Sample records for bases moleculares del

  1. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide

    PubMed Central

    2012-01-01

    Background While lenalidomide (LEN) shows high efficacy in myelodysplastic syndromes (MDS) with del[5q], responses can be also seen in patients presenting without del[5q]. We hypothesized that improved detection of chromosomal abnormalities with new karyotyping tools may better predict response to LEN. Design and methods We have studied clinical, molecular and cytogenetic features of 42 patients with MDS, myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes and secondary acute myeloid leukemia (sAML) without del[5q] by metaphase cytogenetics (MC) who underwent therapy with LEN. Results Fluorescence in situ hybridization (FISH) or single nucleotide polymorphism array (SNP-A)-based karyotyping marginally increased the diagnostic yield over MC, detecting 2/42 (4.8%) additional cases with del[5q], one of whom were responded to LEN. Responses were more often observed in patients with a normal karyotype by MC (60% vs abnormal MC; 17%, p = .08) and those with gain of chromosome 8 material by either of all 3 karyotyping methods (83% vs all other chromosomal abnormalities; 44% p = .11). However, 5 out of those 6 patients received combined LEN/AZA therapy and it may also suggest those with gain of chromosome 8 material respond well to AZA. The addition of FISH or SNP-A did not improve the predictive value of normal cytogenetics by MC. Mutational analysis of TET2, UTX, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2, and DNMT-3A was performed on 21 of 41 patients, and revealed 13 mutations in 11 patients, but did not show any molecular markers of responsiveness to LEN. Conclusions Normal karyotype and gain of chromosome 8 material was predictive of response to LEN in non-del[5q] patients with myeloid malignancies. PMID:22390313

  2. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    PubMed

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  3. Realization of Molecular-Based Transistors.

    PubMed

    Richter, Shachar; Mentovich, Elad; Elnathan, Roey

    2018-06-06

    Molecular-based devices are widely considered as significant candidates to play a role in the next generation of "post-complementary metal-oxide-semiconductor" devices. In this context, molecular-based transistors: molecular junctions that can be electrically gated-are of particular interest as they allow new modes of operation. The properties of molecular transistors composed of a single- or multimolecule assemblies, focusing on their practicality as real-world devices, concerning industry demands and its roadmap are compared. Also, the capability of the gate electrode to modulate the molecular transistor characteristics efficiently is addressed, showing that electrical gating can be easily facilitated in single molecular transistors and that gating of transistor composed of molecular assemblies is possible if the device is formed vertically. It is concluded that while the single-molecular transistor exhibits better performance on the lab-scale, its realization faces signifacant challenges when compared to those faced by transistors composed of a multimolecule assembly. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface similarity-based molecular query-retrieval

    PubMed Central

    Singh, Rahul

    2007-01-01

    Background Discerning the similarity between molecules is a challenging problem in drug discovery as well as in molecular biology. The importance of this problem is due to the fact that the biochemical characteristics of a molecule are closely related to its structure. Therefore molecular similarity is a key notion in investigations targeting exploration of molecular structural space, query-retrieval in molecular databases, and structure-activity modelling. Determining molecular similarity is related to the choice of molecular representation. Currently, representations with high descriptive power and physical relevance like 3D surface-based descriptors are available. Information from such representations is both surface-based and volumetric. However, most techniques for determining molecular similarity tend to focus on idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more elaborate representations. Results This paper addresses the problem of determining similarity when molecules are described using complex surface-based representations. It proposes an intrinsic, spherical representation that systematically maps points on a molecular surface to points on a standard coordinate system (a sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-positioningcan then be captured as distributions on the surface of the sphere. Surface-based molecular similarity is subsequently determined by computing the similarity of the surface-property distributions using a novel formulation of histogram-intersection. The similarity formulation is not only sensitive to the 3D distribution of the surface properties, but is also highly efficient to compute. Conclusion The proposed method obviates the computationally expensive step of molecular pose-optimisation, can incorporate conformational variations, and facilitates highly efficient determination of similarity by directly comparing molecular surfaces

  5. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  6. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  7. Estudio teórico del CO2. Orbitales de valencia y del ``core''

    NASA Astrophysics Data System (ADS)

    Olalla Gutiérrez, E.

    Hemos calculado las intensidades de las transiciones E1 a los miembros de las series de Rydberg con origen en los orbitales ``no enlazantes'' del dióxido de carbono, especie de conocida relevancia atmosférica. Se han computado, asimismo, los continuos de fotoionización correspondientes a los distintos canales de ionización, representándolos como densidad espectral de fuerza de oscilador frente a la energía del fotón incidente; mostramos los resultados df/dE para la fotoionización total de esta especie en el intervalo 15-60 eV. Todos los cálculos se han llevado a cabo mediante la formulación Molecular del Método de los Orbitales de Defecto Cuántico, MQDO [1,2]. La calidad de los resultados que presentamos se ha evaluado en base a la comparación con los datos, tanto experimentales como teóricos, disponibles en la bibliografía. El acuerdo encontrado es altamente satisfactorio

  8. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  9. Molecular transistors based on BDT-type molecular bridges.

    PubMed

    Wheeler, W D; Dahnovsky, Yu

    2008-10-21

    In this work we study the effect of electron correlations in molecular transistors with molecular bridges based on 1,4-benzene-dithiol (BDT) and 2-nitro-1,4-benzene-dithiol (nitro-BDT) by using ab initio electron propagator calculations. We find that there is no gate field effect for the BDT based transistor in accordance with the experimental data. After verifying the computational method on the BDT molecule, we consider a transistor with a nitro-BDT molecular bridge. From the electron propagator calculations, we predict strong negative differential resistance at small positive and negative values of source-drain voltages. The explanation of the peak and the minimum in the current is given in terms of the molecular orbital picture and switch-on (-off) properties due to the voltage dependencies of the Dyson poles (ionization potentials). When the current is off, the electronic states on both electrodes are populated resulting in the vanishing tunneling probability due to the Pauli principle. Besides the minimum and the maximum in the I-V characteristics, we find a strong gate field effect in the conductance where the peak at V(sd) = 0.15 eV and E(g) = 4x10(-3) a.u. switches to the minimum at E(g) = -4x10(-3) a.u. A similar behavior is discovered at the negative V(sd). Such a feature can be used for fast current modulation by changing the polarity of a gate field.

  10. DEL phenotype.

    PubMed

    Kwon, Dong H; Sandler, S G; Flegel, Willy A

    2017-09-01

    DEL red blood cells (RBCs) type as D- by routine serologic methods and are transfused routinely, without being identified as expressing a very weak D antigen, to D- recipients. DEL RBCs are detected only by adsorption and elution of anti-D or by molecular methods. Most DEL phenotypes have been reported in population studies conducted in East Asia, although DEL phenotypes have been detected also among Caucasian individuals. Approximately 98 percent of DEL phenotypes in East Asians are associated with the RHD*DEL1 or RHD*01EL.01 allele. The prevalence of DEL phenotypes has been reported among D- Han Chinese (30%), Japanese (28%), and Korean (17%) populations. The prevalence of DEL phenotypes is significantly lower among D- Caucasian populations (0.1%). Among the 3-5 percent of African individuals who are D-, there are no reports of the DEL phenotype. Case reports from East Asia indicate that transfusion of DEL RBCs to D- recipients has been associated with D alloimmunization. East Asian immigrants constitute 2.1 percent of the 318.9 million persons residing in the United States, and an estimated 2.8 percent are blood donors. Using these statistics, we estimate that 68-683 units of DEL RBCs from donors of East Asian ancestry are transfused as D- annually in the United States. Given the reports from East Asia of D alloimmunization attributed to transfusion of DEL RBCs, one would expect an occasional report of D alloimmunization in the United States following transfusion of DEL RBCs to a D- recipient. If such cases do occur, the most likely reason that they are not detected is the absence of active post-transfusion monitoring for formation of anti-D.

  11. Del-1 Expression as a Potential Biomarker in Triple-Negative Early Breast Cancer.

    PubMed

    Lee, Soo Jung; Lee, Jeeyeon; Kim, Wan Wook; Jung, Jin Hyang; Park, Ho Yong; Park, Ji-Young; Chae, Yee Soo

    2018-01-01

    A differential diagnostic role for plasma Del-1 was proposed for early breast cancer (EBC) in our previous study. We examined tumoral Del-1 expression and analyzed its prognostic impact among patients with EBC. Del-1 mRNA expression was assessed in breast epithelial and cancer cells. Meanwhile, the tumoral expression of Del-1 was determined based on tissue microarrays and immunohistochemistry results from 440 patients. While a high Del-1 mRNA expression was found in all the breast cancer cell lines, the expression was significantly higher in MDA-MB-231. Tumoral expression of Del-1 was also significantly associated with a negative expression of estrogen receptor or progesterone receptor, and low expression of Ki-67, particularly in the case of triple-negative breast cancer (TNBC) (p < 0.036). Furthermore, a correlation was found between Del-1 expression and an aggressive histological grade, nuclear mitosis, and polymorphism, suggesting a possible role in tumor progression. In the survival analysis, a worse distant disease-free survival trend was noted for the group overexpressing Del-1. While all the investigated breast cancer cell lines exhibited Del-1 expression, the expression rate and intensity were specifically prominent in TNBC. In addition, based on its relationship to an unfavorable histology and worse survival trend, Del-1 could act as a molecular target in TNBC patients. © 2018 S. Karger AG, Basel.

  12. A Hadoop-based Molecular Docking System

    NASA Astrophysics Data System (ADS)

    Dong, Yueli; Guo, Quan; Sun, Bin

    2017-10-01

    Molecular docking always faces the challenge of managing tens of TB datasets. It is necessary to improve the efficiency of the storage and docking. We proposed the molecular docking platform based on Hadoop for virtual screening, it provides the preprocessing of ligand datasets and the analysis function of the docking results. A molecular cloud database that supports mass data management is constructed. Through this platform, the docking time is reduced, the data storage is efficient, and the management of the ligand datasets is convenient.

  13. Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors

    DTIC Science & Technology

    2011-01-01

    Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors MATTHEW REASON,1 BRIAN R. BENNETT,1,2 RICHARD MAGNO,1 and J. BRAD BOOS1 1...2010 to 00-00-2010 4. TITLE AND SUBTITLE Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors 5a. CONTRACT NUMBER 5b. GRANT...Prescribed by ANSI Std Z39-18 EXPERIMENTAL PROCEDURES The samples reported in this work were grown by solid-source molecular - beam epitaxy (MBE) with

  14. Antibody-controlled actuation of DNA-based molecular circuits.

    PubMed

    Engelen, Wouter; Meijer, Lenny H H; Somers, Bram; de Greef, Tom F A; Merkx, Maarten

    2017-02-17

    DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.

  15. Antibody-controlled actuation of DNA-based molecular circuits

    NASA Astrophysics Data System (ADS)

    Engelen, Wouter; Meijer, Lenny H. H.; Somers, Bram; de Greef, Tom F. A.; Merkx, Maarten

    2017-02-01

    DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.

  16. Hybrid Molecular and Spin-Semiconductor Based Research

    DTIC Science & Technology

    2005-02-02

    thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic

  17. Graphene-based nanoprobes for molecular diagnostics.

    PubMed

    Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping

    2015-10-07

    In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.

  18. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  19. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes.

    PubMed

    Song, Peng; Guerin, Sarah; Tan, Sherman Jun Rong; Annadata, Harshini Venkata; Yu, Xiaojiang; Scully, Micheál; Han, Ying Mei; Roemer, Max; Loh, Kian Ping; Thompson, Damien; Nijhuis, Christian A

    2018-03-01

    In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH 2 ) 11 X (Fc = ferrocenyl, X = NH 2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Agent-Based Modeling in Molecular Systems Biology.

    PubMed

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-07-01

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  1. OptoBase: A web platform for molecular optogenetics.

    PubMed

    Kolar, Katja; Knobloch, Christian; Stork, Hendrik; Žnidarič, Matej; Weber, Wilfried

    2018-06-18

    OptoBase is an online platform for molecular optogenetics. At its core is a hand-annotated and ontology-supported database that aims to cover all existing optogenetic switches and publications, which is further complemented with a collection of convenient optogenetics-related web tools. OptoBase is meant for both expert optogeneticists, to easily keep track of the field, as well as for all researchers who find optogenetics inviting as a powerful tool to address their biological questions of interest. It is available at https://www.optobase.org. This work also presents OptoBase-based analysis of the trends in molecular optogenetics.

  2. RED: a set of molecular descriptors based on Renyi entropy.

    PubMed

    Delgado-Soler, Laura; Toral, Raul; Tomás, M Santos; Rubio-Martinez, Jaime

    2009-11-01

    New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor vector. The performance of RED descriptors was tested for the analysis of different sets of molecular distances, virtual screening, and pharmacological profiling. A free parameter of the Renyi entropy has been optimized for all the considered applications.

  3. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  4. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  5. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  6. Molecular diodes based on conjugated diblock co-oligomers.

    PubMed

    Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping

    2002-10-09

    This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.

  7. Gas Sensors Based on Molecular Imprinting Technology.

    PubMed

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  8. Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2014-03-21

    This study presents a single, resettable, and sensitive molecular beacon (MB) used to operate molecular-scale logic gates. The MB consists of a random DNA sequence, a fluorophore at the 5'-end, and a quencher at the 3'-end. The presence of Hg(2+), Ag(+), and coralyne promoted the formation of stable T-Hg(2+)-T, C-Ag(+)-C, and A2-coralyne-A2 coordination in the MB probe, respectively, thereby driving its conformational change. The metal ion or small molecule-mediated coordination of mismatched DNA brought the fluorophore and the quencher into close proximity, resulting in collisional quenching of fluorescence between the two organic dyes. Because thiol can bind Hg(2+) and remove it from the T-Hg(2+)-T-based MB, adding thiol to a solution of the T-Hg(2+)-T-based MB allowed the fluorophore and the quencher to be widely separated. A similar phenomenon was observed when replacing Hg(2+) with Ag(+). Because Ag(+) strongly binds to iodide, cyanide, and cysteine, they were capable of removing Ag(+) from the C-Ag(+)-C-based MB, restoring the fluorescence of the MB. Moreover, the fluorescence of the A2-coralyne-A2-based MB could be switched on by adding polyadenosine. Using these analytes as inputs and the MB as a signal transducer, we successfully developed a series of two-input, three-input, and set-reset logic gates at the molecular level.

  9. Molecular Survey of Hepatitis C Virus in the Touristic City of Mar Del Plata, Argentina

    PubMed Central

    Culasso, Andrés C. A.; Elizalde, Mercedes; Campos, Rodolfo H.; Barbini, Luciana

    2012-01-01

    The global epidemiology of Hepatitis C Virus (HCV) may be roughly described by two groups of genotypes: the worldwide distributed ones (subtypes 1a, 1b, 2a and 3a, among others) and the endemic ones (subtypes 4a, 5a, 6a, among others). Epidemiological and population dynamic studies of the worldwide distributed genotypes have shown that subtypes 1a and 3a are common among intravenous drug users (IDUs) and that they are also in expansion in some countries. The molecular survey of HCV provides some clues about the epidemiological status of the infections in a local scale and the phylogenetic and demographic reconstruction analyses complement this study by inferring whether the infections of certain subtypes are in a steady state or expanding. Here, a molecular survey of the HCV variants that circulate in the touristic city of Mar del Plata (Buenos Aires, Argentina) was performed in samples obtained from 42 patients. The subtypes detected were 1a (32 patients), 3a (8 patients) and 1b (2 patients). The demographic history of subtype 1a inferred using the sequence data showed an exponential growth in the 1990′s. The period of viral expansion was delayed compared with that observed for the same genotype in other countries where the transmission was associated with IDUs. Also, the phylogeographic analysis of HCV-1a showed a statistically significant association between the location of the samples and the phylogeny, which may be the result of the local transmission of HCV in the city. The molecular analysis helped in the description of the complex epidemiological context of a touristic city, and pointed out that some sanitary measures should be taken in order to reduce the transmission of HCV (and maybe of HIV) among IDUs. PMID:23028605

  10. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  11. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    ERIC Educational Resources Information Center

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  12. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query.

    PubMed

    Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing

    2014-05-06

    The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.

  13. Practical quantum mechanics-based fragment methods for predicting molecular crystal properties.

    PubMed

    Wen, Shuhao; Nanda, Kaushik; Huang, Yuanhang; Beran, Gregory J O

    2012-06-07

    Significant advances in fragment-based electronic structure methods have created a real alternative to force-field and density functional techniques in condensed-phase problems such as molecular crystals. This perspective article highlights some of the important challenges in modeling molecular crystals and discusses techniques for addressing them. First, we survey recent developments in fragment-based methods for molecular crystals. Second, we use examples from our own recent research on a fragment-based QM/MM method, the hybrid many-body interaction (HMBI) model, to analyze the physical requirements for a practical and effective molecular crystal model chemistry. We demonstrate that it is possible to predict molecular crystal lattice energies to within a couple kJ mol(-1) and lattice parameters to within a few percent in small-molecule crystals. Fragment methods provide a systematically improvable approach to making predictions in the condensed phase, which is critical to making robust predictions regarding the subtle energy differences found in molecular crystals.

  14. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  15. [Establishing Individualized Medicine for Intractable Cancer Based on Clinical Molecular Pathogenesis].

    PubMed

    Jono, Hirofumi

    2018-01-01

     Although cancer treatment has dramatically improved with the development of molecular-targeted agents over the past decade, identifying eligible patients and predicting the therapeutic effects remain a major challenge. Because intratumoral heterogeneity represents genetic and molecular differences affecting patients' responses to these therapeutic agents, establishing individualized medicine based on precise molecular pathological analysis of tumors is urgently required. This review focuses on the pathogenesis of oral squamous cell carcinoma (OSCC), a common head and neck neoplasm, and introduces our approaches toward developing novel anticancer therapies particularly based on clinical molecular pathogenesis. Deeper understanding of more precise molecular pathogenesis in clinical settings may open up novel strategies for establishing individualized medicine for OSCC.

  16. Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in DelPhi

    PubMed Central

    Li, Chuan; Li, Lin; Zhang, Jie; Alexov, Emil

    2012-01-01

    The Gauss-Seidel method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the Gauss-Seidel method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of CPUs. In contrast to other existing solutions, our method does not require any assumptions and is equally applicable for solving linear and nonlinear equations. This approach is implemented in the DelPhi program, which is a finite difference Poisson-Boltzmann equation solver to model electrostatics in molecular biology. This development makes the iterative procedure on obtaining the electrostatic potential distribution in the parallelized DelPhi several folds faster than that in the serial code. Further we demonstrate the advantages of the new parallelized DelPhi by computing the electrostatic potential and the corresponding energies of large supramolecular structures. PMID:22674480

  17. Molecular switching behavior in isosteric DNA base pairs.

    PubMed

    Jissy, A K; Konar, Sukanya; Datta, Ayan

    2013-04-15

    The structures and proton-coupled behavior of adenine-thymine (A-T) and a modified base pair containing a thymine isostere, adenine-difluorotoluene (A-F), are studied in different solvents by dispersion-corrected density functional theory. The stability of the canonical Watson-Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A-F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH-based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH-controlled molecular switch, which can be incorporated in a natural DNA tract. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  19. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  20. NGL Viewer: Web-based molecular graphics for large complexes.

    PubMed

    Rose, Alexander S; Bradley, Anthony R; Valasatava, Yana; Duarte, Jose M; Prlic, Andreas; Rose, Peter W

    2018-05-29

    The interactive visualization of very large macromolecular complexes on the web is becoming a challenging problem as experimental techniques advance at an unprecedented rate and deliver structures of increasing size. We have tackled this problem by developing highly memory-efficient and scalable extensions for the NGL WebGL-based molecular viewer and by using MMTF, a binary and compressed Macromolecular Transmission Format. These enable NGL to download and render molecular complexes with millions of atoms interactively on desktop computers and smartphones alike, making it a tool of choice for web-based molecular visualization in research and education. The source code is freely available under the MIT license at github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript encoders and decoders are available at github.com/rcsb/mmtf-javascript. asr.moin@gmail.com.

  1. Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers

    PubMed Central

    Garzón-Martínez, Gina A.; Osorio-Guarín, Jaime A.; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E.; Landsman, David

    2015-01-01

    The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation FST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies. PMID:26550601

  2. Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers.

    PubMed

    Garzón-Martínez, Gina A; Osorio-Guarín, Jaime A; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E; Landsman, David; Mariño-Ramírez, Leonardo; Barrero, Luz Stella

    2015-12-01

    The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation F ST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies.

  3. NEW MOLECULAR MEDICINE-BASED SCAR MANAGEMENT STRATEGIES

    PubMed Central

    Arno, Anna I; Gauglitz, Gerd G; Barret, Juan P; Jeschke, Marc G

    2014-01-01

    Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research has contributed to unravel new bench-to-bedside scar therapies, and to dissect the complex signaling pathways involved. Peptides such as transforming growth factor beta (TGF-β) superfamily, with SMADs, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies, and point out new fibrosis research lines. PMID:24438742

  4. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  5. Arthropod phylogeny based on eight molecular loci and morphology

    NASA Technical Reports Server (NTRS)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  6. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  7. Molecular basis of cystic fibrosis in Lithuania: incomplete CFTR mutation detection by PCR-based screening protocols.

    PubMed

    Giannattasio, S; Bobba, A; Jurgelevicius, V; Vacca, R A; Lattanzio, P; Merafina, R S; Utkus, A; Kucinskas, V; Marra, E

    2006-01-01

    Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.

  8. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  9. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  10. Clustering the Orion B giant molecular cloud based on its molecular emission

    PubMed Central

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2017-01-01

    Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the

  11. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also

  12. Conductance of three-terminal molecular bridge based on tight-binding theory

    NASA Astrophysics Data System (ADS)

    Wang, Li-Guang; Li, Yong; Yu, Ding-Wen; Katsunori, Tagami; Masaru, Tsukada

    2005-05-01

    The quantum transmission characteristic of three-benzene ring nano-molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only a π orbital per carbon atom at the site. The transmission probabilities that electrons transport through the molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E = ±0.42, ±1.06 and ±1.5, respectively, where the transmission spectra appear peaks. We find that the transmission spectra are related to the incident electronic energy and the molecular levels strongly and the current distributions agree well with Kirchhoff quantum current momentum conservation law.

  13. Molecular biomimetics: GEPI-based biological routes to technology.

    PubMed

    Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet

    2010-01-01

    In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we

  14. Molecular recognition of microbial lipid-based antigens by T cells.

    PubMed

    Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme

    2018-05-01

    The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.

  15. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    PubMed

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.

    PubMed

    Morteza Najarian, Amin; McCreery, Richard L

    2017-04-25

    Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp 2 hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

  17. The novel c.247_249delTTC (p.F83del) GJB2 mutation in a family with prelingual sensorineural deafness.

    PubMed

    Petersen, Michael B; Grigoriadou, Maria; Koutroumpe, Maria; Kokotas, Haris

    2012-07-01

    Non-syndromic hearing loss is one of the most common hereditary determined diseases in human, and the disease is a genetically heterogeneous disorder. Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of non-syndromic recessive hearing impairment in many countries and are largely dependent on ethnic groups. Due to the high frequency of the c.35delG GJB2 mutation in the Greek population, we have previously suggested that Greek patients with sensorineural, non-syndromic deafness should be tested for the c.35delG mutation and the coding region of the GJB2 gene should be sequenced in c.35delG heterozygotes. Here we present on the clinical and molecular genetic evaluation of a family suffering from prelingual, sensorineural, non-syndromic deafness. A novel c.247_249delTTC (p.F83del) GJB2 mutation was detected in compound heterozygosity with the c.35delG GJB2 mutation in the proband and was later confirmed in the father, while the mother was homozygous for the c.35delG GJB2 mutation. We conclude that compound heterozygosity of the novel c.247_249delTTC (p.F83del) and the c.35delG mutations in the GJB2 gene was the cause of deafness in the proband and his father. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  19. Kernel approach to molecular similarity based on iterative graph similarity.

    PubMed

    Rupp, Matthias; Proschak, Ewgenij; Schneider, Gisbert

    2007-01-01

    Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.

  20. Single-molecular diodes based on opioid derivatives.

    PubMed

    Siqueira, M R S; Corrêa, S M; Gester, R M; Del Nero, J; Neto, A M J C

    2015-12-01

    We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green's function formalism combined with density functional theory. The analysis of the current-voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ∼0.6 V and (R=14.3)∼1.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics.

  1. Fast parallel molecular algorithms for DNA-based computation: factoring integers.

    PubMed

    Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui

    2005-06-01

    The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.

  2. [Morphofunctional and molecular bases of pineal gland aging].

    PubMed

    Khavinson, V Kh; Lin'kova, N S

    2012-01-01

    The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.

  3. Progress in molecular-based management of differentiated thyroid cancer

    PubMed Central

    Xing, Mingzhao; Haugen, Bryan R; Schlumberger, Martin

    2014-01-01

    Substantial developments have occurred in the past 5–10 years in clinical translational research of thyroid cancer. Diagnostic molecular markers, such as RET-PTC, RAS, and BRAFV600E mutations; galectin 3; and a new gene expression classifier, are outstanding examples that have improved diagnosis of thyroid nodules. BRAF mutation is a prognostic genetic marker that has improved risk stratification and hence tailored management of patients with thyroid cancer, including those with conventionally low risks. Novel molecular-targeted treatments hold great promise for radioiodine-refractory and surgically inoperable thyroid cancers as shown in clinical trials; such treatments are likely to become a component of the standard treatment regimen for patients with thyroid cancer in the near future. These novel molecular-based management strategies for thyroid nodules and thyroid cancer are the most exciting developments in this unprecedented era of molecular thyroid-cancer medicine. PMID:23668556

  4. Organic-based molecular switches for molecular electronics.

    PubMed

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  5. Variable pathogenicity of exon 43del (FAA) in four Fanconi anaemia patients within a consanguineous family.

    PubMed

    Koc, A; Pronk, J C; Alikasifoglu, M; Joenje, H; Altay, C

    1999-01-01

    Four Fanconi anaemia group A (FAA) patients within two related consanguineous families are presented: the propositus (male, 13 years, transplanted at age 10), and his three cousins (one male, 8 years, and two female newborns). Assignment of the patients to FAA was based on the functional complementation analysis by somatic cell hybridization and confirmed by mutation screening showing a homozygous deletion of exon 43 (4267-4404del) in the FAA gene to be present in all four patients. The newborn patients had been diagnosed prenatally by DNA analysis. In spite of identical molecular pathology and close familial relationship the clinical phenotypes of the four patients were not concordant. Discordant symptoms included birthweight, pigmentation abnormalities, skeletal, renal and genital abnormalities, whereas microcephaly and possibly the haematological course were concordant. Differences in environmental conditions and/or genetic make-up along with chance effects during development may explain discordant phenotypes despite identical molecular pathology in these patients. However, our results do not rule out the possibility that the exon 43del mutation may have prognostic value for the haematological course of the disease.

  6. Electronic shift register memory based on molecular electron-transfer reactions

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  7. Base de linhas moleculares para síntese espectral estelar

    NASA Astrophysics Data System (ADS)

    Milone, A.; Sanzovo, G.

    2003-08-01

    A análise das abundâncias quí micas fotosféricas em estrelas do tipo solar ou tardia, através do cálculo teórico de seus espectros, emprega a espectroscopia de alta resolução e necessita de uma base representativa de linhas atômicas e moleculares com suas respectivas constantes bem determinadas. Nesse trabalho, utilizamos como ponto de partida as extensas listas de linhas espectrais de sistemas eletrônicos de algumas moléculas diatômicas compiladas por Kurucz para a construção de uma base de linhas moleculares para a sí ntese espectral estelar. Revisamos as determinações dos fatores rotacionais de Honl-London das forças de oscilador das linhas moleculares, para cada banda vibracional de alguns sistemas eletrônicos, seguindo a regra usual de normalização. Usamos as forças de oscilador eletrônicas da literatura. Os fatores vibracionais de Franck-Condon de cada banda foram especialmente recalculados empregando-se novas constantes moleculares. Reproduzimos, com êxito, as absorções espectrais de determinadas bandas eletrônicas-vibracionais das espécies moleculares C12C12, C12N14 e Mg24H em espectros de estrelas de referência como o Sol e Arcturus.

  8. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well

  9. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  10. Clustering the Orion B giant molecular cloud based on its molecular emission

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also

  11. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.

  12. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    PubMed

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  13. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Modelling and enhanced molecular dynamics to steer structure-based drug discovery.

    PubMed

    Kalyaanamoorthy, Subha; Chen, Yi-Ping Phoebe

    2014-05-01

    The ever-increasing gap between the availabilities of the genome sequences and the crystal structures of proteins remains one of the significant challenges to the modern drug discovery efforts. The knowledge of structure-dynamics-functionalities of proteins is important in order to understand several key aspects of structure-based drug discovery, such as drug-protein interactions, drug binding and unbinding mechanisms and protein-protein interactions. This review presents a brief overview on the different state of the art computational approaches that are applied for protein structure modelling and molecular dynamics simulations of biological systems. We give an essence of how different enhanced sampling molecular dynamics approaches, together with regular molecular dynamics methods, assist in steering the structure based drug discovery processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    PubMed

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  16. CHEK2*1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family-Based Genetic Association Study

    DTIC Science & Technology

    2007-10-01

    AD_________________ Award Number: DAMD17-03-1-0774 TITLE: CHEK2 *1100delC Variant and BRCA1/2...NUMBER CHEK2 *1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family- Based Genetic Association Study 5b. GRANT NUMBER DAMD17...association between the CHEK2 *1100delC gene variant and breast cancer among BRCA1/2-negative families. Vital to DNA replication and normal growth of breast

  17. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  18. Molecular-genetic imaging based on reporter gene expression.

    PubMed

    Kang, Joo Hyun; Chung, June-Key

    2008-06-01

    Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation

  19. Screening for F508del as a first step in the molecular diagnosis of cystic fibrosis.

    PubMed

    Marson, Fernando Augusto de Lima; Bertuzzo, Carmen Silvia; Ribeiro, Maria Ângela Gonçalves de Oliveira; Ribeiro, Antônio Fernando; Ribeiro, José Dirceu

    2013-01-01

    To determine the relevance of screening for the F508del mutation of the cystic fibrosis transmembrane conductance regulator gene as a first step in the genetic diagnosis of cystic fibrosis (CF) by associating the genotype with various clinical variables. We evaluated 180 CF patients regarding the F508del mutation. The clinical data were obtained from the medical records of the patients and from interviews with their parents or legal guardians. Of the 180 patients studied, 65 (36.1%) did not carry the F508del mutation (group 0 [G0]), 67 (37.2%) were F508del heterozygous (G1), and 48 (26.7%) were F508del homozygous (G2). All three groups showed associations with the clinical variables. Homozygosis was associated with younger patients, younger age at CF diagnosis, and younger age at the first isolation of Pseudomonas aeruginosa (PA), as well as with higher prevalence of pancreatic insufficiency (PI) and non-mucoid PA (NMPA) colonization. In comparison with G1+G2 patients, G0 patients were older; first experienced clinical symptoms, digestive disease, and pulmonary disease at an older age; were older at CF diagnosis and at first PA isolation; and had a lower prevalence of PI and meconium ileus, as well as of colonization by NMPA, mucoid PA, and Burkholderia cepacia. In G1 patients, values were intermediate for age at CF diagnosis; age at first PA isolation, first pulmonary symptoms, and first clinical manifestations; MPA colonization; and OR for PI. The identification of F508del in 63.9% of the patients studied showed that this can be a useful tool as a first step in the genetic diagnosis of CF. The F508del genotype was associated with clinical severity of the disease, especially with the variables related to CF onset.

  20. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.

    PubMed

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-04-26

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.

  1. Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique

    PubMed Central

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-01-01

    In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393

  2. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    PubMed Central

    Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek

    2008-01-01

    Protein crystallization has been revolutionized by the intro­duction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-­glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here. PMID:18703844

  3. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage

    PubMed Central

    Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong

    2017-01-01

    We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690

  4. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.

    PubMed

    Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa

    2016-09-01

    A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.

  5. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  6. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Friebe, Edward

    2018-05-01

    Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.

  7. Nanomicrointerface to read molecular potentials into current-voltage based electronics.

    PubMed

    Rangel, Norma L; Seminario, Jorge M

    2008-03-21

    Molecular potentials are unreadable and unaddressable by any present technology. It is known that the proper assembly of molecules can implement an entire numerical processing system based on digital or even analogical computation. In turn, the outputs of this molecular processing unit need to be amplified in order to be useful. We have developed a nanomicrointerface to read information encoded in molecular level potentials and to amplify this signal to microelectronic levels. The amplification is performed by making the output molecular potential slightly twist the torsional angle between two rings of a pyridazine, 3,6-bis(phenylethynyl) (aza-OPE) molecule, requiring only fractions of kcal/mol energies. In addition, even if the signal from the molecular potentials is not enough to turn the ring or even if the angles are the same for different combinations of outputs, still the current output yields results that resemble the device as a field effect transistor, providing the possibility to reduce channel lengths to the range of just 1 or 2 nm. The slight change in the torsional angle yields readable changes in the current through the aza-OPE biased by an external applied voltage. Using ab initio methods, we computationally demonstrate the amplification of molecular potential signals into currents that can be read by standard circuits.

  8. The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution

    ERIC Educational Resources Information Center

    White, Harold B.

    2007-01-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…

  9. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-08-01

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.

  10. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.

    PubMed

    Cho, Yeonchoo; Cho, Woo Jong; Youn, Il Seung; Lee, Geunsik; Singh, N Jiten; Kim, Kwang S

    2014-11-18

    CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium

  11. 3D-Lab: a collaborative web-based platform for molecular modeling.

    PubMed

    Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas

    2016-09-01

    The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.

  12. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    DOE PAGES

    Tyagi, Pawan; Friebe, Edward

    2018-01-12

    Here, molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies providedmore » insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.« less

  13. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Pawan; Friebe, Edward

    Here, molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies providedmore » insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.« less

  14. Molecular Bases of Enantioselectivity of Haloalkane Dehalogenase DbjA

    NASA Astrophysics Data System (ADS)

    Sato, Yukari; Natsume, Ryo; Prokop, Zbynek; Brezovsky, Jan; Chaloupkova, Radka; Damborsky, Jiri; Nagata, Yuji; Senda, Toshiya

    Enzymes are widely used for the synthesis of pharmaceuticals, agrochemicals, and food additives because they can catalyze high enantioselective transformations. In order to construct selective enzymes by protein engineering, it is important to understand the molecular basis of enzyme-substrate interactions that contribute to enantioselectivity. The haloalkane dehalogenase DbjA showed high enantioselectivity for two racemic mixtures: α-bromoesters and β-bromoalkanes. Thermodynamic analysis, protein crystallography, and computer simulations indicated that DbjA carries two bases for the enantiodiscrimination of each racemic mixture. This study helps us understand the molecular basis of the enantioselectivity and opens up new possibilities for constructing enantiospecific biocatalysts through protein engineering.

  15. RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon.

    PubMed

    Tang, Hongxing; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Huimin; He, Lifang; Liu, Bin

    2008-06-15

    A novel RNA-templated single-base mutation detection method based on T4 DNA ligase and reverse molecular beacon (rMB) has been developed and successfully applied to identification of single-base mutation in codon 273 of the p53 gene. The discrimination was carried out using allele-specific primers, which flanked the variable position in the target RNA and was ligated using T4 DNA ligase only when the primers perfectly matched the RNA template. The allele-specific primers also carried complementary stem structures with end-labels (fluorophore TAMRA, quencher DABCYL), which formed a molecular beacon after RNase H digestion. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as direct discrimination of single-base mismatch of the RNA extracted from cell; no requirement of PCR amplification; performance of homogeneous detection; and easily design of detection probes.

  16. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  17. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    PubMed

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  18. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    PubMed

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  19. DNA Based Molecular Scale Nanofabrication

    DTIC Science & Technology

    2015-12-04

    structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing

  20. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    PubMed

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  1. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  2. Extending rule-based methods to model molecular geometry and 3D model resolution.

    PubMed

    Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia

    2016-08-01

    Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models

  3. Características del viento en estrellas Be derivadas del perfil Hα

    NASA Astrophysics Data System (ADS)

    Rohrmann, R.; Cidale, L.

    El estudio teórico de perfiles Hα y su variabilidad en estrellas Be ha sido frecuentemente desarrollado en base a modelos de envolturas circunestelares inhomogéneas, donde la geometría del material es responsable de la forma del perfil dependiendo de la dirección de observación. Nosotros damos una interpretación alternativa y proponemos que la mayoría de las propiedades de esta línea tienen origen en la base de un viento estelar y de una estructura cromosférica anexa a la fotósfera. Encontramos que típicos perfiles Hα en Be, como son los llamados pole-on y winebottle, pueden ser reproducidos cualitativamente sin recurrir a la existencia de una envoltura asimétrica. Analizamos como la línea Hα permite identificar la posible estructura del viento en la región donde éste se inicia.

  4. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  5. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    NASA Astrophysics Data System (ADS)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  6. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.

    PubMed

    Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A

    2017-01-01

    In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum

  7. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes

    PubMed Central

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes. A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes, providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes, providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen. PMID:29616012

  8. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    PubMed

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  9. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    PubMed Central

    2013-01-01

    Background Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps

  10. NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps.

    PubMed

    Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2013-10-07

    Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.

  11. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement

    PubMed Central

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-01-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131

  12. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer.

    PubMed

    Ahn, Byeong-Cheol

    2016-01-01

    Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging.

  13. Chromosome and molecular abnormalities in myelodysplastic syndromes.

    PubMed

    Fenaux, Pierre

    2001-06-01

    Cytogenetic abnormalities are seen in approximately 50% of cases of myelodysplastic syndrome (MDS) and 80% of cases of secondary MDS (following chemotherapy or radiotherapy). These abnormalities generally consist of partial or complete chromosome deletion or addition (del5q, -7, +8, -Y, del20q), whereas balanced or unbalanced translocations are rarely found in MDS. Fluorescence hybridization techniques (fluorescence in situ hybridization [FISH], multiplex FISH, and spectral karyotyping) are useful in detecting chromosomal anomalies in cases in which few mitoses are obtained or rearrangements are complex. Ras mutations are the molecular abnormalities most frequently found in MDS, followed by p15 gene hypermethylation, FLT3 duplications, and p53 mutations, but none of these abnormalities are specific for MDS. The rare cases of balanced translocations in MDS have allowed the identification of genes whose rearrangements appear to play a role in the pathogenesis of some cases of MDS. These genes include MDS1-EVI1 in t(3;3) or t(3;21) translocations, TEL in t(5;12), HIP1 in t(5;7), MLF1 in t(3;5), and MEL1 in t(1;3). Genes more frequently implicated in the pathogenesis of MDS cases, such as those involving del5q, remain unknown, although some candidate genes are currently being studied. Cytogenetic and known molecular abnormalities generally carry a poor prognosis in MDS and can be incorporated into prognostic scoring systems such as the International Prognostic Scoring System.

  14. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles.

    PubMed

    Petrini, Paula A; Silva, Ricardo M L; de Oliveira, Rafael F; Merces, Leandro; Bof Bufon, Carlos C

    2018-06-29

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc ) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al 2 O 3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al 2 O 3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc  = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  15. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles

    NASA Astrophysics Data System (ADS)

    Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.

    2018-06-01

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  16. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L.

    PubMed

    Moghaddam, Samira Mafi; Song, Qijian; Mamidi, Sujan; Schmutz, Jeremy; Lee, Rian; Cregan, Perry; Osorno, Juan M; McClean, Phillip E

    2014-01-01

    Next generation sequence data provides valuable information and tools for genetic and genomic research and offers new insights useful for marker development. This data is useful for the design of accurate and user-friendly molecular tools. Common bean (Phaseolus vulgaris L.) is a diverse crop in which separate domestication events happened in each gene pool followed by race and market class diversification that has resulted in different morphological characteristics in each commercial market class. This has led to essentially independent breeding programs within each market class which in turn has resulted in limited within market class sequence variation. Sequence data from selected genotypes of five bean market classes (pinto, black, navy, and light and dark red kidney) were used to develop InDel-based markers specific to each market class. Design of the InDel markers was conducted through a combination of assembly, alignment and primer design software using 1.6× to 5.1× coverage of Illumina GAII sequence data for each of the selected genotypes. The procedure we developed for primer design is fast, accurate, less error prone, and higher throughput than when they are designed manually. All InDel markers are easy to run and score with no need for PCR optimization. A total of 2687 InDel markers distributed across the genome were developed. To highlight their usefulness, they were employed to construct a phylogenetic tree and a genetic map, showing that InDel markers are reliable, simple, and accurate.

  17. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L.

    PubMed Central

    Moghaddam, Samira Mafi; Song, Qijian; Mamidi, Sujan; Schmutz, Jeremy; Lee, Rian; Cregan, Perry; Osorno, Juan M.; McClean, Phillip E.

    2013-01-01

    Next generation sequence data provides valuable information and tools for genetic and genomic research and offers new insights useful for marker development. This data is useful for the design of accurate and user-friendly molecular tools. Common bean (Phaseolus vulgaris L.) is a diverse crop in which separate domestication events happened in each gene pool followed by race and market class diversification that has resulted in different morphological characteristics in each commercial market class. This has led to essentially independent breeding programs within each market class which in turn has resulted in limited within market class sequence variation. Sequence data from selected genotypes of five bean market classes (pinto, black, navy, and light and dark red kidney) were used to develop InDel-based markers specific to each market class. Design of the InDel markers was conducted through a combination of assembly, alignment and primer design software using 1.6× to 5.1× coverage of Illumina GAII sequence data for each of the selected genotypes. The procedure we developed for primer design is fast, accurate, less error prone, and higher throughput than when they are designed manually. All InDel markers are easy to run and score with no need for PCR optimization. A total of 2687 InDel markers distributed across the genome were developed. To highlight their usefulness, they were employed to construct a phylogenetic tree and a genetic map, showing that InDel markers are reliable, simple, and accurate. PMID:24860578

  18. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers.

    PubMed

    Wisse, Eva; Spiering, A J H; van Leeuwen, Ellen N M; Renken, Raymond A E; Dankers, Patricia Y W; Brouwer, Linda A; van Luyn, Marja J A; Harmsen, Martin C; Sommerdijk, Nico A J M; Meijer, E W

    2006-12-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.

  19. Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases

    NASA Astrophysics Data System (ADS)

    Kirubavathy, S. Jone; Velmurugan, R.; Karvembu, R.; Bhuvanesh, N. S. P.; Enoch, Israel V. M. V.; Selvakumar, P. Mosae; Premnath, D.; Chitra, S.

    2017-01-01

    Novel Schiff bases derived from the treatment of mercapto-diamino pyrimidine with two different aldehydes are characterized using elemental analysis, single crystal X-ray diffraction and 1H NMR spectroscopy. The pharmacological action of the synthesized compounds viz., antimicrobial, anticancer and antitubercular activities is studied. The Schiff bases show a very good activity against various test pathogens. DNA and β-CD binding interactions of the compounds are studied using UV-Visible absorption and fluorescence spectral measurements. The binding constants of the compounds towards β-CD are in the order of 103 to 104. Molecular docking is done using MOE program on the 3D structure of the enzymes, viz., human thymidylate synthase complexed with dump and raltitrex, candida albicans N-myristoyltransferasepeptidic inhibitor, catalytic domain of protein kinase pKnb from mycobacterium tuberculosis in complex with mitoxantrone, pare, topoisomerase atpase inhibitor, E. coli and lactobacillus casdihydrofolatereductase. The MIC/IC50 values of the Schiff bases are compared with the glide scores from the molecular docking studies. The number of hydrogen bonding interactions between the Schiff bases and amino acid residues are also reported.

  20. Molecular Bases Underlying the Hepatoprotective Effects of Coffee.

    PubMed

    Salomone, Federico; Galvano, Fabio; Li Volti, Giovanni

    2017-01-23

    Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation.

  1. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch

    2010-12-01

    Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

  2. Molecular description of α-keto-based inhibitors of cruzain with activity against Chagas disease combining 3D-QSAR studies and molecular dynamics.

    PubMed

    Saraiva, Ádria P B; Miranda, Ricardo M; Valente, Renan P P; Araújo, Jéssica O; Souza, Rutelene N B; Costa, Clauber H S; Oliveira, Amanda R S; Almeida, Michell O; Figueiredo, Antonio F; Ferreira, João E V; Alves, Cláudio Nahum; Honorio, Kathia M

    2018-04-22

    In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q 2 and r 2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r 2 pred  = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study. © 2018 John Wiley & Sons A/S.

  3. Light and redox switchable molecular components for molecular electronics.

    PubMed

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  4. Molecular Recognition: Detection of Colorless Compounds Based on Color Change

    ERIC Educational Resources Information Center

    Khalafi, Lida; Kashani, Samira; Karimi, Javad

    2016-01-01

    A laboratory experiment is described in which students measure the amount of cetirizine in allergy-treatment tablets based on molecular recognition. The basis of recognition is competition of cetirizine with phenolphthalein to form an inclusion complex with ß-cyclodextrin. Phenolphthalein is pinkish under basic condition, whereas it's complex form…

  5. Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.

    PubMed

    Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer

    2017-01-01

    Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  7. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Griffioen, Arjan W; Nicolay, Klaas

    2006-02-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanoparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed. 2006 John Wiley & Sons, Ltd.

  8. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  9. Molecular dynamics based enhanced sampling of collective variables with very large time steps.

    PubMed

    Chen, Pei-Yang; Tuckerman, Mark E

    2018-01-14

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  10. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  11. Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.

    PubMed

    Small, Lara S R; Bruning, Marc; Thomson, Andrew R; Boyle, Aimee L; Davies, Roberta B; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner; Woolfson, Derek N; Bromley, Elizabeth H C

    2017-06-16

    Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed. We use circular dichroism, analytical ultracentrifugation, dynamic light scattering, and disulfide rearrangement studies to demonstrate the ability of this six-peptide set to form the structure designed for the Tumbleweed motor. The successful formation of a suitable hub structure is both a test of the transferability of design rules for protein folding as well as an important step in the production of a synthetic protein-based molecular motor.

  12. Light-operated machines based on threaded molecular structures.

    PubMed

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  13. Molecular Bases Underlying the Hepatoprotective Effects of Coffee

    PubMed Central

    Salomone, Federico; Galvano, Fabio; Li Volti, Giovanni

    2017-01-01

    Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation. PMID:28124992

  14. Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction.

    PubMed

    Wang, Qiang; Li, Jianwei; Nie, Yihang; Xu, Fuming; Yu, Yunjin; Wang, Bin

    2018-06-13

    The experimental synthesis and characterization of enigmatic triangulene were reported for the first time recently. Based on this enigmatic molecule, we proposed a triangulene-based molecular junction and presented first principles calculations to investigate the electron and phonon thermoelectric transport properties. Numerical results show that the spin polarized electric transport properties of the triangulene-based molecular junction can be adjusted effectively by bias voltage and gate voltage. Through varying the gate voltage applied on the triangulene molecule, the system can exhibit a perfect spin filter effect. When a temperature gradient is applied between the two leads, spin up current and spin down current flow along opposite directions in the system simultaneously. Thus pure spin current can be obtained on a large scale by changing the temperature, temperature gradient, and gate voltage. When the phonon vibration effect is considered in thermal transport, the figure of merit is suppressed distinctively especially when the temperature is within the 10 K < T < 100 K range. More importantly, a large spin figure of merit can be achieved accompanied by a small charge figure of merit by adjusting the temperature, gate voltage and chemical potential in a wide range, which indicates a favorable application prospect of the triangulene-based molecular junction as a spin calorigenic device.

  15. Molecular medicine of fragile X syndrome: based on known molecular mechanisms.

    PubMed

    Luo, Shi-Yu; Wu, Ling-Qian; Duan, Ran-Hui

    2016-02-01

    Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

  16. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  17. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.

    PubMed

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice

    2018-06-08

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Molecular-based surveillance of campylobacteriosis in New Zealand--from source attribution to genomic epidemiology.

    PubMed

    Muellner, P; Pleydell, E; Pirie, R; Baker, M G; Campbell, D; Carter, P E; French, N P

    2013-01-17

    Molecular-based surveillance of campylobacteriosis in New Zealand contributed to the implementation of interventions that led to a 50% reduction in notified and hospitalised cases of the country's most important zoonosis. From a pre-intervention high of 384 per 100,000 population in 2006, incidence dropped by 50% in 2008; a reduction that has been sustained since. This article illustrates many aspects of the successful use of molecular-based surveillance, including the distinction between control-focused and strategy-focused surveillance and advances in source attribution. We discuss how microbial genetic data can enhance the understanding of epidemiological explanatory and response variables and thereby enrich the epidemiological analysis. Sequence data can be fitted to evolutionary and epidemiological models to gain new insights into pathogen evolution, the nature of associations between strains of pathogens and host species, and aspects of between-host transmission. With the advent of newer sequencing technologies and the availability of rapid, high-coverage genome sequence data, such techniques may be extended and refined within the emerging discipline of genomic epidemiology. The aim of this article is to summarise the experience gained in New Zealand with molecular-based surveillance of campylobacteriosis and to discuss how this experience could be used to further advance the use of molecular tools in surveillance.

  19. The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.

    PubMed

    White, Harold B

    2007-05-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.

  20. Comparison of molecular breeding values based on within- and across-breed training in beef cattle.

    PubMed

    Kachman, Stephen D; Spangler, Matthew L; Bennett, Gary L; Hanford, Kathryn J; Kuehn, Larry A; Snelling, Warren M; Thallman, R Mark; Saatchi, Mahdi; Garrick, Dorian J; Schnabel, Robert D; Taylor, Jeremy F; Pollak, E John

    2013-08-16

    Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained

  1. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    PubMed Central

    2013-01-01

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Methods Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. Results With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Conclusions Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training

  2. Competency-Based Education for the Molecular Genetic Pathology Fellow

    PubMed Central

    Talbert, Michael L.; Dunn, S. Terence; Hunt, Jennifer; Hillyard, David R.; Mirza, Imran; Nowak, Jan A.; Van Deerlin, Vivianna; Vnencak-Jones, Cindy L.

    2009-01-01

    The following report represents guidelines for competency-based fellowship training in Molecular Genetic Pathology (MGP) developed by the Association for Molecular Pathology Training and Education Committee and Directors of MGP Programs in the United States. The goals of the effort were to describe each of the Accreditation Council for Graduate Medical Education competencies as they apply to MGP fellowship training, provide a summary of goals and objectives, and recommend assessment tools. These guidelines are particularly pertinent to MGP training, which is a relatively new specialty that operates within a rapidly changing scientific and technological arena. It is hoped that this document will provide additional material for directors of existing MGP programs to consider for improvement of program objectives and enhancement of evaluation tools already in place. In addition, the guidelines should provide a valuable framework for the development of new MGP programs. PMID:19797613

  3. Detergent-dispersant additives based on high-molecular-weight alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulieva, K.N.; Namazova, I.I.; Ismailova, N.D.

    1988-09-01

    This article describes the synthesis and investigation of Mannich bases produced for alkylphenols, obtained in turn from ethylene oligomers. These oligomers are the still bottoms from distillation products of high-temperature oligomerization of ethylene in the presence of triethylaluminum. Two narrow cuts obtained from the distillation of oligomer fraction were used to study the influence of ethylene oligomer molecular weight on the properties of the additives. The additives were blended in DS-11 oil to evaluate their detergency-dispersancy and other properties. Comparison blends were made with succinimide additives based on the same ethylene oligomers. The Mannich bases give improvements in the oxidationmore » resistance, anticorrosion properties, and detergency-dispersancy of the DS-11 diesel oil.« less

  4. Computational design of intrinsic molecular rectifiers based on asymmetric functionalization of N-phenylbenzamide

    DOE PAGES

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; ...

    2015-11-03

    Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findingsmore » are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.« less

  5. Efficacy Outcome Measures for Clinical Trials of USH2A caused by the Common c.2299delG Mutation.

    PubMed

    Calzetti, Giacomo; Levy, Richard A; Cideciyan, Artur V; Garafalo, Alexandra V; Roman, Alejandro J; Sumaroka, Alexander; Charng, Jason; Heon, Elise; Jacobson, Samuel G

    2018-06-25

    To determine the change in vision and retinal structure in patients with the common c.2299delG mutation in the USH2A gene in anticipation of clinical trials of therapy. Retrospective observational case series. Eighteen patients, homozygotes or compound heterozygotes with the c.2299delG mutation in USH2A, were studied with visual acuity, kinetic perimetry, dark- and light-adapted two-color static perimetry, optical coherence tomography (OCT) and autofluorescence (AF) imaging. Serial data were available for at least half of the patients depending on the parameter analyzed. The kinetics of disease progression in this specific molecular form of USH2A differed between the measured parameters. Visual acuity could remain normal for decades. Kinetic and light-adapted static perimetry across the entire visual field had similar rates of decline that were slower than those of rod-based perimetry. Horizontal OCT scans through the macula showed that IS/OS line width had a similar rate of constriction as co-localized AF imaging and cone-based light-adapted sensitivity extent. The rate of constriction of rod-based sensitivity extent across this same region was twice as rapid as that of cones. In patients with the c.2299delG mutation in USH2A, rod photoreceptors are the cells that express disease early and more aggressively than cones. Rod-based vision measurements in central or extracentral-peripheral retinal regions warrant monitoring in order to complete a clinical trial in a timely manner. Copyright © 2018. Published by Elsevier Inc.

  6. Molecular characterization of the Andean blackberry, Rubus glaucus, using SSR markers.

    PubMed

    Marulanda, M; López, A M; Uribe, M

    2012-02-10

    The species Rubus glaucus, also known as the Andean or "Castilla" blackberry, is one of nine edible species of this genus that grow naturally in Central and South America. In Colombia, this species is the most important of all Rubus species for agricultural and commercial purposes. We used 20 SSRs developed for other Rubus species to characterize 44 Colombian R. glaucus genotypes, collected from eight different departments, and to look for molecular differences between thornless and thorny cultivated blackberries. Eighty-two bands were obtained from 28 loci. The genotypes were classified into eight populations, corresponding to collection sites. The mean number of polymorphic alleles per locus in all populations and genotypes ranged from 1.857 to 2.393. Samples collected from Valle del Cauca, Quindío, Caldas, and Risaralda departments had the highest heterozygosity values. The finding of exclusive bands from R. glaucus genotypes from Valle del Cauca, Quindío, and Caldas demonstrates genetic and molecular differentiation between thorny and thornless Andean blackberries.

  7. Conductance of carbon based macro-molecular structures

    NASA Astrophysics Data System (ADS)

    Stafström, S.; Hansson, A.; Paulsson, M.

    2000-11-01

    Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.

  8. Feasibility study of molecular memory device based on DNA using methylation to store information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Al-Dirini, Feras; Center for Neural Engineering

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibriummore » Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.« less

  9. Feasibility study of molecular memory device based on DNA using methylation to store information

    NASA Astrophysics Data System (ADS)

    Jiang, Liming; Qiu, Wanzhi; Al-Dirini, Feras; Hossain, Faruque M.; Evans, Robin; Skafidas, Efstratios

    2016-07-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  10. The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach

    NASA Astrophysics Data System (ADS)

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2018-02-01

    The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.

  11. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  12. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  13. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.

    PubMed

    Hartman, Joshua D; Beran, Gregory J O

    2014-11-11

    First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.

  14. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    PubMed

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems.

    PubMed

    Mahadevan, Aishwarya; Fernando, Teshan; Fernando, Sandun

    2016-04-15

    When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    NASA Astrophysics Data System (ADS)

    Pontes, Arthur; de Sousa, Marcelo

    2016-10-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  17. Evaluation of a grid based molecular dynamics approach for polypeptide simulations.

    PubMed

    Merelli, Ivan; Morra, Giulia; Milanesi, Luciano

    2007-09-01

    Molecular dynamics is very important for biomedical research because it makes possible simulation of the behavior of a biological macromolecule in silico. However, molecular dynamics is computationally rather expensive: the simulation of some nanoseconds of dynamics for a large macromolecule such as a protein takes very long time, due to the high number of operations that are needed for solving the Newton's equations in the case of a system of thousands of atoms. In order to obtain biologically significant data, it is desirable to use high-performance computation resources to perform these simulations. Recently, a distributed computing approach based on replacing a single long simulation with many independent short trajectories has been introduced, which in many cases provides valuable results. This study concerns the development of an infrastructure to run molecular dynamics simulations on a grid platform in a distributed way. The implemented software allows the parallel submission of different simulations that are singularly short but together bring important biological information. Moreover, each simulation is divided into a chain of jobs to avoid data loss in case of system failure and to contain the dimension of each data transfer from the grid. The results confirm that the distributed approach on grid computing is particularly suitable for molecular dynamics simulations thanks to the elevated scalability.

  18. DelPhiForce web server: electrostatic forces and energy calculations and visualization.

    PubMed

    Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil

    2017-11-15

    Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED MOLECULAR ELECTROSTATICS

    PubMed Central

    Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander

    2011-01-01

    In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123

  20. Molecular and genetic bases of pancreatic cancer.

    PubMed

    Vaccaro, Vanja; Gelibter, Alain; Bria, Emilio; Iapicca, Pierluigi; Cappello, Paola; Di Modugno, Francesca; Pino, Maria Simona; Nuzzo, Carmen; Cognetti, Francesco; Novelli, Francesco; Nistico, Paola; Milella, Michele

    2012-06-01

    Pancreatic cancer remains a formidable challenge for oncologists and patients alike. Despite intensive efforts, attempts at improving survival in the past 15 years, particularly in advanced disease, have failed. This is true even with the introduction of molecularly targeted agents, chosen on the basis of their action on pathways that were supposedly important in pancreatic cancer development and progression: indeed, with the notable exception of the epidermal growth factor receptor (EGFR) inhibitor erlotinib, that has provided a minimal survival improvement when added to gemcitabine, other agents targeting EGFR, matrix metallo-proteases, farnesyl transferase, or vascular endothelial growth factor have not succeeded in improving outcomes over standard gemcitabine monotherapy for a variety of different reasons. However, recent developments in the molecular epidemiology of pancreatic cancer and an ever evolving understanding of the molecular mechanisms underlying pancreatic cancer initiation and progression raise renewed hope to find novel, relevant therapeutic targets that could be pursued in the clinical setting. In this review we focus on molecular epidemiology of pancreatic cancer, epithelial-to-mesenchymal transition and its influence on sensitivity to EGFR-targeted approaches, apoptotic pathways, hypoxia-related pathways, developmental pathways (such as the hedgehog and Notch pathways), and proteomic analysis as keys to a better understanding of pancreatic cancer biology and, most importantly, as a source of novel molecular targets to be exploited therapeutically.

  1. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci

    PubMed Central

    Sørensen, Martin V.; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi

    2015-01-01

    rRNA had been omitted. Analysis of the morphological data produced results that were similar with those from the combined molecular and morphological analysis. E.g., the morphological data also supported exclusion of Dracoderes from Cyclorhagida. The main differences between the morphological analysis and analyses based on the combined datasets include: 1) Homalorhagida appears as monophyletic in the morphological tree only, 2) the morphological analyses position Franciscideres and the new genus within Cyclorhagida near Zelinkaderidae and Cateriidae, whereas analyses including molecular data place the two genera inside Allomalorhagida, and 3) species of Campyloderes appear in a basal trichotomy within Kentrorhagata in the morphological tree, whereas analysis of the combined datasets places species of Campyloderes as a sister clade to Echinoderidae and Kentrorhagata. PMID:26200115

  2. Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches

    PubMed Central

    2013-01-01

    Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets. PMID:24015767

  3. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.

    PubMed

    Chung, W Joon; Goeckeler-Fried, Jennifer L; Havasi, Viktoria; Chiang, Annette; Rowe, Steven M; Plyler, Zackery E; Hong, Jeong S; Mazur, Marina; Piazza, Gary A; Keeton, Adam B; White, E Lucile; Rasmussen, Lynn; Weissman, Allan M; Denny, R Aldrin; Brodsky, Jeffrey L; Sorscher, Eric J

    2016-01-01

    Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small

  4. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hanhui; Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027; Liu, Ningning

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, themore » difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.« less

  5. First morphological and molecular analysis of Eucoleus boehmi like eggs in dogs from Argentina.

    PubMed

    Lavallén, Carla Mariela; Petrigh, Romina Sandra; Fugassa, Martín Horacio; Denegri, Guillermo María; Dopchiz, Marcela Cecilia

    2018-07-01

    The canid parasites Eucoleus aerophilus (syn. Capillaria aerophila) and Eucoleus boehmi (syn. Capillaria boehmi) parasitize the lower and the upper respiratory tract, respectively. Reports and descriptions of these nematodes are scarce in Argentina, possibly due to misdiagnosis of morphologically similar trichuroids eggs, and the lack of knowledge about the species of Eucoleus in this geographical area. Scanning electron microscopy is a useful tool for identification of E. boehmi eggs based on the characteristics of the shell structure which differentiate between species. Molecular analysis complements morphological identification. Until now, there are no studies based on the analysis of E. boehmi eggs in Argentina. The aim of the present work was to study by morphological, morphometric, and molecular analysis, eggs attributable to E. boehmi isolated from dogs naturally infected in Mar del Plata city, Argentina. Eggs isolated from two dog fecal samples were analyzed by light and scanning electron microscopy. A fragment of mitochondrial DNA (mtDNA) of the cytochrome c oxidase subunit I gene (cox1) from eggs was sequenced, and phylogenetic analysis was performed in this study. According to morphological results based on the wall surface ultrastructure, the eggs studied were assigned to E. boehmi. Molecular analysis supported the morphological identification. The divergence of 9-12% with the European isolated could suggest a new geographical genetic variation of E. boehmi, but also question the possible existence of cryptic species. This is the first characterization of E. boehmi eggs in dogs from Argentina.

  6. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  7. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    PubMed

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  8. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  9. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.

    PubMed

    Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir

    2015-08-25

    Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.

  10. Molecular and cellular bases of adaptation to a changing environment in microorganisms.

    PubMed

    Bleuven, Clara; Landry, Christian R

    2016-10-26

    Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection. © 2016 The Author(s).

  11. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  12. Molecular filter based planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Elliott, Gregory S.; Beutner, Thomas J.

    1999-11-01

    Molecular filter based diagnostics are continuing to gain popularity as a research tool for investigations in areas of aerodynamics, fluid mechanics, and combustion. This class of diagnostics has gone by many terms including Filtered Rayleigh Scattering, Doppler Global Velocimetry, and Planar Doppler Velocimetry. The majority of this article reviews recent advances in Planar Doppler Velocimetry in measuring up to three velocity components over a planar region in a flowfield. The history of the development of these techniques is given with a description of typical systems, components, and levels of uncertainty in the measurement. Current trends indicate that uncertainties on the order of 1 m/s are possible with these techniques. A comprehensive review is also given on the application of Planar Doppler Velocimetry to laboratory flows, supersonic flows, and large scale subsonic wind tunnels. The article concludes with a description of future trends, which may simplify the technique, followed by a description of techniques which allow multi-property measurements (i.e. velocity, density, temperature, and pressure) simultaneously.

  13. Genetic variability among elite popcorn lines based on molecular and morphoagronomic characteristics.

    PubMed

    Dos Santos, J F; Mangolin, C A; Machado, M F P S; Scapim, C A; Giordani, W; Gonçalves, L S A

    2017-06-29

    Knowledge of genetic diversity among genotypes and relationships among elite lines is of great importance for the development of breeding programs. Therefore, the objective of this study was to evaluate genetic variability based on the morphoagronomic and molecular characterization of 18 elite popcorn (Zea mays var. everta) lines to be used by Universidade Estadual de Maringá breeding programs. We used 31 microsatellite primers (widely distributed in the genome), and 16 morphological descriptors (including the resistance to maize white spot, common rust, polysora rust of maize, cercospora and leaf blights). The molecular data revealed variability among the lines, which were divided into four groups that were partially concordant with unweighted pair group method with arithmetic mean (UPMGA) and Bayesian clusters. The lines G3, G4, G11, and G13 exhibited favorable morphological characters and low disease incidence rates. The four groups were confirmed using the Gower distance in the UPGMA cluster; however, there was no association with the dissimilarity patterns obtained using the molecular data. The absence of a correlation suggests that both characterizations (morphoagronomic and molecular) are important for discriminating among elite popcorn lines.

  14. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  15. Pre-examination factors affecting molecular diagnostic test results and interpretation: A case-based approach.

    PubMed

    Payne, Deborah A; Baluchova, Katarina; Peoc'h, Katell H; van Schaik, Ron H N; Chan, K C Allen; Maekawa, Masato; Mamotte, Cyril; Russomando, Graciela; Rousseau, François; Ahmad-Nejad, Parviz

    2017-04-01

    Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Selective interface transparency in graphene nanoribbon based molecular junctions.

    PubMed

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  17. Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays.

    PubMed

    Marquez, Cesar; Huang, Fang; Nau, Werner M

    2004-03-01

    A new fluorescent host-guest system based on the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) into the cavity of the molecular container compound cucurbit[7]uril (CB7) has been designed which possesses an exceedingly long-lived emission (690 ns in aerated water). The large binding constant of (4 +/- 1) x 10(5) M(-1) along with the resistance of the CB7.DBO complex toward external fluorescence quenchers allow the use of CB7 as an enhancer in time-resolved fluorescence-based assays, e.g., to screen enzyme activity or inhibition by using DBO-labeled peptides as substrates. The response of CB7.DBO to different environmental conditions and possible quenchers are described.

  18. Logic circuits based on molecular spider systems.

    PubMed

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Diffusion-Based Model for Synaptic Molecular Communication Channel.

    PubMed

    Khan, Tooba; Bilgin, Bilgesu A; Akan, Ozgur B

    2017-06-01

    Computational methods have been extensively used to understand the underlying dynamics of molecular communication methods employed by nature. One very effective and popular approach is to utilize a Monte Carlo simulation. Although it is very reliable, this method can have a very high computational cost, which in some cases renders the simulation impractical. Therefore, in this paper, for the special case of an excitatory synaptic molecular communication channel, we present a novel mathematical model for the diffusion and binding of neurotransmitters that takes into account the effects of synaptic geometry in 3-D space and re-absorption of neurotransmitters by the transmitting neuron. Based on this model we develop a fast deterministic algorithm, which calculates expected value of the output of this channel, namely, the amplitude of excitatory postsynaptic potential (EPSP), for given synaptic parameters. We validate our algorithm by a Monte Carlo simulation, which shows total agreement between the results of the two methods. Finally, we utilize our model to quantify the effects of variation in synaptic parameters, such as position of release site, receptor density, size of postsynaptic density, diffusion coefficient, uptake probability, and number of neurotransmitters in a vesicle, on maximum number of bound receptors that directly affect the peak amplitude of EPSP.

  20. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    PubMed

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy.

    PubMed

    Chen, Juan-Juan; Huang, Yi-Zhen; Song, Mei-Ru; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-09-21

    Small-molecular-target-based photodynamic therapy-a promising targeted anticancer strategy-was developed by conjugating zinc(II) phthalocyanine with a small-molecular-target-based anticancer drug. To prevent self-aggregation and avoid problems of phthalocyanine isomerization, two silicon phthalocyanines di-substituted axially with erlotinib have been synthesized and fully characterized. These conjugates are present in monomeric form in various solvents as well as culture media. Cell-based experiments showed that these conjugates localize in lysosomes and mitochondria, while maintaining high photodynamic activities (IC 50 values as low as 8 nm under a light dose of 1.5 J cm -2 ). With erlotinib as the targeting moiety, two conjugates were found to exhibit high specificity for EGFR-overexpressing cancer cells. Various poly(ethylene glycol) (PEG) linker lengths were shown to have an effect on the photophysical/photochemical properties and on in vitro phototoxicity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    DTIC Science & Technology

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  3. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.

    PubMed

    Wei, Ning-Ning; Hamza, Adel

    2014-01-27

    We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.

  4. A comprehensive physiologically based pharmacokinetic ...

    EPA Pesticide Factsheets

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific parameters and in vivo pharmacokinetic data used to calibrate these published models can act as valuable starting points for model development of new chemicals with similar molecular structures. A knowledgebase for published PBPK-related articles was compiled to support PBPK model construction for new chemicals based on their close analogues within the knowledgebase, and a web-based interface was developed to allow users to query those close analogues. A list of 689 unique chemicals and their corresponding 1751 articles was created after analysis of 2,245 PBPK-related articles. For each model, the PMID, chemical name, major metabolites, species, gender, life stages and tissue compartments were extracted from the published articles. PaDEL-Descriptor, a Chemistry Development Kit based software, was used to calculate molecular fingerprints. Tanimoto index was implemented in the user interface as measurement of structural similarity. The utility of the PBPK knowledgebase and web-based user interface was demonstrated using two case studies with ethylbenzene and gefitinib. Our PBPK knowledgebase is a novel tool for ranking chemicals based on similarities to other chemicals associated with existi

  5. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis.

    PubMed

    Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya

    2007-12-15

    Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

  6. Recent advances on polyoxometalate-based molecular and composite materials.

    PubMed

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references).

  7. Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non-Neoplastic Prostate Tissue

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-1-0744 TITLE: Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated...Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non- Neoplastic Prostate Tissue 5b. GRANT NUMBER 10623678 5c...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop molecular models to

  8. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission.

    PubMed

    Nakano, Masayoshi

    2017-01-01

    Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  10. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  11. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  12. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  13. Molecular beacon sequence design algorithm.

    PubMed

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  14. Effect of molecular conformation on the mechanofluorochromic properties based on DDIF

    NASA Astrophysics Data System (ADS)

    Mai, Runsheng; Peng, Huojun; Meng, Yuying; Chang, Xinyue; Jiang, Yue; Gao, Jinwei; Zhou, Guofu; Liu, Jun-ming

    2017-07-01

    Mechanofluorochromic (MFC) materials are smart materials in that their absorption and/or emission can respond to mechanical stimuli. They have received much attention recently. Although there have been several new material systems designed, little work has been done regarding the influence of molecular conformation on MFC properties. Herein, to disclose the relationship between molecular conformation and MFC properties, two molecules based on a 6, 12-Dihydro-6, 12-diaza-indeno[1,2-b]fluorine (DDIF) building block with thienyl linker, BDDIF-Th and BDDIF-BTh, have been designed and synthesized. Optical and electrochemical properties have been studied by UV-vis spectrometer and cyclic voltammetry measurements. Weak aggregation-induced emission (AIE) phenomena were obtained in the tetrahydrofuran (THF)/water solution. MFC behaviors suggest that BDDIF-Th is more sensible to the external mechanical forces than BDDIF-BTh. The color change could be attributed to the appearance of new emission peak instead of a bathochromic or hypsochromic effect. Theoretical calculations reveal that MFC performance is highly related to the molecular conformation, meaning that the BDDIF-BTh with perpendicular conformation is more difficult to flatten than the comparatively planar BDDIF-Th.

  15. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  16. Cayler cardiofacial syndrome and del 22q11: Part of the CATCH22 phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannotti, A.; Digilio, M.C.; Marino, B.

    1994-11-15

    The authors report evidence supporting the hypothesis that del(22)(q11) can be a pathogenetic mechanism for the association between hypoplasia of the depressor anguli oris muscle (DAOM) and conotruncal cardiac malformations. A series of over 180 patients was investigated with deletions of 22q11 with conotruncal defects. About 2/3 of these patients had isolated, nonfamilial cardiac defects. Hemizygosity was searched using the HD7k probe and densitometric analysis. In the patients with molecular evidence of del(22)(q11), hemizygosity was confirmed also using fluorescence in situ hybridization (FISH) with SC11.1 probe. No deletion was found in the parents of hemizygous patients. 16 refs.

  17. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Programmable molecular recognition based on the geometry of DNA nanostructures.

    PubMed

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  19. A room-temperature non-volatile CNT-based molecular memory cell

    NASA Astrophysics Data System (ADS)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  20. Logic integration of mRNA signals by an RNAi-based molecular computer.

    PubMed

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-05-01

    Synthetic in vivo molecular 'computers' could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that 'transduce' mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi 'computational' module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting.

  1. Logic integration of mRNA signals by an RNAi-based molecular computer

    PubMed Central

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-01-01

    Synthetic in vivo molecular ‘computers’ could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that ‘transduce’ mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi ‘computational’ module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting. PMID:20194121

  2. Triple-helix molecular switch-based aptasensors and DNA sensors.

    PubMed

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles.

    PubMed

    Lu, Hongzhi; Xu, Shoufang

    2017-06-15

    Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    PubMed

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  5. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major

  6. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    PubMed

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  7. Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer.

    PubMed

    Domagala, Pawel; Wokolorczyk, Dominika; Cybulski, Cezary; Huzarski, Tomasz; Lubinski, Jan; Domagala, Wenancjusz

    2012-04-01

    Germline mutations in BRCA1 were already linked to basal-like subtype of immunophenotypic molecular classification of breast cancer (BC). However, it is not known whether mutations in other BC susceptibility genes are associated with molecular subtypes of this cancer. We tested the hypothesis that distinct mutations in another BC susceptibility gene involved in DNA repair, i.e., CHEK2 may be associated with particular immunophenotypic molecular subtypes of this cancer. Two groups of patients: 1255 with BCs and 5496 healthy controls were genotyped for four CHEK2 mutations (I157T and three truncating mutations: 1100delC, IVS2 + 1G > A, del5395). BCs were tested by immunohistochemistry on tissue microarrays for ER, PR, HER-2, EGFR, and CK5/6 and were assigned to appropriate subtypes of immunophenotypic molecular classification. There was a significant association between CHEK2 mutations and the immunophenotypic molecular classification (P = 0.004). CHEK2-associated cancers were predominantly luminal (108/117 = 92.3%). CHEK2-I157T variant was associated with the luminal A subtype (P = 0.01), whereas CHEK2-truncating mutations were associated with the luminal B subtype (P = 0.005). Comparing the prevalence of CHEK2 mutations in BC with controls revealed that carriers of an I157T variant had OR of 1.80 for luminal A subtype and carriers of truncating mutations had OR of 6.26 for luminal B subtype of BC. To our knowledge, this is the first study showing that specific mutations in the same susceptibility gene are associated with different immunophenotypic molecular subtypes of BC. This association represents independent evidence supporting the biological significance of immunophenotypic molecular classification of BC.

  8. Analysis of A Drug Target-based Classification System using Molecular Descriptors.

    PubMed

    Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin

    2016-01-01

    Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.

  9. Playing Tic-Tac-Toe with a Sugar-Based Molecular Computer.

    PubMed

    Elstner, M; Schiller, A

    2015-08-24

    Today, molecules can perform Boolean operations and circuits at a level of higher complexity. However, concatenation of logic gates and inhomogeneous inputs and outputs are still challenging tasks. Novel approaches for logic gate integration are possible when chemical programming and software programming are combined. Here it is shown that a molecular finite automaton based on the concatenated implication function (IMP) of a fluorescent two-component sugar probe via a wiring algorithm is able to play tic-tac-toe.

  10. Molecular Assembly of Polysaccharide-Based Microcapsules and Their Biomedical Applications.

    PubMed

    Feng, Xiyun; Du, Cuiling; Li, Junbai

    2016-08-01

    Advanced multifunctional microcapsules have revealed great potential in biomedical applications owing to their tunable size, shape, surface properties, and stimuli responsiveness. Polysaccharides are one of the most acceptable biomaterials for biomedical applications because of their outstanding virtues such as biocompatibility, biodegradability, and low toxicity. Many efforts have been devoted to investigating novel molecular design and efficient building blocks for polysaccharide-based microcapsules. In this Personal Account, we first summarize the common features of polysaccharides and the main principles of the design and fabrication of polysaccharide-based microcapsules, and further discuss their applications in biomedical areas and perspectives for future research. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular basis for specificity in the druggable kinome: sequence-based analysis.

    PubMed

    Chen, Jianping; Zhang, Xi; Fernández, Ariel

    2007-03-01

    Rational design of kinase inhibitors remains a challenge partly because there is no clear delineation of the molecular features that direct the pharmacological impact towards clinically relevant targets. Standard factors governing ligand affinity, such as potential for intermolecular hydrophobic interactions or for intermolecular hydrogen bonding do not provide good markers to assess cross reactivity. Thus, a core question in the informatics of drug design is what type of molecular similarity among targets promotes promiscuity and what type of molecular difference governs specificity. This work answers the question for a sizable screened sample of the human pharmacokinome including targets with unreported structure. We show that drug design aimed at promoting pairwise interactions between ligand and kinase target actually fosters promiscuity because of the high conservation of the partner groups on or around the ATP-binding site of the kinase. Alternatively, we focus on a structural marker that may be reliably determined from sequence and measures dehydration propensities mostly localized on the loopy regions of kinases. Based on this marker, we construct a sequence-based kinase classifier that enables the accurate prediction of pharmacological differences. Our indicator is a microenvironmental descriptor that quantifies the propensity for water exclusion around preformed polar pairs. The results suggest that targeting polar dehydration patterns heralds a new generation of drugs that enable a tighter control of specificity than designs aimed at promoting ligand-kinase pairwise interactions. The predictor of polar hot spots for dehydration propensity, or solvent-accessible hydrogen bonds in soluble proteins, named YAPView, may be freely downloaded from the University of Chicago website http://protlib.uchicago.edu/dloads.html. Supplementary data are available at Bioinformatics online.

  12. Spin-dependent Otto quantum heat engine based on a molecular substance

    NASA Astrophysics Data System (ADS)

    Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.

    2014-07-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.

  13. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.

    PubMed

    Algethami, Norah; Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2018-06-13

    High electrical conductance molecular nanowires are highly desirable components for future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and their conductance decays exponentially with length. Here, we demonstrate that the conductance of fused-oligo-porphyrin nanowires can be either length independent or increase with length at room temperature. We show that this negative attenuation is an intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on the electrode material or anchor groups. This highly desirable, nonclassical behavior signals the quantum nature of transport through such wires. It arises because with increasing length the tendency for electrical conductance to decay is compensated by a decrease in their highest occupied molecular orbital-lowest unoccupied molecular orbital gap. Our study reveals the potential of these molecular wires as interconnects in future molecular-scale circuitry.

  14. Current applications of molecular imaging and luminescence-based techniques in traditional Chinese medicine.

    PubMed

    Li, Jinhui; Wan, Haitong; Zhang, Hong; Tian, Mei

    2011-09-01

    Traditional Chinese medicine (TCM), which is fundamentally different from Western medicine, has been widely investigated using various approaches. Cellular- or molecular-based imaging has been used to investigate and illuminate the various challenges identified and progress made using therapeutic methods in TCM. Insight into the processes of TCM at the cellular and molecular changes and the ability to image these processes will enhance our understanding of various diseases of TCM and will provide new tools to diagnose and treat patients. Various TCM therapies including herbs and formulations, acupuncture and moxibustion, massage, Gua Sha, and diet therapy have been analyzed using positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging and ultrasound and optical imaging. These imaging tools have kept pace with developments in molecular biology, nuclear medicine, and computer technology. We provide an overview of recent developments in demystifying ancient knowledge - like the power of energy flow and blood flow meridians, and serial naturopathies - which are essential to visually and vividly recognize the body using modern technology. In TCM, treatment can be individualized in a holistic or systematic view that is consistent with molecular imaging technologies. Future studies might include using molecular imaging in conjunction with TCM to easily diagnose or monitor patients naturally and noninvasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  16. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    PubMed

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  17. A rotation-translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening

    PubMed Central

    2014-01-01

    Background Measures of similarity for chemical molecules have been developed since the dawn of chemoinformatics. Molecular similarity has been measured by a variety of methods including molecular descriptor based similarity, common molecular fragments, graph matching and 3D methods such as shape matching. Similarity measures are widespread in practice and have proven to be useful in drug discovery. Because of our interest in electrostatics and high throughput ligand-based virtual screening, we sought to exploit the information contained in atomic coordinates and partial charges of a molecule. Results A new molecular descriptor based on partial charges is proposed. It uses the autocorrelation function and linear binning to encode all atoms of a molecule into two rotation-translation invariant vectors. Combined with a scoring function, the descriptor allows to rank-order a database of compounds versus a query molecule. The proposed implementation is called ACPC (AutoCorrelation of Partial Charges) and released in open source. Extensive retrospective ligand-based virtual screening experiments were performed and other methods were compared with in order to validate the method and associated protocol. Conclusions While it is a simple method, it performed remarkably well in experiments. At an average speed of 1649 molecules per second, it reached an average median area under the curve of 0.81 on 40 different targets; hence validating the proposed protocol and implementation. PMID:24887178

  18. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior.

    PubMed

    Vicent-Luna, Jose Manuel; Ortiz-Roldan, Jose Manuel; Hamad, Said; Tena-Zaera, Ramon; Calero, Sofia; Anta, Juan Antonio

    2016-08-18

    Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li

  19. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  20. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    PubMed

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Design of a Molecular Assembly Line Based on Biological Molecules

    DTIC Science & Technology

    2003-06-01

    and will demonstrate how one can construct a purely synthetic analogue of a polyketide synthase . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...scaffold in programmed assembly and molecular electronics. It is based on the principles of the biological molecules polyketide synthase and kinesin, and in...stereoselective centers) with any reasonable yield, not including the R&D and process development time. Figure 1.6 shows how a polyketide synthase

  2. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    PubMed

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  3. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  4. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  5. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa.

    PubMed

    Fu, Qing; Wang, Feng; Wang, Hui; Xu, Fei; Zaneveld, Jacques E; Ren, Huanan; Keser, Vafa; Lopez, Irma; Tuan, Han-Fang; Salvo, Jason S; Wang, Xia; Zhao, Li; Wang, Keqing; Li, Yumei; Koenekoop, Robert K; Chen, Rui; Sui, Ruifang

    2013-06-14

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease; therefore, an accurate molecular diagnosis is essential for appropriate disease treatment and family planning. The prevalence of RP in China had been reported at 1 in 3800, resulting in an estimated total of 340,000 Chinese RP patients. However, genetic studies of Chinese RP patients have been very limited. To date, no comprehensive molecular diagnosis has been done for Chinese RP patients. With the emergence of next-generation sequencing (NGS), comprehensive molecular diagnosis of RP is now within reach. The purpose of this study was to perform the first NGS-based comprehensive molecular diagnosis for Chinese RP patients. Thirty-one well-characterized autosomal recessive RP (arRP) families were recruited. For each family, the DNA sample from one affected member was sequenced using our custom capture panel, which includes 163 retinal disease genes. Variants were called, filtered, and annotated by our in-house automatic pipeline. Twelve arRP families were successfully molecular diagnosed, achieving a diagnostic rate of approximately 40%. Interestingly, approximately 63% of the pathogenic mutations we identified are novel, which is higher than that observed in a similar study on European descent (45%). Moreover, the clinical diagnoses of two families were refined based on the pathogenic mutations identified in the patients. We conclude that comprehensive molecular diagnosis can be vital for an accurate clinical diagnosis of RP. Applying this tool on patients from different ethnic groups is essential for enhancing our knowledge of the global spectrum of RP disease-causing mutations.

  6. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.

  7. Molecular Characterization of β-Thalassemia Intermedia in Southeast Iran.

    PubMed

    Miri-Moghaddam, Ebrahim; Bahrami, Sara; Naderi, Majid; Bazi, Ali; Karimipoor, Morteza

    2016-06-01

    Inheritance of mild mutations within the β-globin gene and coinheritance of α-thalassemia (α-thal) are known as two important genetic modifiers in β-thalassemia (β-thal) intermedia (β-TI). We aimed to evaluate the spectrum of β- and α-thal mutations in β-TI patients in Southeast Iran. Common β- and α-globin gene mutations were detected by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and multiplex gap-PCR, respectively. There were 26 male (57.8%) and 19 female (42.2%) patients. HBB: c.92 + 5T > C [IVS-I-5 (G > C)] and HBB: c.-138C + 1G > A [IVS-II-I (G > A)] represented the prevalent alleles with respective frequencies of 60.0 and 10.0%. Other β-globin mutations included HBB: c.-138C > T [-88 (C > T)], HBB: c.27_28insG [frameshift codons (FSC) 8/9 (+G)], HBB: c.46delT [codon 15 (-T)], HBB: c.93-22_95del (IVS-I, 25 del), and the 619 bp deletion (NG_000007.3: g.71609_72227del619). The predominant genotypic combinations were β(0)/β(0) (68.9%), β(0)/β(+ )(8.9%) and β(+)/β(+ )(2.2%). Coinheritance of α-thal was observed in 33.0% of the patients, with the -α(3.7) (rightward) (NG_000006.1: g.34164_37967del3804) as the most common deletion (86.0%). One patient was diagnosed with the -α(4.2) (leftward) (AF221717) and one with the - -(MED) (g.24664_41064del16401) deletions, while no patients carried the -(α)(20.5) (g.15164_37864del22701), α(-5 nt) (HBA2: c.95 + 2_95_6delTGAGG) or codon 19 (-G) (HBA2: c.56delG) mutations. The alleviating molecular mechanism was not explainable by β(+ )or concurrent α-thal in more than half of our β-TI patients. This encourages conducting more studies to identify other contributing factors, especially Hb F-inducing genetic modifiers.

  8. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  9. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  10. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  11. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  12. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction.

    PubMed

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-24

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Novel low-molecular-weight-gelator-based microcapsules with controllable morphology and temperature responsiveness.

    PubMed

    Patel, Ashok R; Remijn, Caroline; Heussen, Patricia C M; den Adel, Ruud; Velikov, Krassimir P

    2013-02-04

    A new type of microcapsules with controllable morphology is presented. They are based on a low-molecular-weight gelator and can be switched from temperature-stable to temperature-responsive by simply modifying the preparation method. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    PubMed

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-09-01

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  15. Multigrid based First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattebert, Jean-Luc; Osei-Kuffuor, Daniel; Dunn, Ian

    2017-06-01

    MGmol ls a First-Principles Molecular Dynamics code. It relies on the Born-Oppenheimer approximation and models the electronic structure using Density Functional Theory, either LDA or PBE. Norm-conserving pseudopotentials are used to model atomic cores.

  16. Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells.

    PubMed

    Chen, John Jun-An; Chen, Teresa L; Kim, BongSoo; Poulsen, Daniel A; Mynar, Justin L; Fréchet, Jean M J; Ma, Biwu

    2010-09-01

    New soluble quinacridone-based molecules have been developed as electron donor materials for solution-processed organic solar cells. By functionalizing the pristine pigment core of quinacridone with solubilizing alkyl chains and light absorbing/charge transporting thiophene units, i.e., bithiophene (BT) and thienylbenzo[c][1,2,5]thiadiazolethienyl (BTD), we prepared a series of multifunctional quinacridone-based molecules. These molecular donors show intense absorption in the visible spectral region, and the absorption range and intensity are well-tuned by the interaction between the quinacridone core and the incorporated thiophene units. The thin film absorption edge extends with the expansion of molecular conjugation, i.e., 552 nm for N,N'-di(2-ethylhexyl)quinacridone (QA), 592 nm for 2,9-Bis(5'-hexyl-2,2'-bithiophene)-N,N'-di(2-ethylhexyl)quinacridone (QA-BT), and 637 nm for 4-(5-hexylthiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (QA-BTD). The change of molecular structure also influences the electrochemical properties. Observed from cyclic voltammetry measurements, the oxidation and reduction potentials (vs ferrocene) are 0.7 and -1.83 V for QA, 0.54 and -1.76 V for QA-BT, and 0.45 and -1.68 V for QA-BTD. Uniform thin films can be generated from both single component molecular solutions and blend solutions of these molecules with [6,6]-phenyl C70-butyric acid methyl ester (PC70BM). The blend films exhibit space-charge limited current (SCLC) hole mobilities on the order of 1×10(-4) cm(2) V(-1) S(-1). Bulk heterojunction (BHJ) solar cells using these soluble molecules as donors and PC70BM as the acceptor were fabricated. Power conversion efficiencies (PCEs) of up to 2.22% under AM 1.5 G simulated 1 sun solar illumination have been achieved and external quantum efficiencies (EQEs) reach as high as ∼45%.

  17. IVS-II-648/649 (-T) (HBB: c.316-202del) Triggers a Novel β-Thalassemia Phenotype.

    PubMed

    Azimi, Azam; Alibakhshi, Reza; Hayati, Hasibeh; Tahmasebi, Soosan; Alimoradi, Sasan

    2017-01-01

    Thalassemia is the most common inherited disorder in Iran. There are approximately 800 different genomic alterations of the β-globin gene described in the HbVar database. In this study, we identified a novel mutation in a 21-year-old woman [IVS-II-648/649 (-T); HBB: c.316-202del)] and describe its clinical implications. Two other members of this family, all with hematological and clinical features associated with β-thalassemia (β-thal), also carried this mutation. The molecular diagnosis of the β-globin gene mutation was performed by direct sequencing. Based on the observed β-thal phenotype and in silico analysis results, we concluded that this novel β-globin gene mutation was associated with the mild phenotype of β-thal.

  18. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level

    PubMed Central

    Brown, Ashley C.; Barker, Thomas H.

    2013-01-01

    Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097

  19. Engineering controllable bidirectional molecular motors based on myosin

    PubMed Central

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  20. Acerca del moho

    EPA Pesticide Factsheets

    El moho forma parte del medio ambiente natural. Afuera del hogar, el moho juega un papel en la naturaleza al desintegrar materias organicas tales como las hojas que se han caido o los arboles muertos. El moho puede crecer adentro del hogar cuando las espor

  1. A research project-based and self-determined teaching system of molecular biology techniques for undergraduates.

    PubMed

    Zhang, Shuping

    2008-05-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a research project-based and self-determined teaching system of molecular biology techniques for undergraduates. Its aim is to create an environment mimicking real research programs and to help students build up confidence in their research skills. The students are allowed to explore a set of commonly used molecular biology techniques to solve some fundamental problems about genes on their own. They find a gene of interest, write a mini-proposal, and give an oral presentation. This course provides students a foundation before entering the research laboratory and allows them to adapt easily to real research programs. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  2. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    PubMed

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  3. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis.

    PubMed

    Donne-Goussé, Carole; Laudet, Vincent; Hänni, Catherine

    2002-06-01

    To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, Somateria, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. The Tadornini diverged early on from the Anatinae; then the Mergini and a large group that comprises the Anatini, Aythyini, Cairinini, and two isolated genera, Chenonetta and Marmaronetta, diverged. The phylogeny obtained with the control region appears more robust than the one obtained with mitochondrial protein-coding genes such as ND2 and cytb. This suggests that the CR is a powerful tool for bird phylogeny, not only at a small scale (i.e., relationships between species) but also at the family level. Whereas morphological analysis effectively resolved the split between Anatinae and Anserinae and the existence of some of the clades, the precise composition of the clades are different when morphological and molecular data are compared. (c) 2002 Elsevier

  4. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.

    PubMed

    Carvalho, Henrique F; Barbosa, Arménio J M; Roque, Ana C A; Iranzo, Olga; Branco, Ricardo J F

    2017-01-01

    Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be introduced to some useful open-source computational tools, including the GROMACS molecular dynamics simulation software package and ProDy for protein structural dynamics analysis.

  5. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    ERIC Educational Resources Information Center

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  6. Produccion Gaseosa del Cometa Halley: Erupciones Y Fotodisociacion del Radical OH

    NASA Astrophysics Data System (ADS)

    Silva, A. M.; Mirabel, I. F.

    1990-11-01

    RESUMEN:En este trabajo informamos la detecci6n de 20 erupciones en la li'nea de =18cm (1667MHz) del radical OH en el Cometa Halley.Las observaciones incluyen todos los monitoreos existentes y se extienden desde 120 dias antes del perihelio hasta 90 dias despues.Se detectan bruscos crecimientos en el flujo medido,hasta un factor 1O,seguidos por decaimientos lentos asociados con la fotodisociaci6n del OH. Se obtuvieron valores para el tiempo de vida fotoquimico del OH y del H2O basandose en el modelo desarrollado previamente por Silva(1988). Esos tiempos de vida estan de acuerdo con predicciones teoricas y con las observaciones en el Ultravioleta, y los resultados, los que son fuertemente dependientes de la velocidad heliocentrica del Coineta (variando hasta un factor 6), han sido calculados para varios rangos de velocidad entre +28 y -28 km/seg. Key wo'L :

  7. Research Update: Comparison of salt- and molecular-based iodine treatments of PbS nanocrystal solids for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya

    2015-02-01

    Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.

  8. Is high pressure liquid chromatography an effective screening tool for characterization of molecular defects in hemoglobinopathies?

    PubMed

    Moorchung, Nikhil; Phillip, Joseph; Sarkar, Ravi Shankar; Prasad, Rupesh; Dutta, Vibha

    2013-01-01

    Hemoglobinopathies constitute entities that are generated by either abnormal hemoglobin or thalassemias. high pressure liquid chromatography (HPLC) is one of the best methods for screening and detection of various hemoglobinopathies but it has intrinsic interpretive problems. The study was designed to evaluate the different mutations seen in cases of hemoglobinopathies and compare the same with screening tests. 68 patients of hemoglobinopathies were screened by HPLC. Mutation studies in the beta globin gene was performed using the polymerase chain reaction (PCR)-based allele-specific Amplification Refractory Mutation System (ARMS). Molecular analysis for the sickle cell mutation was done by standard methods. The IVS 1/5 mutation was the commonest mutation seen and it was seen in 26 (38.23%) of the cases. This was followed by the IVS 1/1, codon 41/42, codon 8/9, del 22 mutation, codon 15 mutation and the -619 bp deletion. No mutation was seen in eight cases. There was a 100% concordance between the sickle cell trait as diagnosed by HPLC and genetic testing. Our study underlies the importance of molecular testing in all cases of hemoglobinopathies. Although HPLC is a useful screening tool, molecular testing is very useful in accurately diagnosing the mutations. Molecular testing is especially applicable in cases with an abnormal hemoglobin (HbD, HbE and HbS) because there may be a concomitant inheritance of a beta thalassemia mutation. Molecular testing is the gold standard when it comes to the diagnosis of hemoglobinopathies.

  9. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.

    PubMed

    Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O

    2017-12-12

    Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.

  10. Discovering interesting molecular substructures for molecular classification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2010-06-01

    Given a set of molecular structure data preclassified into a number of classes, the molecular classification problem is concerned with the discovering of interesting structural patterns in the data so that "unseen" molecules not originally in the dataset can be accurately classified. To tackle the problem, interesting molecular substructures have to be discovered and this is done typically by first representing molecular structures in molecular graphs, and then, using graph-mining algorithms to discover frequently occurring subgraphs in them. These subgraphs are then used to characterize different classes for molecular classification. While such an approach can be very effective, it should be noted that a substructure that occurs frequently in one class may also does occur in another. The discovering of frequent subgraphs for molecular classification may, therefore, not always be the most effective. In this paper, we propose a novel technique called mining interesting substructures in molecular data for classification (MISMOC) that can discover interesting frequent subgraphs not just for the characterization of a molecular class but also for the distinguishing of it from the others. Using a test statistic, MISMOC screens each frequent subgraph to determine if they are interesting. For those that are interesting, their degrees of interestingness are determined using an information-theoretic measure. When classifying an unseen molecule, its structure is then matched against the interesting subgraphs in each class and a total interestingness measure for the unseen molecule to be classified into a particular class is determined, which is based on the interestingness of each matched subgraphs. The performance of MISMOC is evaluated using both artificial and real datasets, and the results show that it can be an effective approach for molecular classification.

  11. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    PubMed

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  12. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    PubMed

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  13. Forensic applicability of multi-allelic InDels with mononucleotide homopolymer structures.

    PubMed

    Zhang, Shu; Zhu, Qiang; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Yang, Yiwen; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji

    2018-04-27

    Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi-allelic or multi-allelic, depending on the number of alleles. Many studies have explored the use of bi-allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi-allelic InDels have received relatively little attention. In this study, InDels with 2-6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi-allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E-13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi-allelic InDel markers with monomeric base pair expansions are useful for forensic applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. [Department of the molecular bases of semiotics].

    PubMed

    Ternovyĭ, K S

    1995-01-01

    Department of molecular basis of semiotics was organized in 1986. The main task of the department was to work out new approaches in estimation of the state of immune and blood system at the tissue, cell and molecular levels, using biochemical, biophysical and molecular biology techniques. There are several main directions of scientific investigations at the department. Most informational methods were collected in "immunological portrait" for differential diagnostic and complex investigation of the immune system of autoimmune patients. This group of techniques was used to study changes in the immune system of Kievites after the Chernobyl disaster. A decrease of complement and thymic serum activity was detected. Antibodies against nuclear components appeared in 20% of donors. And a higher of circulating immune complex of low molecular weight was observed. Low level of thymic serum activity in blood of autoimmune patients with rheumatoid arthritis, lupus erythematosus, diabetes, herpes and other depends on the appearance of zinc-independent timuline inhibitor less then 2000 D. Another kind of thymic hormone inhibitors was detected in thymectomized adult mice. Its effect disappears when zinc added in blood rather due to competition for lymphocyte surface receptors timuline and its inactive analogue than other mechanism. Therapeutic effect of UV irradiation of patients' blood was shown to be closely connected with the changes in thymic serum activity in respect to stabilization of thymic hormone/inhibitor ratio. The immunochemical techniques were used to detect and investigate tumor-associated chromatin antigens in human and animal tumor cells. Antigens not found in normal tissues were detected when using rabbit antibodies against chromatin of rat hepatocarcinoma and human colon and carcinoma.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    PubMed

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  16. Poblacion estelar joven embebida en la nube molecular galactica asociada a la fuente IRAS 18236-1205

    NASA Astrophysics Data System (ADS)

    Romero, Ricardo Retes

    2008-06-01

    En esta tesis presento una metodología de seleccion y estudio de la población estelar embebida en la nube molecular galactica asociada a la fuente IRAS 18236-1205. La fuente IRAS posee colores de region Ultra Compacta HII (UCHII) y tiene deteccióon en monosulfuro de carbono (CS), trazador molecular de alta densidad, lo cual da la posibilidad de definir la nube molecular asociada hacia esta region. Lo anterior muestra que esta es buena candidata a región de formación estelar masiva. La metodología de seleccion de la población embebida, est à basada por una parte, en la distribución del gas molecular monoxido de carbono (13CO) asociado a la fuente IRAS, nube molecular seleccionada del mapeo Galactic Ring Survey (GRS) realizado en 13CO. Otros pasos de la seleccion, se basan en los diagramas color-color y color-magnitud con datos del cercano infrarrrojo de 2MASS. Para el estudio de la componente estelar se usaron los catalogos de fuentes puntuales en el cercano, medio y lejano infrarrojo de 2MASS, SPITZER e IRAS, respectivamente. De los diagramas color-color y color-magnitud, usando datos de 2MASS, se construyo un criterio fotométrico para identificar los objetos estelares j ovenes embebidos en la region molecular. Aplicando modelos a la distribución espectral de energía (SED) de algunos ellos, se encontraron parametros estelares de objetos estelares j ovenes embebidos de masa intermedia y alta. Adicionalmente, se encontro un objeto de masa ´ intermedia no identifiado por el catalogo de 2MASS y su efecto sobre el medio interestelar, emision en la banda de [4.5] μm de IRAC-Spitzer asociado a un outflow. Dos de los objetos seleccionados por el criterio fotometrico resultaron ser objetos estelares jovenes de alta e intermedia masa (B1V/B2V y B8V/A0V respectivamente), los cuales deben estar asociados a la emision radiativa responsable de los colores de región UC HII. Otro objeto estelar joven de baja masa (F0V/F5V) fue encontrado en la region de estudio

  17. Modeling the relationship between body weight and energy intake: A molecular diffusion-based approach

    PubMed Central

    2012-01-01

    Background Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. Results This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. Conclusions In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms. Reviewers This article was reviewed by Dr. Cabral Balreira (nominated by Dr. Peter Olofsson), Prof. Yang Kuang and Dr. Chao Chen. PMID:22742862

  18. Molecular bases of methamphetamine-induced neurodegeneration.

    PubMed

    Cadet, Jean Lud; Krasnova, Irina N

    2009-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.

  19. Calidad de Imagen del Telescopio UNAM212

    NASA Astrophysics Data System (ADS)

    Cobos, F. J.; Teiada de Vargas, C.

    1987-05-01

    El telescopio UNAM2l2, del Observatorio Astronómico Nacional, situado en la Sierra de San Pedro Mártir (Baja California, México), cumplira en un futuro muy cercano siete años de uso para fines de investigación astronómica. Aunque en este tiempo no se ha efectuado un estudio sistemático acerca de su comportamiento óptico y de los factores que influyen en la calidad de las imágenes, se han realizado pruebas diversas, estudios parciales y reuniones especificas, cuyos resultados no siempre se han difundido ampliamente y generalmente no se han presentado por escrito. Es por ello que hemos creido necesario intentar una recopilación de la información existente para poder con ella establecer un diagnóstjco que, aunque no sea definitivo, sirva de base para futuros trabajos tendientes a optimizar el comportamiento óptico del telescopio. Es evidente que un buen número de las conclusiones que se presentan son resultado del trabajo de muchas personas ó de esfuerzos colectivos. Asimismo, hemos tratado de localizar información bibliográfica que pueda ser de utilidad. Nuestro objetivo primordial ha consistido en centrarnos en la óptica del telescopio y su calidad, pero también se han considerado otros aspectos que puedan afectar las imágenes obtenidas tales como: celda del primario, `seeing' local y externo, flexiones posibles en la estructura mecánica del telescopio, etc.

  20. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.

    PubMed

    Petukhov, Viktor; Guo, Jimin; Baryawno, Ninib; Severe, Nicolas; Scadden, David T; Samsonova, Maria G; Kharchenko, Peter V

    2018-06-19

    Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

  1. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results.

    PubMed

    Koopmans, Klaas P; Neels, Oliver N; Kema, Ido P; Elsinga, Philip H; Links, Thera P; de Vries, Elisabeth G E; Jager, Pieter L

    2009-09-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-systematic review is presented on receptor based and metabolic imaging methods. Receptor-based imaging covers the molecular backgrounds of somatostatin, vaso-intestinal peptide (VIP), bombesin and cholecystokinin (CCK) receptors and their link with nuclear imaging. Imaging methods based on specific metabolic properties include meta-iodo-benzylguanide (MIBG) and dimercapto-sulphuric acid (DMSA-V) scintigraphy as well as more modern positron emission tomography (PET)-based methods using radio-labeled analogues of amino acids, glucose, dihydroxyphenylalanine (DOPA), dopamine and tryptophan. Diagnostic sensitivities are presented for each imaging method and for each neuroendocrine tumor subtype. Finally, a Forest plot analysis of diagnostic performance is presented for each tumor type in order to provide a comprehensive overview for clinical use.

  2. Sub-30 nm patterning of molecular resists based on crosslinking through tip based oxidation

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Matteo; Wagner, Daniel; Neuber, Christian; Schmidt, Hans-Werner; Perez-Murano, Francesc

    2018-06-01

    Oxidation Scanning Probe Lithography (o-SPL) is an established method employed for device patterning at the nanometer scale. It represents a feasible and inexpensive alternative to standard lithographic techniques such as electron beam lithography (EBL) and nanoimprint lithography (NIL). In this work we applied non-contact o-SPL to an engineered class of molecular resists in order to obtain crosslinking by electrochemical driven oxidation. By patterning and developing various resist formulas we were able to obtain a reliable negative tone resist behavior based on local oxidation. Under optimal conditions, directly written patterns can routinely reach sub-30 nm lateral resolution, while the final developed features result wider, approaching 50 nm width.

  3. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  4. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  5. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard.

    PubMed

    Jing, Xia; Kay, Stephen; Marley, Thomas; Hardiker, Nicholas R; Cimino, James J

    2012-02-01

    The current volume and complexity of genetic tests, and the molecular genetics knowledge and health knowledge related to interpretation of the results of those tests, are rapidly outstripping the ability of individual clinicians to recall, understand and convey to their patients information relevant to their care. The tailoring of molecular genetics knowledge and health knowledge in clinical settings is important both for the provision of personalized medicine and to reduce clinician information overload. In this paper we describe the incorporation, customization and demonstration of molecular genetic data (mainly sequence variants), molecular genetics knowledge and health knowledge into a standards-based electronic health record (EHR) prototype developed specifically for this study. We extended the CCR (Continuity of Care Record), an existing EHR standard for representing clinical data, to include molecular genetic data. An EHR prototype was built based on the extended CCR and designed to display relevant molecular genetics knowledge and health knowledge from an existing knowledge base for cystic fibrosis (OntoKBCF). We reconstructed test records from published case reports and represented them in the CCR schema. We then used the EHR to dynamically filter molecular genetics knowledge and health knowledge from OntoKBCF using molecular genetic data and clinical data from the test cases. The molecular genetic data were successfully incorporated in the CCR by creating a category of laboratory results called "Molecular Genetics" and specifying a particular class of test ("Gene Mutation Test") in this category. Unlike other laboratory tests reported in the CCR, results of tests in this class required additional attributes ("Molecular Structure" and "Molecular Position") to support interpretation by clinicians. These results, along with clinical data (age, sex, ethnicity, diagnostic procedures, and therapies) were used by the EHR to filter and present molecular genetics

  6. A Phylogeny of the Family Poritidae (Cnidaria, Scleractinia) Based on Molecular and Morphological Analyses

    PubMed Central

    Kitano, Yuko F.; Benzoni, Francesca; Arrigoni, Roberto; Shirayama, Yoshihisa; Wallace, Carden C.; Fukami, Hironobu

    2014-01-01

    The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora. PMID:24871224

  7. Quantum Effects in Molecule-Based Nanomagnets

    NASA Astrophysics Data System (ADS)

    Hill, Stephen

    2005-11-01

    Research into molecule-based-magnets has made immense strides in recent years, with the discoveries of all organic molecular magnets, room temperature 3D ordered permanent magnets, and single-molecule magnets (SMMs), the latter exhibiting a host of spectacular quantum phenomena; for a review, see ref. [1]. SMMs represent a molecular approach to nanoscale and sub-nanoscale magnetic particles. They offer all of the advantages of molecular chemistry as well as displaying the superparamagnetic properties of mesoscale magnetic particles of much larger dimensions. They also straddle the interface between classical and quantum behavior; for example, they exhibit quantum tunneling of their magnetization. I will give a general introduction to this area of research, followed by an overview of recent results obtained using high-frequency (40-800 GHz) electron paramagnetic resonance techniques developed at the University of Florida. These results include: an elucidation of the role of molecular symmetry in the magnetic quantum tunneling phenomenon [2]; and the observation of quantum entanglement between pairs of nanomagnets within a supramolecular dimer [3]. 1. D. Gatteschi and R. Sessoli, Angew. Chem. 42, 268 (2003). 2. E. del Barco et al., J. Low Temp. Phys. 140, 119-174 (2005). 3. S. Hill et al., Science 302, 1015 (2003).

  8. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    PubMed Central

    Zhou, Zhiguo

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging. PMID:24300561

  9. Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels.

    PubMed

    Kopeikin, Z; Yuksek, Z; Yang, H-Y; Bompadre, S G

    2014-09-01

    The most common cystic fibrosis-associated mutation, the deletion of phenylalanine 508 (F508del), results in channels with poor membrane expression and impaired function. VX-770, a clinically approved drug for treatment of CF patients carrying the G551D mutation, and VX-809, a corrector shown in vitro to increase membrane expression of mutant channels, are currently undergoing clinical trials, but functional data at the molecular level is still lacking. The effect of VX-770 and VX-809 on the multiple functional defects of F508del-CFTR was assessed via excised inside-out patch-clamp experiments. VX-770 completely restores the low opening-rate of F508del-CFTR, with smaller open-time increase, in temperature-corrected and VX-809-treated channels. The shorter locked-open time of hydrolysis-deficient F508del-CFTR is also prolonged by VX-770. VX-809 does not improve channel function by itself as previously reported. The results from these studies can be interpreted as an equilibrium shift toward the open-channel conformation of F508del-CFTR channels. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  10. Novel guanidine-containing molecular transporters based on lactose scaffolds: lipophilicity effect on the intracellular organellar selectivity.

    PubMed

    Biswas, Goutam; Jeon, Ock-Youm; Lee, Woo Sirl; Kim, Dong-Chan; Kim, Kyong-Tai; Lee, Suho; Chang, Sunghoe; Chung, Sung-Kee

    2008-01-01

    We have synthesized two lactose-based molecular transporters, each containing seven guanidine residues attached to the lactose scaffold through omega-aminocarboxylate linker chains of two different lengths, and have examined their cellular uptakes and intracellular and organellar localizations in HeLa cells, as well as their tissue distributions in mice. Both molecular transporters showed higher cellular uptake efficiencies than Arg8, and wide tissue distributions including the brain. Mitochondrial localization is of special interest because of its potential relevance to "mitochondrial diseases". Interestingly, it has been found that the intracellular localization sites of the G7 molecular transporters-namely either mitochondria or lysosomes and endocytic vesicles-are largely determined by the linker chain lengths, or their associated lipophilicities.

  11. The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility*

    PubMed Central

    Mitzelfelt, Katie A.; Limphong, Pattraranee; Choi, Melinda J.; Kondrat, Frances D. L.; Lai, Shuping; Kolander, Kurt D.; Kwok, Wai-Meng; Dai, Qiang; Grzybowski, Michael N.; Zhang, Huali; Taylor, Graydon M.; Lui, Qiang; Thao, Mai T.; Hudson, Judith A.; Barresi, Rita; Bushby, Kate; Jungbluth, Heinz; Wraige, Elizabeth; Geurts, Aron M.; Benesch, Justin L. P.; Riedel, Michael; Christians, Elisabeth S.; Minella, Alex C.; Benjamin, Ivor J.

    2016-01-01

    Mutations of HSPB5 (also known as CRYAB or αB-crystallin), a bona fide heat shock protein and molecular chaperone encoded by the HSPB5 (crystallin, alpha B) gene, are linked to multisystem disorders featuring variable combinations of cataracts, cardiomyopathy, and skeletal myopathy. This study aimed to investigate the pathological mechanisms involved in an early-onset myofibrillar myopathy manifesting in a child harboring a homozygous recessive mutation in HSPB5, 343delT. To study HSPB5 343delT protein dynamics, we utilize model cell culture systems including induced pluripotent stem cells derived from the 343delT patient (343delT/343delT) along with isogenic, heterozygous, gene-corrected control cells (WT KI/343delT) and BHK21 cells, a cell line lacking endogenous HSPB5 expression. 343delT/343delT and WT KI/343delT-induced pluripotent stem cell-derived skeletal myotubes and cardiomyocytes did not express detectable levels of 343delT protein, contributable to the extreme insolubility of the mutant protein. Overexpression of HSPB5 343delT resulted in insoluble mutant protein aggregates and induction of a cellular stress response. Co-expression of 343delT with WT prevented visible aggregation of 343delT and improved its solubility. Additionally, in vitro refolding of 343delT in the presence of WT rescued its solubility. We demonstrate an interaction between WT and 343delT both in vitro and within cells. These data support a loss-of-function model for the myopathy observed in the patient because the insoluble mutant would be unavailable to perform normal functions of HSPB5, although additional gain-of-function effects of the mutant protein cannot be excluded. Additionally, our data highlight the solubilization of 343delT by WT, concordant with the recessive inheritance of the disease and absence of symptoms in carrier individuals. PMID:27226619

  12. pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data

    NASA Astrophysics Data System (ADS)

    Shkurti, Ardita; Goni, Ramon; Andrio, Pau; Breitmoser, Elena; Bethune, Iain; Orozco, Modesto; Laughton, Charles A.

    The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD) simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced) written in Python.

  13. Molecular and cell-based therapies for muscle degenerations: a road under construction.

    PubMed

    Berardi, Emanuele; Annibali, Daniela; Cassano, Marco; Crippa, Stefania; Sampaolesi, Maurilio

    2014-01-01

    Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in

  14. Nanohashtag structures based on carbon nanotubes and molecular linkers

    NASA Astrophysics Data System (ADS)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  15. Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and biological evaluation for the discovery of novel BRD4 inhibitors.

    PubMed

    Yan, Guoyi; Hou, Manzhou; Luo, Jiang; Pu, Chunlan; Hou, Xueyan; Lan, Suke; Li, Rui

    2018-02-01

    Bromodomain is a recognition module in the signal transduction of acetylated histone. BRD4, one of the bromodomain members, is emerging as an attractive therapeutic target for several types of cancer. Therefore, in this study, an attempt has been made to screen compounds from an integrated database containing 5.5 million compounds for BRD4 inhibitors using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulations. As a result, two molecules of twelve hits were found to be active in bioactivity tests. Among the molecules, compound 5 exhibited potent anticancer activity, and the IC 50 values against human cancer cell lines MV4-11, A375, and HeLa were 4.2, 7.1, and 11.6 μm, respectively. After that, colony formation assay, cell cycle, apoptosis analysis, wound-healing migration assay, and Western blotting were carried out to learn the bioactivity of compound 5. © 2017 John Wiley & Sons A/S.

  16. Study on photon transport problem based on the platform of molecular optical simulation environment.

    PubMed

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  17. Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Han, Yaeeun; Hwang, Inchan

    2018-01-01

    Molecular orientation of conjugated polymers plays a key role in exciton generation/separation and charge transport, and thus significantly influence photovoltaic devices. Herein, we fabricated fiber-based organic solar cells and investigated the photovoltaic parameters with different diameters of fibers and PCBM diffusion. The open-circuit voltage that varies with molecular orientation whether it is face-on or edge-on was observed to differ. The investigation of the open-circuit voltage dependence reveals that thick fibers have core/shell like structures with different orientations. Thick fibers have face-on in the core and edge-on orientations in the shell. The face-on orientations are not preferentially formed in thin fibers, but the PCBM diffusion can induce face-on orientations that exist within the intermixed phase. Our results may shed a light on better understanding on fiber-based solar cells and suggest a way toward improving photovoltaic efficiency. [Figure not available: see fulltext.

  18. Vigilando la Calidad del Agua de los Grandes Rios de la Nacion: El Programa NASQAN del Rio Grande (Rio Bravo del Norte)

    USGS Publications Warehouse

    Lurry, Dee L.; Reutter, David C.; Wells, Frank C.; Rivera, M.C.; Munoz, A.

    1998-01-01

    La Oficina del Estudio Geologico de los Estados Unidos (U.S. Geological Survey, 0 USGS) ha monitoreado la calidad del agua de la cuenca del Rio Grande (Rio Bravo del Norte) desde 1995 como parte de la rediseiiada Red Nacional para Contabilizar la Calidad del Agua de los Rios (National Stream Quality Accounting Network, o NASOAN) (Hooper and others, 1997). EI programa NASOAN fue diseiiado para caracterizar las concentraciones y el transporte de sedimento y constituyentes quimicos seleccionados, encontrados en los grandes rios de los Estados Unidos - incluyendo el Misisipi, el Colorado y el Columbia, ademas del Rio Grande. En estas cuatro cuencas, el USGS opera actualmente (1998) una red de 40 puntos de muestreo pertenecientes a NASOAN, con un enfasis en cuantificar el flujo en masa (la cantidad de material que pasa por la estacion, expresado en toneladas por dial para cada constituyente. Aplicacando un enfoque consistente, basado en la cuantificacion de flujos en la cuenca del Rio Grande, el programa NASOAN esta generando la informacion necesaria para identificar fuentes regionales de diversos contaminantes, incluyendo sustancias qui micas agricolas y trazas elementos en la cuenca. EI efecto de las grandes reservas en el Rio Grande se puede observar segun los flujos de constituyentes discurren a 10 largo del rio. EI analisis de los flujos de constituyentes a escala de la cuenca proveera los medios para evaluar la influencia de la actividad humana sobre las condiciones de calidad del agua del Rio Grande.

  19. Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis.

    PubMed

    Hu, Wen-Qing; Fang, Min; Zhao, Hao-Liang; Yan, Shu-Guang; Yuan, Jing-Ping; Peng, Chun-Wei; Yang, Gui-Fang; Li, Yan; Li, Jian-Ding

    2014-04-01

    In tumor tissues, cancer cells, tumor infiltrating macrophages and tumor neo-vessels in close spatial vicinity with one another form tumor invasion unit, which is a biologically important tumor microenvironment of metastasis to facilitate cancer invasion and metastasis. Establishing an in situ molecular imaging technology to simultaneously reveal these three components is essential for the in-depth investigation of tumor invasion unit. In this report, we have developed a computer-aided algorithm by quantum dots (QDs)-based multiplexed molecular imaging technique for such purpose. A series of studies on gastric cancer tumor tissues demonstrated that the tumor invasion unit was correlated with major unfavorable pathological features and worse clinical outcomes, which illustrated the significantly negative impacts and predictive power of tumor invasion unit on patient overall survival. This study confirmed the technical advantages of QDs-based in situ and simultaneous molecular imaging of key cancer molecules to gain deeper insights into the biology of cancer invasion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    PubMed

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  2. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    PubMed

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Moléculas orgánicas obtenidas en simulaciones experimentales del medio interestelar.

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Guillermo Manuel

    Las nubes moleculares son regiones de formación de estrellas, con temperaturas cinéticas entre 10-50 K y densidades de 103-106 átomos cm-3. Su materia está formada por gas y polvo interestelar. Estas partículas de polvo están cubiertas por una fina capa de hielo, de unos 0.01 μm, que contiene H2O y a menudo CO, CO2, CH3OH y NH3. El hielo es presumiblemente irradiado por fotones ultravioleta y rayos cósmicos en las zonas poco profundas de las nubes moleculares y las regiones circunestelares. En un sistema de vacío, P ˜ 10-7 mbar, simulamos la deposición de hielo a partir de 10 K y la irradiación ultravioleta por medio de una lámpara de descarga de hidrógeno activada con microondas. La evolución del hielo se observa por medio de un espectrómetro infrarrojo. De este modo es posible determinar la composición del hielo observado en el medio interestelar y predecir la presencia de moléculas aún no detectadas en el espacio, que han sido producto del procesamiento del hielo en nuestros experimentos. También es posible calentar el sistema hasta temperatura ambiente para sublimar el hielo depositado. Cuando el hielo ha sido previamente irradiado, se observa un residuo compuesto por moléculas orgánicas complejas, algunas prebióticas, como varios ácidos carboxílicos, aminas, amidas, ésteres y en menor proporción moléculas heterocíclicas y aminoácidos. Algunas de estas moléculas podrían detectarse en estado gaseoso por medio de observaciones milimétricas y de radio. También podrían estar presentes en el polvo cometario, cuyo análisis químico está planeado por las misiones Stardust y Rosetta. Mientras tanto, nuestro grupo está llevando a cabo el análisis de partículas de polvo interplanetario (IDPs), algunas de las cuales pueden ser de origen cometario. Al igual que ocurre con los productos obtenidos por irradiación del hielo en nuestros experimentos, algunas IDPs son ricas en material orgánico que contiene oxígeno.

  4. Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2012-10-11

    DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.

  5. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  6. Digital logic circuit based on two component molecular systems of BSA and salen

    NASA Astrophysics Data System (ADS)

    Hai-Bin, Lin; Feng, Chen; Hong-Xu, Guo

    2018-02-01

    A new fluorescent molecular probe 1 was designed and constructed by combining bovine serum albumin (BSA) and N,N‧-bis(salicylidene)ethylenediamine (salen). Stimulated by Zn2 +, tris, or EDTAH2Na2, the distance between BSA and salen was regulated, which was accompanied by an obvious change in the fluorescence intensity at 350 or 445 nm based on Förster resonance energy transfer. Moreover, based on the encoding binary digits in these inputs and outputs applying positive logic conventions, a monomolecular circuit integrating one OR, three NOT, and three YES gates, was successfully achieved.

  7. A ligand-based comparative molecular field analysis (CoMFA) and homology model based molecular docking studies on 3', 4'-dihydroxyflavones as rat 5-lipoxygenase inhibitors: Design of new inhibitors.

    PubMed

    Ahamed, T K Shameera; Muraleedharan, K

    2017-12-01

    In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3', 4'-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R 2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q 2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  9. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novelmore » analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.« less

  10. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    PubMed

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  12. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a

  13. Efecto del Programa de Entrenamiento “Manejo del Dolor” en la Documentación de Enfermería en el Expediente Electrónico

    PubMed Central

    Monsiváis, María Guadalupe Moreno; Guzmán, Ma. Guadalupe Interial; Flores, Paz Francisco Sauceda; Arreola, Leticia Vázquez

    2012-01-01

    Resumen En el presente trabajo se muestra la importancia de entrenar al personal de enfermería para mejorar la documentación en el expediente electrónico. Se eligió el manejo del dolor por ser un área prioritaria; una alta proporción de pacientes en período post operatorio cursa con dolor, por lo tanto, la documentación debe ser útil para la toma de decisiones clínicas. Se implementó un programa de entrenamiento denominado “Manejo del Dolor” dirigido al personal de enfermería. Se utilizó la tecnología de la información como herramienta para fortalecer el conocimiento con base en la revisión sistemática de la literatura; el personal de enfermería participante seleccionó la mejor evidencia; posteriormente se trabajó en la transferencia de este conocimiento a la práctica a través del diseño de un protocolo para el manejo del dolor. Se concluye que el conocimiento del manejo del dolor es fundamental para que enfermería documente con mayor precisión sus intervenciones. PMID:24199106

  14. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  15. Chemically engineered graphene-based 2D organic molecular magnet.

    PubMed

    Hong, Jeongmin; Bekyarova, Elena; de Heer, Walt A; Haddon, Robert C; Khizroev, Sakhrat

    2013-11-26

    Carbon-based magnetic materials and structures of mesoscopic dimensions may offer unique opportunities for future nanomagnetoelectronic/spintronic devices. To achieve their potential, carbon nanosystems must have controllable magnetic properties. We demonstrate that nitrophenyl functionalized graphene can act as a room-temperature 2D magnet. We report a comprehensive study of low-temperature magnetotransport, vibrating sample magnetometry (VSM), and superconducting quantum interference (SQUID) measurements before and after radical functionalization. Following nitrophenyl (NP) functionalization, epitaxially grown graphene systems can become organic molecular magnets with ferromagnetic and antiferromagnetic ordering that persists at temperatures above 400 K. The field-dependent, surface magnetoelectric properties were studied using scanning probe microscopy (SPM) techniques. The results indicate that the NP-functionalization orientation and degree of coverage directly affect the magnetic properties of the graphene surface. In addition, graphene-based organic magnetic nanostructures were found to demonstrate a pronounced magneto-optical Kerr effect (MOKE). The results were consistent across different characterization techniques and indicate room-temperature magnetic ordering along preferred graphene orientations in the NP-functionalized samples. Chemically isolated graphene nanoribbons (CINs) were observed along the preferred functionality directions. These results pave the way for future magnetoelectronic/spintronic applications based on promising concepts such as current-induced magnetization switching, magnetoelectricity, half-metallicity, and quantum tunneling of magnetization.

  16. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  17. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    PubMed

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  18. Modified Team-Based Learning Strategy to Improve Human Anatomy Learning: A Pilot Study at the Universidad Del Norte in Barranquilla, Colombia

    ERIC Educational Resources Information Center

    Martínez, Emilio G.; Tuesca, Rafael

    2014-01-01

    As part of an institutional program sponsored by the Centre for Teaching Excellence at the Universidad del Norte, Barranquilla, Colombia, we developed an educational research study on two sessions of human anatomy in which we combined team-based learning (TBL) and the use of iPads. Study data included the TBL, assessments applied during the…

  19. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis.

    PubMed

    Kay, Richard; Barton, Chris; Ratcliffe, Lucy; Matharoo-Ball, Balwir; Brown, Pamela; Roberts, Jane; Teale, Phil; Creaser, Colin

    2008-10-01

    A rapid acetonitrile (ACN)-based extraction method has been developed that reproducibly depletes high abundance and high molecular weight proteins from serum prior to mass spectrometric analysis. A nanoflow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) multiple reaction monitoring (MRM) method for 57 high to medium abundance serum proteins was used to characterise the ACN-depleted fraction after tryptic digestion. Of the 57 targeted proteins 29 were detected and albumin, the most abundant protein in serum and plasma, was identified as the 20th most abundant protein in the extract. The combination of ACN depletion and one-dimensional nano-LC/MS/MS enabled the detection of the low abundance serum protein, insulin-like growth factor-I (IGF-I), which has a serum concentration in the region of 100 ng/mL. One-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the depleted serum showed no bands corresponding to proteins of molecular mass over 75 kDa after extraction, demonstrating the efficiency of the method for the depletion of high molecular weight proteins. Total protein analysis of the ACN extracts showed that approximately 99.6% of all protein is removed from the serum. The ACN-depletion strategy offers a viable alternative to the immunochemistry-based protein-depletion techniques commonly used for removing high abundance proteins from serum prior to MS-based proteomic analyses.

  20. Molecular Analysis of DMP1 Mutants Causing Autosomal Recessive Hypophosphatemic Rickets

    PubMed Central

    Farrow, Emily G.; Davis, Siobhan I.; Ward, Leanne M.; Summers, Lelia J.; Bubbear, Judith S.; Keen, Richard; Stamp, Trevor C.B.; Baker, Laurence R. I.; Bonewald, Lynda F.; White, Kenneth E.

    2009-01-01

    We previously demonstrated that the mutations Met1Val (M1V) and the deletion of nucleotides 1484-1490 (1484-1490del) in Dentin matrix protein-1 (DMP1) cause the novel disorder autosomal recessive hypophosphatemic rickets (ARHR), which is associated with elevated Fibroblast growth factor-23 (FGF23). To further understand the role of DMP1 in ARHR, we undertook molecular genetic and in vitro expression studies. First, we examined a kindred with a severe hypophosphatemic rickets phenotype and recessive inheritance. Analyses of this family demonstrated that the affected members had elevated serum FGF23 and carried a large, biallelic deletion that removed the majority of DMP1. At a minimum, this deletion encompassed 49 kb between DMP1 exon 3 and an intergenic region 5′ to the next telomeric gene, integrin-binding sialoprotein (IBSP). We next performed immunofluorescent studies in cells to understand the effects of the known ARHR mutations on DMP1 cellular processing. These analyses showed that the M1V DMP1 mutant was not sorted to the trans-Golgi network (TGN) and secretory pathway, but filled the entire cytoplasm. In contrast, the 1484-1490del mutant localized to the TGN and was secreted, similar to wild type DMP1. The 1484-1490del mutation replaces the DMP1 18 C-terminal amino acids with 33 non-native residues. Truncation of wild type DMP1 by these native 18 residues followed by Western blot and confocal microscopic analyses demonstrated a wild type expression pattern when compared with the 1484-1490del mutant, indicating that the last 18 residues are not critical for cellular trafficking, but that the 33 additional residues arising from the 1484-1490del mutation likely compromise DMP1 processing. The relationship between DMP1 and FGF23 is unclear. To test endogenous DMP1 response to serum metabolites that also regulate FGF23, UMR-106 cells were treated with 1,25(OH)2 vitamin D (1×10−7M) and showed a 12-fold increase in DMP1 mRNA and protein at 24 hr. In summary

  1. Molecular graph convolutions: moving beyond fingerprints

    NASA Astrophysics Data System (ADS)

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  2. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  3. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    PubMed

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  4. A DNA-based molecular motor that can navigate a network of tracks

    NASA Astrophysics Data System (ADS)

    Wickham, Shelley F. J.; Bath, Jonathan; Katsuda, Yousuke; Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi; Turberfield, Andrew J.

    2012-03-01

    Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.

  5. Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers.

    PubMed

    Lavendomme, Roy; Ajami, Daniela; Moerkerke, Steven; Wouters, Johan; Rissanen, Kari; Luhmer, Michel; Jabin, Ivan

    2017-06-13

    Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

  6. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  7. Ontology based molecular signatures for immune cell types via gene expression analysis

    PubMed Central

    2013-01-01

    Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. PMID:24004649

  8. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.

    PubMed

    Turiel, Esther; Martín-Esteban, Antonio; Tadeo, José Luis

    2007-11-23

    Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures.

  9. [Haemolytic uremic syndrome and thrombotic thrombocytopenic purpura: classification based on molecular etiology and review of recent developments in diagnostics].

    PubMed

    Prohászka, Zoltán

    2008-07-06

    Haemolytic uremic syndrome and thrombotic thrombocytopenic purpura are overlapping clinical entities based on historical classification. Recent developments in the unfolding of the pathomechanisms of these diseases resulted in the creation of a molecular etiology-based classification. Understanding of some causative relationships yielded detailed diagnostic approaches, novel therapeutic options and thorough prognostic assortment of the patients. Although haemolytic uremic syndrome and thrombotic thrombocytopenic purpura are rare diseases with poor prognosis, the precise molecular etiology-based diagnosis might properly direct the therapy of the affected patients. The current review focuses on the theoretical background and detailed description of the available diagnostic possibilities, and some practical information necessary for the interpretation of their results.

  10. Microfluidic technology for molecular diagnostics.

    PubMed

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  11. The c.301_302delAG PROP1 gene mutation in Romanian patients with multiple pituitary hormone deficiency.

    PubMed

    Lazea, Cecilia; Grigorescu-Sido, Paula; Popp, Radu; Legendre, Marie; Amselem, Serge; Al-Khzouz, Camelia; Bucerzan, Simona; Creţ, Victoria; Crişan, Mirela; Brad, Cristian

    2015-09-01

    To establish the frequency of the c.301_302 delAG mutation of the PROP1 gene in Romanian patients with multiple pituitary hormone deficiency (MPHD). Somatic assessment, hormonal test, bone age, magnetic resonance imaging of the pituitary gland, and molecular diagnosis were performed in 26 patients with MPHD (7 patients with familial form of MPHD and 19 patients with sporadic form of MPHD). The c.301_302delAG mutation was detected in the homozygous state in 10 patients belonging to 5 unrelated families (7 patients with familial history of MPHD and 3 patients with sporadic form of MPHD). Those 10 patients presented variable pituitary hormone deficiency and pituitary morphology. The c.301_302delAG homozygous genotype had a high frequency of 38% (10/26), reaching 100% (7/7) in group with familial cases of MPHD and 16% (3/19) in group with sporadic forms of MPHD.

  12. Severe childhood asthma and allergy to furry animals: refined assessment using molecular-based allergy diagnostics.

    PubMed

    Konradsen, Jon R; Nordlund, Björn; Onell, Annica; Borres, Magnus P; Grönlund, Hans; Hedlin, Gunilla

    2014-03-01

    Allergy to cats and dogs and polysensitization towards these animals are associated with severe childhood asthma. Molecular-based allergy diagnostics offers new opportunities for improved characterization and has been suggested to be particularly useful in patients with polysensitization and/or severe asthma. The aim was to use extract- and molecular-based allergy diagnostics to compare patterns of IgE sensitization towards aeroallergens in children with problematic severe and controlled asthma. Children with a positive ImmunoCAP towards any furry animal (cat, dog or horse) were recruited from a Nationwide Swedish study on severe childhood asthma. Severe (n = 37, age 13 years) and controlled (n = 28, age 14 years) asthmatics underwent assessment of allergic sensitization by ImmunoCap (kUA /l) and immunosolid-phase allergen chip (ISAC). In addition, Asthma Control Test, spirometry and a methacholine challenge were performed. Children with severe asthma had lower asthma control (p < 0.001) and FEV1 (p = 0.001) and more bronchial hyper-responsiveness (p = 0.008) in spite of high doses of inhaled steroids (≥800 μg budesonide). Children with severe asthma displayed higher levels of IgE antibodies towards cat (17 vs. 3.9, p = 0.027), dog (3.8 vs. 1.2, p = 0.012) and horse (7.4 vs. 0.7, p = 0.014). Sensitization towards Can f 2 (22% vs. 0%, p = 0.009) and Equ c 1 (51% vs. 25%, p = 0.03) was more common in severe asthma. IgE levels towards Equ c 1 correlated with asthma control (r = -0.41, p = 0.04). Children with severe allergic asthma had higher sIgE levels to cat, dog and horse. Molecular-based allergy diagnostics revealed a more complex molecular spreading of allergen components in children with the most severe disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

    PubMed

    Ferrer, Silvia; Ruiz-Pernía, Javier; Martí, Sergio; Moliner, Vicent; Tuñón, Iñaki; Bertrán, Juan; Andrés, Juan

    2011-01-01

    The development of characterization techniques, advanced synthesis methods, as well as molecular modeling has transformed the study of systems in a well-established research field. The current research challenges in biocatalysis and biotransformation evolve around enzyme discovery, design, and optimization. How can we find or create enzymes that catalyze important synthetic reactions, even reactions that may not exist in nature? What is the source of enzyme catalytic power? To answer these and other related questions, the standard strategies have evolved from trial-and-error methodologies based on chemical knowledge, accumulated experience, and common sense into a clearly multidisciplinary science that allows one to reach the molecular design of tailor-made enzyme catalysts. This is even more so when one refers to enzyme catalysts, for which the detailed structure and composition are known and can be manipulated to introduce well-defined residues which can be implicated in the chemical rearrangements taking place in the active site. The methods and techniques of theoretical and computational chemistry are becoming more and more important in both understanding the fundamental biological roles of enzymes and facilitating their utilization in biotechnology. Improvement of the catalytic function of enzymes is important from scientific and industrial viewpoints, and to put this fact in the actual perspective as well as the potentialities, we recommend the very recent report of Sanderson [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature 471, 397.]. Great fundamental advances have been made toward the ab initio design of enzyme catalysts based on molecular modeling. This has been based on the molecular mechanistic knowledge of the reactions to be catalyzed, together with the development of advanced synthesis and characterization techniques. The corresponding molecular mechanism can be studied by means of powerful quantum chemical calculations. The catalytic

  14. Smart Sensing Based on DNA-Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock.

    PubMed

    Du, Yan; Han, Xu; Wang, Chenxu; Li, Yunhui; Li, Bingling; Duan, Hongwei

    2018-01-26

    Recently, molecular keypad locks have received increasing attention. As a new subgroup of smart biosensors, they show great potential for protecting information as a molecular security data processor, rather than merely molecular recognition and quantitation. Herein, label-free electrochemically transduced Ag + and cysteine (Cys) sensors were developed. A molecular keypad lock model with reset function was successfully realized based on the balanced interaction of metal ion with its nucleic acid and chemical ligands. The correct input of "1-2-3" (i.e., "Ag + -Cys-cDNA") is the only password of such molecular keypad lock. Moreover, the resetting process of either correct or wrong input order could be easily made by Cys, buffer, and DI water treatment. Therefore, our system provides an even smarter system of molecular keypad lock, which could inhibit illegal access of unauthorized users, holding great promise in information protection at the molecular level.

  15. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    PubMed

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  16. Density-based clustering of small peptide conformations sampled from a molecular dynamics simulation.

    PubMed

    Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun

    2009-11-01

    This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.

  17. Archivo de placas astrométricas del Observatorio de La Plata

    NASA Astrophysics Data System (ADS)

    di Sisto, R.; Orellana, R. B.

    Se ha realizado una base de datos con las placas fotográficas obtenidas con el Astrográfico del Observatorio de La Plata. Se han clasificado un total de 3000 placas obtenidas para asteroides y cometas. El acceso a la base de datos se hará por FTP y la misma contendrá la siguiente información: fecha y tiempo de exposición, coordenadas del centro de placa, tipo de emulsión fotográfica, estado de la placa, objeto fotografiado.

  18. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    PubMed Central

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  19. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    PubMed

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Molecular graph convolutions: moving beyond fingerprints

    PubMed Central

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-01-01

    Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503

  1. Prediction of blood-brain partitioning: a model based on molecular electronegativity distance vector descriptors.

    PubMed

    Zhang, Yong-Hong; Xia, Zhi-Ning; Qin, Li-Tang; Liu, Shu-Shen

    2010-09-01

    The objective of this paper is to build a reliable model based on the molecular electronegativity distance vector (MEDV) descriptors for predicting the blood-brain barrier (BBB) permeability and to reveal the effects of the molecular structural segments on the BBB permeability. Using 70 structurally diverse compounds, the partial least squares regression (PLSR) models between the BBB permeability and the MEDV descriptors were developed and validated by the variable selection and modeling based on prediction (VSMP) technique. The estimation ability, stability, and predictive power of a model are evaluated by the estimated correlation coefficient (r), leave-one-out (LOO) cross-validation correlation coefficient (q), and predictive correlation coefficient (R(p)). It has been found that PLSR model has good quality, r=0.9202, q=0.7956, and R(p)=0.6649 for M1 model based on the training set of 57 samples. To search the most important structural factors affecting the BBB permeability of compounds, we performed the values of the variable importance in projection (VIP) analysis for MEDV descriptors. It was found that some structural fragments in compounds, such as -CH(3), -CH(2)-, =CH-, =C, triple bond C-, -CH<, =C<, =N-, -NH-, =O, and -OH, are the most important factors affecting the BBB permeability. (c) 2010. Published by Elsevier Inc.

  2. Geometrical eigen-subspace framework based molecular conformation representation for efficient structure recognition and comparison

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-04-01

    We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.

  3. Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations.

    PubMed

    Lin, Hai; Zhao, Yan; Tishchenko, Oksana; Truhlar, Donald G

    2006-09-01

    The multiconfiguration molecular mechanics (MCMM) method is a general algorithm for generating potential energy surfaces for chemical reactions by fitting high-level electronic structure data with the help of molecular mechanical (MM) potentials. It was previously developed as an extension of standard MM to reactive systems by inclusion of multidimensional resonance interactions between MM configurations corresponding to specific valence bonding patterns, with the resonance matrix element obtained from quantum mechanical (QM) electronic structure calculations. In particular, the resonance matrix element is obtained by multidimensional interpolation employing a finite number of geometries at which electronic-structure calculations of the energy, gradient, and Hessian are carried out. In this paper, we present a strategy for combining MCMM with hybrid quantum mechanical molecular mechanical (QM/MM) methods. In the new scheme, electronic-structure information for obtaining the resonance integral is obtained by means of hybrid QM/MM calculations instead of fully QM calculations. As such, the new strategy can be applied to the studies of very large reactive systems. The new MCMM scheme is tested for two hydrogen-transfer reactions. Very encouraging convergence is obtained for rate constants including tunneling, suggesting that the new MCMM method, called QM/MM-MCMM, is a very general, stable, and efficient procedure for generating potential energy surfaces for large reactive systems. The results are found to converge well with respect to the number of Hessians. The results are also compared to calculations in which the resonance integral data are obtained by pure QM, and this illustrates the sensitivity of reaction rate calculations to the treatment of the QM-MM border. For the smaller of the two systems, comparison is also made to direct dynamics calculations in which the potential energies are computed quantum mechanically on the fly.

  4. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Molecular Dynamics Information Improves cis-Peptide-Based Function Annotation of Proteins.

    PubMed

    Das, Sreetama; Bhadra, Pratiti; Ramakumar, Suryanarayanarao; Pal, Debnath

    2017-08-04

    cis-Peptide bonds, whose occurrence in proteins is rare but evolutionarily conserved, are implicated to play an important role in protein function. This has led to their previous use in a homology-independent, fragment-match-based protein function annotation method. However, proteins are not static molecules; dynamics is integral to their activity. This is nicely epitomized by the geometric isomerization of cis-peptide to trans form for molecular activity. Hence we have incorporated both static (cis-peptide) and dynamics information to improve the prediction of protein molecular function. Our results show that cis-peptide information alone cannot detect functional matches in cases where cis-trans isomerization exists but 3D coordinates have been obtained for only the trans isomer or when the cis-peptide bond is incorrectly assigned as trans. On the contrary, use of dynamics information alone includes false-positive matches for cases where fragments with similar secondary structure show similar dynamics, but the proteins do not share a common function. Combining the two methods reduces errors while detecting the true matches, thereby enhancing the utility of our method in function annotation. A combined approach, therefore, opens up new avenues of improving existing automated function annotation methodologies.

  6. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2017-09-15

    Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.

  7. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles.

    PubMed

    Campbell, Eleanor A; Peterson, Evan; Kolpashchikov, Dmitry M

    2017-07-05

    DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.

    PubMed

    Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd

    2013-12-20

    Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

  9. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  10. Physical and molecular bases of protein thermal stability and cold adaptation.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2017-02-01

    The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Library of molecular associations: curating the complex molecular basis of liver diseases.

    PubMed

    Buchkremer, Stefan; Hendel, Jasmin; Krupp, Markus; Weinmann, Arndt; Schlamp, Kai; Maass, Thorsten; Staib, Frank; Galle, Peter R; Teufel, Andreas

    2010-03-20

    Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.

  12. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment.

    PubMed

    Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal

    2013-12-01

    Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.

  13. Radio-Observaciones del OH EN la Coma del Cometa Halley Desde EL Hemisferio Sur

    NASA Astrophysics Data System (ADS)

    Silva, A. M.; Bajaja, E.; Morras, R.; Cersosimo, J. C.; Martin, M. C.; Arnal, E. M.; Poppel, W. G. L.; Colomb, F. R.; Mazzaro, J.; Olalde, J. C.; Boriakoff, V.; Mirabel, I. F.

    1987-05-01

    Se utilizó una antena de 30 metros del Instituto Argentino de Radioastronomía para observaciones diarias Cf ebrero a abril de 1986) de la transición en 1667 MHz ( λ = 18 cm) del OH en la coma del cometa Halley. De las observaciones realizadas se concluye: 1) El número promedio de moléculas de OH en la coma durante 37 días de observación fue de (8.9±3.5)x1034 moléculas, lo que implica una tasa de producción promedio de OH de 1.8x1029 moléculas seg-1 y consecuentemente una pérdida de masa promedio de 17±6 toneladas seg-1 . Este valor está de acuerdo con las mediciones realizadas por las sondas Vega y Giotto. 2) El monitoreo desde el lAR revela la existencia de variaciones bruscas en los flujos de absorción del OH. Estas variaciones son consistentes con los modelos que representan la producción gaseosa a partir de ejecciones y/o desprendimientos discretos de materia congelada del núcleo. 3) Las variaciones en la densidad de flujo son consistentes con las estimaciones de los tiem- pos de vida medios del H2O y del OH en presencia del campo de radiación solar. 4) Se encuentra una correlación entre la intensidad del flujo absorbido y anisotropías en Ia dinamica de la coma.

  14. Molecular data do not support a southern hemisphere base of Nothofagus powdery mildews.

    PubMed

    Niinomi, Seiko; Takamatsu, Susumu; Havrylenko, Maria

    2008-01-01

    Three powdery mildew species present on Nothofagus (viz. Erysiphe magellanica, E. nothofagi and E. patagoniaca) are endemic to South America and have unique ascomatal appendages that are not found in powdery mildews of the northern hemisphere. We determined the nucleotide sequences of the rDNA internal transcribed spacer regions and D1/D2 domains of the 28S rDNA of these three powdery mildew species to reveal their phylogenetic relationships with powdery mildews of the northern hemisphere. Although the molecular phylogenetic analyses indicated that the three Nothofagus powdery mildews are closely related to each other they did not group into one clade in either the ITS or 28S trees. Kishino-Hasegawa, Shimodaira-Hasegawa and Templeton tests could not significantly reject the constrained trees that were constructed based on the assumption that the Nothofagus powdery mildews would form a single clade. Based on this result and the evidence that all Nothofagus powdery mildews are endemic to South America and have similar morphological characteristics, it is likely that these three species diverged from a single ancestor present on Nothofagus. Calibration of evolutionary events with molecular clocks suggested that the Nothofagus powdery mildews split from the northern hemisphere relatives 22-16 million y ago (Ma) in the middle Miocene, and divergence among the Nothofagus powdery mildews occurred 17-13 Ma. These results do not support a southern hemisphere base of the Nothofagus powdery mildews.

  15. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks.

    PubMed

    Kontijevskis, Aleksejs

    2017-04-24

    The emergence of the DNA-encoded chemical libraries (DEL) field in the past decade has attracted the attention of the pharmaceutical industry as a powerful mechanism for the discovery of novel drug-like hits for various biological targets. Nuevolution Chemetics technology enables DNA-encoded synthesis of billions of chemically diverse drug-like small molecule compounds, and the efficient screening and optimization of these, facilitating effective identification of drug candidates at an unprecedented speed and scale. Although many approaches have been developed by the cheminformatics community for the analysis and visualization of drug-like chemical space, most of them are restricted to the analysis of a maximum of a few millions of compounds and cannot handle collections of 10 8 -10 12 compounds typical for DELs. To address this big chemical data challenge, we developed the Reduced Complexity Molecular Frameworks (RCMF) methodology as an abstract and very general way of representing chemical structures. By further introducing RCMF descriptors, we constructed a global framework map of drug-like chemical space and demonstrated how chemical space occupied by multi-million-member drug-like Chemetics DNA-encoded libraries and virtual combinatorial libraries with >10 12 members could be analyzed and mapped without a need for library enumeration. We further validate the approach by performing RCMF-based searches in a drug-like chemical universe and mapping Chemetics library selection outputs for LSD1 targets on a global framework chemical space map.

  16. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    PubMed

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  17. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography

    PubMed Central

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d’Ischia, Marco

    2015-01-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system. PMID:26246999

  18. A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics

    PubMed Central

    2013-01-01

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing. MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT). Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology. PMID:24090398

  19. A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics.

    PubMed

    Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby; Schmid-Grendelmeier, Peter; van Hage, Marianne; Baena-Cagnani, Carlos E; Melioli, Giovanni; Nunes, Carlos; Passalacqua, Giovanni; Rosenwasser, Lanny; Sampson, Hugh; Sastre, Joaquin; Bousquet, Jean; Zuberbier, Torsten

    2013-10-03

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing.MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT).Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology.

  20. Systematics of spiny predatory katydids (Tettigoniidae: Listroscelidinae) from the Brazilian Atlantic Forest based on morphology and molecular data.

    PubMed

    Fialho, Verônica Saraiva; Chamorro-Rengifo, Juliana; Lopes-Andrade, Cristiano; Yotoko, Karla Suemy Clemente

    2014-01-01

    Listroscelidinae (Orthoptera: Tettigoniidae) are insectivorous Pantropical katydids whose taxonomy presents a long history of controversy, with several genera incertae sedis. This work focused on species occurring in the Brazilian Atlantic Forest, one of the world's most threatened biomes. We examined material deposited in scientific collections and visited 15 conservation units from Rio de Janeiro to southern Bahia between November 2011 and January 2012, catching 104 specimens from 10 conservation units. Based on morphological and molecular data we redefined Listroscelidini, adding a new tribe, new genus and eight new species to the subfamily. Using morphological analysis, we redescribed and added new geographic records for six species, synonymized two species and built a provisional identification key for the Atlantic Forest Listroscelidinae. Molecular results suggest two new species and a new genus to be described, possibly by the fission of the genus Hamayulus. We also proposed a 500 bp region in the final portion of the COI to be used as a molecular barcode. Our data suggest that the Atlantic Forest Listroscelidinae are seriously endangered, because they occur in highly preserved forest remnants, show high rates of endemism and have a narrow geographic distribution. Based on our results, we suggest future collection efforts must take into account the molecular barcode data to accelerate species recognition.

  1. Systematics of Spiny Predatory Katydids (Tettigoniidae: Listroscelidinae) from the Brazilian Atlantic Forest Based on Morphology and Molecular Data

    PubMed Central

    Fialho, Verônica Saraiva; Chamorro-Rengifo, Juliana; Lopes-Andrade, Cristiano; Yotoko, Karla Suemy Clemente

    2014-01-01

    Listroscelidinae (Orthoptera: Tettigoniidae) are insectivorous Pantropical katydids whose taxonomy presents a long history of controversy, with several genera incertae sedis. This work focused on species occurring in the Brazilian Atlantic Forest, one of the world's most threatened biomes. We examined material deposited in scientific collections and visited 15 conservation units from Rio de Janeiro to southern Bahia between November 2011 and January 2012, catching 104 specimens from 10 conservation units. Based on morphological and molecular data we redefined Listroscelidini, adding a new tribe, new genus and eight new species to the subfamily. Using morphological analysis, we redescribed and added new geographic records for six species, synonymized two species and built a provisional identification key for the Atlantic Forest Listroscelidinae. Molecular results suggest two new species and a new genus to be described, possibly by the fission of the genus Hamayulus. We also proposed a 500 bp region in the final portion of the COI to be used as a molecular barcode. Our data suggest that the Atlantic Forest Listroscelidinae are seriously endangered, because they occur in highly preserved forest remnants, show high rates of endemism and have a narrow geographic distribution. Based on our results, we suggest future collection efforts must take into account the molecular barcode data to accelerate species recognition. PMID:25118712

  2. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics.

    PubMed

    Wu, Hao-Yang; Wang, Yan-Hui; Xie, Qiang; Ke, Yun-Ling; Bu, Wen-Jun

    2016-06-17

    With the great development of sequencing technologies and systematic methods, our understanding of evolutionary relationships at deeper levels within the tree of life has greatly improved over the last decade. However, the current taxonomic methodology is insufficient to describe the growing levels of diversity in both a standardised and general way due to the limitations of using only morphological traits to describe clades. Herein, we propose the idea of a molecular classification based on hierarchical and discrete amino acid characters. Clades are classified based on the results of phylogenetic analyses and described using amino acids with group specificity in phylograms. Practices based on the recently published phylogenomic datasets of insects together with 15 de novo sequenced transcriptomes in this study demonstrate that such a methodology can accommodate various higher ranks of taxonomy. Such an approach has the advantage of describing organisms in a standard and discrete way within a phylogenetic framework, thereby facilitating the recognition of clades from the view of the whole lineage, as indicated by PhyloCode. By combining identification keys and phylogenies, the molecular classification based on hierarchical and discrete characters may greatly boost the progress of integrative taxonomy.

  3. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics

    PubMed Central

    Wu, Hao-Yang; Wang, Yan-Hui; Xie, Qiang; Ke, Yun-Ling; Bu, Wen-Jun

    2016-01-01

    With the great development of sequencing technologies and systematic methods, our understanding of evolutionary relationships at deeper levels within the tree of life has greatly improved over the last decade. However, the current taxonomic methodology is insufficient to describe the growing levels of diversity in both a standardised and general way due to the limitations of using only morphological traits to describe clades. Herein, we propose the idea of a molecular classification based on hierarchical and discrete amino acid characters. Clades are classified based on the results of phylogenetic analyses and described using amino acids with group specificity in phylograms. Practices based on the recently published phylogenomic datasets of insects together with 15 de novo sequenced transcriptomes in this study demonstrate that such a methodology can accommodate various higher ranks of taxonomy. Such an approach has the advantage of describing organisms in a standard and discrete way within a phylogenetic framework, thereby facilitating the recognition of clades from the view of the whole lineage, as indicated by PhyloCode. By combining identification keys and phylogenies, the molecular classification based on hierarchical and discrete characters may greatly boost the progress of integrative taxonomy. PMID:27312960

  4. QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.

    2013-06-01

    With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.

  5. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data

    PubMed Central

    Cuezzo, Carolina; Cancello, Eliana M.

    2017-01-01

    The subfamily Syntermitinae comprises a group of Neotropical termites with 18 genera and 101 species described. It has been considered a natural group, but relationships among the genera within the subfamily remain uncertain, and some genera appear to be non-monophyletic. Here, we provide a comprehensive phylogeny including six Neotropical species of Termitinae as outgroup, 42 Syntermitinae species as ingroup, 92 morphological characters (from external and internal anatomy of soldier and worker castes) and 117 molecular sequences (109 obtained for this study and 8 from GenBank) of 4 gene regions (41 and 22 from Cytochrome Oxidase I and II respectively, 19 from Cytochrome b, and 35 from 16S rDNA). Morphological and molecular data were analyzed in combination, with the Bayesian inference method, and the important aspects of termite biology, defense and feeding habits are discussed based on the resulting tree. Although useful for providing diagnostic characters, the morphology of the soldier caste reveals several cases of convergence; whereas the feeding habit shows indications of evolutionary significance. PMID:28329010

  6. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    PubMed

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  7. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals

    PubMed Central

    Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.

    2012-01-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237

  8. eMovie: a storyboard-based tool for making molecular movies.

    PubMed

    Hodis, Eran; Schreiber, Gideon; Rother, Kristian; Sussman, Joel L

    2007-05-01

    The 3D structures of macromolecules are difficult to grasp and also to communicate. By their nature, movies or animations are particularly useful for highlighting key features by offering a 'guided tour' of structures and conformation changes. However, high-quality movies are rarely seen because they are currently difficult and time consuming to make. By adopting the traditional movie 'storyboard' concept, which gives guidance and direction to filming, eMovie makes the creation of lengthy molecular animations much easier. This tool is a plug-in for the open-source molecular graphics program PyMOL, and enables experts and novices alike to produce informative and high-quality molecular animations.

  9. Water models based on a single potential energy surface and different molecular degrees of freedom

    NASA Astrophysics Data System (ADS)

    Saint-Martin, Humberto; Hernández-Cobos, Jorge; Ortega-Blake, Iván

    2005-06-01

    Up to now it has not been possible to neatly assess whether a deficient performance of a model is due to poor parametrization of the force field or the lack of inclusion of enough molecular properties. This work compares several molecular models in the framework of the same force field, which was designed to include many-body nonadditive effects: (a) a polarizable and flexible molecule with constraints that account for the quantal nature of the vibration [B. Hess, H. Saint-Martin, and H. J. C. Berendsen, J. Chem. Phys. 116, 9602 (2002), H. Saint-Martin, B. Hess, and H. J. C. Berendsen, J. Chem. Phys. 120, 11133 (2004)], (b) a polarizable and classically flexible molecule [H. Saint-Martin, J. Hernández-Cobos, M. I. Bernal-Uruchurtu, I. Ortega-Blake, and H. J. C. Berendsen, J. Chem. Phys. 113, 10899 (2000)], (c) a polarizable and rigid molecule, and finally (d) a nonpolarizable and rigid molecule. The goal is to determine how significant the different molecular properties are. The results indicate that all factors—nonadditivity, polarizability, and intramolecular flexibility—are important. Still, approximations can be made in order to diminish the computational cost of the simulations with a small decrease in the accuracy of the predictions, provided that those approximations are counterbalanced by the proper inclusion of an effective molecular property, that is, an average molecular geometry or an average dipole. Hence instead of building an effective force field by parametrizing it in order to reproduce the properties of a specific phase, a building approach is proposed that is based on adequately restricting the molecular flexibility and/or polarizability of a model potential fitted to unimolecular properties, pair interactions, and many-body nonadditive contributions. In this manner, the same parental model can be used to simulate the same substance under a wide range of thermodynamic conditions. An additional advantage of this approach is that, as the force

  10. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  11. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    PubMed

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  12. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology

    PubMed Central

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    2017-01-01

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology. PMID:29267315

  13. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    PubMed

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  14. Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations.

    PubMed

    Zhang, Shenwu; Sun, Mengchi; Zhao, Yongshan; Song, Xuyang; He, Zhonggui; Wang, Jian; Sun, Jin

    2017-10-01

    Polymers have been usually used to retard nucleation and crystal growth in order to maintain supersaturation, yet their roles in inhibition of nucleation and crystal growth are poorly understood. In our work, the polymer-based supersaturation performances and molecular mechanisms of poorly aqueous soluble loratadine were investigated. Two common hydrophilic polymers (hydroxylpropylmethyl cellulose acetate succinate (HPMC-AS) and poly(vinylpyrrolidone-co-vinyl-acetate) (PVP-VA)) were used. It was found that HPMC-AS was a better polymer to prevent drug molecules from aggregation and to maintain the supersaturated state in solution than PVP-VA. The in vitro dissolution experiments showed that HPMC-AS solid dispersions had more rapid release at pH 4.5 and 6.8 media than PVP-VA solid dispersions under the un-sink condition. Moreover, molecular dynamic simulation results showed that HPMC-AS was more firmly absorbed onto a surface of the drug nanoparticles than PVP-VA due to bigger hydrophobic areas of HPMC-AS. Thereby, crystallization process of loratadine was inhibited in the presence of water to provide prolonged stability of the supersaturated state. In conclusion, polymers played a key role in maintaining supersaturation state of loratadine solid dispersions by strong drug-polymer interactions and the hydrophobic characteristic of polymers.

  15. Characterization of ovarian clear cell carcinoma using target drug-based molecular biomarkers: implications for personalized cancer therapy.

    PubMed

    Li, Mengjiao; Li, Haoran; Liu, Fei; Bi, Rui; Tu, Xiaoyu; Chen, Lihua; Ye, Shuang; Cheng, Xi

    2017-02-10

    It has long been appreciated that different subtypes (serous, clear cell, endometrioid and mucinous) of epithelial ovarian carcinoma (EOC) have distinct pathogenetic pathways. However, clinical management, especially chemotherapeutic regimens, for EOC patients is not subtype specific. Ovarian clear cell carcinoma (CCC) is a rare histological subtype of EOC, which exhibits high rates of recurrence and low chemosensitivity. We assessed potential therapeutic targets for ovarian CCC patients through analyzing the variation of drug-based molecular biomarkers expression between ovarian CCC and high-grade serous carcinoma (HGSC). Seven candidate drug-based molecular biomarkers, human epidermal growth factor receptor (EGFR), human epidermal growth factor receptor-2 (HER2), phosphatase and tensin homolog deleted on chromosome ten (PTEN), aurora kinase A (AURKA), breast cancer susceptibility gene 1 (BRCA1), breast cancer susceptibility gene 2 (BRCA2) and programmed death-ligand 1 (PD-L1) were measured in 96 ovarian CCC and 113 HGSC by immunohistochemistry in paraffin embedded tissues. The relationship between these biomarkers and clinicopathological factors were explored. The expression level of four of the seven drug-based molecular biomarkers was markedly different between HGSC and CCC. High expression levels of HER2 and PD-L1 were more commonly observed in CCC patients (12.6% vs 2.7%, 21.1% vs 11.6%, P = 0.006, 0.064, respectively), while loss of BRCA1 and BRCA2 expression were more frequently occurred in HGSC patients (72.6% vs 54.3%, 89.4% vs 79.8%, P = 0.007, 0.054, respectively). Survival analysis showed that five of seven biomarkers had prognostic values but varied between subtypes. Furthermore, EGFR expressed frequently in CCC patients with endometriosis than in HGSC patients (44.4% vs 8.3%, P = 0.049). AURKA and PD-L1 correlated with the resistance to platinum-based chemotherapy in CCC patients (P = 0.043, 0.028, respectively) while no similar

  16. Molecular based equation of state for shocked liquid nitromethane.

    PubMed

    Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard; Soulard, Laurent

    2009-07-30

    An approach is proposed to obtain the equation of state of unreactive shocked liquid nitromethane. Unlike previous major works, this equation of state is not based on extended integration schemes [P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar, J. Chem. Phys. 59 (1973) 6512]. It does not follow the way proposed by Winey et al. [J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane, J. Chem. Phys. 113 (2000) 7492] where the specific heat C(v), the isothermal bulk modulus B(T) and the coefficient of thermal pressure (deltaP/deltaT)(v) are modeled as functions of temperature and volume using experimental data. In this work, we compute the complete equation of state by microscopic calculations. Indeed, by means of Monte Carlo molecular simulations, we have proposed a new force field for nitromethane that lead to a good description of shock properties [N. Desbiens, E. Bourasseau, J.-B. Maillet, Potential optimization for the calculation of shocked liquid nitromethane properties, Mol. Sim. 33 (2007) 1061; A. Hervouët, N. Desbiens, E. Bourasseau, J.-B. Maillet, Microscopic approaches to liquid nitromethane detonation properties, J. Phys. Chem. B 112 (2008) 5070]. Particularly, it has been shown that shock temperatures and second shock temperatures are accurately reproduced which is significative of the quality of the potential. Here, thermodynamic derivative properties are computed: specific heats, Grüneisen parameter, sound velocity among others, along the Hugoniot curve. This work constitutes to our knowledge the first determination of the equation of state of an unreactive shocked explosive by molecular simulations.

  17. A molecular dynamics study of slow base flipping in DNA using conformational flooding.

    PubMed

    Bouvier, Benjamin; Grubmüller, Helmut

    2007-08-01

    Individual DNA bases are known to be able to flip out of the helical stack, providing enzymes with access to the genetic information otherwise hidden inside the helix. Consequently, base flipping is a necessary first step to many more complex biological processes such as DNA transcription or replication. Much remains unknown about this elementary step, despite a wealth of experimental and theoretical studies. From the theoretical point of view, the involved timescale of milliseconds or longer requires the use of enhanced sampling techniques. In contrast to previous theoretical studies employing umbrella sampling along a predefined flipping coordinate, this study attempts to induce flipping without prior knowledge of the pathway, using information from a molecular dynamics simulation of a B-DNA fragment and the conformational flooding method. The relevance to base flipping of the principal components of the simulation is assayed, and a combination of modes optimally related to the flipping of the base through either helical groove is derived for each of the two bases of the central guanine-cytosine basepair. By applying an artificial flooding potential along these collective coordinates, the flipping mechanism is accelerated to within the scope of molecular dynamics simulations. The associated free energy surface is found to feature local minima corresponding to partially flipped states, particularly relevant to flipping in isolated DNA; further transitions from these minima to the fully flipped conformation are accelerated by additional flooding potentials. The associated free energy profiles feature similar barrier heights for both bases and pathways; the flipped state beyond is a broad and rugged attraction basin, only a few kcal/mol higher in energy than the closed conformation. This result diverges from previous works but echoes some aspects of recent experimental findings, justifying the need for novel approaches to this difficult problem: this contribution

  18. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    PubMed

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  19. Molecular Bases of PDE4D Inhibition by Memory-Enhancing GEBR Library Compounds.

    PubMed

    Prosdocimi, Tommaso; Mollica, Luca; Donini, Stefano; Semrau, Marta S; Lucarelli, Anna Paola; Aiolfi, Egidio; Cavalli, Andrea; Storici, Paola; Alfei, Silvana; Brullo, Chiara; Bruno, Olga; Parisini, Emilio

    2018-05-01

    Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.

  20. Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization

    NASA Astrophysics Data System (ADS)

    Shi, Junwei; Liu, Fei; Zhang, Jiulou; Luo, Jianwen; Bai, Jing

    2015-05-01

    Fluorescence molecular tomography (FMT) as a noninvasive imaging modality has been widely used for biomedical preclinical applications. However, FMT reconstruction suffers from severe ill-posedness, especially when a limited number of projections are used. In order to improve the quality of FMT reconstruction results, a discrete cosine transform (DCT) based reweighted L1-norm regularization algorithm is proposed. In each iteration of the reconstruction process, different reweighted regularization parameters are adaptively assigned according to the values of DCT coefficients to suppress the reconstruction noise. In addition, the permission region of the reconstructed fluorophores is adaptively constructed to increase the convergence speed. In order to evaluate the performance of the proposed algorithm, physical phantom and in vivo mouse experiments with a limited number of projections are carried out. For comparison, different L1-norm regularization strategies are employed. By quantifying the signal-to-noise ratio (SNR) of the reconstruction results in the phantom and in vivo mouse experiments with four projections, the proposed DCT-based reweighted L1-norm regularization shows higher SNR than other L1-norm regularizations employed in this work.

  1. Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water.

    PubMed

    Peng, Jun; Liu, Donghao; Shi, Tian; Tian, Huairu; Hui, Xuanhong; He, Hua

    2017-07-01

    Although stir bar sportive extraction was thought to be a highly efficiency and simple pretreatment approach, its wide application was limited by low selectivity, short service life, and relatively high cost. In order to improve the performance of the stir bar, molecular imprinted polymers and magnetic carbon nanotubes were combined in the present study. In addition, two monomers were utilized to intensify the selectivity of molecularly imprinted polymers. Fourier transform infrared spectroscopy, scanning electron microscopy, and selectivity experiments showed that the molecularly imprinted polymeric stir bar was successfully prepared. Then micro-extraction based on the obtained stir bar was coupled with HPLC for determination of trace cefaclor and cefalexin in environmental water. This approach had the advantages of stir bar sportive extraction, high selectivity of molecular imprinted polymers, and high sorption efficiency of carbon nanotubes. To utilize this pretreatment approach, pH, extraction time, stirring speed, elution solvent, and elution time were optimized. The LOD and LOQ of cefaclor were found to be 3.5 ng · mL -1 and 12.0 ng · mL -1 , respectively; the LOD and LOQ of cefalexin were found to be 3.0 ng · mL -1 and 10.0 ng · mL -1 , respectively. The recoveries of cefaclor and cefalexin were 86.5 ~ 98.6%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). Even when utilized in more than 14 cycles, the performance of the stir bar did not decrease dramatically. This demonstrated that the molecularly imprinted polymeric stir bar based micro-extraction was a convenient, efficient, low-cost, and a specific method for enrichment of cefaclor and cefalexin in environmental samples.

  2. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    PubMed

    Salmon, Magali S; Bayer, Emmanuelle M F

    2012-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.

  3. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki

    2018-01-01

    Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.

  4. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  5. Selective solid-phase extraction using a molecularly imprinted polymer for the analysis of patulin in apple-based foods.

    PubMed

    Lucci, Paolo; Moret, Sabrina; Bettin, Sara; Conte, Lanfranco

    2017-01-01

    The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid-phase extraction sorbent for the clean-up and pre-concentration of patulin from apple-based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2-100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid-phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple-based foods such as juice, puree and jam samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    NASA Astrophysics Data System (ADS)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  7. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    PubMed Central

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  8. Intertextual Sexual Politics: Illness and Desire in Enrique Gomez Carrillo's "Del amor", "del dolor y del vicio" and Aurora Caceres's "La rosa muerta"

    ERIC Educational Resources Information Center

    LaGreca, Nancy

    2012-01-01

    This study explores the intertextuality between Aurora Caceres's "La rosa muerta" (1914) and the novel "Del amor, del dolor y del vicio" (1898) by her ex-husband, Enrique Gomez Carrillo. Caceres strategically mentions Gomez Carrillo's novel in "La rosa muerta" to invite a reading of her work in dialogue with his. Both narratives follow the sexual…

  9. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants.

    PubMed

    Soni, Sangeeta; Tyagi, Chetna; Grover, Abhinav; Goswami, Shyamal K

    2014-07-11

    SG2NA is a member of the striatin sub-family of WD-40 repeat proteins. Striatin family members have been associated with diverse physiological functions. SG2NA has also been shown to have roles in cell cycle progression, signal transduction etc. They have been known to interact with a number of proteins including Caveolin and Calmodulin and also propagate the formation of a multimeric protein unit called striatin-interacting phosphatase and kinase. As a pre-requisite for such interaction ability, these proteins are known to be unstable and primarily disordered in their arrangement. Earlier we had identified that it has multiple isoforms (namely 35, 78, 87 kDa based on its molecular weight) which are generated by alternative splicing. However, detailed structural information of SG2NA is still eluding the researchers. This study was aimed towards three-dimensional molecular modeling and characterization of SG2NA protein and its isoforms. One structure out of five was selected for each variant having the least value for C score. Out of these, m35 kDa with a C score value of -3.21 was the most poorly determined structure in comparison to m78 kDa and m87 kDa variants with C scores of -1.16 and -1.97 respectively. Further evaluation resulted in about 61.6% residues of m35 kDa, 76.6% residues of m78 kDa and 72.1% residues of m87 kDa falling in the favorable regions of Ramchandran Plot. Molecular dynamics simulations were also carried out to obtain biologically relevant structural models and compared with previous atomic coordinates. N-terminal region of all variants was found to be highly disordered. This study provides first-hand detailed information to understand the structural conformation of SG2NA protein variants (m35 kDa, m78 kDa and m87 kDa). The WD-40 repeat domain was found to constitute antiparallel strands of β-sheets arranged circularly. This study elucidates the crucial structural features of SG2NA proteins which are involved in various protein

  10. Photochromic amorphous molecular materials and their applications

    NASA Astrophysics Data System (ADS)

    Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki

    2003-01-01

    Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.

  11. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    PubMed

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  12. Interpretation of pH-activity Profiles for Acid-Base Catalysis from Molecular Simulations

    PubMed Central

    Dissanayake, Thakshila; Swails, Jason; Harris, Michael E.; Roitberg, Adrian E.; York, Darrin M.

    2015-01-01

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pKa values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of “apparent pKa” values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In the present work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes, and test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid/base catalyst, to predict the macroscopic and microscopic pKa values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data, and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms. PMID:25615525

  13. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  14. Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.

    PubMed

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G

    2014-11-01

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  15. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  16. Molecular mechanisms of acid-base sensing by the kidney.

    PubMed

    Brown, Dennis; Wagner, Carsten A

    2012-05-01

    A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.

  17. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients.

    PubMed

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.

  18. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients

    PubMed Central

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions. PMID:26799702

  19. Silane and Germane Molecular Electronics.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Kim, Nathaniel T; Neupane, Madhav; Leighton, James L; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2017-04-18

    This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, β. Comparison of the different β values demonstrates that Si-Si and Ge-Ge σ bonds are more conductive than the analogous C-C σ bonds. These molecular trends mirror what is seen in the bulk. The conductance decay of Si and Ge-based wires is similar in magnitude to those from π-based molecular wires such as paraphenylenes However, the chemistry of the linkers that attach the molecular wires to the electrodes has a large influence on the resulting β value. For example, Si- and Ge-based wires of many different lengths connected with a methyl-thiomethyl linker give β values of 0.36-0.39 Å -1 , whereas Si- and Ge-based wires connected with aryl-thiomethyl groups give drastically different β values for short and long wires. This observation inspired us to study molecular wires that are composed of both π- and σ-orbitals. The sequence and composition of group 14 atoms in the σ chain modulates the electronic coupling between the π end-groups and dictates the molecular conductance. The conductance behavior originates from the coupling between the subunits, which can be understood by considering periodic trends such as bond length, polarizability, and bond polarity. We found that the same periodic trends determine the electric field

  20. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    PubMed

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  1. Preservation of Fine-Needle Aspiration Specimens for Future Use in RNA-Based Molecular Testing

    PubMed Central

    Ladd, Amy C.; O'Sullivan-Mejia, Emerald; Lea, Tasha; Perry, Jessica; Dumur, Catherine I.; Dragoescu, Ema; Garrett, Carleton T.; Powers, Celeste N.

    2015-01-01

    Background The application of ancillary molecular testing is becoming more important for the diagnosis and classification of disease. The use of fine-needle aspiration (FNA) biopsy as the means of sampling tumors in conjunction with molecular testing could be a powerful combination. FNA is minimally invasive, cost effective, and usually demonstrates accuracy comparable to diagnoses based on excisional biopsies. Quality control (QC) and test validation requirements for development of molecular tests impose a need for access to pre-existing clinical samples. Tissue banking of excisional biopsy specimens is frequently performed at large research institutions, but few have developed protocols for preservation of cytologic specimens. This study aimed to evaluate cryopreservation of FNA specimens as a method of maintaining cellular morphology and ribonucleic acid (RNA) integrity in banked tissues. Methods FNA specimens were obtained from fresh tumor resections, processed by using a cryopreservation protocol, and stored for up to 27 weeks. Upon retrieval, samples were made into slides for morphological evaluation, and RNA was extracted and assessed for integrity by using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif). Results Cryopreserved specimens showed good cell morphology and, in many cases, yielded intact RNA. Cases showing moderate or severe RNA degradation could generally be associated with prolonged specimen handling or sampling of necrotic areas. Conclusions FNA specimens can be stored in a manner that maintains cellular morphology and RNA integrity necessary for studies of gene expression. In addition to addressing quality control (QC) and test validation needs, cytology banks will be an invaluable resource for future molecular morphologic and diagnostic research studies. PMID:21287691

  2. Symbol Synchronization for Diffusion-Based Molecular Communications.

    PubMed

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  3. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    PubMed

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing

    NASA Astrophysics Data System (ADS)

    Nishitani, Shoichi; Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, we developed a molecularly imprinted polymer-based field-effect transistor (MIP-gate FET) for selectively detecting sugar chains in aqueous media, focusing on 3‧-sialyllactose (3SLac) and 6‧-sialyllactose (6SLac). The FET biosensor enables the detection of small molecules as long as they have intrinsic charges. Additionally, the MIP gels include the template for the target molecule, which is selectively trapped without requiring enzyme-target molecule reaction. The MIP gels were synthesized on the gate surface of the FET device, including phenylboronic acid (PBA), which enables binding to sugar chains. Firstly, the 3SLac-MIP-gate FET quantitatively detected 3SLac at µM levels. This is because the FET device recognized the change in molecular charges on the basis of PBA-3SLac binding in the MIP gel. Moreover, 3SLac was selectively detected using the 3SLac- and 6SLac-MIP-gate FETs to some extent, where the detecting signal from the competent was suppressed by 40% at maximum. Therefore, a platform based on the MIP-coupled FET biosensor is suitable for a selective biosensing system in an enzyme-free manner, which can be applied widely in medical fields. However, we need to further improve the selectivity of MIP-gate FETs to discriminate more clearly between similar structures of sugar chains such as 3SLac and 6SLac.

  5. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  6. Molecular anions.

    PubMed

    Simons, Jack

    2008-07-24

    The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.

  7. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    PubMed

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  9. Fragment-based drug discovery and molecular docking in drug design.

    PubMed

    Wang, Tao; Wu, Mian-Bin; Chen, Zheng-Jie; Chen, Hua; Lin, Jian-Ping; Yang, Li-Rong

    2015-01-01

    Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.

  10. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won

    2013-01-01

    We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.

  11. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  12. Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture.

    PubMed

    Bang, Jae Jin; Porter, Ashlin G; Davis, Tyson C; Hayes, Tyler R; Claridge, Shelley A

    2018-05-15

    Polymerizable amphiphiles can be assembled into lying-down phases on 2D materials such as graphite and graphene to create chemically orthogonal surface patterns at 5-10 nm scales, locally modulating functionality of the 2D basal plane. Functionalization can be carried out through Langmuir-Schaefer conversion, in which a subset of molecules is transferred out of a standing phase film on water onto the 2D substrate. Here, we leverage differences in molecular structure to spatially control transfer at both nanoscopic and microscopic scales. We compare transfer properties of five different single- and dual-chain amphiphiles, demonstrating that those with strong lateral interactions (e.g., hydrogen-bonding networks) exhibit the lowest transfer efficiencies. Since molecular structures also influence microscopic domain morphologies in Langmuir films, we show that it is possible to transfer such microscale patterns, taking advantage of variations in the local transfer rates based on the structural heterogeneity in Langmuir films. Nanoscale domain morphologies also vary in ways that are consistent with predicted relative transfer and diffusion rates. These results suggest strategies to tailor noncovalent functionalization of 2D substrates through controlled LS transfer.

  13. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    PubMed

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  14. Chemozart: a web-based 3D molecular structure editor and visualizer platform.

    PubMed

    Mohebifar, Mohamad; Sajadi, Fatemehsadat

    2015-01-01

    Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimensional structures of molecules. With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user-friendly interface is composed. More than 30 packages are used to compose this application which adds enough flexibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (application programming interface). JavaScript libraries which allow creation of web pages containing interactive three-dimensional molecular structures has also been made available. The application has been released under Apache 2 License and is available from the project website https://chemozart.com.

  15. A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets.

    PubMed

    Lucas, Rico; Groeneveld, Jürgen; Harms, Hauke; Johst, Karin; Frank, Karin; Kleinsteuber, Sabine

    2017-01-01

    In times of global change and intensified resource exploitation, advanced knowledge of ecophysiological processes in natural and engineered systems driven by complex microbial communities is crucial for both safeguarding environmental processes and optimising rational control of biotechnological processes. To gain such knowledge, high-throughput molecular techniques are routinely employed to investigate microbial community composition and dynamics within a wide range of natural or engineered environments. However, for molecular dataset analyses no consensus about a generally applicable alpha diversity concept and no appropriate benchmarking of corresponding statistical indices exist yet. To overcome this, we listed criteria for the appropriateness of an index for such analyses and systematically scrutinised commonly employed ecological indices describing diversity, evenness and richness based on artificial and real molecular datasets. We identified appropriate indices warranting interstudy comparability and intuitive interpretability. The unified diversity concept based on 'effective numbers of types' provides the mathematical framework for describing community composition. Additionally, the Bray-Curtis dissimilarity as a beta-diversity index was found to reflect compositional changes. The employed statistical procedure is presented comprising commented R-scripts and example datasets for user-friendly trial application. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. [Study on action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis based on techniques of gene expression profile and molecular fingerprint].

    PubMed

    Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-08-01

    Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material

  17. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    NASA Astrophysics Data System (ADS)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    metal surfaces, focusing on electronic and vibrational spectroscopy in one case and scanning tunneling microscopy studies in the other. Original research articles describe results in many aspects of the field, including: Self-assembly, self-organization, and controlled growth of molecular layers on various substrates. Highly-ordered arrays provide model systems with extraordinary structural properties, allowing one to adjust interactions between molecules and between molecule and substrate, and can be robustly prepared from solution, an essential prerequisite for applications. Conformational or electronic switching of molecules adsorbed at metal and semiconductor surfaces. These studies highlight the elementary processes governing molecular switching at surfaces as well as the wide range of possible stimuli. Carbon-based substrates such as graphene or carbon nanotubes. These substrates are attractive due to their effective two-dimensionality which implies that switching of adsorbed molecules can effect a significant back-action on the substrate. Mechanisms of conformational switching. Several contributions study the role of electron-vibron coupling and heating in current-induced conformational switching. We hope that the collection of articles presented here will stimulate and encourage researchers in surface physics and interfacial chemistry to contribute to the still emerging field of molecular switches at surfaces. We wish to acknowledge the support and input from many colleagues in preparing this special section. A significant part of this work has been conducted in the framework of the Sonderforschungsbereich 658 Elementary Processes in Molecular Switches at Surfaces of the Deutsche Forschungsgemeinschaft, to which we are grateful for financial support. Molecular surfaces at switches contents Molecular switches at surfacesMartin Weinelt and Felix von Oppen Optically and thermally induced molecular switching processes at metal surfacesPetra Tegeder Effects of

  18. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  19. Measurement Of Molecular Mobilities Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.

  20. Observation of molecular level behavior in molecular electronic junction device

    NASA Astrophysics Data System (ADS)

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  1. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    PubMed

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  2. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-24

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  3. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  4. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less

  5. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    NASA Astrophysics Data System (ADS)

    Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille

    2016-03-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.

  6. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

    PubMed Central

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3. PMID:28546844

  7. Single palindromic molecular beacon-based amplification for genetic analysis of cancers.

    PubMed

    Li, Feng; Zhao, Hui; Wang, Zheng-Yong; Wu, Zai-Sheng; Yang, Zhe; Li, Cong-Cong; Xu, Huo; Lyu, Jian-Xin; Shen, Zhi-Fa

    2017-05-15

    The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100pM to 75nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  9. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    PubMed

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  10. [Prospects of molecular breeding in medical plants].

    PubMed

    Ma, Xiao-Jun; Mo, Chang-Ming

    2017-06-01

    The molecular-assisted breeding, transgenic breeding and molecular designing breeding are three development directions of plant molecular breeding. Base on these three development directions, this paper summarizes developing status and new tendency of research field of genetic linkage mapping, QTL mapping, association mapping, molecular-assisted selections, pollen-mediated transformations, agrobacterium-mediated transformations, particle gun-mediated transformations, genome editing technologies, whole-genome sequencing, transcriptome sequencing, proteome sequencing and varietal molecular designing. The objective and existing problem of medical plant molecular breeding were discussed the prospect of these three molecular breeding technologies application on medical plant molecular breeding was outlooked. Copyright© by the Chinese Pharmaceutical Association.

  11. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  12. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  13. Design new P-glycoprotein modulators based on molecular docking and CoMFA study of α, β-unsaturated carbonyl-based compounds and oxime analogs as anticancer agents

    NASA Astrophysics Data System (ADS)

    Sepehri, Bakhtyar; Ghavami, Raouf

    2017-02-01

    In this research, molecular docking and CoMFA were used to determine interactions of α, β-unsaturated carbonyl-based compounds and oxime analogs with P-glycoprotein and prediction of their activity. Molecular docking study shown these molecules establish strong Van der Waals interactions with side chain of PHE-332, PHE-728 and PHE-974. Based on the effect of component numbers on squared correlation coefficient for cross validation tests (including leave-one-out and leave-many-out), CoMFA models with five components were built to predict pIC50 of molecules in seven cancer cell lines (including Panc-1 (pancreas cancer cell line), PaCa-2 (pancreatic carcinoma cell line), MCF-7 (breast cancer cell line), A-549 (epithelial), HT-29 (colon cancer cell line), H-460 (lung cancer cell line), PC-3 (prostate cancer cell line)). R2 values for training and test sets were in the range of 0.94-0.97 and 0.84 to 0.92, respectively, and for LOO and LMO cross validation test, q2 values were in the range of 0.75-0.82 and 0.65 to 0.73, respectively. Based on molecular docking results and extracted steric and electrostatic contour maps for CoMFA models, four new molecules with higher activity with respect to the most active compound in data set were designed.

  14. Designing of phenol-based β-carbonic anhydrase1 inhibitors through QSAR, molecular docking, and MD simulation approach.

    PubMed

    Ahamad, Shahzaib; Hassan, Md Imtaiyaz; Dwivedi, Neeraja

    2018-05-01

    Tuberculosis (Tb) is an airborne infectious disease caused by Mycobacterium tuberculosis. Beta-carbonic anhydrase 1 ( β-CA1 ) has emerged as one of the potential targets for new antitubercular drug development. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation approaches were performed on a series of natural and synthetic phenol-based β-CA1 inhibitors. The developed 3D-QSAR model ( r 2  = 0.94, q 2  = 0.86, and pred_r 2  = 0.74) indicated that the steric and electrostatic factors are important parameters to modulate the bioactivity of phenolic compounds. Based on this indication, we designed 72 new phenolic inhibitors, out of which two compounds (D25 and D50) effectively stabilized β-CA1 receptor and, thus, are potential candidates for new generation antitubercular drug discovery program.

  15. Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2017-01-03

    In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less

  16. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  17. Proline-based chiral stationary phases: a molecular dynamics study of the interfacial structure.

    PubMed

    Ashtari, M; Cann, N M

    2011-09-16

    Proline chains have generated considerable interest as a possible basis for new selectors in chiral chromatography. In this article, we employ molecular dynamics simulations to examine the interfacial structure of two diproline chiral selectors, one with a terminal trimethylacetyl group and one with a terminal t-butyl carbamate group. The solvents consist of a relatively apolar n-hexane/2-propanol and a polar water/methanol mixture. We begin with electronic structure calculations for the two chiral selectors to assess the energetics of conformational changes, particularly along the backbone where the amide bonds can alternate between cis and trans conformations. Force fields have been developed for the two selectors, based on these ab initio calculations. Molecular dynamics simulations of the selective interfaces are performed to examine the preferred backbone conformations, as a function of end-group and solvent. The full chiral surface includes the diproline selectors, trimethylsilyl end-caps, and silanol groups. Connection is made with selectivity measurements on these interfaces, where significant differences are observed between these two very similar selectors. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    PubMed

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  19. Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids

    NASA Astrophysics Data System (ADS)

    Singh, Prabhat K.; Mora, Aruna K.; Nath, Sukhendu

    2016-01-01

    The emission properties of Thioflavin-T (ThT), a cationic molecular rotor, have been investigated in two fluoroalkylphosphate ([FAP]) anion based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, over a wide temperature range. The micro-viscosities of ionic liquids around ThT, measured from the emission quantum yield, are found to be quite different from their bulk viscosities. The temperature dependence of the viscosity and the emission quantum yield reveals that, despite the very low shear viscosity of these ILs, the non-radiative torsional relaxation has a strong dependence on the free volume of these [FAP] anion based ILs.

  20. Cryopreservation: Evolution of Molecular Based Strategies.

    PubMed

    Baust, John M; Corwin, William; Snyder, Kristi K; Van Buskirk, Robert; Baust, John G

    2016-01-01

    Cryopreservation (CP) is an enabling process providing for on-demand access to biological material (cells and tissues) which serve as a starting, intermediate or even final product. While a critical tool, CP protocols, approaches and technologies have evolved little over the last several decades. A lack of conversion of discoveries from the CP sciences into mainstream utilization has resulted in a bottleneck in technological progression in areas such as stem cell research and cell therapy. While the adoption has been slow, discoveries including molecular control and buffering of cell stress response to CP as well as the development of new devices for improved sample freezing and thawing are providing for improved CP from both the processing and sample quality perspectives. Numerous studies have described the impact, mechanisms and points of control of cryopreservation-induced delayed-onset cell death (CIDOCD). In an effort to limit CIDOCD, efforts have focused on CP agent and freeze media formulation to provide a solution path and have yielded improvements in survival over traditional approaches. Importantly, each of these areas, new technologies and cell stress modulation, both individually and in combination, are now providing a new foundation to accelerate new research, technology and product development for which CP serves as an integral component. This chapter provides an overview of the molecular stress responses of cells to cryopreservation, the impact of the hypothermic and cell death continuums and the targeted modulation of common and/or cell specific responses to CP in providing a path to improving cell quality.

  1. Molecular DNA-based detection of ionising radiation in meat.

    PubMed

    Şakalar, Ergün

    2017-05-01

    Ionising radiation induces molecular alterations, such as formation of ions, free radicals, and new stable molecules, and cleavage of the chemical bonds of the molecules present in food. Irradiation-treated meat should be labelled to control the process and to ensure free consumer choice. Therefore, sensitive analytical methods are required to detect the irradiation dose. Meat samples were exposed to radiation doses of 0, 0.272, 0.497, 1.063, 3.64, 8.82 and 17.42 kGy in an industrial 60 Co gamma cell. Primers were designed to amplify 998, 498 and 250-base pair (bp) regions of the 18S rRNA gene of nuclear DNA from the irradiated samples. A new DNA-based method was developed to quantify the radiation exposed to the unstored meat and the meat stored at -20 °C for 3 and 6 months. The method was able to detect meat samples stored and unstored with dose limits of 1.063 and 3.64 kGy, respectively. The level of irradiation can be detected using primer pairs that target particularly different-sized sequences for DNA amplification by PCR. This method can be widely used for the analysis of not only meat samples, but also all biological materials containing DNA. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors.

    PubMed

    Tripathy, Swayansiddha; Azam, Mohammed Afzal; Jupudi, Srikanth; Sahu, Susanta Kumar

    2017-10-11

    FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R 2  = .8319), cross validated coefficient (Q 2  = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R 2  = .83) and test set (R 2  = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD-ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.

  3. A DICOM-based 2nd generation Molecular Imaging Data Grid implementing the IHE XDS-i integration profile.

    PubMed

    Lee, Jasper; Zhang, Jianguo; Park, Ryan; Dagliyan, Grant; Liu, Brent; Huang, H K

    2012-07-01

    A Molecular Imaging Data Grid (MIDG) was developed to address current informatics challenges in archival, sharing, search, and distribution of preclinical imaging studies between animal imaging facilities and investigator sites. This manuscript presents a 2nd generation MIDG replacing the Globus Toolkit with a new system architecture that implements the IHE XDS-i integration profile. Implementation and evaluation were conducted using a 3-site interdisciplinary test-bed at the University of Southern California. The 2nd generation MIDG design architecture replaces the initial design's Globus Toolkit with dedicated web services and XML-based messaging for dedicated management and delivery of multi-modality DICOM imaging datasets. The Cross-enterprise Document Sharing for Imaging (XDS-i) integration profile from the field of enterprise radiology informatics was adopted into the MIDG design because streamlined image registration, management, and distribution dataflow are likewise needed in preclinical imaging informatics systems as in enterprise PACS application. Implementation of the MIDG is demonstrated at the University of Southern California Molecular Imaging Center (MIC) and two other sites with specified hardware, software, and network bandwidth. Evaluation of the MIDG involves data upload, download, and fault-tolerance testing scenarios using multi-modality animal imaging datasets collected at the USC Molecular Imaging Center. The upload, download, and fault-tolerance tests of the MIDG were performed multiple times using 12 collected animal study datasets. Upload and download times demonstrated reproducibility and improved real-world performance. Fault-tolerance tests showed that automated failover between Grid Node Servers has minimal impact on normal download times. Building upon the 1st generation concepts and experiences, the 2nd generation MIDG system improves accessibility of disparate animal-model molecular imaging datasets to users outside a molecular

  4. Synthesis, biological activity and molecular modeling study of new Schiff bases incorporated with indole moiety.

    PubMed

    Halawa, Ahmed H; El-Gilil, Shimaa Mohamed Abd; Bedair, Ahmed H; Shaaban, Mohamed; Frese, Marcel; Sewald, Norbert; Eliwa, Essam M; El-Agrody, Ahmed M

    2017-10-26

    A new series of heterocyclic Schiff bases 2-9 containing indole moiety were synthesized by facile and efficient condensation of indole-3/2/5-carboxaldehyde (1a/1b/1c) with different aromatic and heterocyclic primary amines using conventional and/or microwave irradiation methods. The structures of the obtained compounds were assigned by sophisticated spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The synthesized compounds were screened for their cytotoxicity and antibacterial activities. In vitro cytotoxicity screening revealed that compound 5 exhibited moderate activity against KB-3-1 cell line (IC50=57.7 μM) while 5-indolylimino derivative 7 indicated close to the activity (IC50=19.6 μM) in comparison with the positive control (+)-Griseofulvin (IC50=19.2 μM), while the tested compounds 5, 6b, 7 and 9 revealed good or moderate antibacterial activity. In addition, molecular docking study of Schiff bases 2-9 was performed by Molecular Operating Environment (MOE 2014.09) program on the matrix metalloproteinase-8 (MMP-8) (Protein Data Bank (PDB) ID: 1MNC) in an attempt to explore their mode of action as anticancer drugs.

  5. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  6. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    PubMed

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  7. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  8. Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands

    NASA Astrophysics Data System (ADS)

    Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree

    2018-05-01

    In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.

  9. Noncovalent Molecular Electronics.

    PubMed

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  10. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  11. Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis

    NASA Astrophysics Data System (ADS)

    Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.

    2018-05-01

    Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.

  12. Molecular dynamic simulations for FOX-7 and FOX-7 based PBXs.

    PubMed

    Wang, Junying; Jin, Shaohua; Chen, Shusen; Li, Lijie; Wang, Dongxu; Lu, Zhiyan; Wang, Na; Wang, Junfeng

    2018-06-01

    Molecular dynamic (MD) simulations were applied to investigate the binding energies and mechanical properties of 1,1-diamino-2,2-dinitroethene (FOX-7) based polymer bonded explosives (PBXs) with ethylenevinylacetate copolymer (EVA), fluorine (F2641), hydroxyl-terminated polybutadiene (HTPB), and styrene butadiene styrene block copolymer (SBS). The binding energies between FOX-7 and the four polymer binders are different, of which the descending order is FOX-7/HTPB ≈ FOX-7/SBS > FOX-7/EVA > FOX-7/F2641. Furthermore, the (002) surface of FOX-7 has the strongest interaction with the four polymers. The mechanical properties (elastic moduli and Poisson's ratio) of pure FOX-7 and FOX-7 based PBXs were obtained. The results show that the descending order of the ability of polymer binders to improve plasticity of PBXs is SBS > F2641 > EVA > HTPB. The formability of FOX-7 based PBXs is better than that of pure FOX-7, as the order of FOX-7/SBS > FOX-7/EVA > FOX-7/F2641 > FOX-7/HTPB > FOX-7 shows. Poisson's ratio of SBS is the highest. The calculated detonation performances for pure FOX-7 and FOX-7 based PBXs show that the detonation properties of explosives slightly decreases when the mass ratio of binder is about 5%. All the theoretical detonation velocities of FOX-7 based PBXs are higher than 8500 m/s.

  13. Enhancing 4-propylheptane dissociation with nickel nanocluster based on molecular dynamics simulations.

    PubMed

    Ilyina, Margarita G; Khamitov, Edward M; Galiakhmetov, Rail N; Mustafin, Ildar A; Mustafin, Akhat G

    2017-03-01

    In the present work, a 0.4nm nickel cluster has been theoretically studied. Its equilibrium structural parameters have been calculated by the DFT method based on the PBEH1PBE hybrid functional and split-valence basis set Lanl2DZ including effective core potentials. We have systematically considered diverse spin states of this cluster and find out its ground state. The relative stability of these states depends on the HOMO-LUMO gap. The interaction of the Ni 6 with 4-propylheptane С 10 Н 22 has been studied to simulate the process of catalytic cracking of hydrocarbons. The optimization of this structure has been performed by the ωPBE/Lanl2DZ_ecp method (the TeraChem V.1.9 program package) with no symmetry restrictions; the electron shells of the metal were described by effective core pseudopotentials. For visualization and quantitative estimation of the bonding bonds between the nickel nanocluster and 4-propylheptane, the analysis of weak interactions based on RGD has been performed. To confirm the proposition about the formation of Ni-H bonds, we have scrutinized critical points of electronic density. Values of laplasian of electronic density and Bader atomic charge distribution in the global minimum of the total energy have been estimated by the AIMAll 15.05.18 program suite. Finally, we have simulated interaction of Ni 6 with 4-propylheptane in terms of the Born-Oppenheimer ab initio molecular dynamics. The results of the molecular dynamics simulation provide pair radial distribution function CH at 1500°C and a detailed picture of the processes occurring in the system. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Methods for Real-Time PCR-Based Diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus Infections in an Opened Molecular Diagnostic Platform.

    PubMed

    Opota, Onya; Brouillet, René; Greub, Gilbert; Jaton, Katia

    2017-01-01

    The advances in molecular biology of the last decades have dramatically improved the field of diagnostic bacteriology. In particular, PCR-based technologies have impacted the diagnosis of infections caused by obligate intracellular bacteria such as pathogens from the Chlamydiacae family. Here, we describe a real-time PCR-based method using the Taqman technology for the diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infection. The method presented here can be applied to various clinical samples and can be adapted on opened molecular diagnostic platforms.

  15. An Adhesive Patch-Based Skin Biopsy Device for Molecular Diagnostics and Skin Microbiome Studies.

    PubMed

    Yao, Zuxu; Moy, Ronald; Allen, Talisha; Jansen, Burkhard

    2017-10-01

    A number of diagnoses in clinical dermatology are currently histopathologically confirmed and this image recognition-based confirmation generally requires surgical biopsies. The increasing ability of molecular pathology to corroborate or correct a clinical diagnosis based on objective gene expression, mutation analysis, or molecular microbiome data is on the horizon and would be further supported by a tool or procedure to collect samples non-invasively. This study characterizes such a tool in form of a 'bladeless' adhesive patch-based skin biopsy device. The performance of this device was evaluated through a variety of complementary technologies including assessment of sample biomass, electron microscopy demonstrating the harvesting of layers of epidermal tissue, and isolation of RNA and DNA from epidermal skin samples. Samples were obtained by application of adhesive patches to the anatomical area of interest. Biomass assessment demonstrated collection of approximately 0.3mg of skin tissue per adhesive patch and electron microscopy confirmed the nature of the harvested epidermal skin tissue. The obtained tissue samples are stored in a stable fashion on adhesive patches over a wide range of temperatures (-80oC to +60oC) and for extended periods of time (7 days or more). Total human RNA, human genomic DNA and microbiome DNA yields were 23.35 + 15.75ng, 27.72 + 20.71ng and 576.2 + 376.8pg, respectively, in skin samples obtained from combining 4 full patches collected non-invasively from the forehead of healthy volunteers. The adhesive patch skin sampling procedure is well tolerated and provides robust means to obtain skin tissue, RNA, DNA, and microbiome samples without involving surgical biopsies. The non-invasively obtained skin samples can be shipped cost effectively at ambient temperature by mail or standard courier service, and are suitable for a variety of molecular analyses of the skin microbiome as well as of keratinocytes, T cells, dendritic cells

  16. Considerations on the Design of a Molecular Frequency Standard Based on the Molecular Beam Electric Resonance Method

    NASA Technical Reports Server (NTRS)

    Hughes, Vernon W.

    1959-01-01

    The use of a rotational state transition as observed by the molecular beam electric resonance method is discussed as a possible frequency standard particularly in the millimeter wavelength range. As a promising example the 100 kMc transition between the J = 0 and J = 1 rotational states of Li 6F19 is considered. The relative insensitivity of the transition frequency to external electric and magnetic fields and the low microwave power requirements appear favorable; the small fraction of the molecular beam that is in a single rotational state is a limiting factor.

  17. Using graph-based assessments within socratic tutorials to reveal and refine students' analytical thinking about molecular networks.

    PubMed

    Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W

    2012-01-01

    Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.

  18. wFReDoW: A Cloud-Based Web Environment to Handle Molecular Docking Simulations of a Fully Flexible Receptor Model

    PubMed Central

    De Paris, Renata; Frantz, Fábio A.; Norberto de Souza, Osmar; Ruiz, Duncan D. A.

    2013-01-01

    Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern. PMID:23691504

  19. The alteration of T790M between 19 del and L858R in NSCLC in the course of EGFR-TKIs therapy: a literature-based pooled analysis.

    PubMed

    Liang, Hengrui; Pan, Zhenkui; Wang, Wei; Guo, Chengye; Chen, Difei; Zhang, Jianrong; Zhang, Yiyin; Tang, Shiyan; He, Jianxing; Liang, Wenhua

    2018-04-01

    Treatment-naive epidermal growth factor receptor (EGFR) T790M mutation is more inclined to coexist with L858R than with 19 del in non-small cell lung cancer (NSCLC) patients. However, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) might alter this status. We sought to compare the prevalence of T790M upon acquired resistance to EGFR-TKIs between 19 del and L858R by assembling all existing data. Electronic databases were comprehensively searched for eligible studies. The primary endpoint was the odds ratio (OR) of T790M mutation in NSCLC co-existing with L858R mutation and 19 del upon resistance to first-generation EGFR-TKIs. A random effects model was used. Stratified analysis was performed based on study type (retrospective and prospective), race (Asians and Caucasians) and sample type (tissue and plasma). A total of 25 studies involving 1,770 patients were included. The overall T790M existent rate was 45.25%. Post-resistance T790M was more frequent in 19 del than in L858R mutated patients (53% vs. 36%; OR 1.87; P<0.001). All outcomes of subgroup and overall analyses were similar. In contrast, we re-analyzed the previous meta-analysis, finding that the pooled rate of pretreatment T790M was 14% and 22% in 19 del and L858R respectively (OR 0.59; P<0.001). The increase of T790M rate was 2.79-fold in 19 del and only 0.63-fold in L858R in the course of EGFR-TKIs therapy. Opposite to the situation of de novo T790M, it was observed that T790M was more frequent in exon 19 deletion than in L858R among patients with acquired resistance to EGFR-TKIs. The difference in T790M alteration between 19 del and L858R encourages development of detection or treatment strategies for the specific resistance mechanism.

  20. First report on 3D-QSAR and molecular dynamics based docking studies of GCPII inhibitors for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Pandit, Amit; Sengupta, Sagnik; Krishnan, Mena Asha; Reddy, Ramesh B.; Sharma, Rajesh; Venkatesh, Chelvam

    2018-05-01

    Prostate Specific Membrane Antigen (PSMA) or Glutamate carboxypeptidase II (GCPII) has been identified as an important target in diagnosis and therapy of prostate cancer. Among several types of inhibitors, urea based inhibitors are the most common and widely employed in preclinical and clinical studies. Computational studies have been carried out to uncover active sites and interaction of PSMA inhibitors with the protein by modifying the core structure of the ligand. Analysis of the literature, however, show lack of 3-D quantitative structure activity relationship (QSAR) and molecular dynamics based molecular docking study to identify structural modifications responsible for better GCPII inhibitory activity. The present study aims to fulfil this gap by analysing well known PSMA inhibitors reported in the literature with known experimental PSMA inhibition constants. Also in order to validate the in silico study, a new GCPII inhibitor 7 was designed, synthesized and experimental PSMA enzyme inhibition was evaluated by using freshly isolated PSMA protein from human cancer cell line derived from lymph node, LNCaP. 3D-QSAR CoMFA models on 58 urea based GCPII inhibitors were generated, and the best correlation was obtained in Gast-Huck charge assigning method with q2, r2 and predictive r2 values as 0.592, 0.995 and 0.842 respectively. Moreover, steric, electrostatic, and hydrogen bond donor field contribution analysis provided best statistical values from CoMSIA model (q2, r2 and predictive r2 as 0.527, 0.981 and 0.713 respectively). Contour maps study revealed that electrostatic field contribution is the major factor for discovering better binding affinity ligands. Further molecular dynamic assisted molecular docking was also performed on GCPII receptor (PDB ID 4NGM) and most active GCPII inhibitor, DCIBzL. 4NGM co-crystallised ligand, JB7 was used to validate the docking procedure and the amino acid interactions present in JB7 are compared with DCIBzL. The results

  1. Molecular robots with sensors and intelligence.

    PubMed

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA-based

  2. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  3. Prevalence of 185delAG and 5382insC mutations in BRCA1, and 6174delT in BRCA2 in women of Ashkenazi Jewish origin in southern Brazil

    PubMed Central

    Dillenburg, Crisle Vignol; Bandeira, Isabel Cristina; Tubino, Taiana Valente; Rossato, Luciana Grazziotin; Dias, Eleonora Souza; Bittelbrunn, Ana Cristina; Leistner-Segal, Sandra

    2012-01-01

    Certain mutations in BRCA1 and BRCA2 genes are frequent in the Ashkenazi Jewish population. Several factors contribute to this increased frequency, including consanguineous marriages and an event known as a “bottleneck”, which occurred in the past and caused a drastic reduction in the genetic variability of this population. Several studies were performed over the years in an attempt to elucidate the role of BRCA1 and BRCA2 genes in susceptibility to breast cancer. The aim of this study was to estimate the carrier frequency of certain common mutations in the BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) genes in an Ashkenazi Jewish population from Porto Alegre, Brazil. Molecular analyses were done by PCR followed by RFLP (ACRS). The carrier frequencies for BRCA1 185delAG and 5382insC were 0.78 and 0 respectively, and 0.4 for the BRCA2 6174deT mutation. These findings are similar to those of some prior studies but differ from others, possibly due to excluding individuals with a personal or family history of cancer. Our sample was drawn from the community group and included individuals with or without a family or personal history of cancer. Furthermore, increased dispersion among Ashkenazi subpopulations may be the result of strong genetic drift and/or admixture. It is therefore necessary to consider the effects of local admixture on the mismatch distributions of various Jewish populations. PMID:23055798

  4. Prevalence of 185delAG and 5382insC mutations in BRCA1, and 6174delT in BRCA2 in women of Ashkenazi Jewish origin in southern Brazil.

    PubMed

    Dillenburg, Crisle Vignol; Bandeira, Isabel Cristina; Tubino, Taiana Valente; Rossato, Luciana Grazziotin; Dias, Eleonora Souza; Bittelbrunn, Ana Cristina; Leistner-Segal, Sandra

    2012-07-01

    Certain mutations in BRCA1 and BRCA2 genes are frequent in the Ashkenazi Jewish population. Several factors contribute to this increased frequency, including consanguineous marriages and an event known as a "bottleneck", which occurred in the past and caused a drastic reduction in the genetic variability of this population. Several studies were performed over the years in an attempt to elucidate the role of BRCA1 and BRCA2 genes in susceptibility to breast cancer. The aim of this study was to estimate the carrier frequency of certain common mutations in the BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) genes in an Ashkenazi Jewish population from Porto Alegre, Brazil. Molecular analyses were done by PCR followed by RFLP (ACRS). The carrier frequencies for BRCA1 185delAG and 5382insC were 0.78 and 0 respectively, and 0.4 for the BRCA2 6174deT mutation. These findings are similar to those of some prior studies but differ from others, possibly due to excluding individuals with a personal or family history of cancer. Our sample was drawn from the community group and included individuals with or without a family or personal history of cancer. Furthermore, increased dispersion among Ashkenazi subpopulations may be the result of strong genetic drift and/or admixture. It is therefore necessary to consider the effects of local admixture on the mismatch distributions of various Jewish populations.

  5. Molecular cancer classification using a meta-sample-based regularized robust coding method.

    PubMed

    Wang, Shu-Lin; Sun, Liuchao; Fang, Jianwen

    2014-01-01

    Previous studies have demonstrated that machine learning based molecular cancer classification using gene expression profiling (GEP) data is promising for the clinic diagnosis and treatment of cancer. Novel classification methods with high efficiency and prediction accuracy are still needed to deal with high dimensionality and small sample size of typical GEP data. Recently the sparse representation (SR) method has been successfully applied to the cancer classification. Nevertheless, its efficiency needs to be improved when analyzing large-scale GEP data. In this paper we present the meta-sample-based regularized robust coding classification (MRRCC), a novel effective cancer classification technique that combines the idea of meta-sample-based cluster method with regularized robust coding (RRC) method. It assumes that the coding residual and the coding coefficient are respectively independent and identically distributed. Similar to meta-sample-based SR classification (MSRC), MRRCC extracts a set of meta-samples from the training samples, and then encodes a testing sample as the sparse linear combination of these meta-samples. The representation fidelity is measured by the l2-norm or l1-norm of the coding residual. Extensive experiments on publicly available GEP datasets demonstrate that the proposed method is more efficient while its prediction accuracy is equivalent to existing MSRC-based methods and better than other state-of-the-art dimension reduction based methods.

  6. CL-20/DNB co-crystal based PBX with PEG: molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Gao, Pei; Xiao, Ji Jun; Zhao, Feng; Xiao, He Ming

    2016-12-01

    Molecular dynamics simulation was carried out for CL-20/DNB co-crystal based PBX (polymer-bonded explosive) blended with polymer PEG (polyethylene glycol). In this paper, the miscibility of the PBX models is investigated through the calculated binding energy. Pair correlation function (PCF) analysis is applied to study the interaction of the interface structures in the PBX models. The mechanical properties of PBXs are also discussed to understand the change of the mechanical properties after adding the polymer. Moreover, the calculated diffusion coefficients of the interfacial explosive molecules are used to discuss the dispersal ability of CL-20 and DNB molecules in the interface layer.

  7. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    PubMed

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  8. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  9. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  10. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  11. Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers.

    PubMed

    Wang, Gunuk; Jeong, Hyunhak; Ku, Jamin; Na, Seok-In; Kang, Hungu; Ito, Eisuke; Jang, Yun Hee; Noh, Jaegeun; Lee, Takhee

    2014-04-01

    We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Robustness of equations that define molecular subtypes of glioblastoma tumors based on five transcripts measured by RT-PCR.

    PubMed

    Castells, Xavier; Acebes, Juan José; Majós, Carles; Boluda, Susana; Julià-Sapé, Margarida; Candiota, Ana Paula; Ariño, Joaquín; Barceló, Anna; Arús, Carles

    2015-01-01

    Glioblastoma (Gb) is one of the most deadly tumors. Its molecular subtypes are yet to be fully characterized while the attendant efforts for personalized medicine need to be intensified in relation to glioblastoma diagnosis, treatment, and prognosis. Several molecular signatures based on gene expression microarrays were reported, but the use of microarrays for routine clinical practice is challenged by attendant economic costs. Several authors have proposed discriminant equations based on RT-PCR. Still, the discriminant threshold is often incompletely described, which makes proper validation difficult. In a previous work, we have reported two Gb subtypes based on the expression levels of four genes: CHI3L1, LDHA, LGALS1, and IGFBP3. One Gb subtype presented with low expression of the four genes mentioned, and of MGMT in a large portion of the patients (with anticipated high methylation of its promoter), and mutated IDH1. Here, we evaluate the robustness of the equations fitted with these genes using RT-PCR values in a set of 64 cases and importantly, define an unequivocal discriminant threshold with a view to prognostic implications. We developed two approaches to generate the discriminant equations: 1) using the expression level of the four genes mentioned above, and 2) using those genes displaying the highest correlation with survival among the aforementioned four ones, plus MGMT, as an attempt to further reduce the number of genes. The ease of equations' applicability, reduction in cost for raw data, and robustness in terms of resampling-based classification accuracy warrant further evaluation of these equations to discern Gb tumor biopsy heterogeneity at molecular level, diagnose potential malignancy, and prognosis of individual patients with glioblastomas.

  13. Investigating the binding behaviour of two avidin-based testosterone binders using molecular recognition force spectroscopy.

    PubMed

    Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas

    2014-02-01

    Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.

  14. GraphSAW: a web-based system for graphical analysis of drug interactions and side effects using pharmaceutical and molecular data.

    PubMed

    Shoshi, Alban; Hoppe, Tobias; Kormeier, Benjamin; Ogultarhan, Venus; Hofestädt, Ralf

    2015-02-28

    Adverse drug reactions are one of the most common causes of death in industrialized Western countries. Nowadays, empirical data from clinical studies for the approval and monitoring of drugs and molecular databases is available. The integration of database information is a promising method for providing well-based knowledge to avoid adverse drug reactions. This paper presents our web-based decision support system GraphSAW which analyzes and evaluates drug interactions and side effects based on data from two commercial and two freely available molecular databases. The system is able to analyze single and combined drug-drug interactions, drug-molecule interactions as well as single and cumulative side effects. In addition, it allows exploring associative networks of drugs, molecules, metabolic pathways, and diseases in an intuitive way. The molecular medication analysis includes the capabilities of the upper features. A statistical evaluation of the integrated data and top 20 drugs concerning drug interactions and side effects is performed. The results of the data analysis give an overview of all theoretically possible drug interactions and side effects. The evaluation shows a mismatch between pharmaceutical and molecular databases. The concordance of drug interactions was about 12% and 9% of drug side effects. An application case with prescribed data of 11 patients is presented in order to demonstrate the functionality of the system under real conditions. For each patient at least two interactions occured in every medication and about 8% of total diseases were possibly induced by drug therapy. GraphSAW (http://tunicata.techfak.uni-bielefeld.de/graphsaw/) is meant to be a web-based system for health professionals and researchers. GraphSAW provides comprehensive drug-related knowledge and an improved medication analysis which may support efforts to reduce the risk of medication errors and numerous drastic side effects.

  15. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  16. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular mechanisms of floral mimicry in orchids.

    PubMed

    Schlüter, Philipp M; Schiestl, Florian P

    2008-05-01

    Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.

  18. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    PubMed

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  19. Molecular dynamics growth modeling of InAs1-xSbx-based type-II superlattice

    NASA Astrophysics Data System (ADS)

    Ciani, Anthony J.; Grein, Christoph H.; Irick, Barry; Miao, Maosheng; Kioussis, Nicholas

    2017-09-01

    Type-II strained-layer superlattices (T2SL) based on InAs1-xSbx are a promising photovoltaic detector material technology for thermal imaging; however, Shockley-Read-Hall recombination and generation rates are still too high for thermal imagers based on InAs1-xSbx T2SL to reach their ideal performance. Molecular dynamics simulations using the Stillinger-Weber (SW) empirical potentials are a useful tool to study the growth of tetrahedral coordinated crystals and the nonequilibrium formation of defects within them, including the long-range effects of strain. SW potentials for the possible atomic interactions among {Ga, In, As, Sb} were developed by fitting to ab initio calculations of elastically distorted zinc blende and diamond unit cells. The SW potentials were tested against experimental observations of molecular beam epitaxial (MBE) growth and then used to simulate the MBE growth of InAs/InAs0.5Sb0.5 T2SL on GaSb substrates over a range of processes parameters. The simulations showed and helped to explain Sb cross-incorporation into the InAs T2SL layers, Sb segregation within the InAsSb layers, and identified medium-range defect clusters involving interstitials and their induction of interstitial-vacancy pairs. Defect formation was also found to be affected by growth temperature and flux stoichiometry.

  20. Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chandran, Aneesh; Prakash, Karthigeyan; Senapati, Sanjib

    2010-08-01

    Acetate anion-based ionic liquids (ILs) have found wide range of applications. The microstructure and dynamics of this IL family have not been clearly understood yet. We report molecular dynamics simulation results of three acetate anion-based ionic liquids that encompass the most common IL cations. Simulations are performed based on a set of proposed force field parameters for IL acetate anion which can be combined with existing parameters for IL cations to simulate large variety of ILs. The computed liquid density and IR spectral data for [BMIM][Ac] are found to match very well with available experimental results. The strong amino-group-associated interactions in [TMG][Ac] are seen to bring about higher cohesive energy density, stronger ion packing, and more restricted translational and rotational mobilities of the constituent ions. The IL anions are found to track the cation movements in all systems, implying that ions in ILs travel in pairs or clusters.

  1. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    PubMed

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  2. A low molecular weight zinc2+-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe.

    PubMed

    Palmowski, Karin; Rix, Anne; Lederle, Wiltrud; Behrendt, Florian F; Mottaghy, Felix M; Gray, Brian D; Pak, Koon Y; Palmowski, Moritz; Kiessling, Fabian

    2014-02-01

    Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc2+-dipicolylamine (Zn2+-DPA) with the established but reasonably larger protein annexin V. Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn2+-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn2+-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn2+-DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn2+-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn2+-DPA as with measurements of the glucose metabolism using 18 F-FDG. • The detection of apoptosis by non-invasive imaging is important in oncology. • A new low molecular weight probe Zn2+-DPA shows promise in depicting anti-angiogenic effects. • The small Zn2+-DPA ligand appears well suited for monitoring therapy. • Treatment effects are detectable just as early with Zn2+-DPA as with 18F-FDG.

  3. Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations.

    PubMed

    Saxena, Shalini; Abdullah, Maaged; Sriram, Dharmarajan; Guruprasad, Lalitha

    2017-10-17

    MurG (Rv2153c) is a key player in the biosynthesis of the peptidoglycan layer in Mycobacterium tuberculosis (Mtb). This work is an attempt to highlight the structural and functional relationship of Mtb MurG, the three-dimensional (3D) structure of protein was constructed by homology modelling using Discovery Studio 3.5 software. The quality and consistency of generated model was assessed by PROCHECK, ProSA and ERRAT. Later, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with substrate Uridine-diphosphate-N-acetylglucosamine (UD1) facilitated us to employ structure-based virtual screening approach to obtain new hits from Asinex database using energy-optimized pharmacophore modelling (e-pharmacophore). The pharmacophore model was validated using enrichment calculations, and finally, validated model was employed for high-throughput virtual screening and molecular docking to identify novel Mtb MurG inhibitors. This study led to the identification of 10 potential compounds with good fitness, docking score, which make important interactions with the protein active site. The 25 ns MD simulations of three potential lead compounds with protein confirmed that the structure was stable and make several non-bonding interactions with amino acids, such as Leu290, Met310 and Asn167. Hence, we concluded that the identified compounds may act as new leads for the design of Mtb MurG inhibitors.

  4. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  5. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  6. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  8. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less

  9. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    DOE PAGES

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; ...

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less

  10. Molecular Networking and Pattern-Based Genome Mining Improves discovery of biosynthetic gene clusters and their products from Salinispora species

    PubMed Central

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-01-01

    Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308

  11. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations.

    PubMed

    Liu, Xia; Li, Tuoping; Hart, Darren J; Gao, Song; Wang, Hongling; Gao, Herui; Xu, Shumin; Zhang, Yifeng; Liu, Yifei; An, Yingfeng

    2018-03-18

    Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Applications of molecular modeling in coal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.A.; Faulon, J.L.

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less

  13. MrGrid: A Portable Grid Based Molecular Replacement Pipeline

    PubMed Central

    Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.

    2010-01-01

    Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612

  14. Standards-based curation of a decade-old digital repository dataset of molecular information.

    PubMed

    Harvey, Matthew J; Mason, Nicholas J; McLean, Andrew; Murray-Rust, Peter; Rzepa, Henry S; Stewart, James J P

    2015-01-01

    The desirable curation of 158,122 molecular geometries derived from the NCI set of reference molecules together with associated properties computed using the MOPAC semi-empirical quantum mechanical method and originally deposited in 2005 into the Cambridge DSpace repository as a data collection is reported. The procedures involved in the curation included annotation of the original data using new MOPAC methods, updating the syntax of the CML documents used to express the data to ensure schema conformance and adding new metadata describing the entries together with a XML schema transformation to map the metadata schema to that used by the DataCite organisation. We have adopted a granularity model in which a DataCite persistent identifier (DOI) is created for each individual molecule to enable data discovery and data metrics at this level using DataCite tools. We recommend that the future research data management (RDM) of the scientific and chemical data components associated with journal articles (the "supporting information") should be conducted in a manner that facilitates automatic periodic curation. Graphical abstractStandards and metadata-based curation of a decade-old digital repository dataset of molecular information.

  15. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane.

    PubMed

    Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu

    2015-12-09

    A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.

  16. Fuzzy method of recognition of high molecular substances in evidence-based biology

    NASA Astrophysics Data System (ADS)

    Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.

    2017-10-01

    Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.

  17. Triazole-based Zn²⁺-specific molecular marker for fluorescence bioimaging.

    PubMed

    Sinha, Sougata; Mukherjee, Trinetra; Mathew, Jomon; Mukhopadhyay, Subhra K; Ghosh, Subrata

    2014-04-25

    Fluorescence bioimaging potential, both in vitro and in vivo, of a yellow emissive triazole-based molecular marker has been investigated and demonstrated. Three different kinds of cells, viz Bacillus thuringiensis, Candida albicans, and Techoma stans pollen grains were used to investigate the intracellular zinc imaging potential of 1 (in vitro studies). Fluorescence imaging of translocation of zinc through the stem of small herb, Peperomia pellucida, having transparent stem proved in vivo bioimaging capability of 1. This approach will enable in screening cell permeability and biostability of a newly developed probe. Similarly, the current method for detection and localization of zinc in Gram seed sprouts could be an easy and potential alternative of the existing analytical methods to investigate the efficiency of various strategies applied for increasing zinc-content in cereal crops. The probe-zinc ensemble has efficiently been applied for detecting phosphate-based biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  19. Molecular design and theoretical characterization of benzodithiophene based organic photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Labanya; Sahu, Sridhar

    2018-05-01

    Two different oligomers, containing methyl substituted Benzodithiophene (BDT) as donor unit, fluorinated thiophene as the π-bridge unit and two different kinds of acceptors based on fluorinated benzothiadiazole, fluorinated benzoselenadiazole units are designed for bulk heterojunction (BHJ) organic solar cell (OSC). The ground and excited state properties of those donor-π-acceptor-π-donor (D-π-A-π-D) oligomeric configurations are characterized via density functional (DFT) and time dependent density functional theory (TD-DFT). The parameters such as dipole moment (ρ), chemical potential (µ), electronegativity (χ), frontier molecular orbital (FMO) analysis, HOMO-LUMO gap, open circuit voltage (Voc) and driving force (ΔE) are calculated to analyze geometrical, electronic structural, quantum chemical and photovoltaic properties of the compounds. In addition, optical absorption spectra are also presented for the optical characterization of the compounds.

  20. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    PubMed

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  1. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences.

    PubMed

    Xiang, Xiao-Guo; Schuiteman, André; Li, De-Zhu; Huang, Wei-Chang; Chung, Shih-Wen; Li, Jian-Wu; Zhou, Hai-Lang; Jin, Wei-Tao; Lai, Yang-Jun; Li, Zhen-Yu; Jin, Xiao-Hua

    2013-12-01

    Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae. Based on five DNA markers and a broad sampling of Dendrobium and its relatives from mainland Asia (109 species), our results indicate that mainland Asia Dendrobium is divided into eight clades (with two unplaced species) that form polytomies along the spine of the cladogram. Both Dendrobium and Epigeneium are well supported as monophyletic, whereas sect. Dendrobium, sect. Densiflora, sect. Breviflores, sect. Holochrysa, are paraphyletic/polyphyletic. Many ignored phylogenetic relationships, such as the one of major clades formed by D. jenkinsii and D. lindleyi (two members of sect. Densiflora), the Aphyllum group, the Devonianum group, the Catenatum group, the Crepidatum group, and the Dendrobium moniliforme complex are well supported by both molecular and morphological evidence. Based on our data, we propose to broaden sect. Dendrobium to include sect. Stuposa, sect. Breviflores, and sect. Holochrysa and to establish a new section to accommodate D. jenkinsii and D. lindleyi. Our results indicated that it is preferable to use a broad generic concept of Dendrobium and to pursue an improved infrageneric classification at sectional level, taking into account both morphology and current molecular findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Study of base pair mutations in proline-rich homeodomain (PRH)-DNA complexes using molecular dynamics.

    PubMed

    Jalili, Seifollah; Karami, Leila; Schofield, Jeremy

    2013-06-01

    Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.

  3. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marina Del Rey, CA. 80.1118...

  4. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marina Del Rey, CA. 80.1118...

  5. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marina Del Rey, CA. 80.1118...

  6. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marina Del Rey, CA. 80.1118...

  7. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marina Del Rey, CA. 80.1118...

  8. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    PubMed

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  9. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species

    PubMed Central

    Buyyarapu, Ramesh; Kantety, Ramesh V.; Yu, John Z.; Saha, Sukumar; Sharma, Govind C.

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum   EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps. PMID:22315588

  10. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    PubMed

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes

  11. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    PubMed

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Molecular design of new aggrecanases-2 inhibitors.

    PubMed

    Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun

    2013-10-01

    Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Treatment of Chronic Inflammatory Demyelinating Polyneuropathy: From Molecular Bases to Practical Considerations

    PubMed Central

    Ripellino, Paolo; Fleetwood, Thomas; Cantello, Roberto; Comi, Cristoforo

    2014-01-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nervous system, in which both cellular and humoral immune responses are involved. The disease is clinically heterogeneous with some patients displaying pure motor form and others also showing a variable degree of sensory dysfunction; disease evolution may also differ from patient to patient, since monophasic, progressive, and relapsing forms are reported. Underlying such clinical variability there is probably a broad spectrum of molecular dysfunctions that are and will be the target of therapeutic strategies. In this review we first explore the biological bases of current treatments and subsequently we focus on the practical management that must also take into account pharmacoeconomic issues. PMID:24527207

  14. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  15. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  16. Gliomatosis cerebri: Prognosis based on current molecular markers.

    PubMed

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Electronic Rearrangement in Molecular Plasmons: An Electron Density and Electrostatic Potential-Based Study.

    PubMed

    Paul, Mishu; Balanarayan, P

    2018-06-05

    Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Facilitating Students' Interaction with Real Gas Properties Using a Discovery-Based Approach and Molecular Dynamics Simulations

    ERIC Educational Resources Information Center

    Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV

    2018-01-01

    We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…

  20. Molecular-based design and emerging applications of nanoporous carbon spheres

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wickramaratne, Nilantha P.; Qiao, Shi Zhang; Jaroniec, Mietek

    2015-08-01

    Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine -- all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.