closest active radio galaxy and affords the highest linear imaging resolution (1 mas approximately equal to 0.02 pc) and hence the best prospects for studying an active nucleus close to the central radio source. We present the results of multi-epoch, 8.4-GHz, very long baseline interferometry (VLBI), imaging observations of the nucleus made over the past three years. The nucleus possesses a core-jet structure where the inner portion of the jet shows apparent linear motion with a velocity substantially less than the speed of light.
Physical properties and astrometry of radio-emitting brown dwarf TVLM 513-46546 revisited
NASA Astrophysics Data System (ADS)
Gawroński, Marcin P.; Goździewski, Krzysztof; Katarzyński, Krzysztof
2017-04-01
We present multi-epoch astrometric observations of the M9 ultracool dwarf TVLM513-46546 that is placed at the brown dwarf boundary. The new observations have been performed with the European Very Large Baseline Interferometry Network at 6 cm band. The target has been detected at seven epochs spanning three years, with measured quiescent emission flux in the range 180-300 μJy. We identified four short-duration flaring events (0.5-2 mJy) with very high circular polarization (˜75 per cent-100 per cent). Properties of the observed radio flares support the physical model of the source that is characterized by the electron cyclotron maser instability responsible for outbursts of radio emission. Combined with Very Long Baseline Array earlier data, our detections make it possible to refine the absolute parallax π =93.27^{+0.18}_{-0.17} mas. Our measurements rule out TVLM513-46546 companions more massive than Jupiter in orbits with periods longer than ˜1 yr.
Very-long-baseline radio interferometry observations of low power radio galaxies.
Giovannini, G; Cotton, W D; Feretti, L; Lara, L; Venturi, T; Marcaide, J M
1995-01-01
The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same. PMID:11607596
AGN jets under the microscope: A divide? Doctoral Thesis Award Lecture 2011
NASA Astrophysics Data System (ADS)
Karouzos, M.; Britzen, S.; Witzel, A.; Zensus, A. J.; Eckart, A.
2012-06-01
A new paradigm for active galactic jet kinematics has emerged through detailed investigations of BL Lac objects using very long baseline radio interferometry. In this new scheme, most, if not all, jet components appear to remain stationary with respect to the core but show significant non-radial motions. This paper presents results from our kinematic investigation of the jets of a statistically complete sample of radio-loud flat-spectrum active galaxies, focusing on the comparison between the jet kinematic properties of BL Lacs and flat-spectrum radio-quasars. It is shown that there is a statistically significant difference between the kinematics of the two AGN classes, with BL Lacs showing more bent jets, that are wider and show slower movement along the jet axis, compared to flat-spectrum radio-quasars. This is interpreted as evidence for helically structured jets.
A radio counterpart to a neutron star merger.
Hallinan, G; Corsi, A; Mooley, K P; Hotokezaka, K; Nakar, E; Kasliwal, M M; Kaplan, D L; Frail, D A; Myers, S T; Murphy, T; De, K; Dobie, D; Allison, J R; Bannister, K W; Bhalerao, V; Chandra, P; Clarke, T E; Giacintucci, S; Ho, A Y Q; Horesh, A; Kassim, N E; Kulkarni, S R; Lenc, E; Lockman, F J; Lynch, C; Nichols, D; Nissanke, S; Palliyaguru, N; Peters, W M; Piran, T; Rana, J; Sadler, E M; Singer, L P
2017-12-22
Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry. Copyright © 2017, American Association for the Advancement of Science.
RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit
NASA Astrophysics Data System (ADS)
Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.
2016-03-01
Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.
Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia
NASA Technical Reports Server (NTRS)
Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.
1979-01-01
A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.
VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2016-01-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).
Shuttle VLBI experiment. Technical working group summary report
NASA Technical Reports Server (NTRS)
Morgan, S. H. (Editor); Roberts, D. H. (Editor)
1982-01-01
The gain in interferometric resolution of extragalactic sources at radio frequencies which can be achieved by placing a very long baseline interferometry (VLBI) antenna in space is quantitatively described and a VLBI demonstration experiment using a large deployable antenna, which if realized could be a very acceptable first venture for VLBI in space is discussed. A tutorial on VLBI, a summary of the technology available for the experiment, and a preliminary mission scenario are included.
VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)
NASA Astrophysics Data System (ADS)
Petrov, L.
2014-06-01
The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).
NASA Technical Reports Server (NTRS)
Vandenberg, N. R.
1974-01-01
The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Jauncey, D. L.; Johnston, H. M.
2011-11-15
We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less
Precise interferometric tracking of the DSCS II geosynchronous orbiter
NASA Astrophysics Data System (ADS)
Border, J. S.; Donivan, F. F., Jr.; Shiomi, T.; Kawano, N.
1986-01-01
A demonstration of the precise tracking of a geosynchronous orbiter by radio metric techniques based on very-long-baseline interferometry (VLBI) has been jointly conducted by the Jet Propulsion Laboratory and Japan's Radio Research Laboratory. Simultaneous observations of a U.S. Air Force communications satellite from tracking stations in California, Australia, and Japan have determined the satellite's position with an accuracy of a few meters. Accuracy claims are based on formal statistics, which include the effects of errors in non-estimated parameters and which are supported by a chi-squared of less than one, and on the consistency of orbit solutions from disjoint data sets. A study made to assess the impact of shorter baselines and reduced data noise concludes that with a properly designed system, similar accuracy could be obtained for either a satellite viewed from stations located within the continental U.S. or for a satellite viewed from stations within Japanese territory.
Detection of atmospheric pressure loading using very long baseline interferometry measurements
NASA Technical Reports Server (NTRS)
Vandam, T. M.; Herring, T. A.
1994-01-01
Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.
Impact of the galactic acceleration on the terrestrial reference frame and the scale factor in VLBI
NASA Astrophysics Data System (ADS)
Krásná, Hana; Titov, Oleg
2017-04-01
The relative motion of the solar system barycentre around the galactic centre can also be described as an acceleration of the solar system directed towards the centre of the Galaxy. So far, this effect has been omitted in the a priori modelling of the Very Long Baseline Interferometry (VLBI) observable. Therefore, it results in a systematic dipole proper motion (Secular Aberration Drift, SAD) of extragalactic radio sources building the celestial reference frame with a theoretical maximum magnitude of 5-7 microarcsec/year. In this work, we present our estimation of the SAD vector obtained within a global adjustment of the VLBI measurements (1979.0 - 2016.5) using the software VieVS. We focus on the influence of the observed radio sources with the maximum SAD effect on the terrestrial reference frame. We show that the scale factor from the VLBI measurements estimated for each source individually discloses a clear systematic aligned with the direction to the Galactic centre-anticentre. Therefore, the radio sources located near Galactic anticentre may cause a strong systematic effect, especially, in early VLBI years. For instance, radio source 0552+398 causes a difference up to 1 mm in the estimated baseline length. Furthermore, we discuss the scale factor estimated for each radio source after removal of the SAD systematic.
Engineering processes for the African VLBI network
NASA Astrophysics Data System (ADS)
Thondikulam, Venkatasubramani L.; Loots, Anita; Gaylard, Michael
2013-04-01
The African VLBI Network (AVN) is an initiative by the SKA-SA and HartRAO, business units of the National Research Foundation (NRF), Department of Science and Technology (DST), South Africa. The aim is to fill the existing gap of Very Long Baseline Interferometry (VLBI)-capable radio telescopes in the African continent by a combination of new build as well as conversion of large redundant telecommunication antennas through an Inter-Governmental collaborative programme in Science and Technology. The issue of human capital development in the Continent in the techniques of radio astronomy engineering and science is a strong force to drive the project and is expected to contribute significantly to the success of Square Kilometer Array (SKA) in the Continent.
Subparsec-scale structure and evolution of Centaurus A (NGC5128).
Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L
1995-01-01
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet. PMID:11607599
Subparsec-scale structure and evolution of Centaurus A (NGC5128).
Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L
1995-12-05
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.
Crustal dynamics project data analysis, 1988: VLBI geodetic results, 1979 - 1987
NASA Technical Reports Server (NTRS)
Ma, C.; Ryan, J. W.; Caprette, D.
1989-01-01
The results obtained by the Goddard VLBI (very long base interferometry) Data Analysis Team from the analysis of 712 Mark 3 VLBI geodetic data sets acquired from fixed and mobile observing sites through the end of 1987 are reported. A large solution, GLB401, was used to obtain earth rotation parameters and site velocities. A second large solution, GLB405, was used to obtain baseline evolutions. Radio source positions were estimated globally while nutation offsets were estimated from each data set. Site positions are tabulated on a yearly basis from 1979 through 1988. The results include 55 sites and 270 baselines.
Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study
NASA Astrophysics Data System (ADS)
Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.
2017-11-01
Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.
MODEST - JPL GEODETIC AND ASTROMETRIC VLBI MODELING AND PARAMETER ESTIMATION PROGRAM
NASA Technical Reports Server (NTRS)
Sovers, O. J.
1994-01-01
Observations of extragalactic radio sources in the gigahertz region of the radio frequency spectrum by two or more antennas, separated by a baseline as long as the diameter of the Earth, can be reduced, by radio interferometry techniques, to yield time delays and their rates of change. The Very Long Baseline Interferometric (VLBI) observables can be processed by the MODEST software to yield geodetic and astrometric parameters of interest in areas such as geophysical satellite and spacecraft tracking applications and geodynamics. As the accuracy of radio interferometry has improved, increasingly complete models of the delay and delay rate observables have been developed. MODEST is a delay model (MOD) and parameter estimation (EST) program that takes into account delay effects such as geometry, clock, troposphere, and the ionosphere. MODEST includes all known effects at the centimeter level in modeling. As the field evolves and new effects are discovered, these can be included in the model. In general, the model includes contributions to the observables from Earth orientation, antenna motion, clock behavior, atmospheric effects, and radio source structure. Within each of these categories, a number of unknown parameters may be estimated from the observations. Since all parts of the time delay model contain nearly linear parameter terms, a square-root-information filter (SRIF) linear least-squares algorithm is employed in parameter estimation. Flexibility (via dynamic memory allocation) in the MODEST code ensures that the same executable can process a wide array of problems. These range from a few hundred observations on a single baseline, yielding estimates of tens of parameters, to global solutions estimating tens of thousands of parameters from hundreds of thousands of observations at antennas widely distributed over the Earth's surface. Depending on memory and disk storage availability, large problems may be subdivided into more tractable pieces that are processed sequentially. MODEST is written in FORTRAN 77, C-language, and VAX ASSEMBLER for DEC VAX series computers running VMS. It requires 6Mb of RAM for execution. The standard distribution medium for this package is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Instructions for use and sample input and output data are available on the distribution media. This program was released in 1993 and is a copyrighted work with all copyright vested in NASA.
2015-10-05
photometry covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A...covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A... polarimetry , and near-infrared (IR) interferometry of ζ Tau, providing firm evi- dence that the V/R oscillations are an effect of one-armed den- sity
Water vapor radiometry research and development phase
NASA Technical Reports Server (NTRS)
Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.
1985-01-01
This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.
1981-02-01
primary parameters affecting the SNR. For an earth-based interferometer, the physical aperture may usually be constructed adequately large to keep the...bandwidth Av cent--.c. on vo0 by an interferometer with frequency characteristic F(v) and primary power pattern G(s-s ) (defined as the product of the...infinitely narrow beam for the primary power pattern, G(g- 0 ) = (;-S )] we have where we have assumed a flat frequency response and included as a
The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni
2010-06-01
using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of
CURIE: Cubesat Radio Interferometry Experiment
NASA Astrophysics Data System (ADS)
Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.
2016-12-01
The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.
Launch Will Create a Radio Telescope Larger than Earth
NASA Astrophysics Data System (ADS)
NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long Baseline Interferometry project at JPL. "Observations of cosmic masers -- naturally-occurring microwave radio amplifiers -- will tell us new things about the process of star formation and activity in the heart of other galaxies." "By the 1980s, radio astronomers were observing the universe with assemblages of radio telescopes whose resolving power was limited only by the size of the Earth. Now, through a magnificent international effort, we will be able to break this barrier and see fine details of celestial objects that are beyond the reach of a purely ground-based telescope array. We anticipate a rich harvest of new scientific knowledge from VSOP," said Dr. Paul Vanden Bout, Director of NRAO. In the first weeks after launch, scientists and engineers will "test the deployment of the reflecting mesh telescope in orbit, the wide-band data link from the satellite to the ground, the performance of the low noise amplifiers in orbit, and the high-precision orbit determination and attitude control necessary for VLBI observations with an orbiting telescope," according to Dr. Joel Smith, manager of the U.S. Space VLBI project at JPL. Scientific observations are expected to begin in May. The 26-foot diameter orbiting radio telescope will observe celestial radio sources in concert with a number of the world's ground-based radio telescopes. The 1,830-pound satellite will be launched from ISAS' Kagoshima Space Center, at the southern tip of Kyushu, one of Japan's main islands, and will be the first launch with ISAS' new M-5 series rocket. The satellite will go into an elliptical orbit, varying between 620 to 12,400 miles above the Earth's surface. This orbit provides a wide range of distances between the satellite and ground-based telescopes, which is important for producing a high-quality image of the radio source being observed. One orbit of the Earth will take about six hours. The satellite's observations will concentrate on some of the most distant and intriguing objects in the universe, where the extremely sharp radio "vision" of the new system can provide much-needed information about a number of astronomical mysteries. For years, astronomers have known that powerful "engines" in the hearts of quasars and many galaxies are pouring out tremendous amounts of energy. They suspect that supermassive black holes, with gravitational fields so strong that not even light can escape them, lie in the centers of these "engines." The mechanism at work in the centers of quasars and active galaxies, however, remains a mystery. Ground-based radio telescopes, notably NRAO's Very Long Baseline Array (VLBA), have revealed fascinating new details in recent years, and VSOP is expected to add a wealth of new information on these objects, millions or billions of light-years distant from Earth. Many of these same objects act as super-powerful particle accelerators to eject "jets" of subatomic particles at nearly the speed of light. Scientists plan to use VSOP to monitor the changes and motions in these jets to learn more about how they originate and interact with their surroundings. The satellite also will aim at regions in the sky where giant collections of water and other molecules act as natural amplifiers of radio emission much as lasers amplify light. These regions, called cosmic masers, are found in areas where new stars are forming and near the centers of galaxies. Observations can provide the detail needed to measure motions of individual maser "spots" within these regions, and provide exciting new information about the star-forming regions and the galaxies where the masers reside. In addition, high-resolution studies of cosmic masers can allow astronomers to calculate distances to them with unprecedented accuracy, and thus help resolve continuing questions about the size and age of the universe. The project is a major international undertaking, with about 40 radio telescopes from more than 15 countries having committed time to co-observe with the satellite. This includes the National Science Foundation's Very Long Baseline Array (VLBA), an array of 10 telescopes spanning the United States from Hawaii to Saint Croix; NASA's Deep Space Network (DSN) sites in California, Spain, and Australia; the European VLBI Network, more than a dozen telescopes ranging from the United Kingdom to China; a Southern Hemisphere array of telescopes stretching from eastern Australia to South Africa; and Japan's network of domestic radio telescopes. In the United States, NASA is funding critical roles in the VSOP mission at both JPL and NRAO. JPL has built an array of three new tracking stations at its DSN sites in Goldstone, CA; Madrid, Spain; and near Canberra, Australia. A large existing tracking station at each of these sites has also been converted to an extremely sensitive radio telescope for simultaneous observations with the satellite. JPL also is providing precision orbit determination, scientific and operational planning support to the Japanese, and advice to U.S. astronomers who wish to observe with the satellite. NRAO is building a new tracking station at Green Bank, WV; contributing observing time on the VLBA array of telescopes; modifying existing data analysis hardware and software, and aiding astronomers with the analysis of the VSOP data. Much of the observational data will be processed at NRAO's facility in Socorro, NM, using the VLBA Correlator, a special purpose high-performance computer designed to process VLBI data. VSOP is the culmination of many years of planning and work by scientists and engineers around the world. Tests using NASA's Tracking and Data Relay Satellite System (TDRSS) proved the feasibility of space VLBI in 1986. Just last year, those old data were used again to test successfully the data-reduction facilities for VSOP. JPL manages the U.S. Space Very Long Baseline Interferometry project for NASA's Office of Space Science, Washington, DC. The VLBA, headquartered in Socorro, NM, is part of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1
NASA Technical Reports Server (NTRS)
Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.
2011-01-01
We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.
The goldstone real-time connected element interferometer
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.
1992-01-01
Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.
NASA Astrophysics Data System (ADS)
Nagai, H.; Chida, H.; Kino, M.; Orienti, M.; D'Ammando, F.; Giovannini, G.; Hiura, K.
2016-02-01
Re-started jet activity occurred in the bright nearby radio source 3C 84 in about 2005. The re-started jet is forming a prominent component (namely C3) at the tip of jet. The component has showed an increase in radio flux density for more than 7 years while the radio spectrum remains optically thin. This suggests that the component is the head of a radio lobe including a hotspot where the particle acceleration occurs. Thus, 3C 84 is a unique laboratory to study the physical properties at the very early stage of radio source evolution. Another important aspect is that high energy and very high energy γ-ray emissions are detected from this source. The quest for the site of γ-ray emission is quite important to obtain a better understanding of γ-ray emission mechanisms in radio galaxies. In this paper, we review the observational results from very long baseline interferometry (VLBI) monitoring of 3C 84 reported in series of our previous papers. We argue the nature of re-started jet/radio lobe and its relation with high-energy emission.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
A series of interference and radiation patterns are presented for radio interferometry in subsurface probing. The interference patterns are due both to a vertical magnetic dipole and to a horizontal electric dipole. Mode solutions are also presented for layer thickness equal to 1 wavelength, as well as for thin layers.
Mission definition study for a VLBI station utilizing the Space Shuttle
NASA Technical Reports Server (NTRS)
Burke, B. F.
1982-01-01
The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.
Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry
NASA Astrophysics Data System (ADS)
Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil
2018-04-01
The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.
The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation
NASA Technical Reports Server (NTRS)
Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John
2013-01-01
The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.
An analysis and demonstration of clock synchronization by VLBI
NASA Technical Reports Server (NTRS)
Hurd, W. J.
1972-01-01
A prototype of a semireal-time system for synchronizing the DSN station clocks by radio interferometry was successfully demonstrated. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time synchronization estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 nsec rms were achieved between DSS 11 and DSS 12, both at Goldstone, California. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to position uncertainties of baseline and source and atmospheric effects are reached. These limitations are under ten nsec for transcontinental baselines.
Dynamical Imaging with Interferometry
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy; Chael, Andrew A.; Rosen, Julian; Shiokawa, Hotaka; Roelofs, Freek; Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.
2017-12-01
By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ∼ 20 s and exhibits intrahour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.
Radio Interferometry with the SMA: Uncovering Hidden Star Formation in Our Extreme Galactic Center
NASA Astrophysics Data System (ADS)
Gutierrez, Elizabeth; Battersby, Cara; MacGregor, Meredith Ann
2018-01-01
Radio interferometry provides the best tool to identify embedded star-forming cores in cold, dense, molecular clouds of gas and dust. Observations at long, submillimeter wavelengths can be used to investigate the physical properties in the youngest stages of star formation. Interferometers provide the resolution necessary to resolve small scale structures like dense cores where star formation is expected to occur. CMZoom is the first large area survey of the Central Molecular Zone (CMZ) at high resolution in the submillimeter, allowing us to identify early sites of star formation. The survey uses both the subcompact and compact configurations of the Submillimeter Array (SMA) interferometric radio telescope. The CMZ, or the inner 500 pc of the Milky Way Galaxy, is a high extinction region comprised of hot, dense, and turbulent molecular gas. This region is forming about an order of magnitude fewer stars than predicted based on simple star formation prescriptions. Here, we present new high resolution images of G0.068-0.075, a region from the CMZoom survey, obtained using CASA. We highlight the importance of interferometric observations of different baseline lengths by comparing the spatial information obtained through different configurations. We will use these new images, in conjunction with the rest of the CMZoom survey, to reveal the mechanisms driving star formation at the center of the galaxy.
Local Circumnuclear Magnetar Solution to Extragalactic Fast Radio Bursts
NASA Astrophysics Data System (ADS)
Pen, Ue-Li; Connor, Liam
2015-07-01
We synthesize the known information about fast radio bursts (FRBs) and radio magnetars, and describe an allowed origin near nuclei of external, but non-cosmological, galaxies. This places them at z\\ll 1, within a few hundred megaparsecs. In this scenario, the high dispersion measure (DM) is dominated by the environment of the FRB, modeled on the known properties of the Milky Way center, whose innermost 100 pc provides 1000 pc cm-3. A radio loud magnetar is known to exist in our galactic center, within ˜2 arcsec of Sgr A*. Based on the polarization, DM, and scattering properties of this known magnetar, we extrapolate its properties to those of Crab-like giant pulses and SGR flares and point out their consistency with observed FRBs. We conclude that galactic center magnetars could be the source of FRBs. This scenario is readily testable with very long baseline interferometry measurements as well as with flux count statistics from large surveys such as CHIME or UTMOST.
An Overview of Geodetic and Astrometric VLBI at the Hartebeesthoek Radio Astronomy Observatory
NASA Astrophysics Data System (ADS)
de Witt, A.; Gaylard, M.; Quick, J.; Combrinck, L.
2013-08-01
For astronomical Very Long Baseline Interferometry (VLBI), the Hartebeesthoek Radio Astronomy Observatory (HartRAO), in South Africa operates as part of a number of networks including the European and Australian VLBI networks, global arrays and also space VLBI. HartRAO is the only African representative in the international geodetic VLBI network and participates in regular astrometric and geodetic VLBI programmes. HartRAO will play a major role in the realization of the next generation full-sky celestial reference frame, especially the improvement of the celestial reference frame in the South. The observatory also provides a base for developing the African VLBI Network (AVN), a project to convert redundant satellite Earth-station antennas across Africa to use for radio astronomy. The AVN would greatly facilitate VLBI observations of southern objects. We present an overview of the current capabilities as well as future opportunities for astrometric and geodetic VLBI at HartRAO.
Navigation of space VLBI missions: Radioastron and VSOP
NASA Technical Reports Server (NTRS)
Ellis, Jordan
1993-01-01
In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.
Radio interferometry: Techniques for Geodesy. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.
The first simultaneous mapping of four 7 mm SiO maser lines using the OCTAVE system
NASA Astrophysics Data System (ADS)
Oyama, Tomoaki; Kono, Yusuke; Suzuki, Syunsaku; Kanaguchi, Masahiro; Nishikawa, Takashi; Kawaguchi, Noriyuki; Hirota, Tomoya; Nagayama, Takumi; Kobayashi, Hideyuki; Imai, Hiroshi; Kuwahara, Sho; Kano, Amane; Oyadomari, Miyako; Chong, Sze Ning
2016-12-01
We report on simultaneous very long baseline interferometry (VLBI) mapping of 28SiO v = 1, 2, 3, and 29SiO v = 0 J = 1 → 0 maser lines at the 7 mm band toward the semi-regular variable star, W Hydrae (W Hya), using the new data acquisition system (OCTAVE-DAS), installed in the VLBI Exploration of Radio Astrometry (VERA) array and temporarily operated in the 45 m telescope of the Nobeyama Radio Observatory. Although these masers were spatially resolved, their compact maser spots were fortunately detected in the 1000 km baselines of VERA. We found the locations of the v = 3 maser emission which are unexpected from the currently proposed maser pumping models. Mapping of the 29SiO maser line in W Hya is the third result after those in WX Psc and R Leo. This paper shows the scientific implication of simultaneous VLBI observations of multiple SiO maser lines as realized by using the OCTAVE system.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1984-01-01
Developments in space communications, radio navigation, radio science, ground-base radio astronomy, reports on the Deep Space Network (DSN) and its Ground Communications Facility (GCF), and applications of radio interferometry at microwave frequencies are discussed.
NASA Astrophysics Data System (ADS)
Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.
2018-06-01
We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.
NASA Astrophysics Data System (ADS)
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-08-01
Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims: Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods: In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results: These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions: These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
NASA Astrophysics Data System (ADS)
Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.
NASA Astrophysics Data System (ADS)
Smirnova, T. V.; Shishov, V. I.; Popov, M. V.; Gwinn, C. R.; Anderson, J. M.; Andrianov, A. S.; Bartel, N.; Deller, A.; Johnson, M. D.; Joshi, B. C.; Kardashev, N. S.; Karuppusamy, R.; Kovalev, Y. Y.; Kramer, M.; Soglasnov, V. A.; Zensus, J. A.; Zhuravlev, V. I.
2014-05-01
RadioAstron space-ground very long baseline interferometry observations of the pulsar B0950+08, conducted with the 10 m Space Radio Telescope in conjunction with the Arecibo 300 m telescope and the Westerbork Synthesis Radio Telescope at a frequency of 324 MHz were analyzed in order to investigate plasma inhomogeneities in the direction of this nearby pulsar. The observations were conducted at a spacecraft distance of 330,000 km, resulting in a projected baseline of 220,000 km, providing the greatest angular resolution ever achieved at meter wavelengths. Our analysis is based on fundamental behavior of structure and coherence functions. We find that the pulsar shows scintillation on two frequency scales, both much less than the observing frequency, but modulation is less than 100%. We infer that the scattering is weak, but a refracting wedge disperses the scintillation pattern. The refraction angle of this "cosmic prism" is measured as θ0 = 1.1-4.4 mas, with the refraction direction being approximately perpendicular to the observer velocity. We show that the observed parameters of scintillation effects indicate that two plasma layers lie along the line of sight to the pulsar, at distances of 4.4-16.4 pc and 26-170 pc, and traveling in different directions relative to the line of sight. Spectra of turbulence for the two layers are found to follow a power law with the indices γ1 = γ2 = 3.00 ± 0.08, significantly different from the index expected for a Kolmogorov spectrum of turbulence, γ = 11/3.
Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay
NASA Technical Reports Server (NTRS)
Elgered, G.; Davis, J. L.; Herring, T. A.; Shapiro, I. I.
1991-01-01
An important source of error in VLBI estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. This paper presents and discusses the method of using data from a water vapor radiomete (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13 percent smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the 'best' minimum elevationi angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass.
NASA Astrophysics Data System (ADS)
Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.
2016-02-01
We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.
NASA Technical Reports Server (NTRS)
Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.
1991-01-01
The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.
The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.
2018-01-01
Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.
LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources
NASA Astrophysics Data System (ADS)
Pan, Hanjie; Simeoni, Matthieu; Hurley, Paul; Blu, Thierry; Vetterli, Martin
2017-12-01
Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio astronomy: weak signal / high noise, huge data sets, large numbers of sources. Aims: The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of false positives. Methods: We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs were used to confirm the existence of sources. Results: We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and smaller baselines to reach a comparable reconstruction quality compared to a conventional method. The achieved angular resolution is higher than the perceived instrument resolution, and very close sources can be reliably distinguished. The proposed approach has cubic complexity in the total number (typically around a few thousand) of uniform Fourier data of the sky image estimated from the reconstruction. It is also demonstrated that the method is robust to the presence of extended-sources, and that false-positives can be addressed by choosing an adequate model order to match the noise level.
High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.
2017-02-01
We present single-dish imaging of the well-known Supernova Remnants (SNRs) IC443 and W44 at 1.5 GHz and 7 GHz with the recently commissioned 64-m diameter Sardinia Radio Telescope (SRT). Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling, automatic baseline subtraction and radio-frequency interference removal. It results in high-quality maps of the SNRs at 7 GHz, which are usually lacking and not easily achievable through interferometry at this frequency due to the very large SNR structures. SRT continuum maps of our targets are consistent with VLA maps carried out at lower frequencies (at 324 MHz and 1.4 GHz), providing a view of the complex filamentary morphology. New estimates of the total flux density are given within 3% and 5% error at 1.5 GHz and 7 GHz respectively, in addition to flux measurements in different regions of the SNRs.
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
Dynamically important magnetic fields near supermassive black holes in radio-loud AGN
NASA Astrophysics Data System (ADS)
Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander
The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.
A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.
2012-01-01
Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).
Navigation of the Galileo mission
NASA Technical Reports Server (NTRS)
Miller, L. J.; Miller, J. K.; Kirhofer, W. E.
1983-01-01
An overview of the navigation of the Galileo mission is given. Predicted navigation performance for the various mission phases is discussed with particular emphasis given to the tour phase. Orbit determination strategies and resulting accuracies are discussed for various data types. In particular, the results of combining a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR) with conventional radio and optical data types are presented. Maneuver strategy results include the effects of maneuver placement and various targeting methods on propellant consumption and delivery accuracy. Emphasis is placed on new results obtained using asymptote and split targeting.
The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni
2010-06-01
using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of...resolved the outer Hα-emitting region of the extended envelope, but detected signatures of clumping. Although, the angular scales sampled with a 1.52 m
Correlated flux densities from VLBI observations with the DSN
NASA Technical Reports Server (NTRS)
Coker, R. F.
1992-01-01
Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.
Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.
2016-03-01
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.
THE KCAL VERA 22 GHz CALIBRATOR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net
2012-02-15
We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, R.; Conway, J. E.; Aalto, S.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less
An MF/HF radio array for radio and radar imaging of the ionosphere
NASA Astrophysics Data System (ADS)
Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence
2016-07-01
The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.
The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz
NASA Astrophysics Data System (ADS)
Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.
2018-01-01
Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.
A Strategic Independent Geodetic VLBI Network for Europe
NASA Astrophysics Data System (ADS)
Dale, Denise; Combrinck, Ludwig; de Witt, Alet
2014-12-01
Irregularities of the rotation of the Earth in space are described by the Earth Orientation Parameters (EOPs). An independent EOP network, applying the Very Long Baseline Interferometry (VLBI) technique and using the Vienna VLBI Software (VieVS), are strategically essential for Europe to minimize its reliance on foreign global support in terms of required infrastructure for the realization of such a network. The generation of independent EOPs is already achievable by countries such as the USA, the People's Republic of China, and the Russian Federation due to their large extent of land mass that allows for long baselines in both the North-South and East-West directions and thus allows for accurate determination of all EOPs. These three countries need not rely on foreign partnerships to generate EOPs, as they all have independent geodetic VLBI networks capable of determining EOPs for precise positioning, navigation, and satellite launch/orbital purposes. They also have or are developing independent Global Navigation Satellite Systems (GNSS) constellations; so does the European Union (EU). Accurate EOPs are essential for long-term orbital maintenance of GNSS constellations, leaving the EU GALILEO GNSS vulnerable and reliant on the three superpowers. Generation of accurate EOPs by Europe is not possible due to its much smaller land mass and thus smaller achievable baselines. Even though there are many radio telescopes spread across Europe, these are separated by relatively short distances. The proposed stations that will be used to investigate this independent EOP network for Europe are the WETTZELL radio telescope in Germany, two German owned radio telescopes, TIGOCONC in Concepción, Chile, and OHIGGINS in Antarctica, as well as the HartRAO radio telescope in South Africa.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Reports on developments in space communications, radio navigation, radio science, and ground-based radio astronomy are presented. Activities of the Deep Space Network (DSN) are reported in the areas of planning, supporting research and technology, implementation and operations. The application of radio interferometry at microwave frequencies for geodynamic measurements is also discussed.
Interstellar scintillations of PSR B1919+21: space-ground interferometry
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.
2017-07-01
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.
Single baseline GLONASS observations with VLBI: data processing and first results
NASA Astrophysics Data System (ADS)
Tornatore, V.; Haas, R.; Duev, D.; Pogrebenko, S.; Casey, S.; Molera Calvés, G.; Keimpema, A.
2011-07-01
Several tests to observe signals transmitted by GLONASS (GLObal NAvigation Satellite System) satellites have been performed using the geodetic VLBI (Very Long Baseline Interferometry) technique. The radio telescopes involved in these experiments were Medicina (Italy) and Onsala (Sweden), both equipped with L-band receivers. Observations at the stations were performed using the standard Mark4 VLBI data acquisition rack and Mark5A disk-based recorders. The goals of the observations were to develop and test the scheduling, signal acquisition and processing routines to verify the full tracking pipeline, foreseeing the cross-correlation of the recorded data on the baseline Onsala-Medicina. The natural radio source 3c286 was used as a calibrator before the starting of the satellite observation sessions. Delay models, including the tropospheric and ionospheric corrections, which are consistent for both far- and near-field sources are under development. Correlation of the calibrator signal has been performed using the DiFX software, while the satellite signals have been processed using the narrow band approach with the Metsaehovi software and analysed with a near-field delay model. Delay models both for the calibrator signals and the satellites signals, using the same geometrical, tropospheric and ionospheric models, are under investigation to make a correlation of the satellite signals possible.
NASA Astrophysics Data System (ADS)
Millour, Florentin A.; Vannier, Martin; Meilland, Anthony
2012-07-01
We present here three recipes for getting better images with optical interferometers. Two of them, Low- Frequencies Filling and Brute-Force Monte Carlo were used in our participation to the Interferometry Beauty Contest this year and can be applied to classical imaging using V2 and closure phases. These two addition to image reconstruction provide a way of having more reliable images. The last recipe is similar in its principle as the self-calibration technique used in radio-interferometry. We call it also self-calibration, but it uses the wavelength-differential phase as a proxy of the object phase to build-up a full-featured complex visibility set of the observed object. This technique needs a first image-reconstruction run with an available software, using closure-phases and squared visibilities only. We used it for two scientific papers with great success. We discuss here the pros and cons of such imaging technique.
Early science with the Korean VLBI network: evaluation of system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Byun, Do-Young; Kim, Jongsoo
2014-04-01
We report the very long baseline interferometry (VLBI) observing performance of the Korean VLBI Network (KVN). The KVN is the first millimeter-dedicated VLBI network in East Asia. The KVN consists of three 21 m radio telescopes with baseline lengths in a range of 305-476 km. The quasi-optical system equipped on the antennas allows simultaneous observations at 22, 43, 86, and 129 GHz. The first fringes of the KVN were obtained at 22 GHz on 2010 June 8. Test observations at 22 and 43 GHz on 2010 September 30 and 2011 April 4 confirmed that the full cycle of VLBI observationsmore » works according to specification: scheduling, antenna control system, data recording, correlation, post-correlation data processing, astrometry, geodesy, and imaging analysis. We found that decorrelation due to instability in the hardware at times up to 600 s is negligible. The atmosphere fluctuations at KVN baseline are partly coherent, which allows us to extend integration time under good winter weather conditions up to 600 s without significant loss of coherence. The post-fit residuals at KVN baselines do not exhibit systematic patterns, and the weighted rms of the residuals is 14.8 ps. The KVN is ready to image compact radio sources both in snapshot and full-track modes with residual noise in calibrated phases of less than 2 deg at 22 and 43 GHz and with dynamic ranges of ∼300 for snapshot mode and ∼1000 for full-track mode. With simultaneous multi-frequency observations, the KVN can be used to make parsec-scale spectral index maps of compact radio sources.« less
Variations of the Blazar AO 0235+164 in 2006-2015
NASA Astrophysics Data System (ADS)
Hagen-Thorn, V. A.; Larionov, V. M.; Morozova, D. A.; Arkharov, A. A.; Hagen-Thorn, E. I.; Shablovinskaya, E. S.; Prokop'eva, M. S.; Yakovleva, V. A.
2018-02-01
The results of optical, radio, and gamma-ray observations of the blazar AO 0235+16 are presented, including photometric ( BV RIJHK) and polarimetric ( R)monitoring carried out at St. Petersburg State University and the Central (Pulkovo) Astronomical Observatory in 2007-2015, 43 GHz Very Long Baseline Interferometry radio observations processed at Boston University, and a gamma-ray light curve based on observationswith the Fermi space observatory are presented. Two strong outbursts were detected. The relative spectral energy distributions of the variable components responsible for the outbursts are determined; these follow power laws, but with different spectral indices. The degree of polarization was high in both outbursts; only an average relationship between the brightness and polarization can be found. There was no time lag between the variations in the optical and gamma-ray, suggesting that the sources of the radiation in the optical and gamma-ray are located in the same region of the jet.
Coupling of jet and accretion activity in the active galaxy NGC 1052
NASA Astrophysics Data System (ADS)
Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil
The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.
RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbuhl, E.; Mutel, R. L.; Lynch, C.
2015-09-20
The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emissionmore » model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.« less
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1981-01-01
The effects of source structure on radio interferometry measurements were investigated. The brightness distribution measurements for ten extragalactic sources were analyzed. Significant results are reported.
Interferometry meets the third and fourth dimensions in galaxies
NASA Astrophysics Data System (ADS)
Trimble, Virginia
2015-02-01
Radio astronomy began with one array (Jansky's) and one paraboloid of revolution (Reber's) as collecting areas and has now reached the point where a large number of facilities are arrays of paraboloids, each of which would have looked enormous to Reber in 1932. In the process, interferometry has contributed to the counting of radio sources, establishing superluminal velocities in AGN jets, mapping of sources from the bipolar cow shape on up to full grey-scale and colored images, determining spectral energy distributions requiring non-thermal emission processes, and much else. The process has not been free of competition and controversy, at least partly because it is just a little difficult to understand how earth-rotation, aperture-synthesis interferometry works. Some very important results, for instance the mapping of HI in the Milky Way to reveal spiral arms, warping, and flaring, actually came from single moderate-sized paraboloids. The entry of China into the radio astronomy community has given large (40-110 meter) paraboloids a new lease on life.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.
Application of space technology to crustal dynamics and earthquake research
NASA Technical Reports Server (NTRS)
1979-01-01
In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.
NASA Technical Reports Server (NTRS)
Dennison, B. K.
1976-01-01
The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.
NASA Astrophysics Data System (ADS)
Morris, Mark R.
2004-04-01
Most astronomers are comfortable with the notion of a black hole at the center of our Galaxy, but defining and measuring its size is an extremely difficult matter, mostly because it is so small from our distant vantage point. In his Perspective, Morris discusses results reported in the same issue by Bower et al. on new measurements of the size of the radio-emitting region immediately surrounding the Galactic black hole. By observing at the shortest possible wavelengths with very long baseline interferometry, the authors have been able to resolve the intrinsic size of the black hole region in spite of the interstellar interference that has plagued previous attempts.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Radiophysicist and astronomer, born Ararat, Victoria, Australia, pioneered the use of a Lloyd's mirror arrangement for radio interferometry at Dover Heights in Australia, and located the source of solar radio noise within the disc of the Sun. As John Hey had suggested, the radio noise came from sunspots....
Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties
NASA Astrophysics Data System (ADS)
Algaba, Juan-Carlos; Lee, Sang-Sung; Rani, Bindu; Kim, Dae-Won; Kino, Motoki; Hodgson, Jeffrey; Zhao, Guang-Yao; Byun, Do-Young; Gurwell, Mark; Kang, Sin-Cheol; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki
2018-06-01
The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.
NASA Astrophysics Data System (ADS)
Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia
2013-08-01
The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.
The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability onmore » timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.« less
NASA Astrophysics Data System (ADS)
Tabik, S.; Romero, L. F.; Mimica, P.; Plata, O.; Zapata, E. L.
2012-09-01
A broad area in astronomy focuses on simulating extragalactic objects based on Very Long Baseline Interferometry (VLBI) radio-maps. Several algorithms in this scope simulate what would be the observed radio-maps if emitted from a predefined extragalactic object. This work analyzes the performance and scaling of this kind of algorithms on multi-socket, multi-core architectures. In particular, we evaluate a sharing approach, a privatizing approach and a hybrid approach on systems with complex memory hierarchy that includes shared Last Level Cache (LLC). In addition, we investigate which manual processes can be systematized and then automated in future works. The experiments show that the data-privatizing model scales efficiently on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless of algorithmic and scheduling optimizations, the sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing provides the best scalability over all used multi-socket, multi-core systems.
A publication database for optical long baseline interferometry
NASA Astrophysics Data System (ADS)
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.
2010-05-15
We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08more » and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.« less
NASA Technical Reports Server (NTRS)
Thomas, J. B.; Fanselow, J. L.; Macdoran, P. F.; Skjerve, L. J.; Spitzmesser, D. J.; Fliegel, H. F.
1976-01-01
Radio interferometry promises eventually to measure directly, with accuracies of a few centimeters, both whole earth motions and relative crustal motions with respect to an 'inertial' reference frame. Interferometry measurements of arbitrarily long base lines require, however, the development of new techniques for independent-station observation. In connection with the development of such techniques, a series of short base line demonstration experiments has been conducted between two antennas. The experiments were related to a program involving the design of independent-station instrumentation capable of making three-dimensional earth-fixed base line measurements with an accuracy of a few centimeters. Attention is given to the instrumentation used in the experiments, aspects of data analysis, and the experimental results.
The telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1980-01-01
Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.
NASA Astrophysics Data System (ADS)
Weston, S. D.
2008-04-01
This thesis presents the design and development of a process to model Very Long Base Line Interferometry (VLBI) aperture synthesis antenna arrays. In line with the Auckland University of Technology (AUT) Institute for Radiophysics and Space Research (IRSR) aims to develop the knowledge, skills and experience within New Zealand, extensive use of existing radio astronomical software has been incorporated into the process namely AIPS (Astronomical Imaging Processing System), MIRIAD (a radio interferometry data reduction package) and DIFMAP (a program for synthesis imaging of visibility data from interferometer arrays of radio telescopes). This process has been used to model various antenna array configurations for two proposed New Zealand sites for antenna in a VLBI array configuration with existing Australian facilities and a passable antenna at Scott Base in Antarctica; and the results are presented in an attempt to demonstrate the improvement to be gained by joint trans-Tasman VLBI observation. It is hoped these results and process will assist the planning and placement of proposed New Zealand radio telescopes for cooperation with groups such as the Australian Long Baseline Array (LBA), others in the Pacific Rim and possibly globally; also potential future involvement of New Zealand with the SKA. The developed process has also been used to model a phased building schedule for the SKA in Australia and the addition of two antennas in New Zealand. This has been presented to the wider astronomical community via the Royal Astronomical Society of New Zealand Journal, and is summarized in this thesis with some additional material. A new measure of quality ("figure of merit") for comparing the original model image and final CLEAN images by utilizing normalized 2-D cross correlation is evaluated as an alternative to the existing subjective visual operator image comparison undertaken to date by other groups. This new unit of measure is then used ! in the presentation of the results to provide a quantative comparison of the different array configurations modelled. Included in the process is the development of a new antenna array visibility program which was based on a Perl code script written by Prof Steven Tingay to plot antenna visibilities for the Australian Square Kilometre Array (SKA) proposal. This has been expanded and improved removing the hard coded fixed assumptions for the SKA configuration, providing a new useful and flexible program for the wider astronomical community. A prototype user interface using html/cgi/perl was developed for the process so that the underlying software packages can be served over the web to a user via an internet browser. This was used to demonstrate how easy it is to provide a friendlier interface compared to the existing cumbersome and difficult command line driven interfaces (although the command line can be retained for more experienced users).
Radio and gamma-ray properties of extragalactic jets from the TANAMI sample
Böck, M.; Kadler, M.; Müller, C.; ...
2016-05-04
The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected bymore » the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by L γ ∝ L r 0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.« less
Radio spectra of bright compact sources at z > 4.5
NASA Astrophysics Data System (ADS)
Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.
2017-05-01
High-redshift quasars are important to study galaxy and active galactic nuclei evolution, test cosmological models and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multifrequency Giant Metrewave Radio Telescope observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultrasteep spectra. Recently, a new method has been proposed to identify these objects based on their megahertz-peaked spectra. No method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
NASA Astrophysics Data System (ADS)
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; An, T.
2018-05-01
Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to associate the γ-ray source 3FGL J1323.0+2942 in subsequent versions of the Fermi catalog with the blazar residing in northernmost complex. We suggest naming this radio source J1323+2941A to avoid misinterpretation arising from the fact that the coordinates of the currently listed radio counterpart 4C+29.48 is closer to a most probably unrelated radio source.
NASA Technical Reports Server (NTRS)
Preisig, Joseph Richard Mark
1988-01-01
A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele
2013-12-10
The Sombrero galaxy (M 104, NGC 4594) is associated with one of the nearest low-luminosity active galactic nuclei (AGNs). We investigated the detailed radio structure of the Sombrero nucleus using high-resolution, quasi-simultaneous, multi-frequency, phase-referencing Very Long Baseline Array observations. We obtained high-quality images of this nucleus at seven frequencies, where those at 15, 24, and 43 GHz are the first clear very long baseline interferometry detections. At 43 GHz, the nuclear structure was imaged on a linear scale under 0.01 pc or 100 Schwarzschild radii, revealing a compact, high-brightness-temperature (≳ 3 × 10{sup 9} K) radio core. We discovered themore » presence of the extended structure emanating from the core on two sides in the northwest and southeast directions. The nuclear radio spectra show a clear spatial gradient, which is similar to that seen in more luminous AGNs with powerful relativistic jets. Moreover, the size and position of the core tend to be frequency dependent. These findings provide evidence that the central engine of the Sombrero is powering radio jets and the jets are overwhelming the emission from the underlying radiatively inefficient accretion flow over the observed frequencies. Based on these radio characteristics, we constrained the following physical parameters for the M 104 jets: (1) the northern side is approaching, whereas the southern one is receding; (2) the jet viewing angle is relatively close to our line-of-sight (≲ 25°); and (3) the intrinsic jet velocity is highly sub-relativistic (≲ 0.2c). The derived pole-on nature of the M 104 jets is consistent with the previous argument that this nucleus contains a true type II AGN, i.e., the broad line region is actually absent or intrinsically weak if the plane of the circumnuclear torus is perpendicular to the jet axis.« less
ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moor, A.; Frey, S.; Lambert, S. B.
2011-06-15
Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For themore » first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.« less
NASA Astrophysics Data System (ADS)
Müller, C.
2016-07-01
Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the γ-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and γ-ray brightest extragalactic jets in the southern sky, below -30o declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904 , which can be classified either as an atypical blazar or a γ-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang
2018-04-01
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.
Imaging an Event Horizon: Mitigation of Source Variability of Sagittarius A*
NASA Astrophysics Data System (ADS)
Lu, Ru-Sen; Roelofs, Freek; Fish, Vincent L.; Shiokawa, Hotaka; Doeleman, Sheperd S.; Gammie, Charles F.; Falcke, Heino; Krichbaum, Thomas P.; Zensus, J. Anton
2016-02-01
The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.
The Telecommunications and Data Acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline; Hallinan, Gregg; Monroe, Ryan; Bourke, Stephen; Starburst Program Team
2017-01-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. My thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs.Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (JVLA), detecting 12 bright (>10 mJy) radio bursts in 58 hours. This survey’s ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light.To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the JVLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission.These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline Rose
2017-05-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. This thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs. Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (VLA), detecting coherent radio bursts in 13 out of 23 epochs, over a total of 58 hours. This survey's ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light. To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the VLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission. These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
NASA Technical Reports Server (NTRS)
Donnelly, H.
1983-01-01
Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1991-01-01
Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.
2016-05-01
Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes
Bibliography of spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.
A Data Exchange Standard for Optical (Visible/IR) Interferometry
NASA Astrophysics Data System (ADS)
Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.
2005-11-01
This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.
Very long baseline interferometry using a communication satellite
NASA Technical Reports Server (NTRS)
Swenson, G. W., Jr.
1975-01-01
A planned experiment is discussed in long-baseline interferometry, using the Communications Technology Satellite to transmit the base-band signal from one telescope to another for real-time correlation. A 20 megabit data rate is planned, calling for a delay-line of 10 MHz bandwidth and controllable delay up to 275 milliseconds. A number of sources will be studied on baselines from Ontario to West Virginia and California.
Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry
NASA Astrophysics Data System (ADS)
Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki
2015-08-01
In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.
Web-based Teaching Radio Interferometer for Africa
NASA Astrophysics Data System (ADS)
Carignan, Claude
2015-08-01
Practical training for the future use of the African VLBI Network (AVN) or any VLBI experiment starts by understanding the basic principles of radio observations and radio interferometry. The aim of this project is to build a basic interferometer that could be used remotely via a web interface from any country on the African continent. This should turn out as a much less expensive and much more efficient way to train AVN researchers from SKA partner countries to the principles of radio astronomy and to interferometric data analysis. The idea is based on the very successful EUHOU (European Hands-On Universe) already very successful in Europe. The former EUHOU manager, Dr Yannick Liebert, arrived for a 3 years postdoc with Prof Claude Carignan at the University of Cape Town to implement the same project on the African continent (AHI: African Hands-on Interferometry). Besides the use of AHI for the AVN researchers, this web-based system could be used be any undergraduate program on radio astronomical techniques across the African continent as the EUHOU is used all across Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiaogang; Biesiada, Marek; Cao, Shuo
A new compilation of 012 angular-size/redshift data for compact radio quasars from very-long-baseline interferometry (VLBI) surveys motivates us to revisit the interaction between dark energy and dark matter with these probes reaching high redshifts z ∼ 3.0. In this paper, we investigate observational constraints on different phenomenological interacting dark energy (IDE) models with the intermediate-luminosity radio quasars acting as individual standard rulers, combined with the newest BAO and CMB observation from Planck results acting as statistical rulers. The results obtained from the MCMC method and other statistical methods including figure of Merit and Information Criteria show that: (1) Compared withmore » the current standard candle data and standard clock data, the intermediate-luminosity radio quasar standard rulers , probing much higher redshifts, could provide comparable constraints on different IDE scenarios. (2) The strong degeneracies between the interaction term and Hubble constant may contribute to alleviate the tension of H {sub 0} between the recent Planck and HST measurements. (3) Concerning the ranking of competing dark energy models, IDE with more free parameters are substantially penalized by the BIC criterion, which agrees very well with the previous results derived from other cosmological probes.« less
Four hot DOGs in the microwave
NASA Astrophysics Data System (ADS)
Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao
2016-01-01
Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Johnston, Helen M.
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less
A direct localization of a fast radio burst and its host.
Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J
2017-01-04
Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.
NASA Astrophysics Data System (ADS)
Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.
2017-12-01
The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1983-01-01
Developments in programs in telecommunication and data acquisition in space communications, radio navigation, radio science, and ground based radio astronomy are reported. Activities of the deep space network (DSN) and its associated ground communication facility (GCF) in planning, supporting research and technology, implementation, and in operations are outlined. The publication of reports on the application of radio interferometry at microwave frequencies for geodynamic measurements are presented. Implementation and operation for searching the microwave spectrum is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.
2014-10-20
We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even withmore » current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.« less
Global tectonics and space geodesy.
Gordon, R G; Stein, S
1992-04-17
Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries \\m=~\\1 to 60 kilometers wide. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover \\m=~\\15 percent of Earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, is providing the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities averaged over millions of years.
Global tectonics and space geodesy
NASA Technical Reports Server (NTRS)
Gordon, Richard G.; Stein, Seth
1992-01-01
Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.
The EVN Galactic Plane Survey - EGaPS
NASA Technical Reports Server (NTRS)
Petrov, Leonid
2011-01-01
I present a catalogue of the positions and correlated flux densities of 109 compact extragalactic radio sources in the Galactic plane determined from an analysis of a 48-h Very Long Baseline Interferometry (VLBI) experiment at 22 GHz with the European VLBI Network. The median position uncertainty is 9 mas. The correlated flux densities of the detected sources are in the range of 2-300 mJy. In addition to the target sources, nine water masers have been detected, of which two are new. I derived the positions of the masers with an accuracy of 30-200 mas and determined the velocities of the maser components and their correlated flux densities. The catalogue and the supporting material are available at http://astrogeo.org/egaps.
A multidisciplinary study of planetary, solar and astrophysical radio emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.
1986-01-01
Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.M.; Carlos, R.C.; Kirkland, M.W.
1999-07-01
At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schinzel, Frank K.; Petrov, Leonid; Taylor, Gregory B.
The third Fermi Large Area Telescope γ -ray source catalog (3FGL) contains over 1000 objects for which there is no known counterpart at other wavelengths. The physical origin of the γ -ray emission from those objects is unknown. Such objects are commonly referred to as unassociated and mostly do not exhibit significant γ -ray flux variability. We performed a survey of all unassociated γ -ray sources found in 3FGL using the Australia Telescope Compact Array and Very Large Array in the range 4.0–10.0 GHz. We found 2097 radio candidates for association with γ -ray sources. The follow-up with very longmore » baseline interferometry for a subset of those candidates yielded 142 new associations with active galactic nuclei that are γ -ray sources, provided alternative associations for seven objects, and improved positions for another 144 known associations to the milliarcsecond level of accuracy. In addition, for 245 unassociated γ -ray sources we did not find a single compact radio source above 2 mJy within 3 σ of their γ -ray localization. A significant fraction of these empty fields, 39%, are located away from the Galactic plane. We also found 36 extended radio sources that are candidates for association with a corresponding γ -ray object, 19 of which are most likely supernova remnants or H ii regions, whereas 17 could be radio galaxies.« less
High-speed real-time heterodyne interferometry using software-defined radio.
Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A
2018-01-10
This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.
Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.
2018-04-01
Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.
A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC
NASA Technical Reports Server (NTRS)
Thomson, Ewen M.; Medelius, Pedro J.
1991-01-01
The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.
Advanced Imaging Methods for Long-Baseline Optical Interferometry
NASA Astrophysics Data System (ADS)
Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.
2008-11-01
We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1983-01-01
This publication reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation and in operations. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. This publication also reports on implementation and operations for searching the microwave spectrum.
A Submillimeter Perspective on the Goods Fields. II. The High Radio Power Population in the Goods-N
NASA Astrophysics Data System (ADS)
Barger, A. J.; Cowie, L. L.; Owen, F. N.; Hsu, L.-Y.; Wang, W.-H.
2017-01-01
We use ultradeep 20 cm data from the Karl G. Jansky Very Large Array and 850 μm data from SCUBA-2 and the Submillimeter Array of an 124 arcmin2 region of the Chandra Deep Field-north to analyze the high radio power ({P}20{cm}> {10}31 erg s-1 Hz-1) population. We find that 20 (42 ± 9%) of the spectroscopically identified z> 0.8 sources have consistent star formation rates (SFRs) inferred from both submillimeter and radio observations, while the remaining sources have lower (mostly undetected) submillimeter fluxes, suggesting that active galactic nucleus (AGN) activity dominates the radio power in these sources. We develop a classification scheme based on the ratio of submillimeter flux to radio power versus radio power and find that it agrees with AGN and star-forming galaxy classifications from Very Long Baseline Interferometry. Our results provide support for an extremely rapid drop in the number of high SFR galaxies above about a thousand solar masses per year (Kroupa initial mass function) and for the locally determined relation between X-ray luminosity and radio power for star-forming galaxies applying at high redshifts and high radio powers. We measure far-infrared (FIR) luminosities and find that some AGNs lie on the FIR-radio correlation, while others scatter below. The AGNs that lie on the correlation appear to do so based on their emission from the AGN torus. We measure a median radio size of 1.″0 ± 0.3 for the star-forming galaxies. The radio sizes of the star-forming galaxies are generally larger than those of the AGNs. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
Using Optical Interferometry for GEO Satellites Imaging: An Update
2016-05-27
of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...night. These baseline lengths correspond to a resolution of ∼4 m at geostationary altitude. This is the first multiple-baseline interferometric...detection of a satellite. Keywords: geostationary satellites, optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to
Permanent Monitoring of the Reference Point of the 20m Radio Telescope Wettzell
NASA Technical Reports Server (NTRS)
Neidhardt, Alexander; Losler, Michael; Eschelbach, Cornelia; Schenk, Andreas
2010-01-01
To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.
The Determination of Earth Orientation by VLBI and GNSS: Principles and Results
NASA Astrophysics Data System (ADS)
Capitaine, Nicole
2017-10-01
The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.
NASA Technical Reports Server (NTRS)
Huang, S.-S.
1973-01-01
The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.
Investigating source confusion in PMN J1603-4904
NASA Astrophysics Data System (ADS)
Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.
2018-02-01
PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.
NASA Technical Reports Server (NTRS)
Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.
1993-01-01
Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.
Radio-frequency low-coherence interferometry.
Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo
2014-06-15
A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.
Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Wendy I.
1994-01-01
The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.
Towards Cloud Processing of GGOS Big Data
NASA Astrophysics Data System (ADS)
Weston, Stuart; Kim, Bumjun; Litchfield, Alan; Gulyaev, Sergei; Hall, Dylan; Chorao, Carlos; Ruthven, Andrew; Davies, Glyn; Lagos, Bruno; Christie, Don
2017-04-01
We report on our initial steps towards development of a cloud-like correlation infrastructure for geodetic Very Long Baseline Interferometry (VLBI), which in its raw format is of the order of 10-100 TB (big data). Data is generated by multiple VLBI radio telescopes, and is then used by for geodetic, geophysical, and astrometric research and operational activities through the International VLBI Service (IVS), as well as for corrections of GPS satellite orbits. Currently IVS data is correlated in several international Correlators (Correlation Centres), which receive data from individual radio telescope stations either in hard drives via regular mail service or via fibre using e-transfer mode. The latter is strongly limited by connectivity of existing correlation centres, which creates bottle necks and slows down the turnover of the data. This becomes critical in many applications - for example, it currently takes 1-2 weeks to generate the dUT1 parameter for corrections of GNSS orbits while less than 1-2 days delay is desirable. We started with a blade server at the AUT campus to emulate a cloud server using Virtual Machines (VMWare). The New Zealand Data Head node is connected to the high speed (100 Gbps) network ring circuit courtesy of the Research and Education Advanced Network New Zealand (REANNZ), with the additional nodes at remote physical sites connected via 10 Gbps fibre. We use real Australian Long Baseline Array (LBA) observational data from 6 radio telescopes in Australia, South Africa and New Zealand (15 baselines) of 1.5 hours in duration making 8 TB to emulate data transfer from remote locations and to provide a meaningful benchmark dataset for correlation. Data was successfully transferred using bespoke UDT network transfer tools and correlated with the speed-up factor of 0.8 using DiFX software correlator. In partnership with the New Zealand office of Catalyst IT Ltd we have moved this environment into Catalyst Cloud and report on the first correlation of a VLBI Dataset in a true cloud environment.
NASA Astrophysics Data System (ADS)
Bruni, G.; Gómez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-García, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Pérez-Torres, M.; Ros, E.
2017-08-01
Context. RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of 350 000 km, it is offering for the first time the possibility to perform μas-resolution imaging in the cm-band. Aims: The RadioAstron active galactic nuclei (AGN) polarization Key Science Project (KSP) aims at exploiting the unprecedented angular resolution provided by RadioAstron to study jet launching/collimation and magnetic-field configuration in AGN jets. The targets of our KSP are some of the most powerful blazars in the sky. Methods: We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study the kinematics of the jet in a 1.5-yr time window. Results: We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4 × 1013 K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected 2 months after the 2013 epoch, visible also in our 22 GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. Fermi-LAT observations for the period 2010-2014 do not show any γ-ray flare in conjunction with the passage of the new component by the core at 43 GHz. Conclusions: These observations confirm that the previously detected extreme brightness temperature in 3C 273, exceeding the inverse Compton limit, is a short-lived phenomenon caused by a temporary departure from equipartition. Thus, the availability of interferometric baselines capable of providing μas angular resolution does not systematically imply measured brightness temperatures over the known physical limits for astrophysical sources. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A111
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network (DSN) in space communications, radio navigation, radio science, and ground-based radio astronomy are reported. Also included are the plans, supporting research and technology, implementation and operations for the Ground Communications Facility (GCF). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum.
Estimability of geodetic parameters from space VLBI observables
NASA Technical Reports Server (NTRS)
Adam, Jozsef
1990-01-01
The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.
A complete VLBI delay model for deforming radio telescopes: the Effelsberg case
NASA Astrophysics Data System (ADS)
Artz, T.; Springer, A.; Nothnagel, A.
2014-12-01
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.
Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode
NASA Astrophysics Data System (ADS)
Egron, E.; Pellizzoni, A.; Giroletti, M.; Righini, S.; Stagni, M.; Orlati, A.; Migoni, C.; Melis, A.; Concu, R.; Barbas, L.; Buttaccio, S.; Cassaro, P.; De Vicente, P.; Gawroński, M. P.; Lindqvist, M.; Maccaferri, G.; Stanghellini, C.; Wolak, P.; Yang, J.; Navarrini, A.; Loru, S.; Pilia, M.; Bachetti, M.; Iacolina, M. N.; Buttu, M.; Corbel, S.; Rodriguez, J.; Markoff, S.; Wilms, J.; Pottschmidt, K.; Cadolle Bel, M.; Kalemci, E.; Belloni, T.; Grinberg, V.; Marongiu, M.; Vargiu, G. P.; Trois, A.
2017-11-01
In 2016 September, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 d with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on an hourly scale, covering six frequency ranges from 1.5 to 25.6 GHz. The radio emission reached a maximum of 13.2 ± 0.7 Jy at 7.2 GHz and 10 ± 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: α steepened from 0.3 to 0.6 (with Sν ∝ ν-α) within 5 h. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), very long baseline interferometry (VLBI) observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2 h duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core 10 d before the onset of the giant flare. From the latest VLBI observation we infer that 4 d after the flare peak the jet emission was extended over 30 mas.
Jets, arcs, and shocks: NGC 5195 at radio wavelengths
NASA Astrophysics Data System (ADS)
Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.
2018-05-01
We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.
The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations
NASA Astrophysics Data System (ADS)
Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.
2018-04-01
Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cseh, David; Corbel, Stephane; Kaaret, Philip
We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebulamore » of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.« less
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
A recent history of science cases for optical interferometry
NASA Astrophysics Data System (ADS)
Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre
2018-04-01
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.
NASA Technical Reports Server (NTRS)
Lowman, P. D.; Allenby, R. J.; Frey, H. V.
1979-01-01
Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references.
Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects
NASA Astrophysics Data System (ADS)
Hogan, Jason
2015-04-01
Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
The USNO Astrometry Department
and methods, such as large scale CCD measuring devices, speckle and radio interferometry, are being the observational programs are published in the Naval Observatory Publications and in refereed
Detection of a Geostationary Satellite with the Navy Prototype Optical Interferometer
2010-07-01
USA 86001 USA ABSTRACT We have detected a satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical...available at the time of our observations, resolves out structures larger than ∼ 1.5 m at the geostationary distance, while a typical size for the solar... satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical Interferometer (NPOI) to observe the
New International Agreements About Space Techniques Among Argentina, China and France
NASA Astrophysics Data System (ADS)
Pacheco, A. M.; Podestá, R.; Actis, E.; Adarvez, S.; Quinteros, J.; Li, J.; Saunier, J.; Podestá, F.; Ramos, F.; Aguilera, J.; Sosa, G.; Hauser, D.
2018-01-01
The International Earth Rotation and Reference Systems (IERS) is in charge of defining and materializing celestial reference systems (ICRS - ICRF) and terrestrial reference systems (ITRS - ITRF). In order to perform this task it uses data from the following techniques: Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite System (GNSS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). Nowadays, the Observatorio Astronómico Félix Aguilar (OAFA) has two instruments with these advanced techniques: SLR and a permanent GNSS station. In the nearby future a 40 m diameter radio telescope will be available that will be operated in VLBI mode along with a DORIS buoy which will be co-localized with a SLR telescope and GNSS antennas. In this way OAFA will become a zero station, first class, of the ITRF 2014 frame.
Joint Meteorological Statistics of Observing Sites for the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Lope Córdova Rosado, Rodrigo Eduardo; Doeleman, Sheperd; Paine, Scott; Johnson, Michael; Event Horizon Telescope (EHT)
2018-01-01
The Event Horizon Telescope (EHT) aims to resolve the general relativistic shadow of Sgr A*, the supermassive black hole at the center of our galaxy, via Very Long Baseline Interferometry (VLBI) measurements with a multinational array of radio observatories. In order to optimize the scheduling of future observations, we have developed tools to model the atmospheric opacity at each EHT site using the past 10 years of Global Forecast System (GFS) data describing the atmospheric state. These tools allow us to determine the ideal observing windows for EHT observations and to assess the suitability and impact of new EHT sites. We describe our modeling framework, compare our models to in-situ measurements at EHT sites, and discuss the implications of weather limitations for planned extensions of the EHT to higher frequencies, as well as additional sites and observation windows.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and
NASA Astrophysics Data System (ADS)
Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.
2018-02-01
Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of current neutrino detectors. The cleaned VLBI images displayed in Figs. 1, 2 and A.1 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A1
Current Status of the Development of a Transportable and Compact VLBI System by NICT and GSI
NASA Technical Reports Server (NTRS)
Ishii, Atsutoshi; Ichikawa, Ryuichi; Takiguchi, Hiroshi; Takefuji, Kazuhiro; Ujihara, Hideki; Koyama, Yasuhiro; Kondo, Tetsuro; Kurihara, Shinobu; Miura, Yuji; Matsuzaka, Shigeru;
2010-01-01
MARBLE (Multiple Antenna Radio-interferometer for Baseline Length Evaluation) is under development by NICT and GSI. The main part of MARBLE is a transportable VLBI system with a compact antenna. The aim of this system is to provide precise baseline length over about 10 km for calibrating baselines. The calibration baselines are used to check and validate surveying instruments such as GPS receiver and EDM (Electro-optical Distance Meter). It is necessary to examine the calibration baselines regularly to keep the quality of the validation. The VLBI technique can examine and evaluate the calibration baselines. On the other hand, the following roles are expected of a compact VLBI antenna in the VLBI2010 project. In order to achieve the challenging measurement precision of VLBI2010, it is well known that it is necessary to deal with the problem of thermal and gravitational deformation of the antenna. One promising approach may be connected-element interferometry between a compact antenna and a VLBI2010 antenna. By measuring repeatedly the baseline between the small stable antenna and the VLBI2010 antenna, the deformation of the primary antenna can be measured and the thermal and gravitational models of the primary antenna will be able to be constructed. We made two prototypes of a transportable and compact VLBI system from 2007 to 2009. We performed VLBI experiments using theses prototypes and got a baseline length between the two prototypes. The formal error of the measured baseline length was 2.7 mm. We expect that the baseline length error will be reduced by using a high-speed A/D sampler.
A model for the repeating FRB 121102 in the AGN scenario
NASA Astrophysics Data System (ADS)
Vieyro, F. L.; Romero, G. E.; Bosch-Ramon, V.; Marcote, B.; del Valle, M. V.
2017-06-01
Context. Fast radio bursts (FRBs) are transient sources of unknown origin. Recent radio and optical observations have provided strong evidence for an extragalactic origin of the phenomenon and the precise localization of the repeating FRB 121102. Observations using the Karl G. Jansky Very Large Array (VLA) and very-long-baseline interferometry (VLBI) have revealed the existence of a continuum non-thermal radio source consistent with the location of the bursts in a dwarf galaxy. All these new data rule out several models that were previously proposed, and impose stringent constraints to new models. Aims: We aim to model FRB 121102 in light of the new observational results in the active galactic nucleus (AGN) scenario. Methods: We propose a model for repeating FRBs in which a non-steady relativistic e±-beam, accelerated by an impulsive magnetohydrodynamic driven mechanism, interacts with a cloud at the centre of a star-forming dwarf galaxy. The interaction generates regions of high electrostatic field called cavitons in the plasma cloud. Turbulence is also produced in the beam. These processes, plus particle isotropization, the interaction scale, and light retardation effects, provide the necessary ingredients for short-lived, bright coherent radiation bursts. Results: The mechanism studied in this work explains the general properties of FRB 121102, and may also be applied to other repetitive FRBs. Conclusions: Coherent emission from electrons and positrons accelerated in cavitons provides a plausible explanation of FRBs.
STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu
2016-12-10
Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less
Constraining the radio jet proper motion of the high-redshift quasar J2134-0419 at z = 4.3
NASA Astrophysics Data System (ADS)
Perger, Krisztina; Frey, Sándor; Gabányi, Krisztina É.; An, Tao; Britzen, Silke; Cao, Hong-Min; Cseh, Dávid; Dennett-Thorpe, Jane; Gurvits, Leonid I.; Hong, Xiao-Yu; Hook, Isobel M.; Paragi, Zsolt; Schilizzi, Richard T.; Yang, Jun; Zhang, Yingkang
2018-06-01
To date, PMN J2134-0419 (at a redshift z = 4.33) is the second most distant quasar known with a milliarcsecond-scale morphology permitting direct estimates of the jet proper motion. Based on two-epoch observations, we constrained its radio jet proper motion using the very long baseline interferometry (VLBI) technique. The observations were conducted with the European VLBI Network (EVN) at 5 GHz on 1999 November 26 and 2015 October 6. We imaged the central 10-pc scale radio jet emission and modelled its brightness distribution. By identifying a jet component at both epochs separated by 15.86 yr, a proper motion of μ = 0.035 ± 0.023 mas yr-1 is found. It corresponds to an apparent superluminal speed of βa = 4.1 ± 2.7 c. Relativistic beaming at both epochs suggests that the jet viewing angle with respect to the line of sight is smaller than 20°, with a minimum bulk Lorentz factor Γ = 4.3. The small value of the proper motion is in good agreement with the expectations from the cosmological interpretation of the redshift and the current cosmological model. Additionally we analysed archival Very Large Array observations of J2143-0419 and found indication of a bent jet extending to ˜30 kpc.
NASA Technical Reports Server (NTRS)
Stolz, A.; Larden, D. R.
1980-01-01
The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.
An Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy;
2004-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki
2014-07-01
We have carried out the first very long baseline interferometry (VLBI) imaging of a 44 GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151–1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds × 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ≈ 650 km corresponding to 100 Mλ in the uv-coverage.more » The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ∼5 mas × 2 mas, which corresponds to the linear size of ∼15 AU × 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ∼3.5 × 10{sup 8} to 1.0 × 10{sup 10} K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ∼50 mas. The 44 GHz class I methanol maser in IRAS 18151–1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.« less
Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging
NASA Astrophysics Data System (ADS)
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
Effelsberg Monitoring of a Sample of RadioAstron Blazars: Analysis of Intra-Day Variability
NASA Astrophysics Data System (ADS)
Liu, Jun; Bignall, Hayley; Krichbaum, Thomas; Liu, Xiang; Kraus, Alex; Kovalev, Yuri; Sokolovsky, Kirill; Angelakis, Emmanouil; Zensus, J.
2018-04-01
We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8\\,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid ($<$3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. $\\gamma$-ray loud sources were found to vary by up to a factor 4 more than $\\gamma$-ray quiet ones, with 4$\\sigma$ significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as $\\sim$70\\% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less
AGN coronal emission models - I. The predicted radio emission
NASA Astrophysics Data System (ADS)
Raginski, I.; Laor, Ari
2016-06-01
Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.
We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87more » with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.« less
Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands
NASA Astrophysics Data System (ADS)
Abellán, F. J.; Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2018-06-01
We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets.
Multi-GPU maximum entropy image synthesis for radio astronomy
NASA Astrophysics Data System (ADS)
Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.
2018-01-01
The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.
From Wagons to Race Cars, At Least Now We Have A Chassis
NASA Astrophysics Data System (ADS)
Morrow, A. L.
2003-12-01
For the past 30 years Very-Long-Baseline Interferometry (VLBI) has provided astronomers with the most accurate measurements to date of both distant radio sources as well as the tectonic plates. The resolutions attainable through VLBI are orders of magnitude better than other instruments. In order to transmit radio signals collected at different sites to a correlator for processing the VLBI data was stored on magnetic tapes, and then the magnetic tapes were shipped through the mail to the central processing site. This was not only arduous and inefficient, it was also costly. Now this means of shipment can be replaced by global high speed networks. This means of transmission is called e-VLBI. New protocols must be developed so e-VLBI can become a proficient high bandwidth background user. The protocol agreed upon uses a Real-time Transport Protocol (RTP) framework to preserve timing information and synchronization. The RTP is then transported using the Internet User Datagram Protocol (UDP) with RTP Control Protocol (RTCP) monitoring the networks performance. When this protocol is fully functional astronomers will be able to observe all over the world and receive results in real time.
Observations of lightning processes using VHF radio interferometry
NASA Technical Reports Server (NTRS)
Rhodes, C. T.; Shao, X. M.; Krehbiel, P. R.; Thomas, R.
1991-01-01
A single station, multiple baseline radio interferometer was used to locate the direction of VHF radiation from lightning discharges with microsec time resolution. Radiation source directions and electric field waveforms were analyzed for various types of breakdown events. These include initial breakdown and K type events of in-cloud activity, and the leaders of initial and subsequent strokes to ground and activity during and following return strokes. Radiation during the initial breakdown of a flash and in the early stages of initial leaders to ground is found to be similar. In both instances, the activity consists of localized bursts of radiation that are intense and slow moving. Motion within a given burst is unresolved by the interferometer. Radiation from in-cloud K type events is essentially the same as that from dart leaders; in both cases it is produced at the leading edge of a fast moving streamer that propagates along a well defined, often extensive path. K type events are sometimes terminated by fast field changes that are similar to the return stroke initiated by dart leaders; such K type events are the in-cloud analog of the dart leader return stroke process.
Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation
NASA Astrophysics Data System (ADS)
Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo
2015-05-01
There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.
Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal
2017-01-01
The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.
Digital Beamforming Interferometry
NASA Technical Reports Server (NTRS)
Rincon, Rafael F. (Inventor)
2016-01-01
Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.
Sensors Locate Radio Interference
NASA Technical Reports Server (NTRS)
2009-01-01
After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.
NASA Technical Reports Server (NTRS)
Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.;
2011-01-01
Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution
The Gamma-Ray Properties of Radio-Selected Extragalactic Jets
2010-06-01
Interferometry (VLBI) techniques. This information is important to understand the broad-band emission mechanism of these sources. In this work we... relativistic speed, thus the emission is Doppler boosted (Blandford & Rees, 1978; Maraschi et a!., 1992). This model is supported by the apparent... superluminal motion which is typically found in the inner radio-jets of blazars (Lister et al., 2009b, , and therein). Since 2008 August 11: the sky
The Combined Radio Interferometry and COSMIC Experiment in Tomography (CRICKET) Campaign
NASA Astrophysics Data System (ADS)
Dymond, Kenneth; Coker, Clayton; Bernhardt, Paul; Cohen, Aaron; Crane, Patrick; Kassim, Namir; Lazio, Joseph; Weiler, Kurt; Watts, Christopher; Rickard, Lee J.; Taylor, Greg; Schinzel, Frank; Philstrom, Ylva; Close, Sigrid; Colestock, Patrick; Myers, Steve; Datta, Abirhup
We report on the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15 and 17, 2007. The experiment used the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) in conjunction with the Very Large Array radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale. Each COSMIC satellite includes three instruments capable of measuring the ionosphere: the Tiny Ionospheric Photometer (TIP), a UV radiometer; the GPS Occultation experiment (GOX), a dual-frequency GPS occultation receiver; and the Tri-band Beacon (TBB), a three frequency coherently radiating radio beacon. These three instruments have been demonstrated to be a powerful means for characterizing the global-scale ionosphere. The VLA when deployed at its largest extent and while operating at 73.8 MHz is incredibly sensitive to relative total electron content variations of the regional ionosphere over about a 30-100 km diameter area. In this work, we concentrate on the first set of observations on September 15, 2007 at approximately 0830 UT. We have successfully married these heterogeneous data sets, using a tomographic data fusion approach, to produce a consistent ionospheric specification from the global scale down to the regional scale.
A VLBI resolution of the Pleiades distance controversy.
Melis, Carl; Reid, Mark J; Mioduszewski, Amy J; Stauffer, John R; Bower, Geoffrey C
2014-08-29
Because of its proximity and its youth, the Pleiades open cluster of stars has been extensively studied and serves as a cornerstone for our understanding of the physical properties of young stars. This role is called into question by the "Pleiades distance controversy," wherein the cluster distance of 120.2 ± 1.5 parsecs (pc) as measured by the optical space astrometry mission Hipparcos is significantly different from the distance of 133.5 ± 1.2 pc derived with other techniques. We present an absolute trigonometric parallax distance measurement to the Pleiades cluster that uses very long baseline radio interferometry (VLBI). This distance of 136.2 ± 1.2 pc is the most accurate and precise yet presented for the cluster and is incompatible with the Hipparcos distance determination. Our results cement existing astrophysical models for Pleiades-age stars. Copyright © 2014, American Association for the Advancement of Science.
Integration of Reference Frames Using VLBI
NASA Technical Reports Server (NTRS)
Ma, Chopo; Smith, David E. (Technical Monitor)
2001-01-01
Very Long Baseline Interferometry (VLBI) has the unique potential to integrate the terrestrial and celestial reference frames through simultaneous estimation of positions and velocities of approx. 40 active VLBI stations and a similar number of stations/sites with sufficient historical data, the position and position stability of approx. 150 well-observed extragalactic radio sources and another approx. 500 sources distributed fairly uniformly on the sky, and the time series of the five parameters that specify the relative orientation of the two frames. The full realization of this potential is limited by a number of factors including the temporal and spatial distribution of the stations, uneven distribution of observations over the sources and the sky, variations in source structure, modeling of the solid/fluid Earth and troposphere, logistical restrictions on the daily observing network size, and differing strategies for optimizing analysis for TRF, for CRF and for EOP. The current status of separately optimized and integrated VLBI analysis will be discussed.
Precession, Nutation and Wobble of the Earth
NASA Astrophysics Data System (ADS)
Dehant, V.; Mathews, P. M.
2015-04-01
Covering both astronomical and geophysical perspectives, this book describes changes in the Earth's orientation, specifically precession and nutation, and how they are observed and computed in terms of tidal forcing and models of the Earth's interior. Following an introduction to key concepts and elementary geodetic theory, the book describes how precise measurements of the Earth's orientation are made using observations of extra-galactic radio-sources by Very Long Baseline Interferometry techniques. It demonstrates how models are used to accurately pinpoint the location and orientation of the Earth with reference to the stars and how to determine variations in its rotation speed. A theoretical framework is also presented that describes the role played by the structure and properties of the Earth's deep interior. Incorporating suggestions for future developments in nutation theory for the next generation models, this book is ideal for advanced-level students and researche! rs in solid Earth geophysics, planetary science and astronomy.
A Kalman filter approach for the determination of celestial reference frames
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Gross, Richard; Jacobs, Christopher; Chin, Toshio; Karbon, Maria; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald
2017-04-01
The coordinate model of radio sources in International Celestial Reference Frames (ICRF), such as the ICRF2, has traditionally been a constant offset. While sufficient for a large part of radio sources considering current accuracy requirements, several sources exhibit significant temporal coordinate variations. In particular, the group of the so-called special handling sources is characterized by large fluctuations in the source positions. For these sources and for several from the "others" category of radio sources, a coordinate model that goes beyond a constant offset would be beneficial. However, due to the sheer amount of radio sources in catalogs like the ICRF2, and even more so with the upcoming ICRF3, it is difficult to find the most appropriate coordinate model for every single radio source. For this reason, we have developed a time series approach to the determination of celestial reference frames (CRF). We feed the radio source coordinates derived from single very long baseline interferometry (VLBI) sessions sequentially into a Kalman filter and smoother, retaining their full covariances. The estimation of the source coordinates is carried out with a temporal resolution identical to the input data, i.e. usually 1-4 days. The coordinates are assumed to behave like random walk processes, an assumption which has already successfully been made for the determination of terrestrial reference frames such as the JTRF2014. To be able to apply the most suitable process noise value for every single radio source, their statistical properties are analyzed by computing their Allan standard deviations (ADEV). Additional to the determination of process noise values, the ADEV allows drawing conclusions whether the variations in certain radio source positions significantly deviate from random walk processes. Our investigations also deal with other means of source characterization, such as the structure index, in order to derive a suitable process noise model. The Kalman filter CRFs resulting from the different approaches are compared among each other, to the original radio source position time series, as well as to a traditional CRF solution, in which the constant source positions are estimated in a global least squares adjustment.
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.
1989-01-01
Progress in the areas of data analysis, atmospheric delay calibration and software conversion is reported. Over 800 very long baseline interferometry (VLBI) experiments were analyzed in the last 6 months. Reprocessing of the Mark III VLBI data set is almost completed. Results of analysis of the water-vapor radiometer (WVR) data were submitted and a preprint of a related paper is attached. Work on conversion of the VLBI analysis software from HP1000 to Unix based workstations is continuing.
Radio interference in the near-earth environment
NASA Technical Reports Server (NTRS)
Erickson, W. C.
1988-01-01
Natural and man-made radio frequency interference (RFI) are potentially serious obstacles to the successful operation of an array of spacecraft used for low frequency (1 to 30 MHz) radio interferometry in the near-earth environment. Several satellites and planetary probes have carried radio astronomy experiments, and the moderate data base that they provide are examined to help understand the near-earth RFI environment. The general conclusion is that the region of space within 100 earth-radii of the earth is a hostile environment for any radio astronomy experiment. If a low frequency array in earth orbit is to yield useful astronomical results, severe interference problems must be anticipated and overcome. A number of recommendations are made to further examine the feasibility of such an array.
On the role of differenced phase-delays in high-precision wide-field multi-source astrometry
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2007-07-01
Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.
Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques
NASA Astrophysics Data System (ADS)
Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.
1992-08-01
A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.
Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques
NASA Technical Reports Server (NTRS)
Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.
1992-01-01
A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.
2018-01-01
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii
NASA Astrophysics Data System (ADS)
Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.
2018-06-01
Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.
A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii
NASA Astrophysics Data System (ADS)
Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.
2018-04-01
Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.
Second Epoch VLBA Calibrator Survey Observations: VCS-II
NASA Astrophysics Data System (ADS)
Gordon, David; Jacobs, Christopher; Beasley, Anthony; Peck, Alison; Gaume, Ralph; Charlot, Patrick; Fey, Alan; Ma, Chopo; Titov, Oleg; Boboltz, David
2016-06-01
Six very successful Very Long Baseline Array (VLBA) calibrator survey campaigns were run between 1994 and 2007 to build up a large list of compact radio sources with positions precise enough for use as very long baseline interferometry (VLBI) phase reference calibrators. We report on the results of a second epoch VLBA Calibrator Survey campaign (VCS-II) in which 2400 VCS sources were re-observed in the X and S bands in order to improve the upcoming third realization of the International Celestial Reference Frame (ICRF3) as well as to improve their usefulness as VLBI phase reference calibrators. In this survey, some 2062 previously detected sources and 324 previously undetected sources were detected and revised positions are presented. Average position uncertainties for the re-observed sources were reduced from 1.14 and 1.98 mas to 0.24 and 0.41 mas in R.A. and decl., respectively, or by nearly a factor of 5. Minimum detected flux values were approximately 15 and 28 mJy in the X and S bands, respectively, and median total fluxes are approximately 230 and 280 mJy. The vast majority of these sources are flat-spectrum sources, with ˜82% having spectral indices greater than -0.5.
Comparison of pulsar positions from timing and very long baseline astrometry
NASA Astrophysics Data System (ADS)
Wang, J. B.; Coles, W. A.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Kerr, M.; Yuan, J. P.; Wang, N.; Bailes, M.; Bhat, N. D. R.; Dai, S.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Russell, C. J.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.-P.; Zhu, X.-J.
2017-07-01
Pulsar positions can be measured with high precision using both pulsar timing methods and very long baseline interferometry (VLBI). Pulsar timing positions are referenced to a solar-system ephemeris, whereas VLBI positions are referenced to distant quasars. Here, we compare pulsar positions from published VLBI measurements with those obtained from pulsar timing data from the Nanshan and Parkes radio telescopes in order to relate the two reference frames. We find that the timing positions differ significantly from the VLBI positions (and also differ between different ephemerides). A statistically significant change in the obliquity of the ecliptic of 2.16 ± 0.33 mas is found for the JPL ephemeris DE405, but no significant rotation is found in subsequent JPL ephemerides. The accuracy with which we can relate the two frames is limited by the current uncertainties in the VLBI reference source positions and in matching the pulsars to their reference source. Not only do the timing positions depend on the ephemeris used in computing them, but also different segments of the timing data lead to varying position estimates. These variations are mostly common to all ephemerides, but slight changes are seen at the 10 μas level between ephemerides.
NASA Astrophysics Data System (ADS)
Liu, Bin; Tang, Jingshi; Hou, Xiyun
2016-07-01
Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.
Optical long baseline intensity interferometry: prospects for stellar physics
NASA Astrophysics Data System (ADS)
Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin
2018-06-01
More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1996-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.
HESS J1943+213: A Non-classical High-frequency-peaked BL Lac Object
NASA Astrophysics Data System (ADS)
Straal, S. M.; Gabányi, K. É.; van Leeuwen, J.; Clarke, T. E.; Dubner, G.; Frey, S.; Giacani, E.; Paragi, Z.
2016-05-01
HESS J1943+213 is an unidentified TeV source that is likely a high-frequency-peaked BL Lac (HBL) object, but that is also compatible with a pulsar wind nebula (PWN) nature. Each of these enormously different astronomical interpretations is supported by some of the observed unusual characteristics. In order to finally classify and understand this object, we took a three-pronged approach, through time-domain, high angular resolution, and multi-frequency radio studies. First, our deep time-domain observations with the Arecibo telescope failed to uncover the putative pulsar powering the proposed PWN. We conclude with ˜70% certainty that HESS J1943+213 does not host a pulsar. Second, long-baseline interferometry of the source with e-MERLIN at 1.5 and 5 GHz shows only a core, that is, a point source at ˜ 1-100 mas resolution. Its 2013 flux density is about one-third lower than that detected in the 2011 observations with similar resolution. This radio variability of the core strengthens the HBL object hypothesis. Third, additional evidence against the PWN scenario comes from the radio spectrum we compiled. The extended structure follows a power-law behavior with spectral index α \\=\\-0.54+/- 0.04 while the core component displays a flat spectrum (α \\=\\-0.03+/- 0.03). In contrast, the radio synchrotron emission of PWNe predicts a single power-law distribution. Overall, we rule out the PWN hypothesis and conclude that the source is a BL Lac object. The consistently high fraction (70%) of the flux density from the extended structure then leads us to conclude that HESS J1943+213 must be a non-classical HBL object.
Connecting kinematic and dynamic reference frames by D-VLBI
NASA Astrophysics Data System (ADS)
Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes
2012-08-01
In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
PARAS program: Phased array radio astronomy from space
NASA Astrophysics Data System (ADS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-06-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.
1992-01-01
Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements.
NASA Technical Reports Server (NTRS)
Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.
1980-01-01
A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.
Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Robertson, D. S.
1975-01-01
The use of very-long-baseline interferometry (VLBI) observations for the estimation of geodetic and astrometric parameters is discussed. Analytic models for the dependence of delay and delay rate on these parameters are developed and used for parameter estimation by the method of weighted least squares. Results are presented from approximately 15,000 delay and delay-rate observations, obtained in a series of nineteen VLBI experiments involving a total of five stations on two continents. The closure of baseline triangles is investigated and found to be consistent with the scatter of the various baseline-component results. Estimates are made of the wobble of the earth's pole and of the irregularities in the earth's rotation rate. Estimates are also made of the precession constant and of the vertical Love number, for which a value of 0.55 + or - 0.05 was obtained.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).
Circumstellar radio molecular lines
NASA Technical Reports Server (NTRS)
NGUYEN-QUANG-RIEU
1987-01-01
Radio molecular lines appear to be useful probes into the stellar environment. Silicon oxide masers provide information on the physical conditions in the immediate vicinity of the stellar photosphere. Valuable information on the physics operating in the envelope of IRC + 10216 was recently obtained by high sensitivity observations and detailed theoretical analyses. Infrared speckle interferometry in the molecular lines and in the continuum is helpful in the investigation of the inner region of the envelope. These techniques are discussed in terms of late-type star mass loss.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.;
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.
Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies
NASA Astrophysics Data System (ADS)
Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei
2015-04-01
The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus' atmosphere were derived. The demonstration of the capability of PRIDE as a radio science instrument for planetary atmospheric studies is developed in the framework of the upcoming ESA's JUICE mission to study Jupiter's system.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
Global astrometry with the space interferometry mission
NASA Technical Reports Server (NTRS)
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
NASA Technical Reports Server (NTRS)
Schilizzi, R. T.
1980-01-01
The capabilities of the European very long baseline interferometry (VLBI) network are summarized. The range of baseline parameters, sensitivities, and recording and other equipment available are included. Plans for upgrading the recording facilities and the use of geostationary satellites for signal transfer and clock synchronization are discussed.
VizieR Online Data Catalog: Radio fluxes of 195 ICRF2-Gaia transfer sources (Le Bail+, 2016)
NASA Astrophysics Data System (ADS)
Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.
2016-07-01
The second realization of the International Celestial Reference Frame (ICRF2) is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency's Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ~500000 Quasi Stellar Objects in the optical domain. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d'Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Table1 lists the 195 ICRF2-Gaia transfer sources. Beginning in 2003 June, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of "under-observed" sources. In 2013 March, we added all 195 ICRF2-Gaia transfer sources to the IVS source monitoring program with an observation target of 12 successful sessions per year. (1 data file).
Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204
NASA Astrophysics Data System (ADS)
Bondi, M.; Pérez-Torres, M. A.; Piconcelli, E.; Fu, H.
2016-04-01
The sources SDSS J113126.08-020459.2 and SDSS J110851.04+065901.4 are two double-peaked [O III] emitting active galactic nuclei (AGNs), identified as candidate binary AGNs by optical and near infrared (NIR) observations. We observed the two sources with high resolution Very Long Baseline Interferometry (VLBI) using the European VLBI Network at 5 GHz, reduced VLA observations at three frequencies available for one of the sources, and used archival HST observations. For the source SDSS J113126.08-020459.2, the VLBI observations detected only one single compact component associated with the eastern NIR nucleus. In SDSS J110851.04+065901.4, the VLBI observations did not detect any compact components, but the VLA observations allowed us to identify a possible compact core in the region of the north-western optical/NIR nucleus. In this source we find kpc-scale extended radio emission that is spatially coincident to the ultraviolet continuum and to the extended emission narrow line region. The UV continuum is significantly obscured since the amount of extended radio emission yields a star formation rate of about 110 M⊙ yr-1, which is an order of magnitude larger than implied by the observed ultraviolet emission. Our analysis confirms the presence of only one AGN in the two candidate binary AGNs. FITS files of the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A102
Spaceborne radar interferometry for coastal DEM construction
Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.
2005-01-01
Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.
The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)
NASA Technical Reports Server (NTRS)
Danchi, William C.
2003-01-01
Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.
Highly sensitive atomic based MW interferometry.
Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya
2018-06-06
We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.
Studying AGN Jets At Extreme Angular Resolution
NASA Astrophysics Data System (ADS)
Bruni, Gabriele
2016-10-01
RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.
Contribution of the AN/TPS-3 Radar Antenna to Australian radio astronomy
NASA Astrophysics Data System (ADS)
Wendt, Harry; Orchiston, Wayne
2018-04-01
The CSIRO Division of Radiophysics used the WWII surplus AN/TPS-3 radar dishes for their early solar radio astronomy research and eclipse observations. These aerials were also used in a spaced (Michelson) interferometer configuration in the late 1940s to investigate solar limb brightening at 600 MHz. This work paralleled early solar observations at Cambridge. None of the Australian research results using the spaced interferometry technique appeared in publications, and the invention of the solar grating array in 1950 made further use of the method redundant.
Astronomical Optical Interferometry. I. Methods and Instrumentation
NASA Astrophysics Data System (ADS)
Jankov, S.
2010-12-01
Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.
Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto
2006-01-01
We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.
NASA Technical Reports Server (NTRS)
King, R. W., Jr.
1975-01-01
The technique of differential very-long baseline interferometry was used to measure the relative positions of the ALSEP transmitters at the Apollo 12, 14, 15, 16, and 17 lunar landing sites with uncertainties less than 0.005 of geocentric arc. These measurements yielded improved determinations of the selenodetic coordinates of the Apollo landing sites, and of the physical libration of the moon. By means of a new device, the differential Doppler receiver (DDR), instrumental errors were reduced to less than the equivalent of 0.001. DDRs were installed in six stations of the NASA spaceflight tracking and data network and used in an extensive program of observations beginning in March 1973.
Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)
NASA Astrophysics Data System (ADS)
Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique
2012-11-01
The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.
The AuScope geodetic VLBI array
NASA Astrophysics Data System (ADS)
Lovell, J. E. J.; McCallum, J. N.; Reid, P. B.; McCulloch, P. M.; Baynes, B. E.; Dickey, J. M.; Shabala, S. S.; Watson, C. S.; Titov, O.; Ruddick, R.; Twilley, R.; Reynolds, C.; Tingay, S. J.; Shield, P.; Adada, R.; Ellingsen, S. P.; Morgan, J. S.; Bignall, H. E.
2013-06-01
The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
VLBI Observations of Geostationary Satellites
NASA Astrophysics Data System (ADS)
Artz, T.; Nothnagel, A.; La Porta, L.
2013-08-01
For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.
Viewing the Shadow of the Black Hole at the Galactic Center
NASA Astrophysics Data System (ADS)
Falcke, Heino; Melia, Fulvio; Agol, Eric
2000-01-01
In recent years, evidence for the existence of an ultracompact concentration of dark mass associated with the radio source Sagittarius A* in the Galactic center has become very strong. However, unambiguous proof that this object is indeed a black hole is still lacking. A defining characteristic of a black hole is the event horizon. To a distant observer, the event horizon casts a relatively large ``shadow'' with an apparent diameter of ~10 gravitational radii that is due to the bending of light by the black hole, and this shadow is nearly independent of the black hole spin or orientation. The predicted size (~30 μas) of this shadow for Sgr A* approaches the resolution of current radio interferometers. If the black hole is maximally spinning and viewed edge-on, then the shadow will be offset by ~8 μas from the center of mass and will be slightly flattened on one side. Taking into account the scatter broadening of the image in the interstellar medium and the finite achievable telescope resolution, we show that the shadow of Sgr A* may be observable with very long baseline interferometry at submillimeter wavelengths, assuming that the accretion flow is optically thin in this region of the spectrum. Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years.
Design and construction of prototype radio antenna for shortest radio wavelengths
NASA Technical Reports Server (NTRS)
Leighton, R. B.
1975-01-01
A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.
Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.
NASA Astrophysics Data System (ADS)
Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo
2015-05-01
This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.
NASA Astrophysics Data System (ADS)
Leek, Judith; Artz, Thomas; Nothnagel, Axel
2015-09-01
Daily Very Long Baseline Interferometry (VLBI) intensive measurements make an important contribution to the regular monitoring of Earth rotation variations. Since these variations are quite rapid, their knowledge is important for navigation with global navigation satellite system and for investigations in Earth sciences. Unfortunately, the precision of VLBI intensive observations is 2-3 times worse than the precision of regular 24h-VLBI measurements with networks of 5-10 radio telescopes. The major advancement of research in this paper is the improvement of VLBI intensive results by (a) using twin telescopes instead of single telescopes and (b) applying an entirely new scheduling concept for the individual observations. Preparatory investigations of standardintensive sessions suggest that the impact factors of the observations are well suited for the identification of the most influential observations which are needed for the determination of certain parameters within the entire design of a VLBI session. Based on this experience, the scheduling method is designed for optimizing the observations' geometry for a given network of radio telescopes and a predefined set of parameters to be estimated. The configuration of at least two twin telescopes, or one twin and two single telescopes, offers the possibility of building pairwise sub-nets that observe two different sources simultaneously. In addition to an optimized observing plan, a special parametrization for twin telescopes leads to an improved determination of Earth rotation variations, as it is shown by simulated observations. In general, an improvement of about 50 % in the formal errors can be realized using twin radio telescopes. This result is only due to geometric improvements as higher slew rates of the twin telescopes are not taken into account.
Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279
NASA Astrophysics Data System (ADS)
Rani, B.; Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Sokolovsky, K. V.; Larionov, V. M.; Smith, P.; Mosunova, D. A.; Borman, G. A.; Grishina, T. S.; Kopatskaya, E. N.; Mokrushina, A. A.; Morozova, D. A.; Savchenko, S. S.; Troitskaya, Yu. V.; Troitsky, I. S.; Thum, C.; Molina, S. N.; Casadio, C.
2018-05-01
We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multiwavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 during an episode of extreme flaring activity in 2013–2014. Six bright flares superimposed on a long-term outburst are detected at γ-ray energies. Four of the flares have optical and radio counterparts. The two modes of flaring activity (faster flares sitting on top of a long-term outburst) present at radio, optical, and γ-ray frequencies are missing in X-rays. X-ray counterparts are only observed for two flares. The first three flares are accompanied by ejection of a new VLBI component (NC2), suggesting the 43 GHz VLBI core as the site of energy dissipation. Another new component, NC3, is ejected after the last three flares, which suggests that the emission is produced upstream from the core (closer to the black hole). The study therefore indicates multiple sites of energy dissipation in the source. An anticorrelation is detected between the optical percentage polarization (PP) and optical/γ-ray flux variations, while the PP has a positive correlation with optical/γ-ray spectral indices. Given that the mean polarization is inversely proportional to the number of cells in the emission region, the PP versus optical/γ-ray anticorrelation could be due to more active cells during the outburst than at other times. In addition to the turbulent component, our analysis suggests the presence of a combined turbulent and ordered magnetic field, with the ordered component transverse to the jet axis.
2007-02-01
frequency radio wave propagation through the ionosphere , where the earths magnetic field lines break this reciprocity symmetry and as a result the cross...polarisation terms are no longer equal. This observation can be used to calibrate the effects of Faraday rotation due to trans- ionospheric ...currently under investigation is polarimetric SAR tomography , which is the extension of conventional two-dimensional SAR imaging principle to three
VLBI imaging of a flare in the Crab nebula: more than just a spot
NASA Astrophysics Data System (ADS)
Lobanov, A. P.; Horns, D.; Muxlow, T. W. B.
2011-09-01
We report on very long baseline interferometry (VLBI) observations of the radio emission from the inner region of the Crab nebula, made at 1.6 GHz and 5 GHz after a recent high-energy flare in this object. The 5 GHz data have provided only upper limits of 0.4 milli-Jansky (mJy) on the flux density of the pulsar and 0.4 mJy/beam on the brightness of the putative flaring region. The 1.6 GHz data have enabled imaging the inner regions of the nebula on scales of up to ≈ 40''. The emission from the inner "wisps" is detected for the first time with VLBI observations. A likely radio counterpart (designated "C1") of the putative flaring region observed with Chandra and HST is detected in the radio image, with an estimated flux density of 0.5 ± 0.3 mJy and a size of 0.2 arcsec - 0.6 arcsec. Another compact feature ("C2") is also detected in the VLBI image closer to the pulsar, with an estimated flux density of 0.4 ± 0.2 mJy and a size smaller than 0.2 arcsec. Combined with the broad-band SED of the flare, the radio properties of C1 yield a lower limit of ≈ 0.5 mG for the magnetic field and a total minimum energy of 1.2 × 1041 erg vested in the flare (corresponding to using about 0.2% of the pulsar spin-down power). The 1.6 GHz observations provide upper limits for the brightness (0.2 mJy/beam) and total flux density (0.4 mJy) of the optical Knot 1 located at 0.6 arcsec from the pulsar. The absolute position of the Crab pulsar is determined, and an estimate of the pulsar proper motion (μα = -13.0 ± 0.2 mas/yr, μδ = + 2.9 ± 0.1 mas/yr) is obtained.
Evaluation of very long baseline interferometry atmospheric modeling improvements
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Ma, C.
1994-01-01
We determine the improvement in baseline length precision and accuracy using new atmospheric delay mapping functions and MTT by analyzing the NASA Crustal Dynamics Project research and development (R&D) experiments and the International Radio Interferometric Surveying (IRIS) A experiments. These mapping functions reduce baseline length scatter by about 20% below that using the CfA2.2 dry and Chao wet mapping functions. With the newer mapping functions, average station vertical scatter inferred from observed length precision (given by length repeatabilites) is 11.4 mm for the 1987-1990 monthly R&D series of experiments and 5.6 mm for the 3-week-long extended research and development experiment (ERDE) series. The inferred monthly R&D station vertical scatter is reduced by 2 mm or by 7 mm is a root-sum-square (rss) sense. Length repeatabilities are optimum when observations below a 7-8 deg elevation cutoff are removed from the geodetic solution. Analyses of IRIS-A data from 1984 through 1991 and the monthly R&D experiments both yielded a nonatmospheric unmodeled station vertical error or about 8 mm. In addition, analysis of the IRIS-A exeriments revealed systematic effects in the evolution of some baseline length measurements. The length rate of change has an apparent acceleration, and the length evolution has a quasi-annual signature. We show that the origin of these effects is unlikely to be related to atmospheric modeling errors. Rates of change of the transatlantic Westford-Wettzell and Richmond-Wettzell baseline lengths calculated from 1988 through 1991 agree with the NUVEL-1 plate motion model (Argus and Gordon, 1991) to within 1 mm/yr. Short-term (less than 90 days) variations of IRIS-A baseline length measurements contribute more than 90% of the observed scatter about a best fit line, and this short-term scatter has large variations on an annual time scale.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Astronomers Make First Images With Space Radio Telescope
NASA Astrophysics Data System (ADS)
1997-07-01
Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as part of the VLBA instrument, was modified over the past four years to allow it to incorporate data from the satellite. Correlation of the observational data was completed successfully on June 12, after the exact timing of the satellite recording was established. Further computer processing produced an image of PKS 1519-273 -- the first image ever produced using a radio telescope in space. For Jim Ulvestad, the NRAO astronomer who made the first image, the success ended a long quest for this new capability. Ulvestad was involved in an experiment more than a decade ago in which a NASA communications satellite, TDRSS, was used to test the idea of doing radio astronomical imaging by combining data from space and ground radio telescopes. That experiment showed that an orbiting antenna could, in fact, work in conjunction with ground-based radio observatories, and paved the way for HALCA and a planned Russian radio astronomy satellite called RadioAstron. "This first image is an important technical milestone, and demonstrates the feasibility of a much more advanced mission, ARISE, currently being considered by NASA," Ulvestad said. The first image showed no structure in the object, even at the extremely fine level of detail achievable with HALCA; it is what astronomers call a "point source." This object also appears as a point source in all-ground-based observations. In addition, the 1986 TDRSS experiment observed the object, and, while this experiment did not produce an image, it indicated that PKS 1519-273 should be a point source. "This simple point image may not appear very impressive, but its beauty to us is that it shows our entire, complex system is functioning correctly. The system includes not only the orbiting and ground-based antennas, but also the orbit determination, tracking stations, the correlator, and the image-processing software," said Jonathan Romney, the NRAO astronomer who led the development of the VLBA correlator, and its enhancement to process data from orbiting radio telescopes. "We would be skeptical of a complex image if we had not been able to obtain a good point image first," Romney added. A second observing target, the quasar 1156+295, observed on June 5, made a more interesting picture. Seen by ground-based radio observatories, this object, at a distance of 6.5 billion light years, has been known to show an elongation in its structure to the northeast of the core. However, seen with the space-ground system, it is clearly shown to have both a core and a complex "jet" emerging from the core. Such jets, consisting of subatomic particles moving near the speed of light, are seen in many quasars and active galaxies throughout the universe. In fact, 1156+295 is one of a class of objects recently found by NASA's Compton Gamma-Ray Observatory to exhibit powerful gamma-ray emission; such objects are among the most compact and energetic known in the universe. "By showing that this object actually is a core-jet system, HALCA has produced its first new scientific information, and demonstrates its imaging capabilities for a variety of astrophysical investigations," Romney said. "This image shows that the jet extends much closer to the core, or 'central engine' of the quasar than is shown by ground-only imaging," Romney added. "This is an exciting and historical achievement for radio astronomy," said Miller Goss, NRAO's VLA/VLBA Director. "At NRAO, we have seen our colleagues -- scientists, electrical engineers, computer programmers and technicians in Socorro and Green Bank -- work for years on this project. Now, they can take pride in their success." Radio astronomers, like astronomers using visible light, usually seek to make images of the objects at which they aim their telescopes. Because radio waves are much longer than light waves, a radio telescope must be much larger than an optical instrument in order to see the same amount of detail. Greater ability to see detail, called resolving power, has been a quest of radio astronomers for more than half a century. To see a level of detail equal to that revealed by optical telescopes would require a radio-telescope dish miles across. In the 1950s, British and Australian scientists developed a technique that used smaller, widely-separated antennas, and combined their signals to produce resolving power equal to that of a single dish as large as the distance between the smaller dishes. This technique, called interferometry, is used by the VLA, with 27 antennas and a maximum separation of 20 miles, and the VLBA, with 10 antennas and a maximum separation of 5,000 miles. Systems such as the VLBA, in which the antennas are so widely separated that data must be individually tape-recorded at each site and combined after the observation, are called Very Long Baseline Interferometry (VLBI) systems. VLBI was developed by American and Canadian astronomers and was first successfully demonstrated in 1967. The VLBA, working with radio telescopes in Europe, represents the largest radio telescope that can be accommodated on the surface of the Earth. With an orbit that carries it more than 13,000 miles above the Earth, HALCA, working with the ground-based telescopes, extends the "sharp vision" of radio astronomy farther than ever before. Using HALCA, radio astronomers expect to routinely produce images with more than 100 times the detail seen by the Hubble Space Telescope. Astronomers around the world are waiting to use the satellite to seek answers to questions about some of the most distant and intriging objects in the universe. As much as one-third of the VLBA's observing time will be devoted to observations in conjunction with HALCA. Over the expected five-year lifetime of HALCA, scientists hope to observe hundreds of quasars, pulsars, galaxies, and other objects. Launched from Japan's Kagoshima Space Center, HALCA orbits the Earth every six hours, ranging from 350 to 13,200 miles high. The 1,830-pound satellite has a dish antenna 26 feet in diameter. The antenna, folded like an umbrella for the launch, was unfolded under radio control from the ground on Feb. 26. The antenna was pointed toward PKS 1519-273 after a three-month checkout of the spacecraft's electronics, computers and guidance systems. HALCA observations represent a true international scientific collaboration. In addition to the HALCA spacecraft, built, launched, and operated by Japan's ISAS, the participation of a large number of ground-based radio telescopes is also essential. NRAO's VLBA and VLA instruments, including the VLBA correlator, will be a vital component of this collaboration. Other radio telescopes in the U.S., Japan, Europe, and Australia, also will participate. NRAO's facility at Green Bank, WV, is one of five tracking stations where the data collected on the spacecraft are received and recorded. Another is at an ISAS facility in Japan, and JPL operates three additional tracking stations, in California, Australia, and Spain. JPL also collects information from all tracking stations to determine the very accurate spacecraft orbit necessary to reduce these observations. The NRAO Space VLBI efforts in Socorro and Green Bank were supported by funding from the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Estimating the Celestial Reference Frame via Intra-Technique Combination
NASA Astrophysics Data System (ADS)
Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel
2016-12-01
One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1988-01-01
Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.
THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, R.; Rioja, M.; Imai, H.
2013-06-15
High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 mmore » in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.« less
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.
2016-10-01
We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.
NASA Technical Reports Server (NTRS)
Linfield, R. P.; Teitelbaum, L. P.; Skjerve, L. J.; Keihm, S. J.; Walter, S. J.; Mahoney, M. J.; Treuhaft, R. N.
1995-01-01
Simultaneous very long baseline interferometry (VLBI) and water vapor radiometer (WVR) measurements on a 21 km baseline showed that calibration by WVRs removed a significant fraction of the effect of tropospheric delay fluctuations for these experiments. From comparison of the residual delay variations within scans and between scans, the total tropospheric contribution t the delay residuals for each of the three 5 to 20 hour sessions was estimated as 1, 17, and 10%, with the first value being uncertain. The observed improvement in rms residual delay from WVR calibration during these three sessions was 4, 16, and 2%, respectively. The improvement is consistent with the estimated 2 to 3 mm path delay precision of current WVRs. The VLBI measurements, of natural radio sources, were conducted in April and May 1993 at Goldstone, California. Dual-frequency (2.3 and 8.4 GHz) observations were employed to remove the effects of charged particles from the data. Measurements with co-pointed WVRs, located within 50 m of the axis of each antenna, were performed to test the ability of the WVRs to calibrate line-of-sight path delays. Factors that made WVR performance assessment difficult included (1) the fact that the level of tropospheric fluctuations was smaller than is typical for Goldstone during these experiments and (2) VLBI delay variations on longer time scales (i.e., over multiple scans) contained uncalibrated instrumental effects (probably a result of slow temperature variations in the VLBI hardware) that were larger than the tropospheric effects.
Mobile radio interferometric geodetic systems
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Niell, A. E.; Ong, K. M.; Resch, G. M.; Morabito, D. D.; Claflin, E. S.; Lockhart, T. G.
1978-01-01
Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed.
Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques
NASA Technical Reports Server (NTRS)
2008-01-01
Space vehicle launches are often delayed because of the challenge of verifying that the range is clear, and such delays are likely to become more prevalent as more and more new spaceports are built. Range surveillance is one of the primary focuses of Range Safety for launches and often drives costs and schedules. As NASA's primary launch operation center, Kennedy Space Center is very interested in new technologies that increase the responsiveness of radio frequency (RF) surveillance systems. These systems help Range Safety personnel clear the range by identifying, pinpointing, and resolving any unknown sources of RF emissions prior to each launch.
AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.
The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of −0.2 ± 0.5c over the whole jet. Assuming themore » knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer and Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.« less
NRAO Scientists on Team Receiving International Astronautics Award
NASA Astrophysics Data System (ADS)
2005-10-01
The International Academy of Astronautics (IAA) is presenting an award to a pioneering team of scientists and engineers who combined an orbiting radio-astronomy satellite with ground-based radio telescopes around the world to produce a "virtual telescope" nearly three times the size of the Earth. The team, which includes two scientists from the National Radio Astronomy Observatory (NRAO), will receive the award in a ceremony Sunday, October 16, in Fukuoka, Japan. VSOP Satellite and Ground Telescopes Artist's conception of HALCA satellite and ground observatories together making "virtual telescope" (blue) about three times the size of Earth. CREDIT: ISAS, JAXA (Click on image for larger version) The IAA chose the VLBI Space Observatory Program (VSOP), an international collaboration, to receive its 2005 Laurels for Team Achievement Award, which recognizes "extraordinary performance and achievement by a team of scientists, engineers and managers in the field of Astronautics to foster its peaceful and international use." VSOP team members named in the IAA award include NRAO astronomers Edward Fomalont, of Charlottesville, Virginia, and Jonathan Romney, of Socorro, New Mexico. "This is a well-deserved award for an international team whose hard work produced a scientific milestone that yielded impressive results and provides a foundation for more advances in the future," said Dr. Fred K.Y Lo, NRAO Director. The VSOP program used a Japanese satellite, HALCA (Highly Advanced Laboratory for Communications and Astronomy), that included an 8-meter (26-foot) radio telescope. HALCA was launched in 1997 and made astronomical observations in conjunction with ground-based radio telescopes from 14 countries. Five tracking stations, including one at NRAO's Green Bank, West Virginia, facility, received data from HALCA which later was combined with data from the ground-based telescopes to produce images more detailed than those that could have been made by ground-based systems alone. The NRAO's Very Long Baseline Array (VLBA), a continent-wide system of radio telescopes ranging from Hawaii to the Caribbean, was one of the principal ground-based networks working with HALCA. The VLBA's powerful special-purpose computer, called a correlator, was a prime workhorse for processing the data from VSOP astronomical observations. Very long baseline interferometry (VLBI) is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance, or "baselines" between telescopes, the greater the resolving power. The IAA award citation notes that the VSOP team "realized the long-held dream of radio astronomers to extend those baselines into space, by observing celestial radio sources with the HALCA satellite, supported by a dedicated network of tracking stations, and arrays of ground radio telescopes from around the world." The VSOP team was able to approximately triple the resolving power available with only ground-based telescopes. The first experiment in such space-ground observation was made in 1986, using a NASA Tracking and Data Relay Satellite. The VSOP project grew as an international effort after that experiment, and provided observing time to astronomers from around the world. During the VSOP observational program, the combined space-ground system made more than 780 individual astronomical observations and also made an all-sky survey of the cores of active galaxies. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In addition to providing large amounts of observing time on the VLBA and building and operating the Green Bank tracking station, NRAO staff also modified existing hardware and software and aided astronomers from around the world in analyzing VSOP data. On behalf of the entire VSOP Team, the IAA highlighted "the astronomers and engineers who made key contributions to realizing, and operating, a radio telescope bigger than the Earth." In addition to Fomalont and Romney, they are: Hisashi Hirabayashi, of the Institute of Space and Astronautical Science and Japan Aerospace Exploration Agency (ISAS/JAXA), Haruto Hirosawa (ISAS/JAXA), Peter Dewdney of Canada's Dominion Radio Astrophysical Observatory, Leonid Gurvits of the Joint Institute for VLBI in Europe (JIVE, The Netherlands), Makoto Inoue of the National Astronomical Observatory of Japan (NAOJ), David Jauncey of the Australia Telescope National Facility, Noriyuki Kawaguchi (NAOJ), Hideyuki Kobayashi (NAOJ), Kazuo Miyoshi (Mitsubishi Electric Corporation, Japan), Yasuhiro Murata (ISAS/JAXA), Takeshi Orii (NEC, Japan) Robert Preston of NASA's Jet Propulsion Laboratory (JPL), and Joel Smith (JPL). The International Academy of Astronautics was founded in August 1960 in Stockholm, Sweden, during the 11th International Astronautical Congress. The Academy aims to foster the development of astronautics for peaceful purposes; recognize individuals who have distinguished themselves in a related branch of science or technology; provide a program through which members may contribute to international endeavours; cooperation in the advancement of aerospace science. Previous recipients of the Laurels for Team Achievement Award are the Russian Mir Space Station Team (2001), the U.S. Space Shuttle Team (2002), the Solar and Heliospheric Observatory (SOHO) Team (2003), and the Hubble Space Telescope Team (2004). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds
NASA Astrophysics Data System (ADS)
Piner, B. Glenn; Edwards, Philip G.
2018-01-01
We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.
Scandinavia studies of recent crustal movements and the space geodetic baseline network
NASA Technical Reports Server (NTRS)
Anderson, A. J.
1980-01-01
A brief review of crustal movements within the Fenno-Scandia shield is given. Results from postglacial studies, projects for measuring active fault regions, and dynamic ocean loading experiments are presented. The 1979 Scandinavian Doppler Campaign Network is discussed. This network includes Doppler translocation baseline determination of future very long baseline interferometry baselines to be measured in Scandinavia. Intercomparison of earlier Doppler translocation measurements with a high precision terrestrial geodetic baseline in Scandinavia has yielded internal agreement of 6 cm over 887 km. This is a precision of better than 1 part in to the 7th power.
Viscoelastic deformation near active plate boundaries
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1991-01-01
Very Long Baseline Interferometry (VLBI) now has the capacity to monitor geodetic positions with precisions of a few 1 mm over continental baselines. For tectonic applications, one of the major products of the VLBI program is the determination of the rate of change of station locations. Vector site velocities are now routinely produced. One of the novel techniques, VLBI Euler poles, is discussed.
2013-09-01
of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each
The Radio Jets and Accretion Disk in NGC 4261
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn
2000-05-01
The structure of active galactic nucleus (AGN) accretion disks on subparsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. For objects in which both jet and counterjet are detectable with very long baseline interferometry (VLBI), the accretion disk will cover part of the counterjet and produce diminished brightness whose angular size and depth as a function of frequency can reveal the radial distribution of free electrons in the disk. The nearby (41 Mpc, independent of H0) FR I radio galaxy NGC 4261 contains a pair of symmetric kiloparsec-scale jets. On parsec scales, radio emission from the nucleus is strong enough for detailed imaging with VLBI. We present new Very Long Baseline Array (VLBA) observations of NGC 4261 at 22 and 43 GHz, which we combine with previous observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. The relative closeness of NGC 4261 combined with the high angular resolution provided by the VLBA at 43 GHz gives us a very high linear resolution, approximately 2×10-2 pc ~4000 AU ~400 Schwarzschild radii for a 5×108 Msolar black hole. The jets appear more symmetric at 1.6 GHz because of the low angular resolution available. The jets are also more symmetric at 22 and 43 GHz, presumably because the optical depth of free-free absorption is small at high frequencies. At 8.4 GHz, neither confusion effect is dominant and absorption of counterjet emission by the presumed disk is detectable. We find that the orientation of the radio jet axis is the same on parsec and kiloparsec scales, indicating that the spin axis of the inner accretion disk and black hole has remained unchanged for at least 106 (and more likely >107) yr. This suggests that a single merger event may be responsible for the supply of gas in the nucleus of NGC 4261. The jet opening angle is between 0.3d and 20° during the first 0.2 pc of the jet and must be less than 5° during the first 0.8 pc. Assuming that the accretion disk is geometrically and optically thin and composed of a uniform 104 K plasma, the average electron density in the inner 0.1 pc of the disk is 103-108 cm-3. The mass of ionized gas in the inner pc of the disk is 101-103 Msolar, sufficient to power the radio source for ~104-106 yr. Equating thermal gas pressure and magnetic field strength gives a disk magnetic field of ~10-4 to 10-2 gauss at 0.1 pc. We include an appendix containing expressions for a simple, optically thin, gas-pressure-dominated accretion disk model that may be applicable to other galaxies in addition to NGC 4261.
NRAO Teams With NASA Gamma-Ray Satellite
NASA Astrophysics Data System (ADS)
2007-06-01
The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can accelerate jets of material to nearly light speed. "The gamma-ray and radio observations will show scientists different aspects of many still-mysterious objects and processes. By providing a simple procedure for astronomers to win observing time on radio telescopes to follow up on our new gamma-ray discoveries, we're ensuring that we get the maximum scientific return from both," said GLAST project scientist Steve Ritz of NASA's Goddard Space Flight Center in Greenbelt, Md. "The importance of this coordinated approach has been highlighted by a recent two-day workshop at Goddard, in which we discussed the scientific benefits and coordination of radio Very Long Baseline Interferometry observations made in conjunction with GLAST." NRAO's radio telescopes have been used for many years as part of multiwavelength observing programs in conjunction with both ground-based and space-based observatories. Usually, however, astronomers had to submit separate observing proposals to two or more review committees, with no guarantee that they would win observing time on all desired telescopes. For its part, NASA spacecraft such as the Compton Gamma-Ray Observatory and the Chandra X-ray Observatory have opened wide new windows on the high-energy universe. Astronomers, including those on a recent NSF Senior Review panel, have urged reductions in administrative barriers to gaining observing time at multiple wavelengths. "This NRAO-GLAST agreement eases the process of winning observing time on NRAO telescopes to complement the GLAST all-sky gamma-ray survey. In particular, the continent-wide VLBA is the only existing radio telescope that can image and monitor the sites of extreme gamma-ray flares in distant galaxies," said Jim Ulvestad, NRAO's Director for VLA-VLBA Operations. "We expect to see arrangements like this become much more common in the future, to the benefit of the science." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NASA's GLAST mission is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)
NASA Technical Reports Server (NTRS)
Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.
Solving the corner-turning problem for large interferometers
NASA Astrophysics Data System (ADS)
Lutomirski, Andrew; Tegmark, Max; Sanchez, Nevada J.; Stein, Leo C.; Urry, W. Lynn; Zaldarriaga, Matias
2011-01-01
The so-called corner-turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna need to be routed to an array of processors each of which will handle a limited portion of the data (say, a frequency range) but requires input from each antenna. We present a low-cost solution allowing the correlator to transpose its data in real time, without contending for bandwidth, via a butterfly network requiring neither additional RAM memory nor expensive general-purpose switching hardware. We discuss possible implementations of this using FPGA, CMOS, analog logic and optical technology, and conclude that the corner-turner cost can be small even for upcoming massive radio arrays.
Precision and Accuracy of Intercontinental Distance Determinations Using Radio Interferometry.
1983-07-01
applicsible) Air Forcc Gc.’!physics Laborator - LWG F19628-82-K- 0002 Sc ADDRESS ICity,. State and ZIP Code) 10. SOURCE OF FUNDING NOS. [lanscon AFB, MA...error in the calibration phase, E. Hence E tan-’[( Acsin, s- Acoso )/A ] (3.2.5)4s obs s obs cal and the corrected calibration phase will be given by cal m
Nonlinear Kalman filters for calibration in radio interferometry
NASA Astrophysics Data System (ADS)
Tasse, C.
2014-06-01
The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visibilities are understood and analytically stable. Recursive algorithms are particularly well adapted for pre-calibration and sky model estimate in a streaming way. This may be useful for the SKA-type instruments that produce huge amounts of data that have to be calibrated before being averaged.
The Era After the ELT: Optical Interferometry With Kilometer Baselines
NASA Astrophysics Data System (ADS)
Bakker, Eric J.
2007-12-01
The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Infrasonic interferometry applied to synthetic and measured data
NASA Astrophysics Data System (ADS)
Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.
2013-04-01
The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioja, M.; Dodson, R., E-mail: maria.rioja@icrar.org
2011-04-15
We describe a new method which achieves high-precision very long baseline interferometry (VLBI) astrometry in observations at millimeter (mm) wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method source-frequency phase referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using themore » Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 and 3C273 and 1308+326 and 1308+328 under various conditions. We conclude that this method is widely applicable to mm-VLBI observations of many target sources, and unique in providing bona fide astrometrically registered images and high-precision relative astrometric measurements in mm-VLBI using existing and newly built instruments, including space VLBI.« less
Research and Development in Very Long Baseline Interferometry (VLBI)
NASA Technical Reports Server (NTRS)
Himwich, William E.
2004-01-01
Contents include the following: 1.Observation coordination. 2. Data acquisition system control software. 3. Station support. 4. Correlation, data processing, and analysis. 5. Data distribution and archiving. 6. Technique improvement and research. 7. Computer support.
Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.
Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J
2014-11-28
Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. Copyright © 2014, American Association for the Advancement of Science.
Atmospheric pressure loading parameters from very long baseline interferometry observations
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Gipson, John M.
1994-01-01
Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.
NASA Astrophysics Data System (ADS)
Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20+0.13 -0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr-1, corresponding to 8 km s-1, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μ x = -2.8 ± 0.2 and μ y = 2.6 ± 0.2 mas yr-1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be αJ2000 = 07h22m58.s3259 ± 0.s0007, δJ2000 = -25°46'03farcs063 ± 0farcs010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.
Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands
NASA Astrophysics Data System (ADS)
Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.
2017-06-01
Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
Space Interferometry Mission: Measuring the Universe
NASA Technical Reports Server (NTRS)
Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey
1991-01-01
The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.
Evolution in High Spatial Resolution Imaging of Faint, Complex Objects
NASA Astrophysics Data System (ADS)
van Belle, G.
The astrophysical community has been working at the task of obtaining image information of the smallest structures in the sky via the use of optical interferometry for well over a century. A richly diverse family of technology architectures has been explored over the years, and yet the current family of facilities are all striking similar. Although there may be other, heretofore undeployed, architectures that support the goal of collecting image information at the highest resolutions, we expect dramatic advances at the component level of long-baseline interferometry to be the best avenue for advancing the technique, rather than entirely new architectures.
NASA Technical Reports Server (NTRS)
Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.;
2016-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Youngjoo; Cho, Se-Hyung; Kim, Jaeheon
We present the first images of the v = 1 and v = 2 J = 1 → 0 SiO maser lines taken with KaVA, i.e., the combined array of the Korean Very Long Baseline Interferometry (VLBI) Network and the VLBI Exploration of Radio Astrometry (VERA), toward the OH/IR star WX Psc. The combination of long and short antenna baselines enabled us to detect a large number of maser spots, which exhibit a typical ring-like structure in both the v = 1 and v = 2 J = 1 → 0 SiO masers as those that have been found inmore » previous VLBI observational results of WX Psc. The relative alignment of the v = 1 and v = 2 SiO maser spots are precisely derived from astrometric analysis, due to the absolute coordinates of the reference maser spot that were well determined in an independent astrometric observation with VERA. The superposition of the v = 1 and v = 2 maser spot maps shows a good spatial correlation between the v = 1 and v = 2 SiO maser features. Nevertheless, it is also shown that the v = 2 SiO maser spot is distributed in an inner region compared to the v = 1 SiO maser by about 0.5 mas on average. These results provide good support for the recent theoretical studies of the SiO maser pumping, in which both the collisional and the radiative pumping predict the strong spatial correlation and the small spatial discrepancy between the v = 1 and v = 2 SiO maser.« less
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.
1994-01-01
Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
Mueller, I. I.
1985-01-01
The current technical objectives for the geodynamics program consist of (1) optimal utilization of laser and Very Long Baseline Interferometry (VLBI) observations for reference frames for geodynamics; (2) utilization of range difference observations in geodynamics; and (3) estimation techniques in crustal deformation analysis.
IVS: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Behrend, D.; Nothnagel, A.; Petrachenko, W. T.; Tuccari, G.
2016-12-01
The International VLBI Service for Geodesy and Astrometry (IVS) is a globally operating service that coordinates and performs Very Long Baseline Interferometry (VLBI) activities through its constituent components. The VLBI activities are associated with the creation, provision, dissemination, and archiving of relevant VLBI data and products. The products mostly pertain to the determination of the celestial and terrestrial reference frames, the Earth orientation parameters (EOP), atmospheric parameters as well as other ancillary parameters. The IVS observational network currently consists of about 40 radio telescopes worldwide. Subsets of these telescopes (8-12 stations) participate in 24-hour observing sessions that are run several times per week and in 1-hour intensive sessions for UT1 determination every day. The current VLBI network was developed mainly in the 1970s and 1980s. A number of factors, including aging infrastructure and demanding new scientific requirements, started to challenge its future sustainability and relevance. In response, the IVS and other groups developed and started implementing the next generation VLBI system, called VGOS (VLBI Global Observing System), at existing and new sites. The VGOS network is expected to reach maturity in the early 2020s. We describe the current status, progress, and anticipated prospects of geodetic/astrometric VLBI and the IVS.
Trajectory and navigation system design for robotic and piloted missions to Mars
NASA Technical Reports Server (NTRS)
Thurman, S. W.; Matousek, S. E.
1991-01-01
Future Mars exploration missions, both robotic and piloted, may utilize Earth to Mars transfer trajectories that are significantly different from one another, depending upon the type of mission being flown and the time period during which the flight takes place. The use of new or emerging technologies for future missions to Mars, such as aerobraking and nuclear rocket propulsion, may yield navigation requirements that are much more stringent than those of past robotic missions, and are very difficult to meet for some trajectories. This article explores the interdependencies between the properties of direct Earth to Mars trajectories and the Mars approach navigation accuracy that can be achieved using different radio metric data types, such as ranging measurements between an approaching spacecraft and Mars orbiting relay satellites, or Earth based measurements such as coherent Doppler and very long baseline interferometry. The trajectory characteristics affecting navigation performance are identified, and the variations in accuracy that might be experienced over the range of different Mars approach trajectories are discussed. The results predict that three sigma periapsis altitude navigation uncertainties of 2 to 10 km can be achieved when a Mars orbiting satellite is used as a navigation aid.
Ground-based real-time tracking and traverse recovery of China's first lunar rover
NASA Astrophysics Data System (ADS)
Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang
2016-02-01
The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Sovers, O. J.
1994-01-01
The standard tropospheric calibration model implemented in the operational Orbit Determination Program is the seasonal model developed by C. C. Chao in the early 1970's. The seasonal model has seen only slight modification since its release, particularly in the format and content of the zenith delay calibrations. Chao's most recent standard mapping tables, which are used to project the zenith delay calibrations along the station-to-spacecraft line of sight, have not been modified since they were first published in late 1972. This report focuses principally on proposed upgrades to the zenith delay mapping process, although modeling improvements to the zenith delay calibration process are also discussed. A number of candidate approximation models for the tropospheric mapping are evaluated, including the semi-analytic mapping function of Lanyi, and the semi-empirical mapping functions of Davis, et. al.('CfA-2.2'), of Ifadis (global solution model), of Herring ('MTT'), and of Niell ('NMF'). All of the candidate mapping functions are superior to the Chao standard mapping tables and approximation formulas when evaluated against the current Deep Space Network Mark 3 intercontinental very long baselines interferometry database.
Time Analyzer for Time Synchronization and Monitor of the Deep Space Network
NASA Technical Reports Server (NTRS)
Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert
2003-01-01
A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for
NASA Astrophysics Data System (ADS)
Wassin, Shukree; Isoe, George M.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Gibbon, Tim B.
2017-01-01
Precise and accurate timing signals distributed between a centralized location and several end-users are widely used in both metro-access and speciality networks for Coordinated Universal Time (UTC), GPS satellite systems, banking, very long baseline interferometry and science projects such as SKA radio telescope. Such systems utilize time and frequency technology to ensure phase coherence among data signals distributed across an optical fibre network. For accurate timing requirements, precise time intervals should be measured between successive pulses. In this paper we describe a novel, all optical method for quantifying one-way propagation times and phase perturbations in the fibre length, using pulse-persecond (PPS) signals. The approach utilizes side mode injection of a 1550nm 10Gbps vertical cavity surface emitting laser (VCSEL) at the remote end. A 125 μs one-way time of flight was accurately measured for 25 km G655 fibre. Since the approach is all-optical, it avoids measurement inaccuracies introduced by electro-optical conversion phase delays. Furthermore, the implementation uses cost effective VCSEL technology and suited to a flexible range of network architectures, supporting a number of end-users conducting measurements at the remote end.
Interferometry on a Balloon; Paving the Way for Space-based Interferometers
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,
Measuring ocean coherence time with dual-baseline interferometry
NASA Technical Reports Server (NTRS)
Carande, Richard E.
1992-01-01
Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.
Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F
1995-01-01
1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and specific approach for the detection of pulse pressure changes. A battery of non-invasive tests appears useful for the characterization of cardiovascular drugs. Gender differences may not pose a relevant problem for the study of acute haemodynamic effects of cardiovascular drugs. Images Figure 1 PMID:7640140
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.
Gravity sensing using Very Long Baseline Atom Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.
2017-12-01
Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.
Gravity sensing using Very Long Baseline Atom Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, Dennis; Wodey, Étienne; Meiners, Christian; Tell, Dorothee; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.
2017-04-01
Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13 g and beyond in reach. We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1 .10-8 m/s2 / Hz1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <=10-13 , potentially surpassing the best experiments to date.
Review of Space VLBI RadioAstron studies of AGN
NASA Astrophysics Data System (ADS)
Gurvits, Leonid; Kovalev, Yuri
2016-07-01
Space VLBI offers an unrivalled resolution in studies of the AGN phenomena. Since 2011, the Russia-led SVLBI mission RadioAstron conducts observations at 92, 18, 6 and 1.3 cm with baselines an order of magnitude longer than the Earth diameter, therefore offering an order of magnitude "sharper" view at the brightest radio sources than achieved with Earth-based VLBI systems. In our presentation we will review the current status of the RadioAstron's scientific programme. Over the first 4.5 years of the in-orbit operations, the mission achieved successful VLBI detections of extragalactic continuum radio sources at all four observing bands. To date, detections on SVLBI baselines have been obtained for more than 150 AGN's at projected baselines up to 350 000 km (about 28 Earth diameters, ED). The highest resolution achieved is 14 microarcscends from 1.3 cm observations. RadioAstron is an international project; it conducts observations with up to 30 Earth-based radio telescopes located on different continents. We will review results of total intensity and polarisation imaging with extreme angular resolution of blazars and nearby active galaxies. We will also discuss typical and maximum brightness temperatures of blazar cores from the AGN Survey obtained with RadioAstron. Physical implications for the AGN jets formation, magnetic field and emission mechanism will be discussed on the basis of the results obtained to date.
NASA Astrophysics Data System (ADS)
Parsons, Aaron Robert
Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.
An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)
NASA Technical Reports Server (NTRS)
Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.
1990-01-01
Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.
Observations of tropospheric phase scintillations at 5 GHz on vertical paths
NASA Technical Reports Server (NTRS)
Armstrong, J. W.; Sramek, R. A.
1982-01-01
The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.
NASA Astrophysics Data System (ADS)
Popov, Mikhail V.; Bartel, Norbert; Gwinn, Carl R.; Johnson, Michael D.; Andrianov, Andrey; Fadeev, Evgeny; Joshi, Bhal Chandra; Kardashev, Nikolay; Karuppusamy, Ramesh; Kovalev, Yuri Y.; Kramer, Michael; Rudnitskiy, Alexey; Shishov, Vladimir; Smirnova, Tatiana; Soglasnov, Vladimir A.; Zensus, J. Anton
2017-02-01
We have resolved the scatter-broadened image of PSR B0329+54 and detected a substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron, which included the Space Radio Telescope, ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330 000 km in 2013 November 22 and 2014 January 1 to 2. At short 15 000 to 35 000 km ground-space baseline projections, the visibility amplitude decreases with baseline length, providing a direct measurement of the size of the scattering disc of 4.8 ± 0.8 mas. At longer baselines, no visibility detections from the scattering disc would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5 per cent of the maximum scattered around a mean and approximately constant up to 330 000 km. These visibilities reflect a substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17 000 ± 3 000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6 ± 0.1 of the distance from the Earth towards the pulsar.
Tracing the young massive high-eccentricity binary system θ^1Orionis C through periastron passage
NASA Astrophysics Data System (ADS)
Kraus, S.; Weigelt, G.; Balega, Y. Y.; Docobo, J. A.; Hofmann, K.-H.; Preibisch, T.; Schertl, D.; Tamazian, V. S.; Driebe, T.; Ohnaka, K.; Petrov, R.; Schöller, M.; Smith, M.
2009-04-01
Context: The nearby high-mass star binary system θ^1Ori C is the brightest and most massive of the Trapezium OB stars at the core of the Orion Nebula Cluster, and it represents a perfect laboratory to determine the fundamental parameters of young hot stars and to constrain the distance of the Orion Trapezium Cluster. Aims: By tracing the orbital motion of the θ^1Ori C components, we aim to refine the dynamical orbit of this important binary system. Methods: Between January 2007 and March 2008, we observed θ^1Ori C with VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well as with bispectrum speckle interferometry with the ESO 3.6 m and the BTA 6 m telescopes (B'- and V'-band). Combining AMBER data taken with three different 3-telescope array configurations, we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image, showing the θ^1Ori C system with a resolution of ˜ 2 mas. To extract the astrometric data from our spectrally dispersed AMBER data, we employed a new algorithm, which fits the wavelength-differential visibility and closure phase modulations along the H- and K-band and is insensitive to calibration errors induced, for instance, by changing atmospheric conditions. Results: Our new astrometric measurements show that the companion has nearly completed one orbital revolution since its discovery in 1997. The derived orbital elements imply a short-period (P ≈ 11.3 yr) and high-eccentricity orbit (e ≈ 0.6) with periastron passage around 2002.6. The new orbit is consistent with recently published radial velocity measurements, from which we can also derive the first direct constraints on the mass ratio of the binary components. We employ various methods to derive the system mass (M_system = 44 ± 7 M⊙) and the dynamical distance (d = 410 ± 20 pc), which is in remarkably good agreement with recently published trigonometric parallax measurements obtained with radio interferometry. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under the OT and VISA-MPG GTO programme IDs 078.C-0360(A), 080.C-0541(A,B,C,D), 080.D-0225(B), and 080.C-0388(A).
NASA Astrophysics Data System (ADS)
Gwinn, C. R.; Popov, M. V.; Bartel, N.; Andrianov, A. S.; Johnson, M. D.; Joshi, B. C.; Kardashev, N. S.; Karuppusamy, R.; Kovalev, Y. Y.; Kramer, M.; Rudnitskii, A. G.; Safutdinov, E. R.; Shishov, V. I.; Smirnova, T. V.; Soglasnov, V. A.; Steinmassl, S. F.; Zensus, J. A.; Zhuravlev, V. I.
2016-05-01
We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here we describe this phenomenon, characterize it with averages and correlation functions, and interpret it as the result of decorrelation of the impulse-response function of interstellar scattering between the widely separated antennas. This instrument included the 10 m Space Radio Telescope, the 110 m Green Bank Telescope, the 14 × 25 m Westerbork Synthesis Radio Telescope, and the 64 m Kalyazin Radio Telescope. The observations were performed at 324 MHz on baselines of up to 235,000 km in 2012 November and 2014 January. In the delay domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average envelope of correlations of the visibility function shows two exponential scales, with characteristic delays of {τ }1=4.1+/- 0.3 μ {{s}} and {τ }2=23+/- 3 μ {{s}}, indicating the presence of two scales of scattering in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly scattered paths, possibly from anisotropic scattering or from substructure at large angles.
Improved mapping of radio sources from VLBI data by least-square fit
NASA Technical Reports Server (NTRS)
Rodemich, E. R.
1985-01-01
A method is described for producing improved mapping of radio sources from Very Long Base Interferometry (VLBI) data. The method described is more direct than existing Fourier methods, is often more accurate, and runs at least as fast. The visibility data is modeled here, as in existing methods, as a function of the unknown brightness distribution and the unknown antenna gains and phases. These unknowns are chosen so that the resulting function values are as near as possible to the observed values. If researchers use the radio mapping source deviation to measure the closeness of this fit to the observed values, they are led to the problem of minimizing a certain function of all the unknown parameters. This minimization problem cannot be solved directly, but it can be attacked by iterative methods which we show converge automatically to the minimum with no user intervention. The resulting brightness distribution will furnish the best fit to the data among all brightness distributions of given resolution.
A New Test of Plate Tectonics.
ERIC Educational Resources Information Center
Shea, James Herbert
1989-01-01
Discussed are two techniques that can be used to directly test the theory that the plates which make up the crust of the earth are still moving. Described are the use of satellite laser ranging and very long baseline interferometry. Samples of data and their analysis are provided. (CW)
Astrometria diferencial de precision con VLBI el triangulo de Draco (y estudios de SN1993J)
NASA Astrophysics Data System (ADS)
Ros, E.
1997-11-01
The Very Long Baseline Interferometry (VLBI) technique provides unprecedented resolutions in astronomy. In this PhD we show progress in the study of high precision phase-delay differential astrometry through observations of the radio source triangle formed by the BL-Lac objects 1803+784 and 2007+777, and the QSO 1928+738, in the Northern constellation of Draco (the Dragon), from observations carried out on 20/21 November 1991 with an intercontinental interferometric array simultaneously at the frequencies of 2.3 and 8.4 GHz. We have determined the angular separations among the three radio sources with submilliarcsecond accuracy from a weighted least squares analysis of the differential phase delay from the three celestial bodies. Our present work introduces important advances with respect to previous astrometric studies, carried out over radio source pairs separated by smaller angular distances. We have consistently modeled the parameters involved in an astrometric VLBI observation, in order to reproduce the differential phase observed for radio sources separated by almost 7o on the sky. We have demonstrated the possibility of phase-connection over these angular distances at 8.4 GHz, even at an epoch of a maximum in the solar activity. After the phase-connection we have corrected the effects of the extended structure of the radio source and of the ionosphere. This last correction is one of the main technical achievements of this thesis: it is possible to remove the ionospheric contribution with independent measurements of the ionosphere total electron content obtained at Global Positioning Systems (GPS) sites the VLBI observing stations. The triangular geometry introduces constraints in parameter space that allow a better estimation of the angular separations among the radio sources. It is possible to test the consistency of the astrometric results through the Sky-Closure, defined as the circular sum of the angular separations of the three radio sources, determined pairwise and independently. In our case it is consistent with zero, and verifies satisfactorily the data process followed. The comparison of the measurements of the separations of the pair 1928+738/2007+777 (1991 data) with previous measurements (data from 1985 and 1988), carried out with the same technique, allows us to register adequately the absolute position of 1928+738 relative to 2007+777. We estimate the proper motion of components in 1928+738, and also identify the position of the radio source core. We confirm the superluminal motion of the components of 1928+738. The comparison of our results with those obtained by Eubanks (USNO) from group delay measurements (without structure correction) show the incorrectness of the latter. We also include succinctly in this PhD my colaboration in the work on the radio supernova SN 1993J, in galaxy M81. We have discovered a shell-like structure of the radio emission of SN 1993J which exploded on March 1993. We have also elaborated a movie of its evolution, by monitoring the shell structure for different epochs, and determined the deceleration of its expansion.
SHARP - V. Modelling gravitationally-lensed radio arcs imaged with global VLBI observations
NASA Astrophysics Data System (ADS)
Spingola, C.; McKean, J. P.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; Lagattuta, D. J.; Vegetti, S.
2018-05-01
We present milliarcsecond (mas) angular resolution observations of the gravitationally lensed radio source MG J0751+2716 (at z = 3.2) obtained with global Very Long Baseline Interferometry (VLBI) at 1.65 GHz. The background object is highly resolved in the tangential and radial directions, showing evidence of both compact and extended structure across several gravitational arcs that are 200 to 600 mas in size. By identifying compact sub-components in the multiple images, we constrain the mass distribution of the foreground z = 0.35 gravitational lens using analytic models for the main deflector [power-law elliptical mass model; ρ(r)∝r-γ, where γ = 2 corresponds to isothermal] and for the members of the galaxy group. Moreover, our mass models with and without the group find an inner mass-density slope steeper than isothermal for the main lensing galaxy, with γ1 = 2.08 ± 0.02 and γ2 = 2.16 ± 0.02 at the 4.2σ level and 6.8σ level, respectively, at the Einstein radius (b1 = 0.4025 ± 0.0008 and b2 = 0.307 ± 0.002 arcsec, respectively). We find randomly distributed image position residuals of about 3 mas, which are much larger that the measurement errors (40 μas on average). This suggests that at the mas level, the assumption of a smooth mass distribution fails, requiring additional structure in the model. However, given the environment of the lensing galaxy, it is not clear whether this extra mass is in the form of sub-haloes within the lens or along the line of sight, or from a more complex halo for the galaxy group.
MeerKAT Science: On the Pathway to the SKA
NASA Astrophysics Data System (ADS)
MeerKAT Science: On the Pathway to the SKA. MeerKAT is a next generation radio telescope under construction on the African SKA central site in the Karoo plateau of South Africa. When completed in 2017 MeerKAT will be a 64-element array of 13.5-m parabolic antennas distributed over an area with a diameter of 8 km. With a combination of wide bandwidth and field of view, with the large number of antennas and total collecting area, MeerKAT will be one of the world’s most powerful imaging telescopes operating at GHz frequencies. MeerKAT is a science and technology precursor of the SKA mid-frequency dish array, and following several years of operation as a South African telescope will be incorporated into the SKA phase-one facility. The MeerKAT science program will consist of a combination of key science, legacy-style, large survey projects, and smaller projects based on proposals for open time. This workshop, which took place in Stellenbosch in the Western Cape, was held to discuss and plan the broad range of scientific investigations that will be undertaken during the pre-SKA phase of MeerKAT. Topics covered included: technical development and roll out of the MeerKAT science capabilities, details of the large survey projects presented by the project teams, science program concepts for open time, commensal programs such as the Search for Extraterrestrial Intelligence, and the impact of MeerKAT on global Very Long Baseline Interferometry. These proceedings serve as a record of the scientific vision of MeerKAT in the year before its completion, foreshadowing a new era of radio astronomy on the African continent.
The second Caltech-Jodrell Bank VLBI survey. 1: Observations of 91 of 193 sources
NASA Technical Reports Server (NTRS)
Taylor, G. B.; Vermeulen, R. C.; Pearson, T. J.; Readhead, A. C. S.; Henstock, D. R.; Browne, I. W. A.; Wilkinson, P. N.
1994-01-01
We define the sample for the second Caltech-Jodrell Bank very long base interferometry (VLBI) survey. This is a sample of 193 flat- or gigahertz-peaked-spectrum sources selected at 4850 MHz. This paper presents images of 91 sources with a resolution of approximately 1 mas, obtained using VLBI observations at 4992 MHz with a global array. The remaining images and the integrated radio spectra will be presented in a forthcoming paper by Henstock et al.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1984-01-01
This publication provides reports on work performed for the Office of Space Tracking and Data Systems (OSTDS). It reports on the activities of the deep space network (DSN) and the Ground Communications Facility (GCF). Topics discussed on the operation of the DSN include: (1) spacecraft-ground communications; (2) station control and system technology; and (3) capabilities for new projects for systems implementation. The GCF compatibility with packets and data compression is discussed. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements.
Preliminary result of the analysis of T Sagittarrii data and modeling
NASA Astrophysics Data System (ADS)
Menut, Jean-Luc; Chesneau, Olivier; Lopez, Bruno; Berruyer, Nicole; Graser, Uwe; Niccolini, Gilles; Dutrey, Anne; Perrin, Guy S.
2004-10-01
This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.
Measuring Crustal Deformation in the American West.
ERIC Educational Resources Information Center
Jordan, Thomas H.; Minster, J. Bernard
1988-01-01
Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2009-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
NASA Astrophysics Data System (ADS)
Simard, M.; Denbina, M. W.
2017-12-01
Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.
SPECS: the kilometer-baseline far-IR interferometer in NASA's space science roadmap
NASA Astrophysics Data System (ADS)
Leisawitz, David T.; Abel, Tom; Allen, Ronald J.; Benford, Dominic J.; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal J., II; Fischer, Jacqueline; Harwit, Martin; Hyde, Tristram T.; Kuchner, Marc J.; Leitner, Jesse A.; Lorenzini, Enrico C.; Mather, John C.; Menten, Karl M.; Moseley, Samuel H., Jr.; Mundy, Lee G.; Nakagawa, Takao; Neufeld, David A.; Pearson, John C.; Rinehart, Stephen A.; Roman, Juan; Satyapal, Shobita; Silverberg, Robert F.; Stahl, H. Philip; Swain, Mark R.; Swanson, Theodore D.; Traub, Wesley A.; Wright, Edward L.; Yorke, Harold W.
2004-10-01
Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.
NASA Technical Reports Server (NTRS)
Blewitt, Geoffrey
1989-01-01
A technique for resolving the ambiguities in the GPS carrier phase data (which are biased by an integer number of cycles) is described which can be applied to geodetic baselines up to 2000 km in length and can be used with dual-frequency P code receivers. The results of such application demonstrated that a factor of 3 improvement in baseline accuracy could be obtained, giving centimeter-level agreement with coordinates inferred by very-long-baseline interferometry in the western United States. It was found that a method using pseudorange data is more reliable than one using ionospheric constraints for baselines longer than 200 km. It is recommended that future GPS networks have a wide spectrum of baseline lengths (ranging from baselines shorter than 100 km to those longer than 1000 km) and that GPS receivers be used which can acquire dual-frequency P code data.
NASA Technical Reports Server (NTRS)
Ryan, J. W.; Ma, C.; Caprette, D. S.
1993-01-01
The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.
Observational Model for Precision Astrometry with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Milman, Mark H.
2000-01-01
The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain. Over a narrow field of view SIM is expected to achieve a mission accuracy of 1 microarcsecond. In this mode SIM will search for planetary companions to nearby stars by detecting the astrometric "wobble" relative to a nearby reference star. In its wide-angle mode, SIM will provide 4 microarcsecond precision absolute position measurements of stars, with parallaxes to comparable accuracy, at the end of its 5-year mission. The expected proper motion accuracy is around 3 microarcsecond/year, corresponding to a transverse velocity of 10 m/ s at a distance of 1 kpc. The basic astrometric observable of the SIM instrument is the pathlength delay. This measurement is made by a combination of internal metrology measurements that determine the distance the starlight travels through the two arms of the interferometer, and a measurement of the white light stellar fringe to find the point of equal pathlength. Because this operation requires a non-negligible integration time, the interferometer baseline vector is not stationary over this time period, as its absolute length and orientation are time varying. This paper addresses how the time varying baseline can be "regularized" so that it may act as a single baseline vector for multiple stars, as required for the solution of the astrometric equations.
Absolute proper motion of IRAS 00259+5625 with VERA: Indication of superbubble expansion motion
NASA Astrophysics Data System (ADS)
Sakai, Nobuyuki; Sato, Mayumi; Motogi, Kazuhito; Nagayama, Takumi; Shibata, Katsunori M.; Kanaguchi, Masahiro; Honma, Mareki
2014-02-01
We present the first measurement of the absolute proper motions of IRAS 00259+5625 (CB3, LBN594) associated with the H I loop called the "NGC 281 superbubble" that extends from the Galactic plane over ˜ 300 pc toward decreasing galactic latitude. The proper motion components measured with VLBI Exploration of Radio Astrometry (VERA) are (μαcos δ, μδ) = (-2.48 ± 0.32, -2.85 ± 0.65) mas yr-1, converted into (μlcos b, μb) = (-2.72 ± 0.32, -2.62 ± 0.65) mas yr-1 in the Galactic coordinates. The measured proper motion perpendicular to the Galactic plane (μb) shows vertical motion away from the Galactic plane with a significance of about ˜ 4 σ. As for the source distance, the distance measured with VERA is marginal, 2.4^{+1.0}_{-0.6} kpc. Using the distance, an absolute vertical motion (vb) of -17.9 ± 12.2 km s-1 is determined with ˜ 1.5 σ significance. The tendency towards the large vertical motion is consistent with previous very long baseline interferometry (VLBI) results for NGC 281 associated with the same superbubble. Thus, our VLBI results indicate superbubble expansion motion whose origin is believed to be sequential supernova explosions.
SN 1986J VLBI. IV. The Nature of the Central Component
NASA Astrophysics Data System (ADS)
Bietenholz, Michael F.; Bartel, Norbert
2017-12-01
We report on Very Large Array measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with very long baseline interferometry (VLBI) imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-frequency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically thin shell and a partly absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell is fading more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hotspot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However, a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.
ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.
Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less
NASA Astrophysics Data System (ADS)
Pichierri, Manuele; Hajnsek, Irena
2015-04-01
In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.
1993-01-01
A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.
A Medium-Scale Traveling Ionospheric Disturbance Observed from the Ground and from Space
NASA Astrophysics Data System (ADS)
Watts, C.; Dymond, K. F.; Coker, C.; Budzien, S.; Bernhardt, P.; Kassim, N.; Lazio, J.; Cohen, A.; Weiler, K.; Crane, P.; Clarke, T.; Rickard, L. J.; Taylor, G. B.; Schinzel, F.; Philstrom, Y.; Kuniyoshi, M.; Close, S.; Colestock, P.; Myers, S.; Datta, A.
2008-12-01
We report the first optical observations from space of a Medium-scale Traveling Ionospheric Disturbance (MSTID) of the Traveling Wave Packet type. The observations were made during the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15, 2007 at ~0830 UT. The experiment used a Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) satellite in conjunction with the Very Large Array (VLA) radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale while the TIDs propagated through it. The COSMIC/FORMOSAT-3 satellite measured the ionosphere both horizontally and with altitude while the VLA measured the directions and speed of the TIDs. Our observations provide new information on this poorly understood class of TID
Crustal dynamics project observing plan for highly mobile systems 1981 - 1986
NASA Technical Reports Server (NTRS)
Frey, H.
1980-01-01
Measurement of crustal motion in the western United States and other tectonically active regions makes use of fixed, movable and highly mobile satellite laser ranging and very long baseline interferometry systems. Measurement of the rotational dynamics of the Earth as well as regional deformation and plate motion are discussed.
Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs
NASA Astrophysics Data System (ADS)
2008-01-01
Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the highly successful Hipparcos satellite. Using small clouds of gas in star-forming regions that strongly amplify radio waves, called cosmic masers, the astronomers measured the tiny shift in the object's position in the sky caused by the Earth's orbit around the sun. This, in turn, yielded highly-accurate distances by the simple surveying technique of triangulation, the "gold standard" of distance measuring techniques available to astronomers. Dr. Mark Reid Dr. Mark Reid Credit: CfA Click image for high-resolution file (1.02 MB) "Knowing the distance accurately means we also know the luminosities, masses and ages of the young stars much more accurately, and that is vital to understanding how star formation works," Reid said. In addition, he pointed out, the VLBA observations have shown the motions of the young stars in the Milky Way are much more complicated than simple circular motion. Massive young stars appear to be born orbiting the Milky Way considerably slower than older stars. "This might be explained by the interaction of giant molecular clouds, the ultimate sites of massive star formation, as they "surf" spiral density waves in the Milky Way." An international team of scientists led by Reid has used VLBI to detect the slight change in apparent position of the object at the Milky Way's center caused by our Solar System's orbit around that center. "It takes our Solar System more than 200 million years to circle the center of our Galaxy, and yet we can detect that motion in only a couple weeks with the VLBA -- truly astounding!" Reid said. The VLBA studies of the Galactic Center have shown that an object called Sagittarius A* is at the exact gravitational center of our Galaxy. That means, the scientists say, that the object must be incredibly massive. "The VLBA measurements, combined with infrared observations of stellar orbits around this object, provide overwhelming evidence that it's a supermassive black hole," Reid explained. "These observations are also going to make it possible to re-define the coordinate system used to map the entire Galaxy," Reid added. Looking farther outward, astronomers achieved a longstanding goal of measuring the spin of another galaxy. In 2005, Reid and his colleagues measured both the rotational spin and the motion in space of the galaxy M33, nearly 2.4 million light-years from Earth. Astronomers in the 1920s had attempted such a feat, but their results were not accurate enough. "This achievement had to wait for the VLBA," Reid said. This and subsequent work has put strong limits on the amount of unseen "dark matter" around the giant Andromeda galaxy, which M33 orbits. A continuing goal is to use VLBI observations to measure the orbits of these and other galaxies within the Local Group of galaxies to which our own Milky Way belongs. VLBA The Very Long Baseline Array (VLBA), the National Radio Astronomy Observatory’s continent-wide radio-telescope system. The VLBA provides the greatest resolving power, or ability to see detail, of any instrument in astronomy. Credit: NRAO/AUI/NSF In 1999, astronomers set a new standard for a distance measurement outside the Local Group of galaxies when they used the VLBA to make a direct geometric distance measurement to a galaxy called NGC 4258, 23.5 million light-years from Earth. That measurement, accurate to within 7 percent, caused other scientists to revise their indirect-measurement techniques for the rest of the Universe. The NGC 4258 distance was calculated by measuring the motion of masers in a disk of gas containing water molecules and orbiting a supermassive black hole at the galaxy's center. "Now, other galaxies are being observed in hopes of extending direct distance measurement even farther out in the Universe," Reid said. "One candidate, called UGC 3789, at a distance of about 160 million light-years, will be measured with about 10 percent accuracy. Our goal is to further improve these measurements and to measure 5 to 10 other galaxies in order to determine the Hubble constant (the expansion rate of the Universe) to 3 percent accuracy. This would put limits on key parameters of the dark energy that apparently is accelerating the expansion of the Universe," Reid added. The kind of accurate measurement of distances and motions that VLBI observations provide can benefit numerous other areas of astronomy, Reid pointed out. For example, the distances to pulsars have been measured directly with the VLBA, yielding better understanding of their characteristics. The technique also could reveal planets circling some nearby stars. "Anytime you can do something as dramatic as improving measurement accuracy by a hundredfold, you're bound to get a great scientific payoff," Reid said. "We're looking forward to exciting new results in the coming years," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992
NASA Technical Reports Server (NTRS)
Ma, Chopo; Ryan, James W.; Caprette, Douglas S.
1994-01-01
The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Reid, M. J.; Menten, K. M.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 {+-} 0.08 mas, corresponding to a distance of 1.20{sup +0.13}{sub -0.10} kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr{sup -1}, corresponding to 8 km s{sup -1}, and show a tendency for expansion. After modeling themore » expansion of maser spots, we derived an absolute proper motion for the central star of {mu}{sub x} = -2.8 {+-} 0.2 and {mu}{sub y} = 2.6 {+-} 0.2 mas yr{sup -1} eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be {alpha}{sub J2000} = 07{sup h}22{sup m}58.{sup s}3259 {+-} 0.{sup s}0007, {delta}{sub J2000} = -25 Degree-Sign 46'03.''063 {+-} 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.« less
Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR
NASA Technical Reports Server (NTRS)
Lavalle, M.; Hensley, S.; Simard, M.
2011-01-01
We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.
Dominion Radio Astrophysical Observatory
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...
Exploring the connection between radio and GeV-TeV γ-ray emission in the 1FHL and 2FHL AGN samples
NASA Astrophysics Data System (ADS)
Lico, R.; Giroletti, M.; Orienti, M.; Costamante, L.; Pavlidou, V.; D'Ammando, F.; Tavecchio, F.
2017-10-01
Context. With the advent of the Fermi Large Area Telescope (LAT) it was revealed that blazars, representing the most extreme radio-loud active galactic nuclei (AGN) population, dominate the census of the γ-ray sky, and a significant correlation was found between radio and γ-ray emission in the 0.1-100 GeV energy range. However, the possible connection between radio and very high energy (VHE, E> 0.1 TeV) emission still remains elusive, owing to the lack of a homogeneous coverage of the VHE sky. Aims: The main goal of this work is to quantify and assess the significance of a possible connection between the radio emission on parsec scale measured by the very long baseline interferometry (VLBI) and GeV-TeV γ-ray emission in blazars, which is a central issue for understanding blazar physics and the emission processes in these objects. Methods: We investigate the radio VLBI and high energy γ-ray emission by using two large and unbiased AGN samples extracted from the first and second Fermi-LAT catalogs of hard γ-ray sources detected above 10 GeV (1FHL) and 50 GeV (2FHL). For comparison, we perform the same correlation analysis by using the 0.1-300 GeV γ-ray energy flux provided by the third Fermi-LAT source catalog (3FGL). We assess the correlation's statistical significance by means of a method based on permutations of the luminosities, by taking into account the various observational biases, which may apparently enhance or spoil any intrinsic correlation. Results: We find that the correlation strength and significance depend on the γ-ray energy range, with a different behavior among the blazar sub-classes. Overall, the radio and γ-ray emission above 10 GeV turns out to be uncorrelated for the full samples and for all of the blazar sub-classes with the exception of high synchrotron peaked (HSP) objects, which show a strong and significant correlation. On the contrary, when 0.1-300 GeV γ-ray energies are considered, a strong and significant correlation is found for the full blazar sample as well as for all of the blazar sub-classes. Conclusions: We interpret and explain this correlation behavior within the framework of the blazar spectral energy distribution properties. In the most powerful blazars, which are in general of low synchrotron peaked type, the high energy emission component peaks at energies lower than those sampled by the LAT. On the contrary, in HSP blazars the part of the high energy spectrum affected by cooling effects is well beyond the energy range sampled by the LAT, showing a rising spectrum both in the 3FGL and 1FHL/2FHL energy ranges.
Miniature interferometer terminals for earth surveying
NASA Technical Reports Server (NTRS)
Counselman, C. C., III; Shapiro, I. I.
1978-01-01
A system of miniature radio interferometer terminals was proposed for the measurement of vector baselines with uncertainties ranging from the millimeter to the centimeter level for baseline lengths ranging, respectively, from a few to a few hundred kilometers. Each terminal would have no moving parts, could be packaged in a volume of less than 0.1 cu m, and would operate unattended. These units would receive radio signals from low-power (10 w) transmitters on earth-orbiting satellites. The baselines between units could be determined virtually instantaneously and monitored continuously as long as at least four satellites were visible simultaneously.
Pulsar B0329+54: scattering disk resolved by RadioAstron interferometer at 324 MHz
NASA Astrophysics Data System (ADS)
Popov, M.
Propagation of pulsar radio emission through the interstellar plasma is accompanied with scattering by inhomogeneities of the plasma. The scattering produces a range of effects: angular broadening, pulse broadening, intensity modulation (scintillations), and distortion of radio spectra (diffraction pattern). In this presentation, we will primarily deal with scattering effects affecting interferometric measurements. Pulsars are point like radio sources at angular resolution provided by space VLBI even at largest baseline projections. Therefore, any structure, observed by the space-ground interferometer, is due to scattering effects. The objective of our study was to measure parameters of a scattering disk for the PSR B0329+54 at a frequency of 324 MHz with the space-ground interferometer RadioAstron. Observations were conducted on November 26-29 2012 in four sessions, one hour duration each, with progressively increasing baseline projections of 70, 90,175, and 235 thousand kilometers correspondingly. Only one ground radio telescope observed the pulsar together with the space radio telescope (SRT); it was 100-m telescope in Green Bank (GBT). Notable visibility amplitudes were detected at all baseline projections at a maximum level of 0.05 with the SNR of about 20. It was found that visibility function in delay consists of many isolated unresolved spikes. The overall spread of such spikes in delay corresponds to the scattering disk of about 4 mas at a half wide. Fine structure of the visibility amplitude in delay domain corresponds to a model of amplitude modulated noise (AMN). Fringe rate behavior with time indicates on dominant influence of refraction on traveling ionospheric disturbances (TID).
Preliminary design work on a DSN VLBI correlator. [Deep Space Network
NASA Technical Reports Server (NTRS)
Lushbaugh, W. A.; Layland, J. W.
1978-01-01
The Deep Space Network is in the process of fielding high-density digital instrumentation recorders for support of the Pioneer Venus 1978 entry experiment and other related tasks. It has long been obvious that these recorders would also serve well as the recording medium for very long base interferometry (VLBI) experiments with relatively weak radio sources, provided that a suitable correlation processor for these tape recordings could be established. The overall design and current status of a VLBI correlator designed to mate with these tape recorders are described.
Working Papers: Astronomy and Astrophysics Panel Reports
NASA Technical Reports Server (NTRS)
Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.
1991-01-01
The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.
Characterization of weakly ionized argon flows for radio blackout mitigation experiments
NASA Astrophysics Data System (ADS)
Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.
2017-06-01
For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.
NASA Astrophysics Data System (ADS)
Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.; Wittkowski, M.
We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument in prism mode within the framework of the Science Demonstration Time (SDT) program in Feb. 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m.As we show by means of radiative transfer modelin with the code DUSTY [3], the wavelength dependence of the visibility and the N-band spectrum measured with MIDI can be interpreted as thesignature of a circumstellar dust shell which is dominated by silicate dust.
The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Silverburg, Robert
2009-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
VLBI-based Products - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home ⺠USNO ⺠Earth Orientation ⺠VLBI-based Products USNO Logo USNO Navigation Earth determine Earth Orientation Parameters (EOP) is Very Long Baseline Interferometry (VLBI). USNO provides both
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
Mueller, I. I.
1982-01-01
Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.
Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott
NASA Astrophysics Data System (ADS)
Miller Goss, W.
2012-05-01
Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.
THE SOURCE STRUCTURE OF 0642+449 DETECTED FROM THE CONT14 OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming H.; Wang, Guang L.; Heinkelmann, Robert
2016-11-01
The CONT14 campaign with state-of-the-art very long baseline interferometry (VLBI) data has observed the source 0642+449 with about 1000 observables each day during a continuous observing period of 15 days, providing tens of thousands of closure delays—the sum of the delays around a closed loop of baselines. The closure delay is independent of the instrumental and propagation delays and provides valuable additional information about the source structure. We demonstrate the use of this new “observable” for the determination of the structure in the radio source 0642+449. This source, as one of the defining sources in the second realization of themore » International Celestial Reference Frame, is found to have two point-like components with a relative position offset of −426 microarcseconds ( μ as) in R.A. and −66 μ as in decl. The two components are almost equally bright, with a flux-density ratio of 0.92. The standard deviation of closure delays for source 0642+449 was reduced from 139 to 90 ps by using this two-component model. Closure delays larger than 1 ns are found to be related to the source structure, demonstrating that structure effects for a source with this simple structure could be up to tens of nanoseconds. The method described in this paper does not rely on a priori source structure information, such as knowledge of source structure determined from direct (Fourier) imaging of the same observations or observations at other epochs. We anticipate our study to be a starting point for more effective determination of the structure effect in VLBI observations.« less
Orbital Elements and Stellar Parameters of the Active Binary UX Arietis
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.
2017-08-01
Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.
Data multiplexing in radio interferometric calibration
NASA Astrophysics Data System (ADS)
Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.
2018-03-01
New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.
Cosmic ray measurements with LOPES: Status and recent results
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-05-01
LOPES is a digital antenna array at the Karlsruhe Institute of Technology, Germany, for cosmic-ray air-shower measurements. Triggered by the co-located KASCADE-Grande air-shower array, LOPES detects the radio emission of air showers via digital radio interferometry. We summarize the status of LOPES and recent results. In particular, we present an update on the reconstruction of the primary-particle properties based on almost 500 events above 100PeV. With LOPES, the arrival direction can be reconstructed with a precision of at least 0.65°, and the energy with a precision of at least 20%, which, however, does not include systematic uncertainties on the absolute energy scale. For many particle and astrophysics questions the reconstruction of the atmospheric depth of the shower maximum, Xmax, is important, since it yields information on the type of the primary particle and its interaction with the atmosphere. Recently, we found experimental evidence that the slope of the radio lateral distribution is indeed sensitive to the longitudinal development of the air shower, but unfortunately, the Xmax precision at LOPES is limited by the high level of anthropogenic radio background. Nevertheless, the developed methods can be transferred to next generation experiments with lower background, which should provide an Xmax precision competitive to other detection technologies.
A medium-scale traveling ionospheric disturbance observed from the ground and from space
NASA Astrophysics Data System (ADS)
Dymond, K. F.; Watts, C.; Coker, C.; Budzien, S. A.; Bernhardt, P. A.; Kassim, N.; Lazio, T. J.; Weiler, K.; Crane, P. C.; Ray, P. S.; Cohen, A.; Clarke, T.; Rickard, L. J.; Taylor, G. B.; Schinzel, F.; Pihlstrom, Y.; Kuniyoshi, M.; Close, S.; Colestock, P.; Myers, S.; Datta, A.
2011-10-01
We report ultraviolet optical observations from space of a Medium-Scale Traveling Ionospheric Disturbance (MSTID) made during the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15, 2007 at ˜8:30 UT. The experiment used a Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) satellite in conjunction with the Very Large Array (VLA) radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale while the TIDs propagated through it. The COSMIC/FORMOSAT-3 satellite measured the F region electron density both horizontally and with altitude while the VLA measured the directions and speeds of the TIDs. These observations provide new information on this poorly understood class of TID and demonstrate the possibility of studying MSTIDs using space-based optical instruments.
Proper motion of the radio pulsar B1727-47 and its association with the supernova remnant RCW 114
NASA Astrophysics Data System (ADS)
Shternin, P. S.; Yu, M.; Kirichenko, A. Yu; Shibanov, Yu A.; Danilenko, A. A.; Voronkov, M. A.; Zyuzin, D. A.
2017-12-01
We report preliminary results of the analysis of the proper motion of the bright radio pulsar B1727-47. Using archival Parkes timing data, as well as original and archival ATCA interferometry observations, we, for the first time, constrain the pulsar proper motion at the level of 148±11 mas yr-1. The backward extrapolation of the proper motion vector to the pulsar birth epoch points at the center of the Galactic supernova remnant RCW 114 suggesting the genuine association between the two objects. We discuss the implications of the association and argue that the distance to the system is less than 1 kpc. This value is at least two times lower than the dispersion measure distance estimates. This suggests that the existing Galaxy electron density models are incomplete in the direction to the pulsar.
LIBRA: An inexpensive geodetic network densification system
NASA Technical Reports Server (NTRS)
Fliegel, H. F.; Gantsweg, M.; Callahan, P. S.
1975-01-01
A description is given of the Libra (Locations Interposed by Ranging Aircraft) system, by which geodesy and earth strain measurements can be performed rapidly and inexpensively to several hundred auxiliary points with respect to a few fundamental control points established by any other technique, such as radio interferometry or satellite ranging. This low-cost means of extending the accuracy of space age geodesy to local surveys provides speed and spatial resolution useful, for example, for earthquake hazards estimation. Libra may be combined with an existing system, Aries (Astronomical Radio Interferometric Earth Surveying) to provide a balanced system adequate to meet the geophysical needs, and applicable to conventional surveying. The basic hardware design was outlined and specifications were defined. Then need for network densification was described. The following activities required to implement the proposed Libra system are also described: hardware development, data reduction, tropospheric calibrations, schedule of development and estimated costs.
CHARRON: Code for High Angular Resolution of Rotating Objects in Nature
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Zorec, J.; Vakili, F.
2012-12-01
Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).
Geodesy and astrometry by transatlantic long base line interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, W.H.; Langley, R.B.; Petrachenko, W.T.
1979-01-10
We report geodetic and astrometric results from the analysis of fringe frequency observations from a series of three long base line interferometry (LBI) experiments carried out in 1973 between the 46-m antenna of the Algonquin Radio Observatory, Lake Traverse, Canada, and the 25-m antenna at Chilbolton Field Station, Chilbolton, England. The rms deviation from the mean of the estimates of the length and orientation of the 5251-km equatorial component of the base line from all three experiments is 1.05-m and 0.015'', respectively. The experiments also yielded positions of five extragalactic radio sources. The reported positions, each of which is frommore » only a single experiment, have uncertainties of about 0.2'' in declination (except for low declination sources) and about 0.01 s in right ascension. The LBI determination of the length and orientation of the equatorial component of the base line is compared to the corresponding values derived from Naval Weapons Laboratory 9D (NWL-9D) coorinates for the antennae. The two length measurements agree in scale within quoted experimental errors; however, the NWL-9D coordinate frame is found to be rotated 0.867'' +- 0.1'' to the east relative to the average terrestrial frame of the Bureau Internationale de l'Heure (BIH),(LBI coordinate frame). This is in good agreement with the expected misalignment of 0.65'' +- 0.2''. The differences in the rates of the clocks used at each end of the base line were also determined and compared to Loran-C observations.« less
Astrometric Detection of a Low Mass Companion Orbiting the Star AB Doradus
NASA Technical Reports Server (NTRS)
Soderhjelm, S.; Guirado, J. C.; Reynolds, J. E.; Lestrade, J. F.; Preston, R. A.; Jauncey, D. L.; Jones, D. L.; Tzioumis, A. K.; Ferris, R. H.; King, E. A.;
1997-01-01
We report submilliarsecond-precise astrometric measurement for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and Hipparos satellite data. Our astrometric analysis results in the precise determination of the kinematics of this star, that reveals an orbital motion readily explained as caused by the gravitational interaction with a low-mass companion.
The current ability to test theories of gravity with black hole shadows
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano
2018-04-01
Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.
Application of the HARDMAN methodology to the single channel ground-airborne radio system (SINCGARS)
NASA Astrophysics Data System (ADS)
Balcom, J.; Park, J.; Toomer, L.; Feng, T.
1984-12-01
The HARDMAN methodology is designed to assess the human resource requirements early in the weapon system acquisition process. In this case, the methodology was applied to the family of radios known as SINCGARS (Single Channel Ground-Airborne Radio System). At the time of the study, SINCGARS was approaching the Full-Scale Development phase, with 2 contractors in competition. Their proposed systems were compared with a composite baseline comparison (reference) system. The systems' manpower, personnel and training requirements were compared. Based on RAM data, the contractors' MPT figures showed a significant reduction from the figures derived for the baseline comparison system. Differences between the two contractors were relatively small. Impact and some tradeoff analyses were hindered by data access problems. Tactical radios, manpower and personnel requirements analysis, impact and tradeoff analysis, human resource sensitivity, training requirements analysis, human resources in LCSMM, and logistics analyses are discussed.
RadioAstron Science Program Five Years after Launch: Main Science Results
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.
2017-12-01
The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
DEM generation in cloudy-rainy mountainous area with multi-baseline SAR interferometry
NASA Astrophysics Data System (ADS)
Wu, Hong'an; Zhang, Yonghong; Jiang, Decai; Kang, Yonghui
2018-03-01
Conventional singe baseline InSAR is easily affected by atmospheric artifacts, making it difficult to generate highprecision DEM. To solve this problem, in this paper, a multi-baseline interferometric phase accumulation method with weights fixed by coherence is proposed to generate higher accuracy DEM. The mountainous area in Kunming, Yunnan Province, China is selected as study area, which is characterized by cloudy weather, rugged terrain and dense vegetation. The multi-baseline InSAR experiments are carried out by use of four ALOS-2 PALSAR-2 images. The generated DEM is evaluated by Chinese Digital Products of Fundamental Geographic Information 1:50000 DEM. The results demonstrate that: 1) the proposed method can reduce atmospheric artifacts significantly; 2) the accuracy of InSAR DEM generated by six interferograms satisfies the standard of 1:50000 DEM Level Three and American DTED-1.
Appendix: Limits on the use of heterodyning and amplification in optical interferometry
NASA Technical Reports Server (NTRS)
Burke, Bernard F.
1992-01-01
The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, T sub N = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 10(exp 12) to 10(exp 14) Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as noise performance improves. One might guess that ultimately a wavelength of about 100 microns will mark the limit of useful amplification and heterodyning in astronomical aperture synthesis interferometry.
NASA Astrophysics Data System (ADS)
Titov, O. A.; Lopez, Yu. R.
2018-03-01
We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of 0.5 mas in the north-south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.
NASA Astrophysics Data System (ADS)
Mérand, Antoine; Aufdenberg, Jason P.; Kervella, Pierre; Foresto, Vincent Coudé du; ten Brummelaar, Theo A.; McAlister, Harold A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.
2007-08-01
Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade-Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a nonpulsating yellow supergiant (α Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of α Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with characteristics similar to CSEs found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSEs, detected by near-infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE nondetection around a nonpulsating supergiant in the instability strip, α Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.
Quasar Astrophysics with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
NASA Astrophysics Data System (ADS)
Lindegren, Lennart
2012-01-01
The launch of the Hipparcos satellite in 1989 and the Hubble Space Telescope in 1990 revolutionized astrometry. By no means does this imply that not much progress was made in the ground-based techniques used exclusively until then. On the contrary, the 1960s to 1980s saw an intense development of new or highly improved instruments, including photoelectric meridian circles, automated plate measuring machines, and the use of chargecoupled device (CCD) detectors for small-field differential astrometry (for a review of optical astrometry at the time, see Monet 1988). In the radio domain, very long baseline interferometry (VLBI) astrometry already provided an extragalactic reference frame accurate to about 1 milliarcsecond (mas) (Ma et al. 1990). Spectacular improvements were made in terms of accuracy, the faintness of the observed objects, and their numbers. However, there was a widening gulf between small-angle astrometry, where differential techniques could overcome atmospheric effects down to below 1 mas, and large-angle astrometry, where conventional instruments such as meridian circles seemed to have hit a barrier in the underlying systematic errors at about 100 mas. Though very precise, the small-angle measurements were of limited use for the determination of positions and proper motions, due to the lack of suitable reference objects in the small fields, and even for parallaxes the necessary correction for the mean parallax of background stars was highly non-trivial. Linking the optical observations to the accurate VLBI frame also proved extremely difficult.
NASA Technical Reports Server (NTRS)
Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline
2008-01-01
The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.
Experimental Design for the LATOR Mission
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.
2004-01-01
This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10(exp 8) in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (near infinity G2) of light deflection resulting from gravity s intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J(sub 2), and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.
Radio observations of active galactic nuclei with mm-VLBI
NASA Astrophysics Data System (ADS)
Boccardi, B.; Krichbaum, T. P.; Ros, E.; Zensus, J. A.
2017-11-01
Over the past few decades, our knowledge of jets produced by active galactic nuclei (AGN) has greatly progressed thanks to the development of very-long-baseline interferometry (VLBI). Nevertheless, the crucial mechanisms involved in the formation of the plasma flow, as well as those driving its exceptional radiative output up to TeV energies, remain to be clarified. Most likely, these physical processes take place at short separations from the supermassive black hole, on scales which are inaccessible to VLBI observations at centimeter wavelengths. Due to their high synchrotron opacity, the dense and highly magnetized regions in the vicinity of the central engine can only be penetrated when observing at shorter wavelengths, in the millimeter and sub-millimeter regimes. While this was recognized already in the early days of VLBI, it was not until the very recent years that sensitive VLBI imaging at high frequencies has become possible. Ongoing technical development and wide band observing now provide adequate imaging fidelity to carry out more detailed analyses. In this article, we overview some open questions concerning the physics of AGN jets, and we discuss the impact of mm-VLBI studies. Among the rich set of results produced so far in this frequency regime, we particularly focus on studies performed at 43 GHz (7 mm) and at 86 GHz (3 mm). Some of the first findings at 230 GHz (1 mm) obtained with the Event Horizon Telescope are also presented.
Digital Front End for Wide-Band VLBI Science Receiver
NASA Technical Reports Server (NTRS)
Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les;
2006-01-01
An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.
Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jee Won; Lee, Sang-Sung; Hodgson, Jeffrey A.
We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright active galactic nuclei (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from 2013 January 16 to 2016 March 1, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on themore » multiwavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by −16 ± 8 days. The turnover frequency was found to vary between 21 and 69 GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be ≤5 mG during the observing period, yielding a weighted mean of 1.0 ± 0.6 mG for higher turnover frequencies (e.g., >45 GHz).« less
A Fast Radio Burst Search Method for VLBI Observation
NASA Astrophysics Data System (ADS)
Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li
2018-02-01
We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.
A relativistic analysis of clock synchronization
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1974-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Nelson, L. A.
1985-01-01
Clock synchronization in an arbitrarily accelerated observer congruence is considered. A general solution is obtained that maintains the isotropy and coordinate independence of the one-way speed of light. Attention is also given to various particular cases including, rotating disk congruence or ring congruence. An explicit, congruence-based spacetime metric is constructed according to Einstein's clock synchronization procedure and the equation for the geodesics of the space-time was derived using Hamilton-Jacobi method. The application of interferometric techniques (absolute phase radio interferometry, VLBI) to the detection of the 'global Sagnac effect' is also discussed.
Results of the Australian geodetic VLBI experiment
NASA Technical Reports Server (NTRS)
Harvey, B. R.; Stolz, A.; Jauncey, D. L.; Niell, A.; Morabito, D. D.; Preston, R.
1983-01-01
The 250-2500 km baseline vectors between radio telescopes located at Tidbinbilla (DSS43) near Canberra, Parkes, Fleurs (X3) near Sydney, Hobart and Alice Springs were determined from radio interferometric observations of extragalactic sources. The observations were made during two 24-hour sessions on 26 April and 3 May 1982, and one 12-hour night-time session on 28 April 1982. The 275 km Tidbinbilla - Parkes baseline was measured with an accuracy of plus or minus 6 cm. The remaining baselines were measured with accuracies ranging from 15 cm to 6 m. The higher accuracies were achieved for the better instrumented sites of Tidbinbilla, Parkes and Fleurs. The data reduction technique and results of the experiment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioja, M.; Dodson, R.; Malarecki, J.
2011-11-15
Space very long baseline interferometry (S-VLBI) observations at high frequencies hold the prospect of achieving the highest angular resolutions and astrometric accuracies, resulting from the long baselines between ground and satellite telescopes. Nevertheless, space-specific issues, such as limited accuracy in the satellite orbit reconstruction and constraints on the satellite antenna pointing operations, limit the application of conventional phase referencing. We investigate the feasibility of an alternative technique, source frequency phase referencing (SFPR), to the S-VLBI domain. With these investigations we aim to contribute to the design of the next generation of S-VLBI missions. We have used both analytical and simulationmore » studies to characterize the performance of SFPR in S-VLBI observations, applied to astrometry and increased coherence time, and compared these to results obtained using conventional phase referencing. The observing configurations use the specifications of the ASTRO-G mission for their starting point. Our results show that the SFPR technique enables astrometry at 43 GHz, using alternating observations with 22 GHz, regardless of the orbit errors, for most weathers and under a wide variety of conditions. The same applies to the increased coherence time for the detection of weak sources. Our studies show that the capability to carry out simultaneous dual frequency observations enables application to higher frequencies, and a general improvement of the performance in all cases, hence we recommend its consideration for S-VLBI programs.« less
NASA Astrophysics Data System (ADS)
Boehm, Johannes; Werl, Birgit; Schuh, Harald
2006-02-01
In the analyses of geodetic very long baseline interferometry (VLBI) and GPS data the analytic form used for mapping of the atmosphere delay from zenith to the line of site is most often a three-parameter continued fraction in 1/sin(elevation). Using the 40 years reanalysis (ERA-40) data of the European Centre for Medium-Range Weather Forecasts for the year 2001, the b and c coefficients of the continued fraction form for the hydrostatic mapping functions have been redetermined. Unlike previous mapping functions based on data from numerical weather models (isobaric mapping functions (Niell, 2000) and Vienna mapping functions (VMF) (Boehm and Schuh, 2004)), the new c coefficients are dependent on the day of the year, and unlike the Niell mapping functions (Niell, 1996) they are no longer symmetric with respect to the equator (apart from the opposite phase for the two hemispheres). Compared to VMF, this causes an effect on the VLBI or GPS station heights that is constant and as large as 2 mm at the equator and that varies seasonally between 4 mm and 0 mm at the poles. The updated VMF, based on these new coefficients and called VMF1 hereinafter, yields slightly better baseline length repeatabilities for VLBI data. The hydrostatic and wet mapping functions are applied in various combinations with different kinds of a priori zenith delays in the analyses of all VLBI International VLBI Service for Geodesy and Astrometry (IVS)-R1 and IVS-R4 24-hour sessions of 2002 and 2003; the investigations concentrate on baseline length repeatabilities, as well as on absolute changes of station heights.
Ronald N. Bracewell: An Appreciation
NASA Astrophysics Data System (ADS)
Thompson, A. Richard; Frater, Robert H.
2010-11-01
Ronald Newbold Bracewell (1921-2007) made fundamental contributions to the development of radio astronomy in the areas of interferometry, signal processing, and imaging, and also to tomography, various areas of data analysis, and the understanding of Fourier transforms. He was born in Sydney, Australia, and received a B.Sc. degree in mathematics and physics, and B.E. and M.E. degrees in electrical engineering from the University of Sydney, and his Ph.D. from the University of Cambridge, U.K., for research on the ionosphere. In 1949 he joined the Radiophysics Laboratory of CSIRO, where he became interested in radio astronomy. In 1955 he moved to Stanford University, California, where he became Lewis M. Terman Professor of Electrical Engineering. He retired from teaching in 1991, but continued to be active in radio astronomy and other applications of imaging techniques, etc. During his career he published ten books and more than 250 papers. Honors that he received include the Duddell Premium of the Institute of Electrical Engineers, London, the Hertz Medal of the IEEE, and the Order of Australia. For his work on imaging in tomography he was elected to Associate Membership of the Institute of Medicine of the U.S. National Academy of Sciences.
An overview of VHF lightning observations by digital interferometry from ISS/JEM-GLIMS
NASA Astrophysics Data System (ADS)
Morimoto, Takeshi; Kikuchi, Hiroshi; Sato, Mitsuteru; Ushio, Tomoo; Yamazaki, Atsushi; Suzuki, Makoto; Ishida, Ryohei; Sakamoto, Yuji; Yoshida, Kazuya; Hobara, Yasuhide; Sano, Takuki; Abe, Takumi; Kawasaki, Zen-Ichiro
2016-08-01
The Global Lightning and sprIte MeasurementS (GLIMS) mission has been conducted at the Exposed Facility of Japanese Experiment Module (JEM-EF) of the International Space Station for more than 30 months. This paper focuses on an electromagnetic (EM) payload of JEM-GLIMS mission, the very high frequency (VHF) broadband digital InTerFerometer (VITF). The JEM-GLIMS mission is designed to conduct comprehensive observations with both EM and optical payloads for lightning activities and related transient luminous events. Its nominal operation continued from November 2012 to December 2014. The extended operation followed for eight months. Through the operation period, the VITF collected more than two million VHF EM waveforms in almost 18,700 datasets. The number of VITF observations synchronized with optical signal is 8049. Active VHF radiations are detected in about 70 % of optical observations without obvious regional or seasonal dependency. Estimations of the EM direction-of-arrival (DOA) are attempted using the broadband digital interferometry. Some results agree with the optical observations, even though DOA estimation is problematic because of a very short antenna baseline and multiple pulses over a short time period, namely burst-type EM waveforms. The world's first lightning observations by means of space-borne VHF interferometry are achieved in this mission. This paper summarizes VITF instruments, the recorded VHF EM signals, and the results of DOA estimations by means of digital interferometry as a preliminary report after termination of the mission.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ghulam, A.
2011-12-01
DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.
Observations of the Sea Ice Cover Using Satellite Radar Interferometry
NASA Technical Reports Server (NTRS)
Kwok, Ronald
1995-01-01
The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.
Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989
NASA Astrophysics Data System (ADS)
Roddier, Francois J.
1989-09-01
The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.
Differential tracking data types for accurate and efficient Mars planetary navigation
NASA Technical Reports Server (NTRS)
Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Border, J. S.
1991-01-01
Ways in which high-accuracy differential observations of two or more deep space vehicles can dramatically extend the power of earth-based tracking over conventional range and Doppler tracking are discussed. Two techniques - spacecraft-spacecraft differential very long baseline interferometry (S/C-S/C Delta(VLBI)) and same-beam interferometry (SBI) - are discussed. The tracking and navigation capabilities of conventional range, Doppler, and quasar-relative Delta(VLBI) are reviewed, and the S/C-S/C Delta (VLBI) and SBI types are introduced. For each data type, the formation of the observable is discussed, an error budget describing how physical error sources manifest themselves in the observable is presented, and potential applications of the technique for Space Exploration Initiative scenarios are examined. Requirements for spacecraft and ground systems needed to enable and optimize these types of observations are discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.
2010-06-01
Sternwartstrasse 7, 96049 Bamberg, Germany 3 CRESST/ NASA Goddard Space Flight Center, Greenbelt, ~’iID 20771, USA 4 USRA, 10211 Wincopin Circle, Suite...program and present early results on the 75 sources currently being monitored. 1. Introduction Very Long Baseline Interferometry (VLBI) observations...wavelength studies (e.g., Abdo et al. 2010a, Chang et al. 2010) be - sides probing emission processes along AGN jets (e.g., Muller et al. 2010, Hungwe
Code of Federal Regulations, 2013 CFR
2013-10-01
... vicinity of radio astronomy service (RAS) observatories observing in the 14.47-14.5 GHz band are subject to... RAS site, its location, and the applicable coordination zone. Table 1—Applicable Radio Astronomy... Radio Astronomy Observatory, Stinchfield Woods, MI 42°23′56″ 83°56′11″ 160. Very Long Baseline Array...
Big Computing in Astronomy: Perspectives and Challenges
NASA Astrophysics Data System (ADS)
Pankratius, Victor
2014-06-01
Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds a distinguished doctorate and a Habilitation degree in Computer Science from the University of Karlsruhe. Contact him at pankrat@mit.edu, victorpankratius.com, or Twitter @vpankratius.
The Deep Space Network in the Common Platform Era: A Prototype Implementation at DSS-13
NASA Technical Reports Server (NTRS)
Davarian, F.
2013-01-01
To enhance NASA's Deep Space Network (DSN), an effort is underway to improve network performance and simplify its operation and maintenance. This endeavor, known as the "Common Platform," has both short- and long-term objectives. The long-term work has not begun yet; however, the activity to realize the short-term goals has started. There are three goals for the long-term objective: 1. Convert the DSN into a digital network where signals are digitized at the output of the down converters at the antennas and are distributed via a digital IF switch to the processing platforms. 2. Employ a set of common hardware for signal processing applications, e.g., telemetry, tracking, radio science and Very Long Baseline Interferometry (VLBI). 3. Minimize in-house developments in favor of purchasing commercial off-the-shelf (COTS) equipment. The short-term goal is to develop a prototype of the above at NASA's experimental station known as DSS-13. This station consists of a 34m beam waveguide antenna with cryogenically cooled amplifiers capable of handling deep space research frequencies at S-, X-, and Ka-bands. Without the effort at DSS-13, the implementation of the long-term goal can potentially be risky because embarking on the modification of an operational network without prior preparations can, among other things, result in unwanted service interruptions. Not only are there technical challenges to address, full network implementation of the Common Platform concept includes significant cost uncertainties. Therefore, a limited implementation at DSS-13 will contribute to risk reduction. The benefits of employing common platforms for the DSN are lower cost and improved operations resulting from ease of maintenance and reduced number of spare parts. Increased flexibility for the user is another potential benefit. This paper will present the plans for DSS-13 implementation. It will discuss key issues such as the Common Platform architecture, choice of COTS equipment, and the standard for radio frequency (RF) to digital interface.
GARS O'Higgins as a core station for geodesy in Antarctica
NASA Astrophysics Data System (ADS)
Klügel, Thomas; Diedrich, Erhard; Falk, Reinhard; Hessels, Uwe; Höppner, Kathrin; Kühmstedt, Elke; Metzig, Robert; Plötz, Christian; Reinhold, Andreas; Schüler, Torben; Wojdziak, Reiner
2014-05-01
The German Antarctic Receiving Station GARS O'Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for Earth observation since more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference frames and global change. Both applications use the same 9m diameter radio telescope. For space geodesy and astrometry the radio telescope significantly improves the coverage on the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celectial Reference Frame (ICRF) benefit from the location at high southern latitude. Further geodetic instrumentation includes different permanent GNSS receivers (since 1995), two SAR corner reflectors (since 2013) and in the past a PRARE system (1996 - 2004). In addition absolute gravity measurements were performed in 1997 and 2011. All geodetic reference points are tied together by a local survey network. The various geodetic instrumentation and the long time series at O'Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS time series and absolute gravity measurements consistently document an uplift rate of about 5 mm/a. A pressure gauge and a radar tide gauge being refererenced to space by a GNSS antenna on top allow the measurement of sea level changes independently from crustal motions, and the determination of the ellipsoidal height of the sea surface, which is, the geoid height plus the mean dynamic topography. The outstanding location on the Antarctic continent makes GARS O'Higgins also in future attractive for polar orbiting satellite missions and an essential station for the global VLBI network. Future plans envisage a development towards an observatory for environmentally relevant research.
The Milky Way's Supermassive Black Hole: How Good a Case Is It?
NASA Astrophysics Data System (ADS)
Eckart, Andreas; Hüttemann, Andreas; Kiefer, Claus; Britzen, Silke; Zajaček, Michal; Lämmerzahl, Claus; Stöckler, Manfred; Valencia-S, Monica; Karas, Vladimir; García-Marín, Macarena
2017-05-01
The compact and, with {˜ }4.3± 0.3× 10^6 M_{\\odot }, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* (SgrA*) in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into the emission mechanisms responsible for the powerful near-infrared and X-ray flares from within a few tens to one hundred Schwarzschild radii of such a putative SMBH. If SgrA* is indeed a SMBH it will, in projection onto the sky, have the largest event horizon and will certainly be the first and most important target for very long baseline interferometry observations currently being prepared by the event horizon telescope (EHT). These observations in combination with the infrared interferometry experiment GRAVITY at the very large telescope interferometer and other experiments across the electromagnetic spectrum might yield proof for the presence of a black hole at the center of the Milky Way. The large body of evidence continues to discriminate the identification of SgrA* as a SMBH from alternative possibilities. It is, however, unclear when the ever mounting evidence for SgrA* being associated with a SMBH will suffice as a convincing proof. Additional compelling evidence may come from future gravitational wave observatories. This manuscript reviews the observational facts, theoretical grounds and conceptual aspects for the case of SgrA* being a black hole. We treat theory and observations in the framework of the philosophical discussions about "(anti)realism and underdetermination", as this line of arguments allows us to describe the situation in observational astrophysics with respect to supermassive black holes. Questions concerning the existence of supermassive black holes and in particular SgrA* are discussed using causation as an indispensable element. We show that the results of our investigation are convincingly mapped out by this combination of concepts.
Network Adjustment of Orbit Errors in SAR Interferometry
NASA Astrophysics Data System (ADS)
Bahr, Hermann; Hanssen, Ramon
2010-03-01
Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1993-01-01
We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.
Mission feasibility study of a very long baseline interferometer utilizing the space shuttle
NASA Technical Reports Server (NTRS)
Burke, B. F.
1978-01-01
An introductory overview of very long baseline interferometry (VLBI) as it exists and is used today is given and the scientific advances that have been achieved with this technique in the past decade are described. The report briefly reviews developments now in progress that will improve ground station VLBI in the next few years, and the limitations that still will exist. The advantages and the scientific return on investment that may be expected from a VLBI terminal in space are described. Practical problems that have to be faced range from system design through hardware implementation, to data recovery and analysis.
Crustal Dynamics Project data analysis, 1990
NASA Technical Reports Server (NTRS)
Caprette, D. S.; Ma, C.; Ryan, J. W.
1990-01-01
The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies
NASA Astrophysics Data System (ADS)
Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip
2017-07-01
We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.
2006 Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan;
2006-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
NASA Astrophysics Data System (ADS)
Shulyak, D.; Paladini, C.; Causi, G. Li; Perraut, K.; Kochukhov, O.
2014-09-01
By means of numerical experiments we explore the application of interferometry to the detection and characterization of abundance spots in chemically peculiar (CP) stars using the brightest star ε UMa as a case study. We find that the best spectral regions to search for spots and stellar rotation signatures are in the visual domain. The spots can clearly be detected already at a first visibility lobe and their signatures can be uniquely disentangled from that of rotation. The spots and rotation signatures can also be detected in near-infrared at low spectral resolution but baselines longer than 180 m are needed for all potential CP candidates. According to our simulations, an instrument like VEGA (or its successor e.g. Fibered and spectrally Resolved Interferometric Equipment New Design) should be able to detect, in the visual, the effect of spots and spots+rotation, provided that the instrument is able to measure V2 ≈ 10-3, and/or closure phase. In infrared, an instrument like AMBER but with longer baselines than the ones available so far would be able to measure rotation and spots. Our study provides necessary details about strategies of spot detections and the requirements for modern and planned interferometric facilities essential for CP star research.
NASA Astrophysics Data System (ADS)
Mathar, Richard J.
Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Designing the Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2011-01-01
While infrared astronomy has revolutionized our understanding of galaxies, stars, and planets, further progress on major questions is stymied by the inescapable fact that the spatial resolution of single-aperture telescopes degrades at long wavelengths. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter boom interferometer to operate in the FIR (30-90 micron) on a high altitude balloon. The long baseline will provide unprecedented angular resolution (approx. 5") in this band. In order for BETTII to be successful, the gondola must be designed carefully to provide a high level of stability with optics designed to send a collimated beam into the cryogenic instrument. We present results from the first 5 months of design effort for BETTII. Over this short period of time, we have made significant progress and are on track to complete the design of BETTII during this year.
Monitoring of Sea Ice Dynamic by Means of ERS-Envisat Tandem Cross-Interferometry
NASA Astrophysics Data System (ADS)
Pasquali, Paolo; Cantone, Alessio; Barbieri, Massimo; Engdahl, Marcus
2010-03-01
The interest in the monitoring of sea ice masses has increased greatly over the past decades for a variety of reasons. These include:- Navigation in northern latitude waters;- transportation of petroleum;- exploitation of mineral deposits in the Arctic, and- the use of icebergs as a source of fresh water.The availability of ERS-Envisat 28minute tandem acquisitions from dedicated campaigns, covering large areas in the northern latitudes with large geometrical baseline and very short temporal separation, allows the precise estimation of sea ice displacement fields with an accuracy that cannot be obtained on large scale from any other instrument. This article presents different results of sea ice dynamic monitoring over northern Canada obtained within the "ERS-Envisat Tandem Cross-Interferometry Campaigns: CInSAR processing and studies over extended areas" project from data acquired during the 2008-2009 Tandem campaign..
Mapping spiral structure on the far side of the Milky Way
NASA Astrophysics Data System (ADS)
Sanna, Alberto; Reid, Mark J.; Dame, Thomas M.; Menten, Karl M.; Brunthaler, Andreas
2017-10-01
Direct measurements of distances to astronomical sources rely on parallax, which can usually only be measured for relatively nearby objects. The far side of the Milky Way has been impossible to measure accurately, because the parallax is very small and interstellar dust blocks optical light from those regions. Sanna et al. used radio interferometry to directly determine the parallax distance to a star-forming region on the far side of the Galaxy. They also used a method of inferring distances from transverse motions, which produced the same answer. This allowed them to trace one of the Milky Way's spiral arms through almost an entire rotation.
Reformulation of the relativistic conversion between coordinate time and atomic time
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1975-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring 'earth-bound' proper time or atomic time). After an interpretation in terms of relatively well-known concepts, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th, is used to explain the conventions required in the synchronization of a worldwide clock network and to analyze two synchronization techniques - portable clocks and radio interferometry. Finally, pertinent experimental tests of relativity are briefly discussed in terms of the reformulated time conversion.
McDermott, Mary M; Domanchuk, Kathryn; Dyer, Alan; Ades, Philip; Kibbe, Melina; Criqui, Michael H
2009-03-01
To describe the success of diverse recruitment methods in a randomized controlled clinical trial of exercise in persons with peripheral arterial disease (PAD). An analysis of recruitment sources conducted for the 746 men and women completing a baseline visit for the study to improve leg circulation (SILC), a randomized controlled trial of exercise for patients with PAD. For each recruitment source, we determined the number of randomized participants, the rate of randomization among those completing a baseline visit, and cost per randomized participant. Of the 746 individuals who completed a baseline visit, 156 were eligible and randomized. The most frequent sources of randomized participants were newspaper advertising (n = 67), mailed recruitment letters to patients with PAD identified at the study medical center (n = 25), and radio advertising (n = 18). Costs per randomized participant were $2750 for television advertising, $2167 for Life Line Screening, $2369 for newspaper advertising, $3931 for mailed postcards to older community dwelling men and women, and $5691 for radio advertising. Among those completing a baseline visit, randomization rates ranged from 10% for those identified from radio advertising to 32% for those identified from the Chicago Veterans Administration and 33% for those identified from posted flyers. Most participants in a randomized controlled trial of exercise were recruited from newspaper advertising and mailed recruitment letters to patients with known PAD. The highest randomization rates after a baseline visit occurred among participants identified from posted flyers and mailed recruitment letters to PAD patients.
Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques
NASA Technical Reports Server (NTRS)
Kuan, Gary M
2008-01-01
The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.
Centimeter repeatability of the VLBI estimates of European baselines
NASA Technical Reports Server (NTRS)
Rius, Antonio; Zarraoa, Nestor; Sardon, Esther; Ma, Chopo
1992-01-01
In the last three years, the European Geodetic Very Long Baseline Interferometry (VLBI) Network has grown to a total of six fixed antennas placed in Germany, Italy, Spain and Sweden, all equipped with the standard geodetic VLBI instrumentation and data recording systems. During this period of time, several experiments have been carried out using this interferometer providing data of very high quality due to the excellent sensitivity and performance of the European stations. The purpose of this paper is to study the consistency of the VLBI geodetic results on the European baselines with respect to the different degrees of freedom in the analysis procedure. Used to complete this study were both real and simulated data sets, two different software packages (OCCAM 3.0 and CALC 7.4/SOLVE), and a variety of data analysis strategies.
Radio Telescopes "Save the Day," Produce Data on Titan's Winds
NASA Astrophysics Data System (ADS)
2005-02-01
In what some scientists termed "a surprising, almost miraculous turnabout," radio telescopes, including major facilities of the National Science Foundation's National Radio Astronomy Observatory (NRAO), have provided data needed to measure the winds encountered by the Huygens spacecraft as it descended through the atmosphere of Saturn's moon Titan last month -- measurements feared lost because of a communication error between Huygens and its "mother ship" Cassini. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) A global network of radio telescopes, including the NRAO's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten antennas of the Very Long Baseline Array (VLBA), recorded the radio signal from Huygens during its descent on January 14. Measurements of the frequency shift caused by the craft's motion, called Doppler shift, are giving planetary scientists their first direct information about Titan's winds. "When we began working with our international partners on this project, we thought our telescopes would be adding to the wind data produced by the two spacecraft themselves. Now, with the ground-based telescopes providing the only information about Titan's winds, we are extremely proud that our facilities are making such a key contribution to our understanding of this fascinating planetary body," said Dr. Fred K.Y. Lo, Director of the National Radio Astronomy Observatory (NRAO). Early analysis of the radio-telescope data shows that Titan's wind flows from west to east, in the direction of the moon's rotation, at all altitudes. The highest wind speed, nearly 270 mph, was measured at an altitude of about 75 miles. Winds are weak near Titan's surface and increase in speed slowly up to an altitude of about 37 miles, where the spacecraft encountered highly-variable winds that scientists think indicate a region of vertical wind shear. The ground-based Doppler measurements were carried out and processed jointly by scientists from the NASA Jet Propulsion Laboratory (JPL, USA), and the Joint Institute for VLBI in Europe (JIVE, The Netherlands) working within an international Doppler Wind Experiment team. The GBT made the first detection of Huygens' radio signal during the descent, and gave flight controllers and scientists the first indication that the spacecraft's parachute had deployed and that it was "alive" after entering Titan's atmosphere. The radio-telescope measurements also indicated changes in Huygens' speed when it exchanged parachutes and when it landed on Titan's surface. The original plan for gauging Titan's winds called for measuring the Doppler shift in the probe's signal frequency both by Cassini and by ground-based radio telescopes in the U.S., Australia, Japan and China. Cassini was best positioned to gain information on the east-west component of the winds, and the ground-based telescopes were positioned to help learn about the north-south wind component. Unfortunately, the communications error lost all the wind data from Cassini. The VLBA The VLBA CREDIT: NRAO/AUI/NSF (Click on image for VLBA gallery) "I've never felt such exhilarating highs and dispiriting lows than those experienced when we first detected the signal from the GBT, indicating 'all's well,' and then discovering that we had no signal at the operations center, indicating 'all's lost.' The truth, as we have now determined, lies somewhat closer to the former than the latter." said Michael Bird of the University of Bonn. In addition to measuring the motion-generated frequency shift of Huygens' radio signal, radio telescopes also were used to make extremely precise measurements of the probe's position (to within three-quarters of a mile, or one kilometer) during its descent. This experiment used the VLBA antennas, along with others employing the technique of Very Long Baseline Interferometry (VLBI). Combination of the Doppler and VLBI data will eventually provide a three-dimensional record of motion for the Huygens Probe during its mission at Titan. Huygens was built by the European Space Agency. The radio astronomy support of the Huygens mission is coordinated by JIVE and JPL and involves the National Radio Astronomy Observatory (Green Bank, WV and Socorro, NM), the Netherlands Foundation for Research in Astronomy (ASTRON, The Netherlands), the University of Bonn (Germany), Helsinki University of Technology (Espoo, Finland), the MERLIN National Facility (Jodrell Bank, UK), the Onsala Space Observatory (Sweden), the NASA Jet Propulsion Laboratory (Pasadena, CA), the CSIRO Australia Telescope National Facility (ATNF, Sydney, Australia), the University of Tasmania (Hobart, Australia), the National Astronomical Observatories of China, the Shanghai Astronomical Observatory (Shanghai and Urumqi, China) and the National Institute of Information and Communications Technologies (Kashima Space Research Center, Japan). The Joint Institute for VLBI in Europe is hosted by ASTRON and funded by the national research councils, national facilities and institutes of The Netherlands (NOW), the United Kingdom (PPARC), Italy (CNR), Sweden (Onsala Space Observatory, National Facility), Spain (IGN) and Germany (MPIfR). The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The Cassini-Huygens mission is a cooperation between NASA, ESA and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA's Office of Space Science, Washington DC. JPL designed, developed and assembled the Cassini orbiter while ESA operated the Huygens atmospheric probe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
de Graauw, T.
2010-09-01
As this editorial is written, we have seven antennas at the Chajnantor plateau, the "High Site". Seven antennas means twenty-one baselines, i.e. more than twice as many as we had only two months ago. As you know, the bonus we have in interferometry is that the the number of baselines increases roughly with the square of the available antennas. The image quality can be further enhanced, because the projection of a celestial source onto the existing baselines changes due to the rotation of the Earth. A large number of baselines is important but not sufficient to fulfill one important promise of ALMA, namely to provide crisp images. Unlike the sharp images from the Hubble Space Telescope, images from ground based optical or radio telescopes are blurred by the Earth's atmosphere. It is the Holy Grail of observing astronomy to overcome such atmospheric effects. Recently, ALMA has made a big step toward this goal by using Water Vapor Radiometers operating at 183 GHz to measure the amount of atmospheric water vapor at any instant in the line of sight of each antenna, and applying a corresponding correction to the astronomical data received. This not only improves the image quality, it is essential for using ALMA at its lowest wavelengths of around 0.3mm and at baselines exceeding several kilometers. Achieving this has a been a collaborative effort involving many parts of the project and there are all to be congratulated. JAO has now moved into our new Santiago Central Office in Vitacura next to the ESO premises, ending a phase of two years were Santiago based staff was distributed in two different buildings. This new ALMA office will also host the ALMA archive. Although ALMA users are normally not expected to come to Chile to observe, there will be office space for visitors, since ALMA has been and will always be a cooperation of people from many countries and many fields of science and engineering. This newsletter contains a list of workshops, schools and conferences dealing with ALMA, reflecting the interest of the astronomical community in our project. I invite everybody to join these events in order to discuss the exciting science made possible with ALMA, and to learn how to use this instrument in an efficient way. After all, the first call for ALMA observing proposals will be released very soon. After having served as ALMA Project Engineer since 2004, Rick Murowinski has decided to go back to Canada. We thank him for his important contributions to our project during very crucial years and wish him all the best for his future career.
LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinley, B.; Briggs, F.; Kaplan, D. L.
2013-01-01
A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of themore » Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.« less
Phase Calibration for the Block 1 VLBI System
NASA Technical Reports Server (NTRS)
Roth, M. G.; Runge, T. F.
1983-01-01
Very Long Baseline Interferometry (VLBI) in the DSN provides support for spacecraft navigation, Earth orientation measurements, and synchronization of network time and frequency standards. An improved method for calibrating instrumental phase shifts has recently been implemented as a computer program in the Block 1 system. The new calibration program, called PRECAL, performs calibrations over intervals as small as 0.4 seconds and greatly reduces the amount of computer processing required to perform phase calibration.
(abstract) A VLBI Test of Tropospheric Delay Calibration with WVRs
NASA Technical Reports Server (NTRS)
Linfield, R. P.; Teitelbaum, L. P.; Keihm, S. J.; Resch, G. M.; Mahoney, M. J.; Treuhaft, R. N.
1994-01-01
Dual frequency (S/X band) very long baseline interferometry (VLBI) observations were used to test troposphere calibration by water vapor radiometers (WVRs). Comparison of the VLBI and WVR measurements show a statistical agreement (specifically, their structure functions agree) on time scales less than 700 seconds. On longer time scales, VLBI instrumental errors become important. The improvement in VLBI residual delays from WVR calibration was consistent with the measured level of tropospheric fluctuations.
International VLBI Service for Geodesy and Astrometry 2014 Annual Report
NASA Technical Reports Server (NTRS)
Baver, Karen D. (Editor); Behrend, Dirk (Editor); Armstrong, Kyla L. (Editor)
2015-01-01
IVS is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: 1. To provide a service to support geodetic, geophysical and astrometric research and operational activities. 2. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. 3. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.
PKS 1954-388: RadioAstron Detection on 80,000 km Baselines and Multiwavelength Observations
NASA Astrophysics Data System (ADS)
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; An, H.; Bignall, H.; Carpenter, B.; Hovatta, T.; Stevens, J.; Voytsik, P.; Andrianov, A. S.; Dutka, M.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Kadler, M.; Lisakov, M.; Lovell, J. E. J.; McCallum, J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Reynolds, C.; Schulz, R.; Sokolovsky, K. V.; Tzioumis, A. K.; Zuga, V.
2017-04-01
We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed 9 months after the start of a prolonged gamma-ray high-state-a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.
NASA Astrophysics Data System (ADS)
Geeraert, Jeroen L.
Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy satellite state with respect to the chief. Once again the results demonstrate that the TDOA and FDOA OD results are favorable with faster dynamics over classical measurements. This dissertation not only explores the OD side, but also gaps in geolocation research. First the mapping of ephemeris uncertainty to the geolocation covariance to provide a more realistic covariance was implemented. Furthermore, the geolocation solution was improved by appending a probabilistic altitude constraint to the posterior covariance, significantly reducing the projected geolocation uncertainty ellipse. The feasibility of using the geolocation setup to passively locate a LEO satellite was also considered. Finally the simulated results were verified using a long-arc of real data. The use of FDOA for small-body navigation and gravity recovery was also examined as an extended application.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong
2017-09-01
Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Trajectory Determination for Chang 'e-3 Probe Soft-landing
NASA Astrophysics Data System (ADS)
Yezhi, S.; Huang, Y.
2017-12-01
On December 2, 2013, The Chang 'e-3 (ce-3) probe was successfully launched from a long march-3b carrier rocket at Xichang satellite launch center. After more than five days of flying, the probe was captured by the moon to 100 km by 100 km. The orbit maneuvered to 15 km by 100 km 4 days later. Finally, at 21:12 Beijing time on December 14, 2013, it landed at the junction of the Sinus Iridum and Mare Imbrium. In the ce-3 project, the combined test mode of the radio ranging measurement and very long baseline interferometry (VLBI) was used. The soft-landing was carried out in ce-3 mission for the sampling .The paper presents a new method of trajectory determination for soft landing and sampling returning for lunar probe by B spline approximation. By simulation and data processing of Chang'E-3(CE-3), it could be assumed that the accuracy of trajectory determination of soft landing is less than 100 meters in CE-3. It appears that the difference between the endpoint of trajectory and the location from image processed by NASA'S LRO is less than 50m .It confirms the method of soft landing trajectory determination provided by the paper is effective. The paper analyzes the dynamics and control characteristics of the sampling returning, provides the preliminary feasible trajectory determination method for soft landing and sampling return of Chang'E-5 (CE - 5).
Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity
NASA Astrophysics Data System (ADS)
Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping
2018-01-01
In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.
NASA Astrophysics Data System (ADS)
Nakanishi, Hiroyuki; Sakai, Nobuyuki; Kurayama, Tomoharu; Matsuo, Mitsuhiro; Imai, Hiroshi; Burns, Ross A.; Ozawa, Takeaki; Honma, Mareki; Shibata, Katsunori M.; Kawaguchi, Noriyuki
2015-08-01
We conducted astrometric very long baseline interferometry (VLBI) observations of water-vapor maser emission in the massive star-forming region IRAS 21379+5106 in order to measure the annual parallax and proper motion, using VLBI Exploration of Radio Astrometry (VERA). The annual parallax measured 0.262 ± 0.031 mas, corresponding to a distance of 3.82^{+0.51}_{-0.41}kpc. The proper motion was (μαcos δ, μδ) = (-2.74 ± 0.08, -2.87 ± 0.18) mas yr-1. By using this result, the Galactic rotational velocity was estimated to be Vθ = 218 ± 19 km s-1 at the galactocentric distance R = 9.22 ± 0.43 kpc, when we adopted the Galactic constants R0 = 8.05 ± 0.45 kpc and V0 = 238 ± 14 km s-1. With the newly determined distance, the bolometric luminosity of the central young stellar object was reestimated to be (2.15 ± 0.54) × 103 L⊙, which corresponds to the spectral type of B2-B3. The maser features were found to be distributed along a straight line extending from the southwest to the northeast. In addition, a vector map of the internal motions, constructed from the residual proper motions, implies that the maser features trace a bipolar flow, and that it cannot be explained by simple ballistic motions.
Scattering analysis of LOFAR pulsar observations
NASA Astrophysics Data System (ADS)
Geyer, M.; Karastergiou, A.; Kondratiev, V. I.; Zagkouris, K.; Kramer, M.; Stappers, B. W.; Grießmeier, J.-M.; Hessels, J. W. T.; Michilli, D.; Pilia, M.; Sobey, C.
2017-09-01
We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190 MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant τ, associated with scattering by a single thin screen, has a power-law dependence on frequency τ ∝ ν-α, with indices ranging from α = 1.50 to 4.0, despite simplest theoretical models predicting α = 4.0 or 4.4. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency-dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical τ versus DM relation and consider how our results support a frequency dependence of α. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.
SN 2014C: VLBI images of a supernova interacting with a circumstellar shell
NASA Astrophysics Data System (ADS)
Bietenholz, Michael F.; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Danny; Soderberg, Alicia
2018-04-01
We report on very long baseline interferometry (VLBI) measurements of supernova 2014C at several epochs between t = 384 and 1057 d after the explosion. SN 2014C was an unusual supernova that initially had Type Ib optical spectrum, but after t = 130 d it developed a Type IIn spectrum with prominent Hα lines, suggesting the onset of strong circumstellar interaction. Our first VLBI observation was at t = 384 d, and we find that the outer radius of SN 2014C was (6.40 ± 0.26) × 1016 cm (for a distance of 15.1 Mpc), implying an average expansion velocity of 19 300 ± 790 km s-1 up to that time. At our last epoch, SN 2014C was moderately resolved and shows an approximately circular outline but with an enhancement of the brightness on the W side. The outer radius of the radio emission at t = 1057 d is (14.9 ± 0.6) × 1016 cm. We find that the expansion between t = 384 and 1057 d is well described by a constant velocity expansion with v = 13 600 ± 650 km s-1. SN 2014C had clearly been substantially decelerated by t = 384 d. Our measurements are compatible with a scenario where the expanding shock impacted upon a shell of dense circumstellar material during the first year, as suggested by the observations at other wavelengths, but had progressed through the dense shell by the time of the VLBI observations.
NASA Astrophysics Data System (ADS)
Xu, M. H.
2016-03-01
Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.
Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.
2004-01-01
In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
Radio Telescopes Provide Key Clue on Black Hole Growth
NASA Astrophysics Data System (ADS)
2007-01-01
Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little-understood processes involving a spinning disk of material being drawn toward the black hole at the disk's center. "An outflow from a black hole can regulate its growth by pushing back on material being drawn toward it. This is an important aspect of black hole development. Our observations offer new and unique information on how this process works for intermediate-mass black holes," Ho said. "Intermediate-mass black holes may have been the starting points for the supermassive black holes that we now see throughout the Universe. By studying this contemporary analog to those earlier objects, we hope to learn how the less-massive ones grew into the more-massive ones," Wrobel explained. The black hole in NGC 4395 was added to a small number of known intermediate-mass black holes in 2005, when a research team led by Brad Peterson of the Ohio State University calculated its mass based on ultraviolet observations. Other ultraviolet and X-ray observations gave tantalizing hints that material might be flowing outward from the black hole. "Fortunately, this object also is detectable by radio telescopes, so we could use very high precision radio observing techniques to make extremely detailed images," Wrobel said. Wrobel and Ho used a technique called Very Long Baseline Interferometry (VLBI), in which multiple radio-telescope antennas are used together to simulate a much larger "virtual telescope," providing extremely great resolving power, or ability to see fine detail. The astronomers used all of NRAO's telescopes in their coordinated VLBI array, including the continent-wide Very Long Baseline Array (VLBA), the 27-antenna Very Large Array (VLA) in New Mexico, and the giant Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The combination of antennas spread far apart as well as the large amount of signal-collecting area in this system allowed the scientists to make a detailed image of the faint radio emission caused by fast-moving electrons in the suspected outflow from the black hole interacting with magnetic fields. The resulting image showed the suspected outflow stretching approximately one light-year from the black hole. "This direct image bolsters the case for an outflow that was suggested by the earlier indirect evidence from the ultraviolet and X-ray observations," Wrobel said. "By measuring the length of this suspected outflow, we offer a unique constraint on theoretical models for how intermediate-mass black holes operate," Ho said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Revealing two radio-active galactic nuclei extremely near PSR J0437-4715
NASA Astrophysics Data System (ADS)
Li, Zhixuan; Yang, Jun; An, Tao; Paragi, Zsolt; Deller, Adam; Reynolds, Cormac; Hong, Xiaoyu; Wang, Jiancheng; Ding, Hao; Xia, Bo; Yan, Zhen; Guo, Li
2018-05-01
Newton's gravitational constant G may vary with time at an extremely low level. The time variability of G will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio wavelengths. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of ≥107 K. According to these radio inputs and the absence of counterparts in other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei, rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of G in the near future.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.
2000-01-01
Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem too strong to be plausible, but parameters describing a two-layer compare reasonably well to a field-measured probability distribution of tree heights in the area.
NASA Astrophysics Data System (ADS)
Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.
2018-02-01
This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Tori, Discs, and Winds: The First Ten Years of AGN Interferometry
NASA Astrophysics Data System (ADS)
Hönig, Sebastian F.
Infrared (IR) interferometry has made significant progress over the last 10 years to a level that active galactic nuclei (AGN) are now routine targets for long-baseline interferometers. Almost 50 different objects have been studied today in the near-IR and mid-IR. This allowed for detailed characterisation of the dusty environment of the actively growing black holes. It was possible to show directly that the dust must be arranged in clumps, as had been indirectly inferred from theory and unresolved observations. The dust composition seems to undergo significant evolution from galactic scales to the AGN environment, with the hottest dust close to the sublimation front being dominated by large graphite grains. While the overall distribution of the dusty mass is quite diverse from object to object, indications have been found that the dust distribution may depend on AGN luminosity, with more powerful AGN potentially showing more compact dust structures. Arguably the most exciting discovery was the fact that the bulk of the mid-IR emission in Seyfert galaxies emerges from the polar region of the AGN, which is difficult to reconcile with classical torus models. An alternative model is currently being debated that consists of a dusty disc plus a dusty wind driven by radiation pressure from the central source. This finding has major implications for our understanding of AGN unification and will become a focus of the upcoming generation of instruments at the VLTI. More recently, an application of interferometry to cosmology was proposed to measure precise geometric distances to AGN in the Hubble flow. Further exploration of this method may open up interferometry to a new scientific community.
Proceedings of the Fourth Precise Time and Time Interval Planning Meeting
NASA Technical Reports Server (NTRS)
Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)
1972-01-01
The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.
NASA Astrophysics Data System (ADS)
Gies, Douglas R.
2017-11-01
Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.
The self-calibration method for multiple systems at the CHARA Array
NASA Astrophysics Data System (ADS)
O'Brien, David
The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry
NASA Astrophysics Data System (ADS)
Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of
2018-01-01
In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.
Radio Imaging of Envelopes of Evolved Stars
NASA Astrophysics Data System (ADS)
Cotton, Bill
2018-04-01
This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.
Variations in the rotation of the earth
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.
Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.
NASA Technical Reports Server (NTRS)
Stuart, J. R.
1984-01-01
The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.
Astrophysical data analysis with information field theory
NASA Astrophysics Data System (ADS)
Enßlin, Torsten
2014-12-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Influence of the active nucleus on the multiphase interstellar medium in NGC 1068
NASA Technical Reports Server (NTRS)
Bland-Hawthorn, Jonathan; Weisheit, Jon; Cecil, Gerald; Sokolowski, James
1993-01-01
The luminous spiral NGC 1068 has now been imaged from x-ray to radio wavelengths at comparably high resolution (approximately less than 5 in. FWHM). The bolometric luminosity of this well-known Seyfert is shared almost equally between the active nucleus and an extended 'starburst' disk. In an ongoing study, we are investigating the relative importance of the nucleus and the disk in powering the wide range of energetic activity observed throughout the galaxy. Our detailed analysis brings together a wealth of data: ROSAT HRI observations, VLA lambda lambda 6-20 cu cm and OVRO interferometry, lambda lambda 0.4-10.8 micron imaging, and Fabry-Perot spectrophotometry.
PKS 1954–388: RadioAstron detection on 80,000 km baselines and multiwavelength observations
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; ...
2017-04-26
Here, we present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 10 12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for amore » jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.« less
Portable Wireless Device Threat Assessment for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.
2004-01-01
This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.
Senavirathna, Mudalige Don Hiranya Jayasanka; Asaeda, Takashi; Thilakarathne, Bodhipaksha Lalith Sanjaya; Kadono, Hirofumi
2014-01-01
The emission of radio-frequency electromagnetic radiation (EMR) by various wireless communication base stations has increased in recent years. While there is wide concern about the effects of EMR on humans and animals, the influence of EMR on plants is not well understood. In this study, we investigated the effect of EMR on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. Plants were exposed to 2 GHz EMR at a maximum of 1.42 Wm(-2) for 1 h. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant 51 ± 16% reduction in NERF standard deviation. Temperature observations revealed that EMR exposure did not cause dielectric heating of the plants. Therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period.
The Astrophysics Science Division Annual Report 2009
NASA Technical Reports Server (NTRS)
Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2010-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.
Senavirathna, Mudalige Don Hiranya Jayasanka; Asaeda, Takashi; Thilakarathne, Bodhipaksha Lalith Sanjaya; Kadono, Hirofumi
2014-01-01
The emission of radio-frequency electromagnetic radiation (EMR) by various wireless communication base stations has increased in recent years. While there is wide concern about the effects of EMR on humans and animals, the influence of EMR on plants is not well understood. In this study, we investigated the effect of EMR on the growth dynamics of Myriophyllum aquaticum (Parrot feather) by measuring the nanometric elongation rate fluctuation (NERF) using a statistical interferometry technique. Plants were exposed to 2 GHz EMR at a maximum of 1.42 Wm−2 for 1 h. After continuous exposure to EMR, M. aquaticum plants exhibited a statistically significant 51 ± 16% reduction in NERF standard deviation. Temperature observations revealed that EMR exposure did not cause dielectric heating of the plants. Therefore, the reduced NERF was due to a non-thermal effect caused by EMR exposure. The alteration in NERF continued for at least 2.5 h after EMR exposure and no significant recovery was found in post-EMR NERF during the experimental period. PMID:24670369