Sample records for bases synthesis characterization

  1. Synthesis and characterization of metal oxide-polyaniline emeraldine salt based nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, K. Siva; Kavitha, B.; Prabakar, K.; Srinivasu, D.; Srinivas, Ch.; Narsimlu, N.

    2013-02-01

    This paper describes the synthesis of TiO2 (core)/Polyaniline (shell) core-shell structured nanocomposites and characterization of the synthesized material. The morphological characterization is performed with XRD, SEM, DLS and SANS. Spectroscopic characterization is performed with FTIR, UV/Visible and ESR techniques.

  2. Thiophene-based covalent organic frameworks

    PubMed Central

    Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea

    2013-01-01

    We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656

  3. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  4. Synthesis and Characterization of Exfoliated Graphene- and Graphene Oxide-Based Composites

    NASA Astrophysics Data System (ADS)

    Rasmi, K. R.; Chakrapani, K.; Sampath, S.

    Graphene- and graphene oxide-based composites have attracted significant research interest in recent years, owing to their important applications in various technological fields. In the present study, we report the synthesis and characterization of graphene-bimetallic alloy composite and its use in sensing of a neurotransmitter, dopamine. The preparation and characterization of graphene oxide with metal oxides such as RuOx and Co3O4 are also presented.

  5. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2005-04-01

    synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano

  6. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery

  7. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    DTIC Science & Technology

    2013-04-01

    DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were

  8. Highly Efficient Flexible Hybrid Photovoltaic Cells Based on Low-Band-Gap Conjugated Polymers Sensitized by Nanoparticle-Grafted Carbon

    DTIC Science & Technology

    2010-09-01

    modeling, synthesis , and characterization of several series functional and processable electro-active conjugated polymers with evolving frontier...tasks as a basic obligation of this award: Task #1. Low Band Gap Polymers The awardee (Professor Sun’s group at NSU) shall design, synthesis , and...design, modeling, synthesis , and characterizations of several series functional and processable electro-active conjugated polymers with evolving

  9. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    ERIC Educational Resources Information Center

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  10. Synthesis and characterization of luminescent materials for thermal sensing and proton dosimetry

    NASA Astrophysics Data System (ADS)

    Doull, Brandon Arthur

    The work presented in this thesis is the materials synthesis, investigation of synthesis parameters, and basic luminescent characterizations of MgB 4O7, Li2B4O7, and MgO for the applications of thermal sensing using thermoluminescence (TL) and proton dosimetry using optically stimulated luminescence (OSL). The materials were synthesized using solution combustion synthesis and characterized by x-ray diffraction, radioluminescence, thermoluminescence, and optically stimulated luminescence. Based upon the basic characterizations MgB 4O7:Li,Dy and Li2B4O7:Cu,Ag were selected for their potential for use as TL materials for thermal sensing while MgB4O7:Li,Ce and MgO:Li were chosen for use as OSL materials in proton dosimetry. Furthermore, MgB4O7:Li,Ce and MgO:Li were fabricated into detector assemblies and exposed to a clinical proton beam for analysis.

  11. Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

    PubMed Central

    Nagarkar, Radhika P.; Schneider, Joel P.

    2009-01-01

    Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061

  12. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  13. Synthesis, Characterization, and Handling of Eu(II)-Containing Complexes for Molecular Imaging Applications

    NASA Astrophysics Data System (ADS)

    Basal, Lina A.; Allen, Matthew J.

    2018-03-01

    Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.

  14. A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...

  15. L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions.

    PubMed

    Lirag, Rio Carlo; Le, Ha T M; Miljanić, Ognjen Š

    2013-05-14

    Nine L-shaped benzimidazole fluorophores have been synthesized, computationally evaluated and spectroscopically characterized. These "half-cruciform" fluorophores respond to bases, acids and anions through changes in fluorescence that vary from moderate to dramatic.

  16. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    given for each class of materials. Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted...macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the...organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications. In the present study, we have

  17. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  18. Synthesis and Degradation of Schiff Bases Containing Heterocyclic Pharmacophore

    PubMed Central

    Ledeţi, Ionuţ; Alexa, Anda; Bercean, Vasile; Vlase, Gabriela; Vlase, Titus; Şuta, Lenuţa-Maria; Fuliaş, Adriana

    2015-01-01

    This paper reports on the synthesis and characterization of two Schiff bases bearing 1,2,4-triazolic moieties, namely 4H-4-(2-hydroxy-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole and 4H-4-(4-nitro-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole using thin layer chromatography, melting interval, elemental analysis, spectroscopy and thermal stability studies. PMID:25590299

  19. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    PubMed Central

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  20. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  1. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    PubMed

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes.

    PubMed

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro . The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  3. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes

    PubMed Central

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold. PMID:28344771

  4. Nanoparticle Additives for Multiphase Systems: Synthesis, Formulation and Characterization

    DTIC Science & Technology

    2012-01-01

    ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION Vinod Kanniah University of Kentucky, vinodkanniah@gmail.com This Doctoral...UKnowledge@lsv.uky.edu. Recommended Citation Kanniah, Vinod, "NANOPARTICLE ADDITIVES FOR MULTIPHASE SYSTEMS: SYNTHESIS , FORMULATION AND CHARACTERIZATION...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Nanoparticle Additives for Multiphase Systems: Synthesis , Formulation and Characterization 5a

  5. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    NASA Technical Reports Server (NTRS)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  6. Methodology for the specification of communication activities within the framework of a multi-layered architecture: Toward the definition of a knowledge base

    NASA Astrophysics Data System (ADS)

    Amyay, Omar

    A method defined in terms of synthesis and verification steps is presented. The specification of the services and protocols of communication within a multilayered architecture of the Open Systems Interconnection (OSI) type is an essential issue for the design of computer networks. The aim is to obtain an operational specification of the protocol service couple of a given layer. Planning synthesis and verification steps constitute a specification trajectory. The latter is based on the progressive integration of the 'initial data' constraints and verification of the specification originating from each synthesis step, through validity constraints that characterize an admissible solution. Two types of trajectories are proposed according to the style of the initial specification of the service protocol couple: operational type and service supplier viewpoint; knowledge property oriented type and service viewpoint. Synthesis and verification activities were developed and formalized in terms of labeled transition systems, temporal logic and epistemic logic. The originality of the second specification trajectory and the use of the epistemic logic are shown. An 'artificial intelligence' approach enables a conceptual model to be defined for a knowledge base system for implementing the method proposed. It is structured in three levels of representation of the knowledge relating to the domain, the reasoning characterizing synthesis and verification activities and the planning of the steps of a specification trajectory.

  7. Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots

    NASA Astrophysics Data System (ADS)

    Gonzales, Gavin P.; Alas, Gema; Senthil, Arjun; Withers, Nathan J.; Minetos, Christina; Sandoval, Alejandro; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Osiński, Marek

    2018-02-01

    Quantum dots (QDs) emitting in the visible are of interest for many biomedical applications, including bioimaging, biosensing, drug targeting, and photodynamic therapy. However, a significant limitation is that QDs typically contain cadmium, which makes prospects for their FDA approval very unlikely. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have also been shown to be cytotoxic. High-efficiency luminescent ZnTe-based QDs could be a reasonable alternative to Cd-containing QDs. In this paper, we present preliminary results of our recent studies of ZnTe-based QDs, including their synthesis, structural characterization, and optical properties.

  8. Synthesis, characterization, and application of novel biodegradable self-assembled 2-(N-phthalimido) ethyl-palmitate nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Kasoju, Naresh; Bora, Debajeet K.; Bhonde, Ramesh R.; Bora, Utpal

    2010-03-01

    We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.

  9. Synthesis and characterization of organic-inorganic polymers from new methacrylate monomers and silane derivatives

    NASA Astrophysics Data System (ADS)

    Nicolescu, F. Adriana; Jerca, Victor V.; Albu, Ana M.; Vasilescu, D. Sorin; Vuluga, D. Mircea

    2009-09-01

    We report the synthesis of five new hybrid polymeric structures obtained by free radical copolymerization of some organic azo-based methacrylate monomers and 3-methacryloxypropyl trimethoxysilane (MEMO). The copolymers are soluble in common solvents like methylene chloride, chloroform, dichlorbenzene, dimethylsulfoxide, dimethylformamide. The copolymeric structures might be interesting from the point of view of nonlinear optical response due to a rich content in chromophoric units determined by H-NMR spectroscopy. The structures were also characterized by FT-IR spectroscopy, TGA and SEC analysis.

  10. Novel Side-Chain Liquid Cyrstalline Polymers

    DTIC Science & Technology

    1989-01-01

    Synthesis and Characterization of Liquid Crystalline Polyacrylates and Poly- methacrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J...Crystalline Polymethacrylates and Polyacrylates of trans 2-[4-(11- hydroxyundecanyloxy)-3,5-dimethylphenylI-4-(4-methoxyphenyl)-l,3-dioxane Makromol. Chem., 189...and Characterization of Liquid Crystalline Polyacrylates and Poly- met acrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J. Polym

  11. Jeffrey Blackburn | NREL

    Science.gov Websites

    -dimensional carbon and includes the synthesis, purification, separation, and characterization of single-walled conversion Synthesis, purification, separation, and characterization of single-walled carbon nanotubes Synthesis, characterization, and device integration of graphen Hydrogen storage Photovoltaic materials and

  12. Synthesis and Characterization of Polyimides with Ether Linkages

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Fu, Joyce; Scheiman, Daniel A.

    1998-01-01

    A series of polyimides derived from a newly synthesized diamine, namely, 4,4-bis(4-aminophenoxy)-2,2-dimethylbiphenyl (BAPD), were developed and characterized. Their physical and thermal properties were compared to polyimides based on'commercially available 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP).

  13. Nucleic Acid-Based Nanoconstructs

    Cancer.gov

    Focuses on the design, synthesis, characterization, and development of spherical nucleic acid constructs as effective nanotherapeutic, single-entity agents for the treatment of glioblastoma multiforme and prostate cancers.

  14. Synthesis and Characterization of Environmentally Benign Nanoparticles

    EPA Science Inventory

    There has been a growing interest in replacing current non-biodegradable and toxic nanosystems with environmentally benign biopolymer based ones to minimize post-utilization hazards due to uncontrolled accumulation of nanoparticles in the environment. Lignin based nanoparticles (...

  15. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR ((1)H, (13)C, and (29)Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands.

  16. Synthesis and characterization of novel polymers from non-petroleum sources for use in enhanced oil recovery. Progress report, July 1,1981-June 30, 1982. [Starch-g-polyacrylamide; polysaccharides and acrylamides; Schardinger-. beta. -dextrin and acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.B.; Hogen-Esch, T.E.

    1982-01-01

    Annual progress reports are presented for the following tasks: (1) synthesis and structural characterization of polysaccharide-based graft copolymers for use in tertiary oil recovery; (2) determination of physical properties of the polymers and their solutions, and screening of the polymers to determine their utility in oil recovery. Over the past year synthesis and characterization studies have continued in the following five areas: (1) starch-g-polyacrylamide (ST-g-PAM) copolymers; (2) graft copolymers of other polysaccharides (gum arabic, yellow dextrin, pectin, okra polysaccharide, and guar gum) and acrylamides; (3) a naturally occurring polysaccharide extracted from okra (Akro); (4) graft copolymers of Schardinger-..beta..-dextrin and acrylamidemore » (SD-g-PAM); (5) chemical degradation of ST-g-PAM and SD-g-PAM copolymers. For physical properties studies, the following areas were investigated: (1) characterization of copolymers by ultracentrifugation, size exclusion chromatography and nucleophore membrane filtration; (2) rheological studies on copolymers; and (3) statistical analysis of variables in graft copolymerization. (ATT)« less

  17. Synthesis, Characterization, and Electrochemical Behavior of LiMnxFe(1−x)PO4 Composites Obtained from Phenylphosphonate-Based Organic-Inorganic Hybrids

    PubMed Central

    Dell’Era, Alessandro; Pasquali, Mauro; Bauer, Elvira Maria; Lupi, Carla

    2017-01-01

    The synthesis of organic-inorganic hybrid compounds based on phenylphosphonate and their use as precursors to form LiMnxFe(1−x)PO4 composites containing carbonaceous substances with sub-micrometric morphology are presented. The experimental procedure includes the preliminary synthesis of Fe2+ and/or Mn2+ phenylphosphonates with the general formula Fe(1−x)Mnx[(C6H5PO3)(H2O)] (with 0 < x < 1), which are then mixed at different molar ratios with lithium carbonate. In this way the carbon, obtained from in situ partial oxidation of the precursor organic part, coats the LiMnxFe(1−x)PO4 particles. After a structural and morphological characterization, the electrochemical behavior of lithium iron manganese phosphates has been compared to the one of pristine LiFePO4 and LiMnPO4, in order to evaluate the doping influence on the material. PMID:29301206

  18. Base-Catalyzed Linkage Isomerization: An Undergraduate Inorganic Kinetics Experiment.

    ERIC Educational Resources Information Center

    Jackson, W. G.; And Others

    1981-01-01

    Describes kinetics experiments completed in a single two-hour laboratory period at 25 degrees Centigrade of nitrito to nitro rearrangement, based on the recently discovered base-catalysis path. Includes information on synthesis and characterization of linkage isomers, spectrophotometric techniques, and experimental procedures. (SK)

  19. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  20. Lactic acid as an invaluable green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives.

    PubMed

    Wang, Shi-Fan; Guo, Chao-Lun; Cui, Ke-Ke; Zhu, Yan-Ting; Ding, Jun-Xiong; Zou, Xin-Yue; Li, Yi-Hang

    2015-09-01

    Lactic acid has been used as a bio-based green solvent to study the ultrasound-assisted scale-up synthesis. We report here, for the first time, on the novel and scalable process for synthesis of pyrrole derivatives in lactic acid solvent under ultrasonic radiation. Eighteen pyrrole derivatives have been synthesized in lactic acid solvent under ultrasonic radiation and characterized by (1)H NMR, IR, ESI MS. The results show, under ultrasonic radiation, lactic acid solvent can overcome the scale-up challenges and exhibited many advantages, such as bio-based origin, shorter reaction time, lower volatility, higher yields, and ease of isolating the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The effect of reactor geometry on the synthesis of graphene materials in plasma jets

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Shatalova, T. B.

    2017-05-01

    The possibility of synthesis of graphene and graphane (hydrogenated graphene) using the decomposition of hydrocarbons by thermal plasma has been investigated. Investigations of the influence of the plasma-forming gas on the efficiency of synthesis and the morphology of graphene materials were carried out. The synthesis products have been characterized by the methods of scanning microscopy, Raman spectroscopy and thermal analysis. It is found that the morphology of graphene materials is affected by the geometry of the reactor. It was demonstrated that the obtained graphene materials are uniformly distributed in the volume of plastic based on cyanate ester resins under mixing.

  2. Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics.

    PubMed

    Storch, Jan; Zadny, Jaroslav; Strasak, Tomas; Kubala, Martin; Sykora, Jan; Dusek, Michal; Cirkva, Vladimir; Matejka, Pavel; Krbal, Milos; Vacek, Jan

    2015-02-02

    Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reasoning Maps: A Generally Applicable Method for Characterizing Hypothesis-Testing Behaviour. Research Report

    ERIC Educational Resources Information Center

    White, Brian

    2004-01-01

    This paper presents a generally applicable method for characterizing subjects' hypothesis-testing behaviour based on a synthesis that extends on previous work. Beginning with a transcript of subjects' speech and videotape of their actions, a Reasoning Map is created that depicts the flow of their hypotheses, tests, predictions, results, and…

  4. High-Performance Low-Cost Portable Radiological and Nuclear Detectors Based on Colloidal Nanocrystals (TOPIC 07-B)

    DTIC Science & Technology

    2016-07-01

    concluded that more gamma interactions are occurring with the NCs, leading to more down- scattered photons. Conversely, that also means that there is a...15 6. Colloidal Synthesis of Lead -Based Scintillating Nanocrystals (Task 2)………..…………...15 6.A. Colloidal Synthesis of PbI2 Scintillating...LaF3 Nanocrystals Synthesized in Water………………………………………...……….………………………...27 8. Characterization of Lead -Based Scintillating

  5. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  6. Design, synthesis, and characterization of fluorine-free PAGs for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Glodde, Martin; Varanasi, Pushkara R.

    2010-04-01

    Photoacid generators (PAGs) are a key component in chemically amplified resists used in photolithography. Perfluorooctanesulfonates (PFOS) and other perfluoroalkylsulfonates (PFAS) have been well adopted as PAGs in 193 nm photoresist. Recently, concerns have been raised about their environmental impact due to their chemical persistency, bioaccumulation and toxicity. It is a general interest to find environmentally benign PAGs that are free of fluorine atoms. Here we describe the design, synthesis and characterization of a series of novel fluorine-free onium salts as PAGs for 193 nm photoresists. These PAGs demonstrated desirable physical and lithography properties when compared with PFAS-based PAGs for both dry and immersion exposures.

  7. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  8. Functional Nanomaterial’s Synthesis and Characterization

    DTIC Science & Technology

    2015-04-28

    synthesis and characterization of nanoparticles and polymers. Current progress is being made at Argonne National Labs (ANL) and at AFRL in characterization... currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida A&M University 1700 Lee Hall Drive 400 Foote-Hilyer Admin...at Florida A&M University (FAMU) which will play a key role in synthesis and characterization of nanoparticles and polymers. Current progress is

  9. Data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers prepared from amino-terminated polydimethylsiloxanes and polydimethyl-methyl-phenyl-siloxane-copolymers.

    PubMed

    Riehle, Natascha; Götz, Tobias; Kandelbauer, Andreas; Tovar, Günter E M; Lorenz, Günter

    2018-06-01

    This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled "Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application" (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4'-Methylenbis(cyclohexylisocyanate) (H 12 MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]). Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight M ¯ n of 3000 g mol -1 . Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1 H NMR and 29 Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article. Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article. Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.

  10. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  11. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  12. Preparation and characterization of Ni based on natural zeolite catalyst for citronellol conversion to 3,7-Dimethyl-1-Octanol

    NASA Astrophysics Data System (ADS)

    Sudiyarmanto, Hidayati, Luthfiana N.; Kristiani, Anis; Ghaisani, Almira; Sukandar, Dede; Adilina, Indri B.; Tursiloadi, Silvester

    2017-11-01

    Citronella oil is a kind of essential oil that contains three main components, namely citronellal, citronellol, and geraniol. The high demand of citronellal and geraniol derivative prompted scientists to develop methods which are stereo-selective synthesis. A hydrogenation reaction using heterogeneous catalyst is one way of synthesis of citronella oil derivatives. In this research, synthesis of citronellol oil derivatives using Ni based on natural zeolite (Ni/ZAB) catalyst which is expected to produce the compound of 3,7-dimethyl-1-octanol. The catalyst was prepared by supporting Ni on natural zeolite by impregnation method. The physical and chemical properties of Ni/ZAB catalyst have been characterized by TGA, BET, XRD and FTIR instrumentations. Variation of pressure and temperature reactions were conducted to determine the optimum conditions for the hydrogenation of citronellol. The products from this reaction were analyzed using GC-MS instrumentation. The yield and selectivity of 3,7-dimethyl-1-octanol compound were achieved with optimum conditions at 200°C and 20 bar during 3 hours which produced around 51.97% and 47.81% respectively.

  13. Competency Based Modular Experiments in Polymer Science and Technology.

    ERIC Educational Resources Information Center

    Pearce, Eli M; And Others

    1980-01-01

    Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)

  14. New polymers for composites: A summary of research on polystyrylpyridines

    NASA Technical Reports Server (NTRS)

    Pearce, E. M.

    1983-01-01

    Styrylpyridine and its derivatives are studied. The synthesis, characterization, and thermal stability of styrylpyridine based polymers are discussed, as well as the preparation of a diglycidyl ester of styrylpridine. Also discussed are the preparation of polyarylates, and styrylpyridine based polytriazines and prepolymers.

  15. Effect of the raw material type and the reaction time on the synthesis of halloysite based Zeolite Na-P1

    NASA Astrophysics Data System (ADS)

    Meftah, Mahdi; Oueslati, Walid; Chorfi, Nejmeddine; Ben Haj Amara, Abdesslem

    Zeolites are currently one of the most important classes of inorganic materials because of their multiple applications not only as ions exchangers and molecular sieves, but also as catalysts. This works focus the synthesis and the characterization of Zeolite Na-P1 using halloysite (collected near Ain Khemouda, western Tunisia) as the starting material. Two parameters, such as the host materials type (natural or treated) and the reaction time, involved in the synthesis process are investigated. The intermediate phases and final products were characterized by X-ray diffraction, Infrared IR spectroscopy, scanning electron microscopy and high-resolution 29Si and 27Al MAS NMR. Obtained results show that the hydrothermal synthesis from natural and heated-halloysite leads to formation of homogenous Zeolite Na-P1. The difference in the crystallization/transformation time process is explained by the effect of the dissolution rate of the starting materials in sodium hydroxide solution. In the case of heated halloysite, the synthesis reaction with alkali solution occurs very readily and achieved without prior thermal activation at high temperature. The optimal conditions of Zeolite Na-P1 crystallization, from heated-halloysite, are reached at 120 °C.

  16. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    ERIC Educational Resources Information Center

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  17. Synthesis and characterization of iron based superconductor Nd-1111

    NASA Astrophysics Data System (ADS)

    Alborzi, Z.; Daadmehr, V.

    2018-06-01

    Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.

  18. Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2

    NASA Astrophysics Data System (ADS)

    Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.

    2017-12-01

    The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

  19. Synthesis and characterization of Heck-cross coupling 4-(4-nitrostyryl) aniline as potential precursor in Schiff-base synthesis

    NASA Astrophysics Data System (ADS)

    Hassan, Norhafiefa; Izwani, Fatin; Yusoff, H. M.

    2017-09-01

    This is a preliminary study of alkoxy substituted Heck-schiff base compound as recognition layer in electrochemical DNA sensor for liver cancer. 4-(4-nitrostyryl)aniline was synthesized by bis (triphenylphosphine) palladium (II) dichloride as catalyst and has been characterized by using Fourier transform-infrared spectrometer (FTIR), UV-Vis spectrophotometer and Nuclear Magnetic Resonance (NMR) spectra. The result obtained from FTIR show that there are formation of N=O (NO2) asymmetric stretching vibrations 1340 cm-1. In UV-vis, absorbance of NO2 can be observed at peak 410 nm. While in the 1H NMR and 13C NMR the peak of C-C coupling was found in the range of δH 6.84-7.09 ppm and δC 125.23 ppm.

  20. Synthesis and characterization of a novel inorganic-organic hybrid material based on polyoxometalates and dicyclohexylcarbodiimide

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Hu, Xiaokang; Hu, Xunliang; Wang, Nan; Yang, Kang; Xiao, Zicheng; Wu, Pingfan

    2017-12-01

    Towards design and synthesis of bulky molecules and molecular machines, we reported a new inorganic-organic hybrid material based on polyoxometalates and 1, 3-dicyclohexylcarbodiimide (DCC): (Bu4N)2[V6O13{(OCH2)3CCH2OOCCH2CH2CON(C6H11)CONHC6H11}2]. The hybrid was characterized by FT-IR, 1H NMR, UV-Vis, ESI-MS, and the structure of the compound was determined through single-crystal X-ray diffraction. There was an interesting supramolecular assembly in the hybrid material through intermolecular hydrogen bonding, and each cyclohexyl in the polymer looks like one of blades in the propeller. Furthermore, the thermal stability of the hybrid was tested by TGA analyses, and the electrochemical property has also been studied by cyclic voltammogram.

  1. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.

  2. Hydrocortisone Stimulation of RNA Synthesis in Induction of Hepatic Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Francis T.; Wicks, Wesley D.; Greenman, David L.

    Increased synthesis of hepatic enzymes due to hydrocortisone is preceded by an increase in the rate of synthesis of nuclear RNA. Pulse-labeled RNA from liver nuclei was fractionated by a differential thermal phenol procedures, and the labeled RNA of each fraction was characterized by sucrose gradient centrifugation and base composition analysis. Hormone treatment increases the rate of synthesis of three types of RNA: (1) the nuclear precursor to ribosomal RNA, (2) a rapid turnover component with base composition similar to the tissue DNA, and (3) transfer RNA. Much of the total isotope incorporation into transfer RNA can be traced tomore » turnover of the terminal adenylate residue, but this type of labeling is insensitive to the hormone. The steroid also stimulates isotope incorporation into tissue precursor pools. The effect is abolished by actinomycin and thus is secondary to the hormonal stimulation of RNA synthesis. Growth hormone stimulates RNA synthesis in both intact and adrenalectomized rats, but induces the rapid turnover enzymes (tyrosine transaminase and tryptophan pyrrolase) only in the presence of functional adrenals. It therefore seems that glucocorticoids initiate both a generalized increase in synthesis of RNA and a selective induction of specific enzymes.« less

  3. Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications

    NASA Astrophysics Data System (ADS)

    Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge

    2017-09-01

    Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.

  4. Synthesis and characterization of mangan oxide coated sand from Capkala kaolin

    NASA Astrophysics Data System (ADS)

    Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya

    2017-03-01

    Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.

  5. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram, E-mail: stanges@sci.ui.ac.ir; Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir

    2016-03-15

    Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66–NH{sub 2} metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl{sub 2}. The prepared catalyst was characterized by FT-IR, UV–vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N{sub 2} adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66–NH{sub 2}–TC–Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzenemore » or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency. - Graphical abstract: Efficient synthesis of benzimidazoles and benzothiazoles catalyzed by Cu(II) anchored onto UiO-66–NH{sub 2} metal organic framework is reported. - Highlights: • A copper Schiff base was immobilized on UiO-66 via postsynthetic modification. • The modified MOFs were fully characterized by a variety of methods. • The catalyst was used for the preparation of benzimidazoles and benzothiazoles. • In comparison of other catalysts, our catalyst was more efficient and forceful.« less

  6. Programmable Triplet Formation and Decay in Metal-Organic Chromophores

    DTIC Science & Technology

    2011-12-13

    potential applications in optical limiting molecules has resulted in the synthesis and characterization of many new classes of chromophores in...Castellano, F.N. Inorg. Chem. 2006, 45, 4304-4306. Inorganic Chemistry Cover May 29, 2006. The synthesis , structural characterization, and...The synthesis , photophysics, electronic structure, and electrochemical characterization of 4′-tert- butylacetylene-2,2′:6′,2″-terpyridineplatinum(II

  7. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  8. Sustainable Application of Pecan Nutshell Waste: Greener Synthesis of Pd-based Nanocatalysts for Electro-oxidation of Methanol

    EPA Science Inventory

    Palladium-based electrocatalysts are widely used in alkaline direct alcohol fuel cells. Thesynthesis and characterization of carbon-supported bimetallic nanoparticles (NP) of AuPdand AgPd is described using pecan nutshell extract (Carya illinoinensis) which serves asboth, reducin...

  9. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  10. Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies.

    PubMed

    Martín-Santos, Cecilia; Michelucci, Elena; Marzo, Tiziano; Messori, Luigi; Szumlas, Piotr; Bednarski, Patrick J; Mas-Ballesté, Rubén; Navarro-Ranninger, Carmen; Cabrera, Silvia; Alemán, José

    2015-12-01

    In this article, we report on the synthesis and the chemical and biological characterization of novel gold(III) complexes based on hydroxyl- or amino-quinoline ligands that are evaluated as prospective anticancer agents. To gain further insight into their reactivity and possible mode of action, their interactions with model proteins and standard nucleic acid molecules were investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties.

    PubMed

    Bwambok, David K; Marwani, Hadi M; Fernand, Vivian E; Fakayode, Sayo O; Lowry, Mark; Negulescu, Ioan; Strongin, Robert M; Warner, Isiah M

    2008-02-01

    We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.

  12. Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.

    2018-01-01

    Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.

  13. Synthesis and characterization of black ceramic pigments by recycling of two hazardous wastes

    NASA Astrophysics Data System (ADS)

    Du, Minxing; Du, Yi; Chen, Zhongtao; Li, Zhongfu; Yang, Kai; Lv, Xingjie; Feng, Yibing

    2017-09-01

    In this study, two different industrial wastes, namely vanadium tailing and leather sludge, were used as less expensive alternative raw materials for the synthesis of black ceramic pigments to be used in commercial glazes. The pigments were based on hematite structure (FexCr1-x)2O3 and prepared by the common solid-state reaction method, under optimal formulation and processing conditions. The synthesized pigments were characterized in typical ceramic glazes and ceramic tile bodies. Optimal color development was achieved when the Fe/Cr mole ratios were 2.0 with 40 wt% content of vanadium tailing at 1200 °C. The coloring properties were similar to those imparted by a commercial black pigment.

  14. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    DTIC Science & Technology

    2016-04-18

    Capannelli, F. Canepa, M. Napoletano, M.R. Cimberle, et al., Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in...Hennig, R.D. Robinson, Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis...Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: Synthesis , characterization and magnetic properties, J. Alloys Compd. 476 (2009) 797–801.

  15. Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with cellulose nanowhiskers

    USDA-ARS?s Scientific Manuscript database

    A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...

  16. Remendable Polymeric Materials Using Reversible Covalent Bonds

    DTIC Science & Technology

    2008-12-01

    Synthesis and characterization of melamine - urea - formaldehyde microcapsules containing ENB-based self-healing agents. International Conference on Smart...R. Wang, X. He, W. Liu, and H. Hao, 2007: Preparation and characterization of self-healing poly ( urea - formaldehyde ) microcapsules. International...captured much attention. In one method, polymer networks are made to self-heal by adding particles filled with uncured resin . The resin held

  17. Synthesis and characterization of the Cu2ZnSnS4 system for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Pinzón, D. L.; Soracá Perez, G. Y.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This paper focuses on the synthesis and characterization of a ceramic material based on the Cu2ZnSnS4 system, through the implementation of a hydrothermal route. For this purpose, we started from nitrate dissolutions in a 1.0mol L-1 concentration, which were mixed and treated in a teflon lined vessel steel at 280°C for 48h. The Physicochemical characterization of the solid was evaluated by means of ultraviolet visible spectroscopy (UV-VIS), X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM-TEM) and solid state impedance spectroscopy (IS). The initial characterization through UV measurements confirms a Band-gap around 1.46eV obtained by the Kubelka-Munk method, which demonstrates the effectiveness of the synthesis method in the obtaining of a semiconductor material. The XRD results confirm the obtaining of a crystalline material of pure phase with tetragonal geometry and I-42m space group. The preferential crystalline orientation was achieved along (2 2 0) facet, with crystallite sizes of nanometric order (6.0nm). The morphological aspects evaluated by means electron microscopy, confirmed the homogeneity of the material, showing specifically a series of textural and surface properties of relevant importance. Finally, the electrical characterizations allow to validate the semiconductor behaviour of CZTS system for development of photovoltaic technologies.

  18. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  19. Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.

    PubMed

    Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S

    2006-01-01

    Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.

  20. Fabrication of composite membranes using copper metal organic framework for energy application

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.

  1. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  2. Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications

    NASA Astrophysics Data System (ADS)

    Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés

    2017-10-01

    The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].

  3. Synthesis and Characterization Pectin-Carboxymethyl Chitosan crosslinked PEGDE as biosorbent of Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Siswanta, Dwi; Mudasir; Triyono

    2018-01-01

    Pectin and chitosan are biodegradable polymers, potentially applied as a heavy metal adsorbents. Unfortunately both biosorbents pectin and chitosan have a weakness in acidic media. For this purpose required modified pectin and chitosan. The modified adsorben is intended to obtain a stable adsorbent and resistance under acid. The research was done by experimental method in laboratory. The stages of this research are the synthesis of carboxymethyl chitosan (CMC), synthesis of Pec-CMC-PEGDE film adsorbent, stabily test under acid, the characterization of active group using FTIR, stability characterization of Pec-CMC-PEGDE powder adsorbent using XRD, termo stability using DTA-TGA. The results of the research have shown that: pectin and CMC can be cross-linked using PEGDE crosslinking agent, the film adsorbent was stable under HCl 1 M, the film adsorbent have active group comprise of carboxylate and amine groups. The result of characterization using XRD, shows that the adsorbent is semi-crystalline. Base on termo stability, the film adsorbent Pec-CMC-PEGDE stable up to 600°C. The film can be applied as an adsobent of Pb (II) ion remediation. The optimum pH of pec-CMC-PEGDE in adsorbed of Pb(II) was reached at pH 5 with 99.99% absorbent adsorbed and of and adsorption capacity was 46.11 mg/g.

  4. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Edward

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.

  5. Preparation and characterization of [H2-DABCO][ClO4]2 as a new member of DABCO-based ionic liquids for the synthesis of pyrimido[4,5-b]-quinoline and pyrimido[4,5-d]pyrimidine derivatives

    NASA Astrophysics Data System (ADS)

    Shirini, Farhad; Langarudi, Mohaddeseh Safarpoor Nikoo; Daneshvar, Nader; Jamasbi, Negar; Irankhah-Khanghah, Mahsa

    2018-06-01

    [H2-DABCO][ClO4]2, as a novel DABCO-based ionic liquid, has been synthesized, characterized, and used as an affordable and recyclable catalyst in the synthesis of pyrimido [4,5-b]-quinoline and pyrimido [4,5-d]pyrimidine derivatives. The procedure shows several advantages over the previous methods such as simplicity, high yields, short reaction times, easy work-up, and use of a non-metal catalyst. Moreover, this paper virtually debates the impact of anions and cations on moisture-resistant property and catalytic activity in DABCO-based ionic liquids through the comparison of [DABCO](SO3H)2(Cl)2, [DABCO](SO3H)2(HSO4)2, [H2-DABCO][H2PO4]2, [H2-DABCO][HSO4]2, and [H2-DABCO][ClO4]2.

  6. Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis

    DOE PAGES

    Tang, Wen-Xiang; Gao, Pu-Xian

    2016-11-10

    Nanostructured cerium oxide (CeO 2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO 2, much more features were technologically brought out from defect chemistry to structure-derived effects. This paper highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defectsmore » controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this paper can provide an improved understanding of nanostructured CeO 2 and offer new opportunities to promote the further research and applications in the future.« less

  7. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  8. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.

  9. Synthesis of gold nanoparticles using silk fibroin and their characterization

    NASA Astrophysics Data System (ADS)

    Gowda, Mahadeva; Harisha, K. S.; Ranjana, T.; Harish, K. V.; Narayana, B.; Byrappa, K.; Sangappa, Y.

    2018-05-01

    The synthesis of metal nanoparticales by environmentally friendly processes is an important aspect of nanotechnology today. One such approach that shows immense potential is based on the in situ synthesis of gold nanoparticles (AuNPs) using naturally available materials such as aqueous silk fibroin (SF) obtained from Bombyx mori silk. The UV-visible absorption study revealed the formation of AuNPs by showing characteristic surface plasmon resonance (SPR) band at 525 nm. The X-ray diffraction (XRD) analysis study suggests the synthesized gold nanoparticles are FCC crystal structure. The transmission electron microscopy (TEM) images showed that the formed AuNPs are spherical in shape with smooth edges.

  10. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  11. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    PubMed

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  13. Polyazulene based materials for heavy metal ions detection

    NASA Astrophysics Data System (ADS)

    Oprisanu, A.; Ungureanu, E. M.; Isopescu, R.; Birzan, L.; Mihai, M.; Vasiliu, C.

    2017-06-01

    Azulene is a special monomer used to functionalize electrodes, due to its spontaneous electron drift from the seven-membered ring to the five-membered ring. The seven-membered ring of the molecule may act as electron acceptor, while the five-membered ring - as electron donor. This leads to very attractive properties for the synthesis of functional advanced materials like: materials with nonlinear optical and photorefractive properties, cathode materials for lithium batteries, or light emitting diodes based on organic materials. Azulene derivatives have been used rarely to the metal ions electroanalysis. Our study concerns the synthesis and electrochemical characterization of a new azulene based monomer 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-3-yl)vinyl)pyridine (L). L has been used to obtain modified electrodes by electrochemical polymerization. PolyL films modified electrodes have been characterized by cyclic voltammetry in ferrocene solutions. The complexing properties of polyL based functional materials have been investigated towards heavy metals (Pb, Cd Hg, Cu) by preconcentration - anodic stripping technique in order to analyze the content of these cations from water samples.

  14. Synthesis and Characterization of Molybdenum Based Colloidal Particles.

    PubMed

    Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein

    1998-11-15

    The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.

  15. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joel S.

    2016-02-01

    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  16. Gary Grim | NREL

    Science.gov Websites

    @nrel.gov | 303-384-7781 Research Interests Synthesis and characterization of heterogeneous catalysts for Chemie (2014) "Synthesis and Characterization of sI Clathrate Hydrates Containing Hydrogen," J

  17. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    NASA Astrophysics Data System (ADS)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  18. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    NASA Astrophysics Data System (ADS)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  19. Synthesis and Characterization of Compounds Related to Lisinopril

    PubMed Central

    Raghava Reddy, Ambati V.; Garaga, Srinivas; Takshinamoorthy, Chandiran; Naidu, Andra; Dandala, Ramesh

    2016-01-01

    Lisinopril is a drug of the angiotensin-converting enzyme (ACE) inhibitor class that is primarily used in the treatment of hypertension. During the scale-up of the lisinopril process, one unknown impurity was observed and is identified. The present work describes the origin, synthesis, characterization, and control of this impurity. This paper also describes the synthesis and characterization of three other impurities listed in the European Pharmacopoeia 8.4 (Impurity C, D, and F). PMID:27222603

  20. Synthesis, Morphological and Electrical Characterization of Solution Processable Low Bandgap Organic Materials

    DTIC Science & Technology

    2008-12-05

    bandgap: 1.98 eV Okamoto, Toshihiro; Senatore, Michelle L.; Ling, Mang-Mang; Mallik , Abhijit B.; Tang, Ming L.; Bao, Zhenan. Synthesis...grant: 1. R.A.B. Devine, M.M. Ling, A. Mallik , M.Roberts, Z. Bao, "X-irradiation Effects on Top Contact, Pentacene Based Field Effect Transistors...Semiconductors: Asymmetric Linear Acenes Containing Sulphur ",J. Am. Chem. Soc., 128, 160002-160003,2006. 3. T. Okamoto, M.L. Senatore, M.M. Ling, A.B. Mallik

  1. Phosphates based pigments for new anti-corrosion application: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Tbib, B.; Eddya, M.; El-Hami, K.

    2018-02-01

    Our study focused on pyrophosphates SrZn1-xMxP2O7 using four series by substituting M with manganese (Mn), cobalt (Co), nickel (Ni), and copper (Cu). They were prepared by reaction in the solid state at 1000 °C for 24 hours and then characterized by X-ray diffraction, which showed that the obtained products are pure. The characterization by UV-visible spectroscopy was used to explain the color of the obtained materials and the optical properties showing the optical energy gap and disorder of these materials. Potential application could be done using the new anti-corrosion pigments based on phosphates.

  2. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    NASA Astrophysics Data System (ADS)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  3. NASA Fundamental Remote Sensing Science Research Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Fundamental Remote Sensing Research Program is described. The program provides a dynamic scientific base which is continually broadened and from which future applied research and development can draw support. In particular, the overall objectives and current studies of the scene radiation and atmospheric effect characterization (SRAEC) project are reviewed. The SRAEC research can be generically structured into four types of activities including observation of phenomena, empirical characterization, analytical modeling, and scene radiation analysis and synthesis. The first three activities are the means by which the goal of scene radiation analysis and synthesis is achieved, and thus are considered priority activities during the early phases of the current project. Scene radiation analysis refers to the extraction of information describing the biogeophysical attributes of the scene from the spectral, spatial, and temporal radiance characteristics of the scene including the atmosphere. Scene radiation synthesis is the generation of realistic spectral, spatial, and temporal radiance values for a scene with a given set of biogeophysical attributes and atmospheric conditions.

  4. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  5. Synthesis, Characterization and TFT Characteristics of Diketopyrrolopyrrole Based Copolymer.

    PubMed

    Bathula, Chinna; Jeong, Seunghoon; Chung, Jeyon; Kang, Youngjong

    2016-03-01

    A novel diketopyrrolopyrrole (DPP) based low band gap polymer, poly[4,8-bis(triisopropylsilylethynyl) benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-[2,5-di-hexyl-3,6-dithiophen-2-ylpyrrolo[3,4-c]pyrrole-1,4-dione] (PTIPSBDT-DPP) is synthesized by Stille polymerization for use in thin film transistor (TFTs). The new polymer contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation. In this study we describe the synthesis, thermal stability, optical, electrochemical properties and TFT characteristics.

  6. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    PubMed

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    USDA-ARS?s Scientific Manuscript database

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  8. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  9. Progress report

    NASA Technical Reports Server (NTRS)

    Abhiraman, A.; Collard, D.; Cardelino, B.; Bhatia, S.; Desai, P.; Harruna, I.; Khan, I.; Mariam, Y.; Mensah, T.; Mitchell, M.

    1992-01-01

    The NASA funding allowed Clark Atlanta University (CAU) to establish a High Performance Polymers And Ceramics (HiPPAC) Research Center. The HiPPAC Center is consolidating and expanding the existing polymer and ceramic research capabilities at CAU through the development of interdepartmental and interinstitutional research in: (1) polymer synthesis; (2) polymer characterization and properties; (3) polymer processing; (4) polymer-based ceramic synthesis; and (5) ceramic characterization and properties. This Center has developed strong interactions between scientists and materials scientists of CAU and their counterparts from sister institutions in the Atlanta University Center (AUC) and the Georgia Institute of Technology. As a component of the center, we have started to develop strong collaborations with scientists from other universities and the HBCU's, national and federal agency laboratories, and the private sector during this first year. During this first year we have refined the focus of the research in the HiPPAC Center to three areas with seven working groups that will start programmatic activities on January 1, 1993, as follows: (1) nonlinear optical properties of chitosan derivatives; (2) polymeric electronic materials; (3) nondestructive characterization and prediction of polyimide performance; (4) solution processing of high-performance materials; (5) processable polyimides for composite applications; (6) sol-gel based ceramic materials processing; and (7) synthetic based processing of pre-ceramic polymers.

  10. Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Feng; Wang, Li, E-mail: wangliresearch@163.com; Stoumpos, Constantinos C.

    2016-08-15

    The synthesis, structure, and characterization of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra are reported. Pb{sub 2}O[BO{sub 2}(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb{sub 2}O[BO{sub 2}(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb{sup 2+} cation should be stereoactive. - Graphical abstract: An indirect gap compound of Pb{sub 2}O[BO{sub 2}(OH)] with 2D inorganic layers motif based on OPb{sub 4} tetrahedra has been synthesized and fullmore » characterized by crystallographic, IR, TG, UV–vis-NIR Diffuse Reflectance, and theoretical calculations. Display Omitted - Highlights: • A centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] was synthesized and characterized. • The crystalstructure, electronic band and density states was analyzed. • The lone-pair electrons of Pb{sup 2+} were proved to be stereoactive.« less

  11. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  12. Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in Petrotoga mobilis▿

    PubMed Central

    Fernandes, Chantal; Mendes, Vitor; Costa, Joana; Empadinhas, Nuno; Jorge, Carla; Lamosa, Pedro; Santos, Helena; da Costa, Milton S.

    2010-01-01

    The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. PMID:20061481

  13. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract

    NASA Astrophysics Data System (ADS)

    Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.

    2017-06-01

    Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.

  14. One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens.

    PubMed

    Basavegowda, Nagaraj; Dhanya Kumar, Gowri; Tyliszczak, Bozena; Wzorek, Zbigniew; Sobczak-Kupiec, Agnieszka

    2015-01-01

    Novel approaches for the synthesis of gold nanoparticles (AuNPs) are of great importance due to its vast spectrum of applications in diverse fields, including medical diagnostics and therapeutics. Te presented study reports the successful AuNPs' synthesis using Artocarpus heterophyllus Lam. extract, and provides detailed characterization and evaluation of its antibacterial potential. The aim was to develop a cost-effective and environmentally friendly synthesis method of gold nanoparticles using aqueous fruit extract of Artocarpus heterophyllus Lam. as a reducing and capping agent, which has proven activity against human pathogens, such as microbial species E.coli and Streptobacillus sps. Characterizations were carried out using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and Fourier-Transform infra-red spectroscopy (FT-IR). SEM images showed the formation of gold nanoparticles with an average size of 20-25 nm. Spectra collected while infra-red analysis contained broad peaks in ranges from 4000-400 cm -1 . It can be concluded that the fruit of Artocarpus heterophyllus Lam. can be good source for synthesis of gold nanoparticles which showed antimicrobial activity against investigated microbes, in particul E. coli, and Streptobacillus. An important outcome of this study will be the development of value-added products from the medicinal plant Artocarpus heterophyllus Lam. for the biomedical and nanotechnology-based industries.

  15. New porphyrin-polyoxometalate hybrid materials: synthesis, characterization and investigation of catalytic activity in acetylation reactions.

    PubMed

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-10-14

    New hybrid complexes based on covalent interaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatozinc(II) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatotin(IV) chloride, and a Lindqvist-type polyoxometalate, Mo(6)O(19)(2-), were prepared. These new porphyrin-polyoxometalate hybrid materials were characterized by (1)H NMR, FT IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided several spectral data for synthesis of these compounds. Cyclic voltammetry showed the influence of the polyoxometalate on the redox process of the porphyrin ring. The catalytic activity of tin(IV)porphyrin-hexamolybdate hybrid material was investigated in the acetylation of alcohols and phenols with acetic anhydride. The reusability of this catalyst was also investigated.

  16. Synthesis, characterization and biological studies of substituted quinozoline-4-(3H)-ones containing diazepine moiety.

    PubMed

    Narayana Rao, D V; Raghavendra Guru Prasad, A; Spoorthy, Y N; Pariplavi, M; Ravindranath, L K

    2014-01-01

    The synthesis and characterization of new series of 1,4-benzodiazepine derivatives have been presented. The structures were confirmed by elemental analyses, IR spectral, (1)H NMR spectral and mass spectral data. All the compounds were screened for in vitro antimicrobial and anthelmintic activities. The antibacterial activity was tested against Staphylococcus aureus (Gram positive), Bacillus cereus (Gram positive), Escherichia coli (Gram negative) and Pseudomonas aeruginosa (Gram negative). The antifungal activity was tested against Aspergillus niger and Candida albicans. All the compounds showed considerable antimicrobial activity against the microorganism studied. The significant anthelmintic activity of all novel compounds was demonstrated against Pheretima posthuma. Based on the nature of substituent present, the structure-activity correlation of novel compounds was discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century.

    PubMed

    Godfrey, Alexander G; Masquelin, Thierry; Hemmerle, Horst

    2013-09-01

    This article describes our experiences in creating a fully integrated, globally accessible, automated chemical synthesis laboratory. The goal of the project was to establish a fully integrated automated synthesis solution that was initially focused on minimizing the burden of repetitive, routine, rules-based operations that characterize more established chemistry workflows. The architecture was crafted to allow for the expansion of synthetic capabilities while also providing for a flexible interface that permits the synthesis objective to be introduced and manipulated as needed under the judicious direction of a remote user in real-time. This innovative central synthesis suite is herein described along with some case studies to illustrate the impact such a system is having in expanding drug discovery capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Application of the Ugi reaction with multiple amino acid-derived components: synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics.

    PubMed

    Stucchi, Mattia; Cairati, Silvia; Cetin-Atalay, Rengul; Christodoulou, Michael S; Grazioso, Giovanni; Pescitelli, Gennaro; Silvani, Alessandra; Yildirim, Deniz Cansen; Lesma, Giordano

    2015-05-07

    The concurrent employment of α-amino acid-derived chiral components such as aldehydes and α-isocyanoacetates, in a sequential Ugi reaction/cyclization two-step strategy, opens the door to the synthesis of three structurally distinct piperazine-based scaffolds, characterized by the presence of L-Ala and/or L-Phe-derived side chains and bearing appropriate functionalities to be easily applied in peptide chemistry. By means of computational studies, these scaffolds have been demonstrated to act as minimalist peptidomimetics, able to mimic a well defined range of peptide secondary structures and therefore potentially useful for the synthesis of small-molecule PPI modulators. Preliminary biological evaluation of two different resistant hepatocellular carcinoma cellular lines, for which differentiation versus resistance ability seem to be strongly correlated with well defined types of PPIs, has revealed a promising antiproliferative activity for selected compounds.

  19. Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapari, Suhaila; Yamin, Bohari M.; Hasbullah, Aishah

    Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea has been reported. The compound characterized by using elementary analysis CHNS, IR, {sup 1}H NMR and {sup 13}C NMR spectroscopies. The compounds have been screened for their antibacterial studies.

  20. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  1. Synthesis, Characterization and the Corrosion Inhibition Study of Two Schiff Base Ligands Derived From Urea and Thiourea and Their Complexes with Cu(II) and Hg(II) Ions

    NASA Astrophysics Data System (ADS)

    Alwan, Wasan Mohammed

    2018-05-01

    The research includes synthesis of [L1] and [L2] Schiff base ligands by the reaction of vanillin with urea and thiourea respectively in 2:1 mol ratio. The two ligands were reacted with CuII ion in 1:2 mol ratio and HgII ion in 1:1 mol ratio. The prepared compounds have been identified by FTIR, U.V-Vis, 1H-NMR (L1, L2 and HgII complex) spectroscopies, microelemental analysis (C.H.N.S), magnetic susceptibility measurements, atomic absorption, chloride content along with conductivity and melting point measurements. According to applied characterization methods, the proposed general formulas of CuII and HgII complexes were [Cu2LnCl4] and [HgLnCl]Cl, respectively, (where n = 1, 2). The ability of corrosion inhibition with two ligands and their cupper complexes has been studied in diluted hydrochloric acid media.

  2. A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode.

    PubMed

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An

    2017-04-05

    We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results.

  3. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  4. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  5. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array

    PubMed Central

    Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.

    2016-01-01

    Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524

  6. Synthesis and characterization of an octaimidazolium-based polyhedral oligomeric silsesquioxanes ionic liquid by an ion-exchange reaction.

    PubMed

    Tan, Jinglin; Ma, Depeng; Sun, Xingrong; Feng, Shengyu; Zhang, Changqiao

    2013-04-07

    Preparation of POSS-min-DS, an octaimidazolium-based polyhedral oligomeric silsesquioxanes (POSS) room temperature ionic liquid, by an ion-exchange reaction between POSS and sodium dodecyl sulfate was reported. Octaimidazolium-based POSS was synthesized with more than 98% yield within 3 h. POSS-min-DS and octaimidazolium-based POSS were confirmed by (1)H, (13)C, and (29)Si NMR, FT-IR and elemental analysis.

  7. Super-secondary structure peptidomimetics: design and synthesis of an α-α hairpin analogue

    PubMed Central

    Nevola, Laura; Rodriguez, Johanna M.; Thompson, Sam; Hamilton, Andrew D.

    2015-01-01

    The α-α helix motif presents key recognition domains in protein-protein and protein-oligonucleotide binding, and is one of the most common super-secondary structures. Herein we describe the design, synthesis and structural characterization of an α-α hairpin analogue based on a tetra-coordinated Pd(II) bis-(iminoisoquinoline) complex as a template for the display of two α-helix mimics. This approach is exemplified by the attachment of two biphenyl peptidomimetics to reproduce the side-chains of the i and i+4 residues of two helices. PMID:26052191

  8. Synthesis, characterization and potential utility of doped ceramics based catalysts

    NASA Astrophysics Data System (ADS)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  9. Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites

    PubMed Central

    Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Colangelo, Francesco; Cioffi, Raffaele; Tarallo, Oreste

    2013-01-01

    The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged. PMID:28788310

  10. Synthesis and Characterization of Thianthrene-Based Polyamides

    DTIC Science & Technology

    1994-07-15

    pyrrolidinone using triphenyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...pyrrolidinone using triphonyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...sodium hydroxide, and triphenyl phosphite (TPP) was vacuum distilled. UCI and CaCI2 were dried at 180 OC for 48 hours under vacuum. 4,4’-Oxydianiline

  11. Material Property Characterization of Potential Nanocarbon Metal-Matrix Composite: An Investigational Study

    NASA Astrophysics Data System (ADS)

    Zavala, Mitchel

    Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.

  12. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline

    NASA Astrophysics Data System (ADS)

    Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.

    2017-11-01

    In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .

  13. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and characterization of Mn quantum dots by bioreduction with water hyacinth.

    PubMed

    Rosano-Ortega, G; Schabes-Retchkiman, P; Zorrilla, C; Liu, H B; Canizal, G; Avila-Pérez, P; Ascencio, J A

    2006-01-01

    The bio-reduction method is reported as a part of a complimentary self-sustained technology, where bioremediation and metal particle production are related. The use of the characterization methods in this self sustainable technique open the expectative to be used for several other elements and with other plants, which will be discussed. However, the particular case of Mn nanoparticles involves an important option to generate nanoparticles in the range of 1-4 nanometers with a well controlled size and with a structure based on an fcc-like geometry for the smallest clusters and with more complex arrays for cluster greater than four shells, which involves magnetic moments significantly related to their atomistic configuration. At the same time, the use of the characterization methods establishes the dependence of the nanoparticle's size on the pH conditions used during the synthesis; small clusters in the range of 1-2 nm were generated using pH=5, and it was shown that for the smallest aggregates, simple polyhedron shapes are stable.

  15. Establishment and characterization of Xenopus oviduct cells in primary culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, J.; Tata, J.R.

    1987-11-01

    Based on previously established procedure of Xenopus hepatocytes, the authors describe tubular oviduct cells in primary culture which continue to secrete substantial quantities of egg jelly for several days, as can be visualized microscopically. Freshly isolated cells exhibited a culture shock response, from which they recovered by the third day in culture. This recovery was characterized by (a) the diminished synthesis of heat shock proteins hsp 70 and hsp 85, (b) the cessation of the drop in number of estrogen receptor, and (c) the enhanced rate of synthesis of cellular and secreted proteins. The oviduct estrogen receptor had the samemore » characteristics as those in other estrogen target tissues and was present in the same amount as in adult female Xenopus hepatocytes. The successful establishment and characterization of primary cultures of both liver and oviduct cells now fulfill the conditions required for investigating the basis for tissue specificity of regulation by estrogen of Xenopus egg protein gene expression in primary cell culture.« less

  16. Improved synthesis and characterization of saturated branched-chain fatty acid isomers

    USDA-ARS?s Scientific Manuscript database

    The development of viable technologies for producing green products from renewable fats and oils is highly desirable since such materials can serve as replacements for non-renewable and poorly biodegradable petroleum-based products. Mixtures of saturated branched-chain fatty acid isomers (sbc-FAs),...

  17. Synthesis, Characterization and Reactivity of a Hexane-Soluble Silver Salt

    ERIC Educational Resources Information Center

    Stockland, Robert A. Jr.; Wilson, Brian D.; Goodman, Caton C.; Giese, Barret J.; Shrimp, Frederick L., II

    2007-01-01

    The connectivity of a hexane-soluble silver salt is established by using NMR spectroscopy to describe the synthesis, characterization and reactivity of the salt. The results found hexane-soluble silver to be an effective transfer agent.

  18. Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential

    PubMed Central

    2015-01-01

    We report here the synthesis and selected properties of various silicate ester derivatives (tetraalkoxysilanes) of the taxanes paclitaxel (PTX) and docetaxel (DTX) [i.e., PTX-OSi(OR)3 and DTX-OSi(OR)3]. Both the hydrophobicity and hydrolytic lability of these silicates can be (independently) controlled by choice of the alkyl group (R). The synthesis, structural characterization, hydrolytic reactivity, and in vitro cytotoxicity against the MDA-MB-231 breast cancer cell line of most of these derivatives are described. We envision that the greater hydrophobicity of these silicates (vis-à-vis PTX or DTX itself) should be advantageous from the perspective of preparation of stable aqueous dispersions of amphiphilic block-copolymer-based nanoparticle formulations. PMID:24564494

  19. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  20. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability

    NASA Astrophysics Data System (ADS)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  1. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    NASA Astrophysics Data System (ADS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  2. Synthesis and structural characterization of betaine- and imidazoline-based organoclays

    NASA Astrophysics Data System (ADS)

    Lazorenko, Georgy; Kasprzhitskii, Anton; Yavna, Victor

    2018-01-01

    The samples of organic-modified clays based on a Wyoming SWy-2 sodium montmorillonite (Na+-Mt) with the cationic surfactant hydroxyethylalkyl imidazoline (HEAI) and the amphoteric surfactant oleylamidopropyl betaine (OAPB) were synthesized via a cation exchange process. The obtained materials were characterized using XRD analysis, ATR-FTIR spectroscopy, SEM, BET and Water contact angle measurements. The potential sites of binding of OAPB and HEAI to the mineral surface were determined by the DFT calculations. For the variants of the structure of the complex, DFT calculations is performed and the interaction energy of the surfactant and clay mineral is estimated.

  3. New tetradentate Schiff bases of 2-amino-3,5-dibromobenzaldehyde with aliphatic diamines and their metal complexes: synthesis, characterization and thermal stability.

    PubMed

    Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh

    2015-07-05

    The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text]. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  5. Novel salicylic acid-oriented thiourea-type receptors as colorimetric chemosensor: Synthesis, characterizations and selective naked-eye recognition properties

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Cao, Xiufang; Chen, Changshui; Ke, Shaoyong

    2012-10-01

    Based on the salicylic acid backbone, three highly sensitive and selective colorimetric chemosensors with an acylthiourea binding unit have been designed, synthesized and characterized. These chemosensors have been utilized for selective recognition of fluoride anions in dry DMSO solution by typical spectroscopic titration techniques. Furthermore, the obtained chemosensors AR1-3 have shown naked-eye sensitivity for detection of biologically important fluoride ion over other anions in solution.

  6. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles

    NASA Astrophysics Data System (ADS)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2016-03-01

    Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.

  7. Synthesis and Characterization of Nitrogen-Doped Graphene

    DTIC Science & Technology

    2012-09-01

    have an even greater capacity for storing energy versus single-walled nanotubes [11]. A carbon-based aerogel (a composite material) also provides a...more with aerogels ," The Industrial Physicist, vol. 10, pp. 26-30, September 21, 2004. [13] M. Arulepp, J. Leis, M. Latt, F. Miller, K. Rumma, E

  8. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin

    USDA-ARS?s Scientific Manuscript database

    Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...

  9. Synthesis and application of a natural plasticizer based on cardanol for poly(vinyl chloride)

    USDA-ARS?s Scientific Manuscript database

    A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two-step modification process and characterized by FT-IR, 1-HNMR, and 13-CNMR. The resulting product was incorporated to PVC (CGE/PVC), ...

  10. Synthesis, Photophysical Characterization, and Gelation Studies of a Stilbene-Cholesterol Derivative

    ERIC Educational Resources Information Center

    Geiger, H. Christina; Geiger, David K.; Baldwin, Christine

    2006-01-01

    Organogels are low molar mass organic compounds with the ability to immobilize an incredible quantity of solvent and fibrous aggregation of these compounds formed by noncovalent interaction usually involves hydrogen bonding. For stilbene-cholesterol based gelators, the driving force for molecular aggregation are weak van der Waal interactions…

  11. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  12. Green chemical synthesis of silver nanomaterials with maltodextrin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallant, David Robert; Lu, Ping; Lambert, Timothy N.

    2010-11-01

    Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation ofmore » metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).« less

  13. Synthesis and Characterization of Cellulose Derivatives for Water Repellent Properties

    USDA-ARS?s Scientific Manuscript database

    In this presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogene...

  14. Poly/diphenylsiloxy/arylazines. I - Synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Goldsberry, R. E.; Adamson, M. J.; Reinisch, R. F.

    1973-01-01

    A detailed description is presented for the synthesis of poly(diphenylsiloxy)arylazines by the melt polymerization of hydroxyarylazines and bis(anilino)diphenylsilane. The resulting polymers have been characterized by elemental analysis, gel-permeation chromatography, vapor-phase osmometry, and UV-VIS-IR optical spectroscopy.

  15. Biodegradable polydepsipeptides.

    PubMed

    Feng, Yakai; Guo, Jintang

    2009-02-01

    This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  16. Synthesis and characterization of lactose-based homopolymers, hydrophilic/hydrophobic copolymers, and hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjing

    The focus of this dissertation is the synthesis and characterization of lactose-based functional polymers. Currently 60% of lactose, a by-product from the cheese industry, is being utilized and the remaining fraction represents a serious disposal problem because of the high biological oxygen demand. Therefore, further development of utilization of lactose is an important issue both for industry and environment. Herein, the syntheses of lactose-based polymers such glycopolymers, hydrophilic/hydrophobic copolymers, and hydrogels are reported. A brief review of lactose formation, physical properties, and production is presented in Chapter 1. Syntheses and applications of lactose derivatives such as lactitol, lactulose, lactaime, lactosylurea, lactosylamine, lactone, and barbituric derivative are documented. Previous work in lactose-based polymers include: (1) hydrogels from cross linking of LPEP, borate complexation of lactose-containing polymer, and copolymerization of lactose monomer with crosslinkers; (2) lactose-based polyurethane rigid foams and adhesives; and (3) lactose-containing glycopolymers are also included. Chapter 2 documents the synthesis of acrylamidolactamine and the free radical copolymerization of this monomer with N-isopropylacrylamide in the presence of BisA to make hydrogels. Swelling behavior of the hydrogels at different temperatures as well as DSC study of these hydrogels are also carried out to characterize the swelling transition and the organization of water in the copolymer hydrogels. In Chapter 3, novel monomer syntheses of N-lactosyl- N'-(4-vinylbenzyl)urea or N '-lactosyl-N,N-methyl(4-vinylbenzyl)urea are described. Polymerization of these new urea monomers using a redox initiator gave water-soluble homopolymers with molecular weights in the range of 1.9 x 103 to 5.3 x 106. Synthesis and polymerization of lactose-O-(p-vinylbenzyl)hydroxime are documented in Chapter 4. The resulting polymers had high molecular weight (106) and narrow polydispersity (Mw/Mn: 1.20--1.35). The Mark-Houwink equation was obtained as [eta] = 2.15 x 10-4Mv0.73. Hydrogels produced in the presence of N,N'-methylenebisacrylamide swelled as much as 21-fold in deionized water. Copolymerization of styrene with lactose-O-(vinylbenzyl)oxime in dimethylsulfoxide-toluene (1:1, v/v) using 2,2'-azobisisobutyronitrile as the initiator are discussed in Chapter 5. The resulting hydrophilic/hydrophobic copolymers were characterized by viscometry, TGA, DSC, GPC, and solubility tests in solvents of varied polarities. Chapter 6 documents the preparation of polystyrene beads with different length of oligo(ethylene glycol) crosslinkers. Swelling in different solvents, solvent accessibility, and reagent diffusion of these beads with different crosslinking density were studied and the results indicated that the PEG-crosslinked polymers showed slightly better solvent accessibility in polar solvents than the analogous DVB-crosslinked networks.

  17. Three VO2+ complexes of the pyridoxal-derived Schiff bases: Synthesis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction

    NASA Astrophysics Data System (ADS)

    Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali

    2018-02-01

    Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.

  18. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

    PubMed

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-11-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.

  19. Regioselective reaction: synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone.

    PubMed

    Nithinchandra; Kalluraya, B; Aamir, S; Shabaraya, A R

    2012-08-01

    A novel series of 1-substituted aminomethyl-3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino-1,2,4-triazol-5-thiones (9), was prepared from the 3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino 5-mercapto-1,2,4-triazoles (8) by aminomethylation with formaldehyde and secondary amine. The structures of Schiff bases (8) and Mannich bases (9) were characterized on the basis of IR, NMR, mass spectra1 data and elemental analysis. The newly synthesized compounds were screened for their anti-inflammatory and analgesic activities. Mannich bases (9) carrying piperidine and morpholine residues showed promising anti-inflammatory and analgesic activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. 10B enriched plastic scintillators for application in thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Yemam, Henok A.; Fernando, Roshan; Koubek, Joshua T.; Sellinger, Alan; Greife, Uwe

    2018-02-01

    We report here on the synthesis and characterization of a novel 10B enriched aromatic molecule that can be incorporated into common poly(vinyltoluene) (PVT) based plastic scintillators to achieve enhanced thermal neutron detection. Starting from relatively inexpensive 10B enriched boric acid, we have prepared 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (MBB) in three high yield steps. MBB is soluble and compatible with PVT based formulations and results in stable plastic scintillators. Chemical synthesis, solubility limit in PVT, and the physical properties of the dopant were explored. The relevant response properties of the resulting scintillators when exposed to neutron and gamma radiation, including light yield and pulse shape discrimination properties were measured and analyzed.

  1. Schiff Bases of Benzothiazol-2-ylamine and Thiazolo[5,4-b] pyridin-2-ylamine as Anticonvulsants: Synthesis, Characterization and Toxicity Profiling.

    PubMed

    Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K

    2016-01-01

    Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.

  2. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    PubMed

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  4. Multifunctional Nanomaterials: Design, Synthesis and Application Properties.

    PubMed

    Martinelli, Marisa; Strumia, Miriam Cristina

    2017-02-07

    The immense scope of variation in dendritic molecules (hyper-branching, nano-sized, hydrophobicity/hydrophilicity, rigidity/flexibility balance, etc.) and their versatile functionalization, with the possibility of multivalent binding, permit the design of highly improved, novel materials. Dendritic-based materials are therefore viable alternatives to conventional polymers. The overall aim of this work is to show the advantages of dendronization processes by presenting the synthesis and characterization of three different dendronized systems: (I) microbeads of functionalized chitosan; (II) nanostructuration of polypropylene surfaces; and (III) smart dendritic nanogels. The particular properties yielded by these systems could only be achieved thanks to the dendronization process.

  5. Combustion Synthesis of Glass-Ceramic Composites Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Manerbino, Anthony; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Gokoglu, S. (Technical Monitor)

    2001-01-01

    Glasses based on B2O3-Al2O3-BaO-and B2O3-Al2O3-MgO have been produced by the combustion synthesis technique. The combustion temperature, wave velocity for selected compositions are presented. Combustion reactions of these materials were typically low exothermic, resulting in unstable combustion waves. Microstructural characterization of these materials indicated that the glass formation region was similar to those that were produced by the traditional technique. Results of the effect of gravity on the glass formation (or divitrification) studied onboard of KC-135 is also presented.

  6. Synthesis of β-tricalcium phosphate.

    PubMed

    Chaair, H; Labjar, H; Britel, O

    2017-09-01

    Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.

    PubMed

    Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J

    2016-03-21

    We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.

  8. Sample-based synthesis of two-scale structures with anisotropy

    DOE PAGES

    Liu, Xingchen; Shapiro, Vadim

    2017-05-19

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  9. Sample-based synthesis of two-scale structures with anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingchen; Shapiro, Vadim

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  10. Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.

    PubMed

    Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi

    2013-12-15

    We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These parameterized dielectric functions were then used to describe the growth and eventual enzymatic degradation of a multilayered IgG structure by dynamic ATR-IR ellipsometry measurements. ATR-IR ellipsometry was also used to observe the specificity of anti-bodies to antigens.

  12. Phenoxazine Based Units- Synthesis, Photophysics and Electrochemistry

    PubMed Central

    Nowakowska-Oleksy, Anna; Cabaj, Joanna

    2010-01-01

    A few new phenoxazine-based conjugated monomers were synthesized, characterized, and successfully used as semiconducting materials. The phenoxazine-based oligomers have low ionization potentials or high-lying HOMO levels (~4.7 eV), which were estimated from cyclic voltammetry. Conjugated oligomers offer good film—forming, mechanical and optical properties connected with their wide application. These results demonstrate that phenoxazine-based conjugated mers are a promising type of semiconducting and luminescent structures able to be used as thin films in organic electronics. PMID:20625802

  13. Synthesis and characterization of polycrystalline CdSiP2

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Sarkisov, S. Yu; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A modified method is proposed for the CdSiP2 compound synthesis from elemental starting components. The developed technique allows completing the synthesis process within 30 h. The phase and chemical composition of the synthesized material were confirmed by the x-ray diffraction analysis and scanning electron microscopy with energy-dispersive spectroscopy. The transparent crystal block sized 3 × 3 × 2 mm3 was cut from the polycrystalline ingot and characterized by optical methods.

  14. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  15. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.

  16. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265

  17. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, Peter C.

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less

  19. Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol

    NASA Astrophysics Data System (ADS)

    López, Cenayda; Rodríguez-Páez, Jorge E.

    2017-12-01

    In this work, nanoparticles of zinc oxide (ZnO-NPs) were synthesized using acetic acid, ethanol and ethylene glycol as solvents. To determine the physicochemical and structural characteristics of the synthesized nanoparticles, IR spectroscopy, X-ray diffraction, UV-Vis spectroscopy and transmission electron microscopy were used. The characterization results indicated that the particles obtained were of nanometers size (< 100 nm) with different morphologies: needle-type when using acetic acid, nanoribbons using ethanol, and spheroidal using ethylene glycol. The results of this work show that on using solvents with a lower dielectric constant value a preferential direction of nanoparticle growth would be favored, leading to the formation of nanoribbons, in ethanol ( ɛ r = 24.3), and needles in acetic acid ( ɛ r = 6.2). The band gap of ZnO-Nps depends of synthesis solvent used: 3.37 eV for acetic acid, 3.3 eV to ethanol and 3.28 eV to ethylene glycol, indicating that the optical properties of these nanoparticles are affected by the synthesis medium. Based on the information from the characterization of the ZnO-NPs synthesized, the spheroidal nanoparticles were selected, to determine their antifungal capacity on cultures of Aspergillus niger strains. The concentrations of ZnO-NPs that showed the greatest antifungal effect were those from 9 mmol L-1.

  20. New Laboratory Course for Senior-Level Chemical Engineering Students

    ERIC Educational Resources Information Center

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  1. Synthesis and Characterization of Electroactive Polymers Based on Pyrrole

    DTIC Science & Technology

    1989-10-01

    169. 5. E.T. Kang, K.G. Neoh and H.C. Ti, Solid State Communications, 1986, 60, 457. 6. Osamu Niwa, Masami Kakuchi, and Toshiaki Tamamura, 7...1987, 18, 49. 8. Keiko Koga, Takao lino, Shigeyuki Ueta, and Motowo Takayanagi , Polymer. Journal, 1989, 21, 499. 9. S.E. Lindesey and G.B. Street

  2. Synthesis of C60H2 by rhodium-catalyzed hydrogenation of C60

    NASA Technical Reports Server (NTRS)

    Becker, L.; Evans, T. P.; Bada, J. L.; Miller, S. L. (Principal Investigator)

    1993-01-01

    Reduction of C60 with rhodium(0) on alumina and hydrogen in deuterated benzene (C6D6) at ambient temperature and pressure yields a mixture of hydrogenated compounds; C60H2 has been characterized as the major product in 14% yield based on 1H NMR.

  3. Novel inhibitors of Mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues

    NASA Astrophysics Data System (ADS)

    Shmalenyuk, E. R.; Kochetkov, S. N.; Alexandrova, L. A.

    2013-09-01

    The review summarizes data on the synthesis and antituberculosis activity of pyrimidine nucleoside derivatives and their analogues. Enzymes from M. tuberculosis as promising targets for prototypes of new-generation drugs are considered. Nucleosides as inhibitors of drug-resistant M. tuberculosis strains are characterized. The bibliography includes 101 references.

  4. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.

  5. Triazolopyridinyl-acrylonitrile derivatives as antimicrotubule agents: Synthesis, in vitro and in silico characterization of antiproliferative activity, inhibition of tubulin polymerization and binding thermodynamics.

    PubMed

    Briguglio, Irene; Laurini, Erik; Pirisi, Maria Antonietta; Piras, Sandra; Corona, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Carta, Antonio

    2017-12-01

    In this paper we report the synthesis, in vitro anticancer activity, and the experimental/computational characterization of mechanism of action of a new series of E isomers of triazolo[4,5-b/c]pyridin-acrylonitrile derivatives (6c-g, 7d-e, 8d-e, 9c-f, 10d-e, 11d-e). All new compounds are endowed with moderate to interesting antiproliferative activity against 9 different cancer cell lines derived from solid and hematological human tumors. Fluorescence-based assays prove that these molecules interfere with tubulin polymerization. Furthermore, isothermal titration calorimetry (ITC) provides full tubulin/compound binding thermodynamics, thereby ultimately qualifying and quantifying the interactions of these molecular series with the target protein. Lastly, the analysis based on the tight coupling of in vitro and in silico modeling of the interactions between tubulin and the title compounds allows to propose a molecular rationale for their biological activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir.

    PubMed

    Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène

    2013-01-01

    Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  8. Synthesis and characterization of fluorapatite-titania (FAp-TiO 2) nanocomposite via mechanochemical process

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar

    2010-09-01

    In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.

  9. Synthesis of Long-Chain-Branched (LCB) Polysulfones for Multifunctional Transport Membranes

    DTIC Science & Technology

    2010-09-01

    R.; Dutta, N. K. Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity...rigidity. The series of novel polymers was characterized for chemical structure, thermal transitions, and molecular weight. Ionic conductivity was tested...Although much progress exists based on perfluorosulfonated platforms ( Nafion , σ ≈ 10-1 – 10-2 S/cm) new and more complicated parameters arise as

  10. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    NASA Astrophysics Data System (ADS)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-01

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  11. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  12. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2017-02-01

    The development of smart materials in aeronautical structures consisting of compounds based on epoxy resins having self-repair capability has been hampered by some criticalities. One of the main critical points is related to the impossibility to use primary amines (e.g.: 4,4‧-diaminodiphenyl sulfone, DDS) as hardeners, because they can poison the catalyst responsible for the healing mechanisms. In this paper, the synthesis, characterization and some tests of applicability of a new hardener, the tetramethylated diaminodiphenyl sulfone (tm-DDS), are shown. The tm-DDS is able to rapidly react with epoxy resin, giving a composite material having some characteristics significantly better than composites hardened with different tertiary amines. The new hardener is able to increase the glass transition temperature (Tg) of about 90 °C with respect to the more common hardener, ancamine K54, already used in self-healing epoxy formulations.

  13. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol formore » the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.« less

  14. Solution based zinc tin oxide TFTs: the dual role of the organic solvent

    NASA Astrophysics Data System (ADS)

    Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-02-01

    Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV  =  -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.

  15. Stereoselective Synthesis of Cyclometalated Iridium (III) Complexes: Characterization and Photophysical Properties

    PubMed Central

    Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen

    2009-01-01

    The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195

  16. Synthesis and characterization of germa[n]pericyclynes.

    PubMed

    Tanimoto, Hiroki; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Iseda, Fumiyasu; Nagato, Yuko; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi

    2014-06-14

    The synthesis and characterization of novel pericyclynes comprising germanium atoms and acetylenes, germa[n]pericyclynes, are described. The prepared germa[4]-, [6]-, and [8]pericyclynes were compared by (13)C NMR spectroscopy, X-ray crystallography, cyclic voltammetry, UV-visible spectroscopy, fluorescence emission spectroscopy, Raman spectroscopy, and density functional theory calculation analyses.

  17. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  18. Synthesis, characterization and reactivity of 3-mercaptopyruvic acid.

    PubMed

    Galardon, Erwan; Lec, Jean-Chrstophe

    2018-05-20

    A synthesis of the sulfur metabolic compound 3-mercaptopyruvic acid (3-MPH) is reported and allowed its isolation and characterization for the first time. Detailed kinetic, thermodynamic and spectroscopic studies of its complex behaviour in solution are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alkali promoted molybdenum (IV) sulfide based catalysts, development and characterization for alcohol synthesis from carbon monoxide and hydrogen

    NASA Astrophysics Data System (ADS)

    Molina, Belinda Delilah

    For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.

  20. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  1. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.

  2. Exploring Nitrilase Sequence Space for Enantioselective Catalysis†

    PubMed Central

    Robertson, Dan E.; Chaplin, Jennifer A.; DeSantis, Grace; Podar, Mircea; Madden, Mark; Chi, Ellen; Richardson, Toby; Milan, Aileen; Miller, Mark; Weiner, David P.; Wong, Kelvin; McQuaid, Jeff; Farwell, Bob; Preston, Lori A.; Tan, Xuqiu; Snead, Marjory A.; Keller, Martin; Mathur, Eric; Kretz, Patricia L.; Burk, Mark J.; Short, Jay M.

    2004-01-01

    Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 106 to 1010 members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses. PMID:15066841

  3. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-08

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.

  4. Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications

    PubMed Central

    Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304

  5. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm

    PubMed Central

    Li, Sanfeng; Wei, Xiangjin; Ren, Yulong; Qiu, Jiehua; Jiao, Guiai; Guo, Xiuping; Tang, Shaoqing; Wan, Jianmin; Hu, Peisong

    2017-01-01

    Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules. PMID:28054650

  6. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  7. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization.

    PubMed

    De Santis, Serena; Masci, Giancarlo; Casciotta, Francesco; Caminiti, Ruggero; Scarpellini, Eleonora; Campetella, Marco; Gontrani, Lorenzo

    2015-08-28

    In the present work we report the synthesis and physico-chemical characterization in terms of the viscosity and density of a wide series of cholinium-amino acid based room temperature ionic liquids ([Ch][AA] RTILs). 18 different amino acids were used to obtain 14 room temperature ILs. Among the most common AAs, only valine did not form an RTIL but it is a liquid above 80 °C. With respect to the methods reported in the literature we propose a synthesis based on potentiometric titration which has several advantages such as shorter preparation time, stoichiometry within ±1%, very high yields (close to 100%), high reproducibility, and no use of organic solvents, thus being more environmentally friendly. We tried to prepare dianionic ILs with some AAs with two potentially ionisable groups but in all cases the salts were solids at room temperature. All the ILs were characterized by (1)H NMR to confirm the stoichiometry. Physico-chemical properties such as density, viscosity, refractive index and conductivity were measured as a function of temperature and correlated with empirical equations. The values were compared with the data already reported in the literature for some [Ch][AA] ILs. The thermal expansion coefficient αp and the molar volume Vm were also calculated from the experimental density values. Due to the high number of AAs explored and their structural heterogeneity we have been able to find some interesting correlations between the data obtained and the structural features of the AAs in terms of the alkyl chain length, hydrogen bonding ability, stacking and cyclization. Some parameters were also found to be in good agreement with those reported for other ILs. We think that these data can give an important contribution to the understanding of the structure-property relationship of ILs because they focused on the structural effect of the anions, while most data in the literature are focussed on the cations.

  8. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.

  9. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  11. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal

    NASA Astrophysics Data System (ADS)

    Wei, Yufen; Fang, Zhanqiang; Zheng, Liuchun; Tsang, Eric Pokeung

    2017-03-01

    Eichhornia crassipes (water hyacinth), a species of invasive weeds has caused serious ecological damage due to its extraordinary fertility and growth rate. However, it has not yet been exploited for use as a resource. This paper reported the synthesis and characterization of amorphous iron nanoparticles (Ec-Fe-NPs) from Fe(III) salts in aqueous extracts of Eichhornia crassipes. The nanoparticles were characterized by SEM, EDS, TEM, XPS, FTIR, DLS and the zeta potential methods. The characterization results confirmed the successful synthesis of amorphous iron nanoparticles with diameters of 20-80 nm. Moreover, the nanoparticles were mainly composed of zero valent iron nanoparticles which were coated with various organic matters in the extracts as a capping or stabilizing agents. Batch experiments showed that 89.9% of Cr(VI) was removed by the Ec-Fe-NPs much higher than by the extracts alone (20.4%) and Fe3O4 nanoparticles (47.3%). Based on the kinetics study and the XPS analysis, a removal mechanism dominated by adsorption and reduction with subsequently co-precipitation was proposed.

  12. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels

    NASA Astrophysics Data System (ADS)

    Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.

    2009-09-01

    This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.

  14. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process

    PubMed Central

    LeProust, Emily M.; Peck, Bill J.; Spirin, Konstantin; McCuen, Heather Brummel; Moore, Bridget; Namsaraev, Eugeni; Caruthers, Marvin H.

    2010-01-01

    We have achieved the ability to synthesize thousands of unique, long oligonucleotides (150mers) in fmol amounts using parallel synthesis of DNA on microarrays. The sequence accuracy of the oligonucleotides in such large-scale syntheses has been limited by the yields and side reactions of the DNA synthesis process used. While there has been significant demand for libraries of long oligos (150mer and more), the yields in conventional DNA synthesis and the associated side reactions have previously limited the availability of oligonucleotide pools to lengths <100 nt. Using novel array based depurination assays, we show that the depurination side reaction is the limiting factor for the synthesis of libraries of long oligonucleotides on Agilent Technologies’ SurePrint® DNA microarray platform. We also demonstrate how depurination can be controlled and reduced by a novel detritylation process to enable the synthesis of high quality, long (150mer) oligonucleotide libraries and we report the characterization of synthesis efficiency for such libraries. Oligonucleotide libraries prepared with this method have changed the economics and availability of several existing applications (e.g. targeted resequencing, preparation of shRNA libraries, site-directed mutagenesis), and have the potential to enable even more novel applications (e.g. high-complexity synthetic biology). PMID:20308161

  15. Catalytic properties of volcanic rocks in the synthesis of hydrocarbons from carbon monoxide and hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taran, Yu.A.; Novak, F.I.; Antoshchuk, I.A.

    1981-10-01

    Results obtained from studying the catalytic properties of effusive rocks of various chemical compositions, extracted from lava flows of several Kamchatka volcanos, in the process of synthesis from carbon monoxide and hydrogen, are presented. It was evident that samples of volcanic rock display catalytic properties in the process of synthesis from CO and H/sub 2/ in which liquid and gaseous hydrocarbons and an insignificant amount of oxygen-containing compounds are formed as products of the reactions. At a synthesis temperature of 350/sup 0/C the catalytic activity of the samples is characterized by the conversion of CO at a level of 70more » to 80%, and H/sub 2/ at 50 to 60%. The yield of oil, gasoline, and natural gas reached 40, 11, and 3 ml/m/sup 3/, respectively. The light synthetic products were presented based on saturated hydrocarbons of an aliphatic series with significant contents of olefins and insignificant quantities of alcohols and carbonyl compounds. The composition of gaseous products is characterized by significant unsaturation (approx. 33%) and a high content of butane-butylenic fractions (to approx. 55%). The data obtained showed that volcanic rocks were able to catalyze the synthesis of hydrocarbons from CO and H/sub 2/. The sources of the catalytic properties of the rocks shown are evidently iron compounds, and the remaining ingredients of the rocks are able to fulfill the role of structural or chemical promoters influencing the properties of the catalysts and the composition of the reaction products formed. 2 tables. (DP)« less

  16. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less

  17. Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.

    PubMed

    Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J

    2018-02-05

    We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.

  18. The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative

    ERIC Educational Resources Information Center

    Stals, Patrick J. M.; Haveman, Jan F.; Palmans, Anja R. A.; Schenning, Albertus P. H. J.

    2009-01-01

    A series of experiments involving the synthesis and characterization of a benzene-1,3,5-tricarboxamide derivative and its self-assembly properties are reported. These laboratory experiments combine organic synthesis, self-assembly, and physical characterization and are designed for upper-level undergraduate students to introduce the topic of…

  19. Biocatalyzed Regioselective Synthesis in Undergraduate Organic Laboratories: Multistep Synthesis of 2-Arachidonoylglycerol

    ERIC Educational Resources Information Center

    Johnston, Meghan R.; Makriyannis, Alexandros; Whitten, Kyle M.; Drew, Olivia C.; Best, Fiona A.

    2016-01-01

    In order to introduce the concepts of biocatalysis and its utility in synthesis to organic chemistry students, a multistep synthesis of endogenous cannabinergic ligand 2-arachidonoylglycerol (2-AG) was tailored for use as a laboratory exercise. Over four weeks, students successfully produced 2-AG, purifying and characterizing products at each…

  20. Synthesis, characterization and antimicrobial evaluation of some new schiff, mannich and acetylenic Mannich bases incorporating a 1,2,4-triazole nucleus.

    PubMed

    Aouad, Mohamed R

    2014-11-18

    A series of Schiff and Mannich bases derived from 4-amino-5-(3-fluoro-phenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione were synthesized. The alkylation of 4-phenyl-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with propargyl bromide afforded the corresponding thiopropargylated derivative which upon treatment with the appropriate secondary amines in the presence of CuCl2 furnished the desired acetylenic Mannich bases. The synthesized compounds were characterized on the basis of their spectral (IR, 1H- and 13C-NMR) data and evaluated for their biological activities. Some of the compounds were found to exhibit significant antimicrobial activity.

  1. Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu

    The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.

  2. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties.

    PubMed

    Yaylayan, V A; Huyghues-Despointes, A

    1994-01-01

    The chemistry of the key intermediate in the Maillard reaction, the Amadori rearrangements product, is reviewed covering the areas of synthesis, chromatographic analyses, chemical and spectroscopic methods of characterization, reactions, and kinetics. Synthetic strategies involving free and protected sugars are described in detail with specific synthetic procedures. GC- and HPLC-based separations of Amadori products are discussed in relation to the type of columns employed and methods of detection. Applications of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy for structural elucidation of Amadori products are also reviewed. In addition, mass spectrometry of free, protected, and protein-bound Amadori products under different ionization conditions are presented. The mechanism of acid/base catalyzed thermal degradation reactions of Amadori compounds, as well as their kinetics of formation, are critically evaluated.

  3. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    NASA Astrophysics Data System (ADS)

    de Jesús Ruíz-Baltazar, Álvaro; Reyes-López, Simón Yobbany; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV-vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli.

  4. Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines† †Electronic supplementary information (ESI) available: Experimental details, characterization data, and select NMR spectra. See DOI: 10.1039/c8sc00775f

    PubMed Central

    Lane, Elizabeth M.; Hazari, Nilay

    2018-01-01

    Substituted ureas have numerous applications but their synthesis typically requires the use of highly toxic starting materials. Herein we describe the first base-metal catalyst for the selective synthesis of symmetric ureas via the dehydrogenative coupling of methanol with primary amines. Using a pincer supported iron catalyst, a range of ureas was generated with isolated yields of up to 80% (corresponding to a catalytic turnover of up to 160) and with H2 as the sole byproduct. Mechanistic studies indicate a stepwise pathway beginning with methanol dehydrogenation to give formaldehyde, which is trapped by amine to afford a formamide. The formamide is then dehydrogenated to produce a transient isocyanate, which reacts with another equivalent of amine to form a urea. These mechanistic insights enabled the development of an iron-catalyzed method for the synthesis of unsymmetric ureas from amides and amines. PMID:29780531

  5. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    NASA Astrophysics Data System (ADS)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  6. Haldane's The causes of evolution and the Modern Synthesis in evolutionary biology.

    PubMed

    Sarkar, Sahotra

    2017-11-01

    This paper argues that Haldane's The causes of evolution was the most important founding document in the emergence of the received view of evolutionary theory which is typically referred to as the Modern Synthesis. Whether or not this historical development is characterized as a synthesis (which remains controversial), this paper argues the most important component of the emergence of the received view consisted of showing how the formal rules of Mendelian inheritance are based on (or emerge from) the material basis of heredity established by classical genetics primarily through the experimental work on Drosophila genetics of the Morgan school in the 1910s and 1920s. This is one of the most important achievements of Haldane's book. Thus this paper rejects both (i) the view that the synthesis was a unification of biometry and Mendelism and (ii) the claim that it arose from work primarily done in the late 1930s and 1940s by naturalists rather than theoretical population and classical experimental geneticists.

  7. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope.

    PubMed

    Abellan, Patricia; Parent, Lucas R; Al Hasan, Naila; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M; Evans, James E; Browning, Nigel D

    2016-02-16

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

  8. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck

    PubMed Central

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-01-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level. PMID:21841170

  9. Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride)

    USDA-ARS?s Scientific Manuscript database

    In this work, for the first time, a castor oil derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC). The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (...

  10. Synthesis of Novel Isochromen-1-one analogues of Etodolac

    NASA Astrophysics Data System (ADS)

    Napoleon, A. A.; Sharma, Vijay; Aggile, Kadirappa

    2017-11-01

    In the present work, anti-inflammatory drug based novel isochromen-1-one, their thio and N-methylated analogues were synthesized from the etodolac bulk drug, 1. All the synthesized compounds were purified and successfully characterized by FT-IR, 1H NMR, 13C NMR and Mass spectroscopy. All the derivatives procured are with remarkable yields from 67-72%.

  11. Application of the riverine ecosystem synthesis (RES) and the functional process zone (FPZ) approach to EPA environmental mission tasks for rivers

    EPA Science Inventory

    The shift to watershed management of rivers from a more reach-based approach has had far-reaching implications for the way we characterize and classify rivers and then use this information to understand and manage biodiversity, ecological functions, and ecosystem services in rive...

  12. Tung oil-based unsaturated co-ester macromonomer for thermosetting polymers: Synergetic synthesis and copolymerization with styrene

    USDA-ARS?s Scientific Manuscript database

    A novel unsaturated co-ester (co-UE) macromonomer containing both maleates and acrylates was synthesized from tung oil (TO) and its chemical structure was characterized by FT-IR, 1H-NMR, 13C-NMR, and gel permeation chromatography (GPC). The monomer was synthesized via a new synergetic modification o...

  13. Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles.

    PubMed

    Kumar, Sushil; Kishan, Ram; Kumar, Pramod; Pachisia, Sanya; Gupta, Rajeev

    2018-02-19

    This work presents the synthesis and characterization of two palladium-based fluorescent macrocycles offering hydrogen-bonding cavities of contrasting dimensions. Both palladium macrocycles function as chemosensors for the detection of nitroaromatics, whereas the larger macrocycle not only illustrates nanomolar detection of picric acid but also transports its significant amount from an aqueous to an organic phase.

  14. Synthesis, spectroscopic characterization, and antibacterial evaluation of new Schiff bases bearing benzimidazole moiety

    NASA Astrophysics Data System (ADS)

    Redayan, Muayed Ahmed; Salih Hussein, Maha; Tark lafta, Ashraf

    2018-05-01

    The present work comprise synthesis of new derivatives for Schiff bases bearing benzimidazole ring. Compounds 1(a-d) were prepared by reaction of o-pheneylenediamine with a various of amino acids (glycine, alanine, phenyl alanine and tyrosine) in the presence 6N HCl to yielded derivatives of benzimidazole compounds containing free –NH2 group. Then these compounds used to prepare different Schiff bases through reaction with various of aromatic aldehydes. The chemical structure of synthesized compounds were confirmed by FTIR,1H,13C-NMR, and 13C-NMR dept135 spectroscopy. Some selected compounds were evaluated in vitro for their antibacterial activity against two types of Gram-positive bacteria namely (Staphylococcous aureus, Bacillus subtilis) and Gram-negative bacteria namely (Pseudomonas aeruginosa, Escherichia coli). Most of the results of the antibacterial activity of these compounds were good when compared with the standard antibiotic ampicillin and ciprofloxacin.

  15. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites

    PubMed Central

    Ślosarczyk, Agnieszka

    2017-01-01

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future. PMID:28336876

  16. Synthesis and structural characterization of some trisulfide analoges of thiouracil-based antithyroid drugs

    NASA Astrophysics Data System (ADS)

    Bhabak, Krishna P.; Bhowmick, Debasish

    2012-08-01

    Thiourea-based antithyroid drugs are effectively used for the treatment of hyperthyroidism. In this paper, we describe the synthesis of new trisulfides (11-12) from the commonly used thiourea-based antithyroid drugs such as 6-n-propyl-2-thiouracil (PTU) and 6-methyl-2-thiouracil (MTU) in the reaction with I2/KI system. Structural analysis by single crystal X-ray diffraction studies revealed the stabilization of trisulfides by a lactam-lactim tautomerism facilitating effective intramolecular as well as intermolecular non-covalent interactions. Although the structures of both trisulfides were found to be quite similar, a notable difference in the intermolecular interactions was observed between compounds 11 and 12 leading to different structural patterns. Structural stabilization of these trisulfides by tautomerism followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule.

  17. Carbon Nanotube based Nanotechnolgy

    NASA Astrophysics Data System (ADS)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  18. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites.

    PubMed

    Ślosarczyk, Agnieszka

    2017-02-16

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future.

  19. Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae.

    PubMed

    Shetty, K

    1997-09-01

    Phytochemicals from herbs and fermented legumes are excellent dietary sources of phenolic metabolites. These phenolics have importance not only as food preservatives but increasingly have therapeutic and pharmaceutical applications. The long-term research objecitves of the food biotechnology program at the University of Massachusetts are to elucidate the molecular and physiological mechanisms associated with synthesis of important health-related, therapeutic phenolic metabolites in food-related plants and fermented plant foods. Current efforts focus on elucidation of the role of the proline-linked pentose phosphate pathway in regulating the synthesis of anti-inflammatory compound, rosmarinic acid (RA). Specific aims of the current research efforts are: (i) To develop novel tissue culture-based selection techniques to isolate high RA-producing, shoot-based clonal lines from genetically heterogeneous, cross-pollinating species in the family Lamiaceae; (ii) To target genetically uniform, regenerated shoot-based clonal lines for: (a) preliminary characterization of key enzymes associated with the pentose phosphate pathway and linked to RA synthesis; (b) development of genetic transformation techniques for subsequent engineering of metabolic pathways associated with RA synthesis. These research objectives have substantial implications for harnessing the genetic and biochemical potential of genetically heterogeneous, food-related medicinal plant species. The success of this research also provides novel methods and strategies to gain access to metabolic pathways of pharmaceutically important metabolites from ginger, curcuma, chili peppers, melon or other food-related species with novel phenolics.

  20. Synthesis and Characterization of Processable Polyimides with Enhanced Thermal Stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    The following is a summary report of the research carried out under NASA Grant NAG-1-448. The work was divided into four major areas: 1) Enhanced polyimide processing through the use of reactive plasticizers 2) Development of processable polyhenylquinoxalines 3) Synthesis and characterization of perfluorovinylether-terminated imide oligomers and 4) Fluorosilicones containing perfuorocyclobutane rings.

  1. Synthesis and characterization of breast-phantom-based gelatine-glutaraldehyde-TiO2 as a test material for the application of breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ukhrowiyah, Nuril; Setyaningsih, Novi; Hikmawati, Dyah; Yasin, Moh

    2017-05-01

    Synthesis of breast-phantom-based on gelatine-glutaraldehyde-TiO2 as testing material of breast cancer diagnosis using Near Infrared-Diffuse Optical Tomography (NIR-DOT) is presented. Glutaraldehyde (GA) is added to obtain optimum breast phantom which has same elasticity modulus with mammae. First, synthesis is conducted by mixing gelatine with various amounts of 1 g, 2 g and 3 g with saline solution on 40° C temperature for 30 minutes until they become homogenous. Next, GA with concentration of 0.5 and 1.0% is added. The characterization includes FTIR test, physical test, and mechanical test used to identify group of gelatine’s functions. Elasticity modulus of breast phantom of gelatine composition 2 g and 0.5% GA is obtained at 53.46 kPA which is the approximation of mammae culture elasticity. This composition is chosen to synthesise the next step. In the second step, TiO2 is added with variation of 0.01 g, 0.015 g, 0.02 g, 0.025 g, and 0,03 g. With this variation, it is aimed to get a breast phantom providing image with optimum absorption. The test of this material uses Differential Scanning Calorimetry (DSC), homogeneity test, and analysis of coefficient absorption. The result shows the sample has a good thermal property in the range of 40 - 70° C with a good homogeneity and absorption coefficient of 0.4 mm-1.

  2. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  3. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.

    PubMed

    Calzolai, Luigi; Gilliland, Douglas; Garcìa, César Pascual; Rossi, François

    2011-07-08

    We show that using asymmetric flow-field-flow fractionation and UV-vis detector it is possible to separate, characterize, and quantify the correct number size distribution of gold nanoparticle (AuNP) mixtures of various sizes in the 5-60 nm range for which simple dynamic light scattering measurements give misleading information. The size of the collected nanoparticles fractions can be determined both in solution and in the solid state, and their surface chemistry characterized by NMR. This method will find widespread applications both in the process of "size purification" after the synthesis of AuNP and in the identification and characterization of gold-based nanomaterials in consumer products. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of barium hexaferrite with manganese (Mn) doping material as anti-radar

    NASA Astrophysics Data System (ADS)

    Susilawati, Doyan, Aris; Khalilurrahman

    2017-01-01

    Have been successfully synthesized barium powder doping Manganese hexaferrite with the expected potential as anti-radar material. Synthesis was done by using the co-precipitation method, the variation of the variable x concentrations used were 0; 0.2; 0.4; and 0.6 and calcined at temperatures of 400, 600 and 800°C. Characterization powders of hexaferrite have used XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), LCR (inductance, capacitance, and resistance) meter, and VSM (Vibrating Sample Magnetometer). The higher the concentration and temperature of calcinations given affect the color of the powder. The test results using XRD indicates that it has formed barium hexaferrite phase with a hexagonal crystal structure. Tests using SEM showed that all the constituent elements barium powder hexaferrite by doping Manganese powders have been spread evenly. XRD test results were confirmed by a test using a TEM showing the crystal structure and the powder was sized nano particles. The results from the LCR meter showed that the barium powder hexaferrite by doping Manganese that has been synthesized classified in semiconductor materials. The result from VSM showed that the value of coercivity magnetic powder doped barium hexaferrite Manganese is smaller when compared with barium hexaferrite without doping and belong to the soft magnetic. Based on the results of the synthesis and characterization, we can conclude that the barium powder heksaferrite by doping Manganese potential as a material anti-radar.

  5. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekshmy, R. K., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com; Thara, G. S., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all themore » complexes.« less

  6. Synthesis, characterization and hydrolytic degradation study of polyetheresteramide copolymers based on epsilon-caprolactone, 6-aminocaproic acid, and poly(ethylene glycol).

    PubMed

    Liu, CaiBing; Qian, ZhiYong; Jia, WenJuan; Huang, MeiJuan; Chao, GuoTao; Gong, ChangYang; Deng, HongXin; Wen, YanJun; Yang, JinLiang; Gou, MaLing; Tu, MingJing

    2007-10-01

    In this paper, a new kind of biodegradable aliphatic polyetheresteramide copolymers (PEEA) based on epsilon-caprolactone, 6-aminocaproic acid, and poly(ethylene glycol) (PEG) were synthesized by melt polymerization method. The obtained copolymers were characterized by 1H-NMR. The thermal properties of PEEA copolymers were studied by DSC and TGA/DTA under nitrogen atmosphere. The water absorption and hydrolytic degradation behavior was also studied in detail. With the increase in PEG content or the decrease in caprolactone content, the water absorption of the copolymers increased accordingly. For the hydrolytic degradation behavior, with the increase in PEG content or caprolactone content, the degradation rate increased then.

  7. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    PubMed Central

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-01-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817

  8. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-02-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.

  9. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip

    2016-02-15

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).

  10. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  11. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties

    PubMed Central

    Puanglek, Sakarin; Kimura, Satoshi; Enomoto-Rogers, Yukiko; Kabe, Taizo; Yoshida, Makoto; Wada, Masahisa; Iwata, Tadahisa

    2016-01-01

    Bio-based polymer is considered as one of potentially renewable materials to reduce the consumption of petroleum resources. We report herein on the one-pot synthesis and development of unnatural-type bio-based polysaccharide, α-1,3-glucan. The synthesis can be achieved by in vitro enzymatic polymerization with GtfJ enzyme, one type of glucosyltransferase, cloned from Streptococcus salivarius ATCC 25975 utilizing sucrose, a renewable feedstock, as a glucose monomer source, via environmentally friendly one-pot water-based reaction. The structure of α-1,3-glucan is completely linear without branches with weight-average molecular weight (Mw) of 700 kDa. Furthermore, acetate and propionate esters of α-1,3-glucan were synthesized and characterized. Interestingly, α-1,3-glucan acetate showed a comparatively high melting temperature at 339 °C, higher than that of commercially available thermoplastics such as PET (265 °C) and Nylon 6 (220 °C). Thus, the discovery of crystalline α-1,3-glucan esters without branches with high thermal stability and melting temperature opens the gate for further researches in the application of thermoplastic materials. PMID:27469976

  12. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties

    NASA Astrophysics Data System (ADS)

    Puanglek, Sakarin; Kimura, Satoshi; Enomoto-Rogers, Yukiko; Kabe, Taizo; Yoshida, Makoto; Wada, Masahisa; Iwata, Tadahisa

    2016-07-01

    Bio-based polymer is considered as one of potentially renewable materials to reduce the consumption of petroleum resources. We report herein on the one-pot synthesis and development of unnatural-type bio-based polysaccharide, α-1,3-glucan. The synthesis can be achieved by in vitro enzymatic polymerization with GtfJ enzyme, one type of glucosyltransferase, cloned from Streptococcus salivarius ATCC 25975 utilizing sucrose, a renewable feedstock, as a glucose monomer source, via environmentally friendly one-pot water-based reaction. The structure of α-1,3-glucan is completely linear without branches with weight-average molecular weight (Mw) of 700 kDa. Furthermore, acetate and propionate esters of α-1,3-glucan were synthesized and characterized. Interestingly, α-1,3-glucan acetate showed a comparatively high melting temperature at 339 °C, higher than that of commercially available thermoplastics such as PET (265 °C) and Nylon 6 (220 °C). Thus, the discovery of crystalline α-1,3-glucan esters without branches with high thermal stability and melting temperature opens the gate for further researches in the application of thermoplastic materials.

  13. Synthesis and characterization of polypyrrole grafted chitin

    NASA Astrophysics Data System (ADS)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  14. Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties of peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free, zinc(II), copper(II) and cobalt(II) phthalocyanines

    NASA Astrophysics Data System (ADS)

    Demirbaş, Ümit; Akçay, Hakkı Türker; Koca, Atıf; Kantekin, Halit

    2017-08-01

    In this study novel peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free phthalocyanine (4) and its zinc(II) (5), copper(II) (6) and cobalt(II) (7) derivatives were synthesized and characterized by a combination of various spectroscopic techniques such as FT-IR, 1H-NMR, UV-vis and MALDI-TOF mass. Electrochemical characterizations of metallo-phthalocyanine complexes were conducted by voltammetric and in situ spectroelectrochemical measurements. CoIIPc went [CoIIPc-2]/[CoIPc-2]1-, [CoIPc-2]1-/[CoIPc-3]2-, [CoIPc-3]2-/[CoIPc-4]3- and [CoIIPc-2]/[CoIIPc-2]1+ reduction and oxidation processes respectively. Differently ZnIIPc only showed four ligand-based reductions and two ligand based oxidation processes.

  15. Development of an enzyme free glucose sensor based on copper oxide-graphene composite by using green reducing agent ascorbic acid

    NASA Astrophysics Data System (ADS)

    Palve, Yogesh Pandit; Jha, Neetu

    2018-05-01

    In this research work we have developed high sensitive and selective glucose sensor based on copper oxide-graphene composite which is prepared by green synthesis method and used for nonenzymatic glucose sensor. In present paper we report that present method highly selective, simple, efficient, accurate, ecofriendly, less toxic. The prepared composite were characterized by material characterization like SEM, XRD and also by electrochemical characterization like CV, chronoamperometry represents that copper oxide-graphene shows excellent electrocatalytic activity towards glucose, exhibiting a good sensitivity of 103.84 µA mM-1 cm-2, a fast response time 2s, a low detection limit 0.00033µM and linear range from 10 µM-3000 µM. The present sensor can successfully apply for determination of glucose concentration in human blood sample.

  16. Structural and Biochemical Characterization of Chlamydia trachomatis Hypothetical Protein CT263 Supports That Menaquinone Synthesis Occurs through the Futalosine Pathway*

    PubMed Central

    Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott

    2014-01-01

    The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688

  17. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    NASA Astrophysics Data System (ADS)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  18. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2012-06-01

    resolution tunneling electron microscopy (HR-TEM). 2.4 DSSC Assembly Annealed TiO2 nanoparticle photoanodes were placed into 10 mL each of the blackberry ...resolution tunneling electron microscopy, and ultraviolet-visible spectroscopy. After characterization, the NPs were found to vary in shape but had... Blackberry Anthocyanin Extraction Procedure ...............................................................3 2.3 Au Nanoparticle Synthesis

  19. The Chemistry of Formazan Dyes: Synthesis and Characterization of a Stable Verdazyl Radical and a Related Boron-Containing Heterocycle

    ERIC Educational Resources Information Center

    Berry, David E.; Hicks, Robin G.; Gilroy, Joe B.

    2009-01-01

    This experiment describes the synthesis and characterization of a formazan dye, and its subsequent conversion to a stable verdazyl radical and a boron-nitrogen heterocycle (boratatetrazine). Each of these compounds is intensely colored and is prepared and handled under aerobic conditions, which often surprises students as free radicals are…

  20. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    ERIC Educational Resources Information Center

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  1. Scaffolding Students' Skill Development by First Introducing Advanced Techniques through the Synthesis and [superscript 15]N NMR Analysis of Cinnamamides

    ERIC Educational Resources Information Center

    Shuldburg, Sara; Carroll, Jennifer

    2017-01-01

    An advanced undergraduate experiment involving the synthesis and characterization of a series of six unique cinnamamides is described. This experiment allows for a progressive mastery of skills students need to tackle more complex NMR structure elucidation problems. Characterization of the products involves IR spectroscopy, GCMS, and proton,…

  2. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  3. Synthesis and characterization of 3-ketohexadecanoic acid-1-14-C, DL-3-hydroxyhexadecanoic acid-1-14-C, and trans-2-hexadecenoic acid-1-14-C.

    PubMed

    Jones, J A; Blecher, M

    1966-05-01

    The chemical synthesis and characterization of three intermediates in the Beta oxidation of palmitic acid-1-(14)C by rat liver mitochondria, namely, 3-ketohexadecanoic acid-1-(14)C, DL-3-hydroxyhexadecanoic acid-1-(14)C, and trans-2-hexadecenoic acid-1-(14)C, are described.

  4. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Riley, Brian J.

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii)more » development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.« less

  5. Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon.

    PubMed

    Dempsey, Megan E; Marble, Hetal D; Shen, Tun-Li; Fawzi, Nicolas L; Darling, Eric M

    2018-02-21

    Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine ( 19 F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19 F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19 F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19 F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.

  6. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    PubMed

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  7. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  8. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  9. Isobutylene Dimerization: A Discovery-Based Exploration of Mechanism and Regioselectivity by NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Schuster, Mariah L.; Peterson, Karl P.; Stoffregen, Stacey A.

    2018-01-01

    This two-period undergraduate laboratory experiment involves the synthesis of a mixture of isomeric unknowns, isolation of the mixture by means of distillation, and characterization of the two products primarily by NMR spectroscopy (1D and 2D) supported with IR spectroscopy and GC-MS techniques. Subsequent calculation and examination of the…

  10. Facile preparation of oxazole-4-carboxylates and 4-ketones from aldehydes using 3-oxazoline-4-carboxylates as intermediates.

    PubMed

    Murai, Kenichi; Takahara, Yusuke; Matsushita, Tomoyo; Komatsu, Hideyuki; Fujioka, Hiromichi

    2010-08-06

    A novel 2-step synthesis of oxazole-4-carboxylates from aldehydes was developed, which is characterized by the utilization of 3-oxazoline-4-carboxylates as synthetic intermediates. The facile preparation of 4-keto-oxazole derivatives from 3-oxazoline-4-carboxylates based on their interesting reactivity toward Grignard reagents is also described.

  11. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  12. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities

    NASA Astrophysics Data System (ADS)

    Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.

    2018-01-01

    A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.

  13. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.

  14. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  15. Synthesis, spectroscopic characterization and pH dependent photometric and electrochemical fate of Schiff bases.

    PubMed

    Rauf, Abdur; Shah, Afzal; Abbas, Saghir; Rana, Usman Ali; Khan, Salah Ud-Din; Ali, Saqib; Zia-Ur-Rehman; Qureshi, Rumana; Kraatz, Heinz-Bernhard; Belanger-Gariepy, Francine

    2015-03-05

    A new Schiff base, 1-((4-bromophenylimino) methyl) naphthalen-2-ol (BPIMN) was successfully synthesized and characterized by (1)H NMR, (13)C NMR, FTIR and UV-Vis spectroscopy. The results were compared with a structurally related Schiff base, 1-((4-chlorophenylimino) methyl) naphthalen-2-ol (CPIMN). The photometric and electrochemical fate of BPIMN and CPIMN was investigated in a wide pH range. The experimental findings were supported by quantum mechanical approach. The redox mechanistic pathways were proposed on the basis of results obtained electrochemical techniques. Moreover, pH dependent UV-Vis spectroscopy of BPIMN and CPIMN was carried out and the appearance of isosbestic points indicated the existence of these compounds in different tautomeric forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    PubMed

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  17. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-01

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

  18. Synthesis of nanostructured marcasite FeS2 for energy storage applications

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Sharma, Pooja D.; Thakur, Anup; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    The synthesis of marcasite FeS2 is of great interest as this area is seldom studied due to its sophisticated synthesis methods. In fulfillment of growing energy demands, there is need of cost effective alternates for energy storage devices. Nanostructured marcasite iron disulfide (FeS2) is a promising candidate as anode material for energy storage devices. FeS2 exist in many phases out of which marcasite and pyrite are best suitable for energy storage applications. Purity of the phase is a big challenge for its application oriented use. Pure marcasite (FeS2) has been synthesized by low cost, environmentally friendly hydrothermal route. The synthesized material has been characterized by X-ray Diffraction (XRD). Cyclic voltammetry results show the significant electrochemical performance of marcasite. This work purposes a vision to develop marcasite based electrode material for energy storage devices.

  19. Synthesis and Application of Graphene Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  20. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Science.gov Websites

    Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using

  1. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  2. Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red.

    PubMed

    Abdollahi, Nasrin; Masoomi, Mohammad Yaser; Morsali, Ali; Junk, Peter C; Wang, Jun

    2018-07-01

    A 3-D Zn(II) based metal-organic framework (MOF) of [Zn 4 (oba) 3 (DMF) 2 ] was synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H 2 oba) via sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography, scanning electron microscopy, and X-ray powder diffraction were used to characterize these MOF samples. The effect of different times of irradiation and various concentrations of primary reagents were experimented for obtaining monotonous morphology. The results show that uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the concentration. N 2 adsorption was applied to examine the effect of synthesis method on porosity of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency of this MOF in removal of the dye pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging.

    PubMed

    Pan, Dipanjan; Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A; Wang, Lihong V; Lanza, Gregory M

    2010-12-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging. Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardiovascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2-4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR) (approximately 130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro.

  4. A Facile Synthesis of Novel Self-Assembled Gold Nanorods Designed for Near-Infrared Imaging

    PubMed Central

    Pramanik, Manojit; Senpan, Angana; Wickline, Samuel A.; Lanza, Gregory M.

    2011-01-01

    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical Changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardio-vascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2–4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR)(~130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro. PMID:21121304

  5. Synthesis and characterization of magnetic of Ni/ABS nanocomposites by electrical explosion of wire in liquid and solution blending methods

    NASA Astrophysics Data System (ADS)

    Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun

    2017-03-01

    Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.

  6. Synthesis, characterization, and application of two Al(OR(F))3 Lewis superacids.

    PubMed

    Kraft, Anne; Trapp, Nils; Himmel, Daniel; Böhrer, Hannes; Schlüter, Peter; Scherer, Harald; Krossing, Ingo

    2012-07-23

    We report herein the synthesis and full characterization of the donor-free Lewis superacids Al(OR(F))(3) with OR(F) = OC(CF(3))(3) (1) and OC(C(5)F(10))C(6)F(5) (2), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2-F(2)C(6)H(4), and SO(2), as well as the internal C-F activation pathway of 1 leading to Al(2)(F)(OR(F))(5) (4) and trimeric [FAl(OR(F))(2)](3) (5, OR(F) = OC(CF(3))(3)). Insights have been gained from NMR studies, single-crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl-Al(OR(F))(3)](-) anions, for example, by hydride or alkyl abstraction reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  8. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236

  9. Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Carsten; Luerssen, Bjoern; Lucht, Brett; Janek, Juergen

    2018-04-01

    This paper presents the synthesis and detailed characterization of two polyphosphazene based polymers, including different cyclic ether side groups. The final polymers were obtained by a well-known method employing a living cationic polymerization and subsequent nucleophilic substitution. The synthesized polymers Poly [(1,3-dioxane-5-oxy) (1,3-dioxolane-4-methoxy)phosphazene] (DOPP) and Poly[bis(2-Tetrahydro-3-furanoxy)phosphazene] (THFPP) were mixed with varied amounts of lithium bis(trifluoromethane)sulfonamide (LiTFSI) and the interactions between the salt and the polymer chains were studied by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) measurements. Electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) and direct current polarization in the temperature range of 20-60 °C. These measurements were utilized to calculate the lithium transference number (t+), the lithium conductivity (σ) and its activation energy in order to elucidate the lithium transport behavior. Relatively high lithium transference numbers of 0.6 (DOPP) and 0.7 (THFPP) at 60 °C are found and reveal maximum lithium conductivities of 2.8·10-6 Sṡcm-1 and 9.0·10-7 Sṡcm-1 for DOPP and THFPP at 60 °C, respectively.

  10. Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract.

    PubMed

    Doddapaneni, Suman Joshi D S; Amgoth, Chander; Kalle, Arunasree M; Suryadevara, Surya Narayana; Alapati, Krishna Satya

    2018-03-01

    The synthesis and characterization of an aggregate of AgNPs coated with plant extract (PE) from Alphonsea sclerocarpa and its significant antimicrobial activity and inhibition on K562 (blood cancer) cells have been appended in the article. Synthesis of aggregate [(AgNPs)-(PE)] has been followed by a facile eco-friendly approach without using any harmful chemicals. The morphology of an aggregate [(AgNPs)-(PE)] was confirmed by TEM and SEM microscopic characterizations. Properties like solid state, the presence of functional groups, and elemental composition have been characterized through the XRD, FTIR, and EDAX. The biocompatibility of synthesized aggregate of [(AgNPs)-(PE)] was confirmed by the MTT assay. An in vitro cell (HEK293)-based studies were performed for the biocompatibility tests and it is found that the aggregate [(AgNPs)-(PE)] is not harmful to normal/healthy cells. Even though A. sclerocarpa show the antimicrobial (antibacterial and antifungal) activity, it has been further enhanced with the developed aggregate of [(AgNPs)-(PE)]. Furthermore, it has been extended to examine the cellular inhibition on K562 cells and obtained > 75% cell inhibition for 24 h treated cells.

  11. Synthesis of hexavalent molybdenum formo- and aceto-hydroxamates and deferoxamine via liquid-liquid metal partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira

    We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less

  12. Synthesis, crystal structure and redox properties of dihydropyrazole-bridged ferrocene-based derivatives

    NASA Astrophysics Data System (ADS)

    Li, Heng-Dong; Ma, Zai-He; Yang, Kun; Xie, Li-Li; Yuan, Yao-Feng

    2012-09-01

    Dihydropyrazole-bridged ferrocene-based derivatives were prepared by corresponding chalcones with hydrazine hydrate, then acylation with 3-(ethoxycarbonyl)propionyl chloride directly in high yields and purity. All of these compounds were characterized by MS, IR, 1H NMR, 13C NMR and elemental analysis. The relationship between the structure and redox properties was investigated based on the results of single crystal X-ray structure determinations and cyclic voltammetry. The mechanism of the electron transfer for representative compound 4b was verified by density functional theory (DFT) calculations.

  13. One-pot three-component Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines: Synthesis, characterization, aggregation behavior and antibacterial activity.

    PubMed

    Medyouni, Rawdha; Elgabsi, Wissal; Naouali, Olfa; Romerosa, Antonio; Sulaiman Al-Ayed, Abdullah; Baklouti, Lasaad; Hamdi, Naceur

    2016-10-05

    The synthesis of a novel phthalonitrile derivative with pyridine-2-thiol and 2,4,6-trimethylphenylamine substituents functionalized groups and its peripherally tetrasubstituted cobalt phthalocyanine and cationic phthalocyanines complexes were reported. The aggregation investigations carried out in different concentrations indicate that Co Phthalocyanines compounds 3,4 do not have any aggregation behavior for the concentration range of 6×10(-4)-14×10(-6)M in DMSO. The ion binding properties of Co Phthalocyanines compounds 3,4 show the formation of stable complex with Co(2+). In addition 3,4-Dihydropyrimidin-2(1H)-one derivatives were synthesized by modified Biginelli cyclocondensation reaction catalyzed by MPc as Lewis base. The structures of the synthesized compounds have been successfully characterized by the spectroscopic methods (IR, (1)H NMR, (13C)NMR, UV-Vis, mass spectrometry, elemental analysis and NMR 2D). The influence of substrate/catalyst ratio, solvent was also investigated to find optimal reaction on this synthesis for getting the highest conversion. Different parameters were examined for finding optimal conditions of catalysis. In addition; the compounds 3-11 were investigated for antimicrobial activity. Most of them exhibited important antimicrobial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phyto-mediated metallic nano-architectures via Melissa officinalis L.: synthesis, characterization and biological properties.

    PubMed

    Fierascu, Irina; Georgiev, Milen I; Ortan, Alina; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Ionescu, Daniela; Sutan, Anca; Brinzan, Alexandru; Ditu, Lia Mara

    2017-09-29

    The development of methods for obtaining new materials with antimicrobial properties, based on green chemistry principles has been a target of research over the past few years. The present paper describes the phyto-mediated synthesis of metallic nano-architectures (gold and silver) via an ethanolic extract of Melissa officinalis L. (obtained by accelerated solvent extraction). Different analytic methods were applied for the evaluation of the extract composition, as well as for the characterization of the phyto-synthesized materials. The cytogenotoxicity of the synthesized materials was evaluated by Allium cepa assay, while the antimicrobial activity was examined by applying both qualitative and quantitative methods. The results demonstrate the synthesis of silver nanoparticles (average diameter 13 nm) and gold nanoparticles (diameter of ca. 10 nm); the bi-metallic nanoparticles proved to have a core-shell flower-like structure, composed of smaller particles (ca. 8 nm). The Ag nanoparticles were found not active on nuclear DNA damage. The Au nanoparticles appeared nucleoprotective, but were aggressive in generating clastogenic aberrations in A. cepa root meristematic cells. Results of the antimicrobial assays show that silver nanoparticles were active against most of the tested strains, as the lowest MIC value being obtained against B. cereus (approx. 0.0015 mM).

  15. Nanoporous carbon for electric double layer supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Garcia, Betzaida Batalla

    The subject of this study is the synthesis, characterization, chemical composition, and tuning of the porous structure of organic and carbon cryogels for electrochemical applications, particularly supercapacitors. Alternate methods such as an improved synthesis using a reactive catalyst, surface chemical modifications and an electrochemical characterization that takes into account the pore morphology are discussed. Impedance spectroscopy, complex capacitance and power were used to identify key energy losses in the capacitor; an optimal pore size of ca. 2 nm and other features were found. Also, synthesis modification and surface chemistry were used to improve the chemistry and structure of the electrodes reducing metal impurities and removing detrimental functional groups. First, carbon cryogels produced without metal ion impurities were synthesized using hexamine (an amine base catalyst), resorcinol, furaldehyde and solvent mixtures. These metal ion free amine-catalyzed gels also produced strong cryogels that can be machined. The carbon cryogels produced using the amine catalyst have cycle stability performances that exceed that of commercial samples. Carbon cryogels were also doped using ammonia borane to promote boron and nitrogen esters and improved the capacitance up to 30% due to faradaic reactions. Furthermore, nitrogen esters were also introduced into the carbon (via pyrolysis of hexamine) with yields of up to 14 at%. These new esters have low content of oxygen and increased the capacitance up to 50%.

  16. New hybrid composites for photodynamic therapy: synthesis, characterization and biological study

    NASA Astrophysics Data System (ADS)

    Kutsevol, N.; Naumenko, A.; Harahuts, Yu.; Chumachenko, V.; Shton, I.; Shishko, E.; Lukianova, N.; Chekhun, V.

    2018-04-01

    Photodynamic therapy is a procedure that uses a photosensitizing drug to apply light therapy selectively to target cancer treatment. This study is focused on a synthesis and characterization of a new hybrid nanocomposites based on the branched copolymers dextran-polyacrylamide in nonionic, D-g-PAA and anionic D-g-PAA(PE) form, with incorporated gold nanoparticles (AuNPs) and photosensitizer chlorin e6 (Ce6) simultaneously. Double polymer/AuNPs and trial polymer/AuNPs/Ce6 were studied by TEM, UV-visible, SOSG fluorescence. It was found the drastic difference for absorbance for trial nanosystems synthesized in nonionic and anionic polymers matrices. It was established that for the nanocomposite synthesised in anionic polymer matrix with the Ce6:Au mass ratio 1:10 generation of singlet oxygen (1O2) was quite close to that for free Ce6. The study of ability of this nanosystem to sensitize MT-4 cells to photodynamic damage has shown that the nanocomposite, that contained AuNPs during the synthesis of which HAuCl4:NaBH4 mass ratio was 1:2 showed higher photodynamic activity, than Ce6 itself. Nanosystem D70-g-PAA(PE)/AuNPs/Ce6 can be recommended to experiment in vivo.

  17. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Majeed Khan, M. A.; Siddiqui, M. K. J.; AlSalhi, Mohamad S.; Alrokayan, Salman A.

    2011-04-01

    Although green synthesis of silver nanoparticles (Ag NPs) by various plants and microorganisms has been reported, the potential of plants as biological materials for the synthesis of nanoparticles and their compatibility to biological systems is yet to be fully explored. In this study, we report a simple green method for the synthesis of Ag NPs using garlic clove extract as a reducing and stabilizing agent. In addition to green synthesis, biological response of Ag NPs in human lung epithelial A549 cells was also assessed. Ag NPs were rapidly synthesized using garlic clove extract and the formation of nanoparticles was observed within 30 min. The green synthesized Ag NPs were characterized using UV-vis spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray energy-dispersive spectroscopy (EDX) and dynamic light scattering (DLS). Characterization data demonstrated that the particles were crystalline in nature and spherical shaped with an average diameter of 12 nm. Measurements of cell viability, cell membrane integrity and intracellular production of reactive oxygen species have shown that the green synthesized Ag NPs were nontoxic to human lung epithelial A549 cells. This study demonstrated a simple, cost-effective and environmentally benign synthesis of Ag NPs with excellent biocompatibility to human lung epithelial A549 cells. This preliminary in vitro investigation needs to be followed up by future studies with various biological systems.

  18. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy

    PubMed Central

    Denis, Tyler GSt; Hamblin, Michael R

    2013-01-01

    Photodynamic therapy (PDT) was discovered in 1900 by Raab, and has since emerged as a promising tool for treating diseases characterized by unwanted cells or hyperproliferating tissue (e.g., cancer or infectious disease). PDT consists of the light excitation of a photosensitizer (PS) in the presence of O2 to yield highly reactive oxygen species. In recent years, PDT has been improved by the synthesis of targeted bioconjugates between monoclonal antibodies and PS, and by investigating PS biodistribution and PD. Here, we provide a comprehensive review of major developments in PS-immunoconjugate-based PDT and the bioanalysis of these agents, with a specific emphasis on anticancer and antimicrobial PDT. PMID:23641699

  19. Synthesis, Spectral and Photophysical Properties of Anthracene Substituted Phthalocyanines; A Study as Polyurethane Electrospun Nanofibers.

    PubMed

    Ku, Kyo-Sun; Kumar, Rangaraju Satish; Son, Young-A

    2018-03-01

    We have designed and synthesized novel symmetrical anthracene substituted zinc(II), copper(II), cobalt(II) and nickel(II) phthalocyanines (PC1, PC2, PC3 and PC4) in this work. For this synthesis, we started from base-catalysed aromatic displacement reaction of 4-nitrophthalonitrile with 9-hydroxyanthracene. The resulting four phthalocyanines (PCs) have been fully characterized by a series of spectroscopic methods including electronic absorption, elemental analysis, MALDI-TOF mass, and IR spectroscopy. The aggregation behavior of these PCs was investigated in different concentrations of chloroform solution. Further thermal stability also investigated by TG analysis. Finally we successfully made phthalocyanine (PC1) blended polyurethane electrospun (ES) nanofibers.

  20. Development and characterization of lubricants for use near nuclear reactors in space vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.

    1972-01-01

    The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.

  1. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru

    NASA Astrophysics Data System (ADS)

    Bai, Lei

    2018-03-01

    Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.

  2. Low-cost synthesis and physical characterization of thieno[3,4-c]pyrrole-4,6-dione-based polymers.

    PubMed

    Berrouard, Philippe; Dufresne, Stéphane; Pron, Agnieszka; Veilleux, Justine; Leclerc, Mario

    2012-09-21

    The improved synthesis of thieno[3,4-c]pyrrole-4,6-dione (TPD) monomers, including Gewald thiophene ring formation, a Sandmeyer-type reaction, and neat condensation with an amine, is presented. This protocol enables faster, cheaper, and more efficient preparation of TPD units in comparison to traditional methods. Furthermore, a series of TPD homo- and pseudohomopolymers bearing various alkyl chains was synthesized via a direct heteroarylation polymerization (DHAP) procedure. UV-visible absorption and powder X-ray diffraction measurements revealed the relationship between the ratio of branched to linear alkyl chains and the optoelectronic properties of the polymers as well as their packing in the solid state.

  3. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    DTIC Science & Technology

    2017-08-14

    Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of...Specialty Separations” Oral Presentation during the 2014 Chemical Engineering Department Symposium (Key Note Speaker), University of Puerto Rico, Mayaguez...Leadership Award in the College of Engineering of the University of Puerto Rico, May, 2015. 3. Distinguished Professor of Chemical Engineering

  4. Facilitating Students' Review of the Chemistry of Nitrogen-Containing Heterocyclic Compounds and Their Characterization through Multistep Synthesis of Thieno[2,3-"b"]Pyridine Derivatives

    ERIC Educational Resources Information Center

    Liu, Hanlin; Zaplishnyy, Vladimir; Mikhaylichenko, Lana

    2016-01-01

    A multistep synthesis of thieno[2,3-"b"]pyridine derivatives is described that is suitable for the upper-level undergraduate organic laboratory. This experiment exposes students to various hands-on experimental techniques as well as methods of product characterization such as IR and [superscript 1]H NMR spectroscopy, and…

  5. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  6. Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn; Myers, Thomas; Clarke, Steven

    2017-06-01

    Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.

  7. Hydrogen Bonded Squaramide-Based Foldable Module Induces Both β- and α-Turns in Hairpin Structures of α-Peptides in Water.

    PubMed

    Martínez, Luís; Martorell, Gabriel; Sampedro, Ángel; Ballester, Pablo; Costa, Antoni; Rotger, Carmen

    2015-06-19

    A novel tertiary squaramido-based reverse-turn module SQ is reported, and its conformational properties are evaluated. This module is easily incorporated into a α-peptide sequence by conventional solid-phase peptide synthesis. The structure characterization of the hybrid squaramido-peptide 4 is described, showing that the turn segment induces the formation of hairpin structures in water through the formation of both αSQ- and βSQ-turns.

  8. Molecular diodes based on conjugated diblock co-oligomers.

    PubMed

    Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping

    2002-10-09

    This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.

  9. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Determan, Michael Duane

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less

  10. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import

    PubMed Central

    2013-01-01

    Background Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. Methods A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. Results We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. Conclusions This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages. PMID:23835114

  11. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import.

    PubMed

    Peterson, Nathan A; Anderson, Tavis K; Wu, Xiao-Jun; Yoshino, Timothy P

    2013-07-09

    Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.

  12. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing and run-time monitoring. Describing the behavior is characterized as a learning process in which general patterns can be easily characterized. The learning algorithm must choose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  13. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    NASA Technical Reports Server (NTRS)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  14. X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.

    PubMed

    Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader

    2018-04-01

    Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.

  15. Solution Synthesis of Atomically Precise Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Shekhirev, Mikhail; Sinitskii, Alexander

    2017-05-01

    Bottom-up fabrication of narrow strips of graphene, also known as graphene nanoribbons or GNRs, is an attractive way to open a bandgap in semimetallic graphene. In this chapter, we review recent progress in solution-based synthesis of GNRs with atomically precise structures. We discuss a variety of atomically precise GNRs and highlight theoretical and practical aspects of their structural design and solution synthesis. These GNRs are typically synthesized through a polymerization of rationally designed molecular precursors followed by a planarization through a cyclodehydrogenation reaction. We discuss various synthetic techniques for polymerization and planarization steps, possible approaches for chemical modification of GNRs, and compare the properties of GNRs that could be achieved by different synthetic methods. We also discuss the importance of the rational design of molecular precursors to avoid isomerization during the synthesis and achieve GNRs that have only one possible structure. Significant attention in this chapter is paid to the methods of material characterization of solution-synthesized GNRs. The chapter is concluded with the discussion of the most significant challenges in the field and the future outlook.

  16. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    PubMed Central

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  17. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies

    PubMed Central

    Pasupuleti, Visweswara Rao; Prasad, TNVKV; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Rahman, Ismail Ab; Gan, Siew Hua

    2013-01-01

    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries. PMID:24039419

  18. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

    PubMed

    Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua

    2013-01-01

    Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.

  19. Trends in high pressure developments for new perspectives

    NASA Astrophysics Data System (ADS)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  20. Synthesis and Characterization of the Nano-TiO2 Visible Light Photocatalysts: Vanadium Surface Doping Modification

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo

    2018-05-01

    A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.

  1. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less

  2. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  3. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    DOE PAGES

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; ...

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (R q = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide key information towards the design of architecturally tailored fluorinated polymers with desirable properties.« less

  4. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  5. A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2011-04-01

    We offer a perspective, accessible to both chemists and physicists, of recent developments in the synthesis and characterization of molecular magnetic materials based on rare-earths and nitronyl-nitroxide radicals. We show both the rationale of the synthetic strategies and the observed behaviors. We highlight the relevance of these findings for synthetic chemists, material scientists, and physicists.

  6. Synthesis and Characterization of Conducting Elastomers Based on Interpenetrated C60-Derived Polymer Networks

    DTIC Science & Technology

    1998-02-24

    conducting polyaniline layer . A processing technique was demonstrated for the fabrication of interpenetrating conductive polyaniline networks at the...and sihibits appreciable conductivity in the incorporated, doped polyaniline layer without deteriorating the elasticity and tensile strength of the... Layer Lee Y. Wang and Long Y. Chiang* Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan i Abstract: A synthetic

  7. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  8. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  9. Fabrication and characterization of optical sensors using metallic core-shell thin film nanoislands for ozone detection

    NASA Astrophysics Data System (ADS)

    Addanki, Satish; Nedumaran, D.

    2017-07-01

    Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.

  10. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-01

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.

  11. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  12. Synthesis, characterizations and catalytic activities of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Divya; Sharma, Vikash; Parmar, Sarita; Okram, Gunadhor Singh; Jain, Shubha

    2018-05-01

    We report the synthesis of CoFe2O4 nanoparticles (NPs) through a novel one-step coprecipitation method. These NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and Raman spectroscopy. These nano ferrites were successfully used for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and thiones. They can be easily recovered by simple filtration and their catalytic activity remains nearly unaltered even after 4 consecutive cycles, making them ecofriendly and widely applicable due to their efficiency, ease of handling, and cost effectiveness.

  13. Synthesis and characterization of Au incorporated Alq3 nanowires

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Bilal; Ahmad, Sultan; Parwaz, M.; Rahul, Khan, Zishan H.

    2018-05-01

    We report the synthesis and characterization of pure and Au incorporated Alq3 nanowires. These nanowires are synthesized using thermal vapor transport method. The luminescence intensity of Au incorporated Alq3 nanowires are recorded to be higher than that of pure Alq3 nanowires, which is found to increase with the increase in Au concentration. Fluorescence quenching is also observed when Au concentration is increased beyond the certain limit.

  14. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C. Richard; Wei, Bingqing; Cheng, Gary J.

    2014-05-01

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06444a

  15. Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation

    NASA Astrophysics Data System (ADS)

    Hutamaningtyas, Evangelin; Utari; Suharyana; Purnama, Budi; Wijayanta, Agung Tri

    2016-08-01

    The effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared via coprecipitation are discussed. The synthesis was conducted at temperatures of 75 °C, 85 °C and 95 °C. Fourier transform infrared spectroscopy characterization related to a stretching vibration at a wavenumber of 590 cm-1 indicated the formation of a CoFe2O4 metal oxide. In addition, powder X ray diffraction (XRD) characterization proved that the metal oxide was CoFe2O4. Crystallite sizes calculated using the Scherer formula at the strongest peak of the XRD spectra of the samples synthesized at 75 °C, 85 °C and 95 °C were 32 nm, 43 nm and 50.4 nm, respectively. Finally, the results of the vibrating sample magnetometer characterization showed that the saturation magnetization decreased with increasing synthesis temperature, which is related to the dominant preference of Co2+ over Fe3+ cations at the octahedral sites.

  16. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic materials which is very interesting for certain applications. Finally the boron atoms were used to form a Lewis acidic nanocrystal surface chemistry allowing for the creation of ligand-less silicon nanocrystal solutions. This represents an immense step towards an abundant, non-toxic alternative to Pb and Cd-based nanocrystal technologies. The lack of long ligand chains enables the production of dense films with excellent electrical conductivity. This was demonstrated by forming uniform nanocrystal thin-films using simple and inexpensive spray coating techniques.

  17. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  18. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Metallic multilayers at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, A.F.

    1994-11-01

    The development of multilayer structures has been driven by a wide range of commercial applications requiring enhanced material behaviors. Innovations in physical vapor deposition technologies, in particular magnetron sputtering, have enabled the synthesis of metallic-based structures with nanoscaled layer dimensions as small as one-to-two monolayers. Parameters used in the deposition process are paramount to the Formation of these small layer dimensions and the stability of the structure. Therefore, optimization of the desired material properties must be related to assessment of the actual microstructure. Characterization techniques as x-ray diffraction and high resolution microscopy are useful to reveal the interface and layermore » structure-whether ordered or disordered crystalline, amorphous, compositionally abrupt or graded, and/or lattice strained Techniques for the synthesis of metallic multilayers with subnanometric layers will be reviewed with applications based on enhancing material behaviors as reflectivity and magnetic anisotropy but with emphasis on experimental studies of mechanical properties.« less

  20. Lac-L-TTA, a novel lactose-based amino acid-sugar conjugate for anti-metastatic applications.

    PubMed

    Roviello, Giovanni N; Iannitti, Roberta; Palumbo, Rosanna; Simonyan, Hayarpi; Vicidomini, Caterina; Roviello, Valentina

    2017-08-01

    Here we describe the synthesis, chromatographic purification, MS and NMR characterization of a new lactosyl-derivative, i.e. a lactosyl thiophenyl-substituted triazolyl-thione L-alanine (Lac-L-TTA). This amino acid-sugar conjugate was prepared by solution synthesis in analogy to the natural fructosyl-amino acids. Furthermore, we investigated the inhibition of PC-3 prostate cancer cell colony formation by this lactose derivative in comparison with the less polar fructose-based derivative, Fru-L-TTA. This let us to compare the properties of the artificial derivative, object of the present work, with the monosaccharide-based counterpart and to obtain a preliminary information on the influence of polarity on such biological activity. A significantly higher anticancer effect of Lac-L-TTA with respect to the fructose analogue emerged from our study suggesting that the anti-metastatic potential of fructosyl-amino acids can be enhanced by increasing the polarity of the compounds, for example by introducing disaccharide moieties in place of fructose.

  1. Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra

    2016-03-01

    The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).

  2. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  3. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    PubMed

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  4. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  5. Anthrax carbohydrates, synthesis and uses thereof

    DOEpatents

    Carlson, Russell W.; Boons, Geert-Jan; Quinn, Conrad; Vasan, Mahalakshmi; Wolfert, Margreet A.; Choudhury, Biswa; Kannenberg, Elmar; Leoff, Christine; Mehta, Alok; Saile, Elke; Rauvolfova, Jana; Wilkins, Patricia; Harvey, Alex J.

    2013-04-16

    The present invention presents the isolation, characterization and synthesis of oligosaccharides of Bacillus anthracis. Also presented are antibodies that bind to such saccharide moieties and various methods of use for such saccharide moieties and antibodies.

  6. Immunologic and Genetic Selection of Adenovirus Vaccine Strains: Synthesis and Characterization of Adenovirus Antigens.

    DTIC Science & Technology

    1984-08-01

    exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis

  7. Synthesis and Characterization of CuO Nanodisks for High-Sensitive and Selective Ethanol Gas Sensor Applications.

    PubMed

    Umar, Ahmad; Lee, Jong-Heun; Kumar, Rajesh; Al-Dossary, O

    2017-02-01

    Herein, the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on CuO nanodisks is reported. The CuO nanodisks were synthesized by facile hydrothermal process and detailed characterization revealed the well-crystallinity, high-purity and high density growth of the prepared material. To fabricate the ethanol gas sensor, the prepared nanodisks were coated on alumina substrate. The fabricated sensor exhibited high-sensitivity and the recorded gas response (resistance-ratio), response time (τ res) and recovery time (τ recov) were 6.2, 119 and 35 s, respectively for 100 ppm of C₂H₅OH at 300 °C. Further, the fabricated sensor shows high selectivity towards ethanol gas compared to H₂ and CO gases.

  8. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template

    NASA Astrophysics Data System (ADS)

    Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal

    2016-08-01

    In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.

  9. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure-property relationships are identified and related to polymer performance. These findings have important implications for the optimization and design of polymer composites that are based on sustainable resources and processes, are petroleum-independent, and have reduced toxicity with beneficial environmental impacts. In addition, these findings provide the incentive for continued investment in using lignin as a respected materials' feedstock. Lastly, several lignin-related research opportunities of scientific and commercial interest are recommended.

  10. Synthesis and characterization of bis-thiourea having amino acid derivatives

    NASA Astrophysics Data System (ADS)

    Fakhar, Imran; Yamin, Bohari M.; Hasbullah, Siti Aishah

    2016-11-01

    In this article four new symmetric bis-thiourea derivatives having amino acid linkers were reported with good yield. Isophthaloyl dichloride was used as spacer and L-alanine, L-aspartic acid, L-phenylalanine and L-glutamic acid were used as linkers. Bis-thiourea derivatives were prepared from relatively stable isophthaloyl isothiocyanate intermediate. Newly synthesized bis-thiourea derivatives were characterized by FTIR, H-NMR, 13C-NMR and CHNS-O elemental analysis techniques. Characterization data was in good agreement with the expected derivatives, hence confirmed the synthesis of four new derivatives of bis-thiourea having amino acids.

  11. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  12. Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals

    PubMed Central

    Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.

    2011-01-01

    Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151

  13. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  14. Saccharin Aza Bioisosteres-Synthesis and Preclinical Property Comparisons.

    PubMed

    Chen, Yantao; Aurell, Carl-Johan; Pettersen, Anna; Lewis, Richard J; Hayes, Martin A; Lepistö, Matti; Jonson, Anna C; Leek, Hanna; Thunberg, Linda

    2017-06-08

    Saccharin is a well-known scaffold in drug discovery. Herein, we report the synthesis and preclinical property comparisons of three bioisosteres of saccharin: aza-pseudosaccharins (cluster B ), and two new types of aza-saccharins (clusters C and D ). We demonstrate a convenient protocol to selectively synthesize products in cluster C or D when primary amines are used. Preclinical characterization of selected matched-pair products is reported. Through comparison of two diastereomers, we highlight how stereochemistry affects the preclinical properties. Given that saccharin-based derivatives are widely used in many chemistry fields, we foresee that structures exemplified by clusters C and D offer new opportunities for novel drug design, creating a chiral center on the sulfur atom and the option of substitution at two different nitrogens.

  15. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles

    PubMed Central

    Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra

    2011-01-01

    Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773

  16. Solution-Based Synthesis of Crystalline Silicon from Liquid Silane through Laser and Chemical Annealing

    DOE PAGES

    Iyer, Ganjigunte R. S.; Hobbie, Erik K.; Guruvenket, Srinivasan; ...

    2012-05-23

    We report a solution process for the synthesis of crystalline silicon from the liquid silane precursor cyclohexasilane (Si 6H 12). Polysilane films were crystallized through thermal and laser annealing, with plasma hydrogenation at atmospheric pressure generating further structural changes in the films. The evolution from amorphous to microcrystalline is characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and impedance spectroscopy. A four-decade enhancement in the electrical conductivity is attributed to a disorder-order transition in a bonded Si network. Lastly, our results demonstrate a potentially attractive approach that employs a solution process coupled with ambient post-processing tomore » produce crystalline silicon thin films.« less

  17. Total Synthesis of (±)–Rocaglamide via Oxidation-Initiated Nazarov Cyclization

    PubMed Central

    Malona, John A.; Cariou, Kevin; Spencer, William T.

    2012-01-01

    This article describes the evolution of a Nazarov cyclization-based synthetic strategy targeting the anticancer, antiinflammatory, and insecticidal natural product (±)–rocaglamide. Initial pursuit of a polarized heteroaromatic Nazarov cyclization to construct the congested cyclopentane core revealed an unanticipated electronic bias in the pentadienyl cation. This reactivity was harnessed in a successful second-generation approach using an oxidation-initiated Nazarov cyclization of a heteroaryl alkoxyallene. Full details of these two approaches are given, as well as the characterization of undesired reaction pathways available to the Nazarov cyclization product. A sequence of experiments that led to an understanding of the unexpected reactivity of this key intermediate is described, which culminated in the successful total synthesis of (+)-rocaglamide. PMID:22283818

  18. New transition metal complexes and their ring-opened polymers

    NASA Astrophysics Data System (ADS)

    Apodaca, Paula

    An exciting new class of metallacycle (eta5-C5 H4Fe) (CO)2CH2SiR2 that undergoes ring-opening polymerization was recently reported by Sharma et al. [1]. We are interested in further expanding this research area by synthesizing related cyclopentadienyl derivatives containing Fe, Mo, and W in combination with other elements of the group 14. We report here the synthesis and crystal structure characterization of new germa-metallacyclobutanes of Mo and W. In addition, we have successfully synthesized and characterized new ring-opening polymers of the related germanium systems [(eta5-C5 H4Fe)(CO) 2(CH2GeR2)] n. The new polymers were characterized using various spectroscopic techniques and gel permeation chromatography. The recent report on the synthesis of a new class of siloxane polymers based upon base-catalyzed ring opening of phenylene-bridged cyclic siloxanes [2] encouraged us to investigate the related ferrocenyl (Fc, (C5H 5)Fe(C5H4)) siloxane systems. The incorporation of ferrocene could provide new materials with all the interesting properties usually associated with these groups such as thermal and photochemical stability, electrochemical activity and potentially conducting materials. Thus far a new required organometallic monomer containing Fc-R, where R = disilaoxacyclopentene 5 has been synthesized and completely characterized. Based-induced ring-opening polymerizations of 5 were attempted under different reaction conditions and produced, inter alia: (C5H5)Fe(C 5H4)C(SiMe2OH)=CH(SiMe2R), R = nBu (2), tBu (3), Ph (4). The single crystal X-ray structures and full spectroscopic analysis of such products has been accomplished. Furthermore, the reactivity of the ferrocenyl silanols concerning condensation and their behavior under acidic conditions has been investigated. 1Sharma, H.; Cervantes-Lee, F.; Pannell, K. H. J. Am. Chem. Soc. 2004, 126, 1326. 2 Loy, A. D.; Rahimian, K.; Samara, M. Angew. Chem. 1999, 38, 45.

  19. Green synthesis of Copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications.

    PubMed

    Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima

    2018-06-06

    The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.

  20. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  1. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    PubMed Central

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  2. Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs.

    PubMed

    Yüksel, Sezin; Schwenke, Almut M; Soliveri, Guido; Ardizzone, Silvia; Weber, Karina; Cialla-May, Dana; Hoeppener, Stephanie; Schubert, Ulrich S; Popp, Jürgen

    2016-10-05

    In the present study, an ultra-sensitive and highly reproducible novel SERS-based capillary platform was developed and utilized for the trace detection of tetrahydrocannabinol (THC). The approach combines the advantages of microwave-assisted nanoparticle synthesis, plasmonics and capillary forces. By employing a microwave-assisted preparation method, glass capillaries were reproducibly coated with silver nanoparticles in a batch fabrication process that required a processing time of 3 min without needing to use any pre-surface modifications or add surfactants. The coated capillaries exhibited an excellent SERS activity with a high reproducibility and enabled the detection of low concentrations of target molecules. At the same time, only a small amount of analyte and a short and simple incubation process was required. The developed platform was applied to the spectroscopic characterization of tetrahydrocannabinol (THC) and its identification at concentration levels down to 1 nM. Thus, a highly efficient detection system for practical applications, e.g., in drug monitoring/detection, is introduced, which can be fabricated at low cost by using microwave-assisted batch synthesis techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    PubMed

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  4. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish.

    PubMed

    Arshad, Noureen; Zia, Khalid Mahmood; Jabeen, Farukh; Anjum, Muhammad Naveed; Akram, Nadia; Zuber, Mohammad

    2018-05-01

    Our current research work comprised of synthesis of a series of novel chitosan based water dispersible polyurethanes. The synthesis was carried out in three steps, in first step, the NCO end capped PU-prepolymer was formed through the reaction between Polyethylene glycol (PEG) (Mn = 600), Dimethylolpropionic acid (DMPA) and Isophorone diisocyanate (IPDI). In second step, the neutralization step was carried out by using Triethylamine (TEA) which resulted the formation of neutralized NCO terminated PU-prepolymer, after that the last step chain extension was performed by the addition of chitosan and followed the formation of dispersion by adding calculated amount of water. The proposed structure of CS-WDPUs was confirmed by using FTIR technique. The antimicrobial activities of the plain weave poly-cotton printed and dyed textile swatches after application of CS-WDPUs were also evaluated. The results showed that the chitosan incorporation in to PU backbone has markedly enhanced the antibacterial activity of WDPUs. These synthesized CS-WDPUs are eco-friendly antimicrobial finishes (using natural bioactive agents such as chitosan) with potential applications on polyester/cotton textiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A novel two-step enzymatic synthesis of blastose, a β-d-fructofuranosyl-(2↔6)-d-glucopyranose sucrose analogue.

    PubMed

    Miranda-Molina, Alfonso; Castillo, Edmundo; Lopez Munguia, Agustin

    2017-07-15

    Blastose, a natural disaccharide found in honey, is usually found as a byproduct of fructo-oligosaccharide synthesis from sucrose with fructosyltransferases. In this study, we describe a novel two-step biosynthetic route to obtain blastose, designed from a detailed observation of B. subtilis levansucrase (SacB) acceptor structural requirements for fructosylation. The strategy consisted first in the synthesis of the trisaccharide O-β-d-Fruf-(2↔6)-O-α-d-Glcp-(1↔1)-α-d-Glcp, through a regioselective β-d-transfructosylation of trehalose (Tre) which acts as acceptor in a reaction catalyzed by SacB using sucrose or levan as fructosyl donor. In this reaction, levansucrase (LS) transfers regioselectively a fructosyl residue to either C 6 -OH group of the glucose residues in Tre. The resulting trisaccharide obtained in 23% molar yield based on trehalose, was purified and fully characterized by extensive NMR studies. In the second step, the trisaccharide is specifically hydrolyzed by trehalase, to obtain blastose in 43.2% molar yield based on the trisaccharide. This is the first report describing the formation of blastose through a sequential transfuctosylation-hydrolysis reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Formation of an Oxidant-Sensible Pd(II) Coordination Compound and Its [superscript 1]H NMR Specific Characterization: A Preparative and Analytical Challenge in Current Coordination Chemistry

    ERIC Educational Resources Information Center

    Abraham, Maria L.; Oppel, Iris M.

    2014-01-01

    A three-part experiment that leads to the synthesis of palladium(II) complex starting from a C[subscript 3]-symmetric triaminoguanidinium-based ligand is presented. In the first part, the preparation of tris-benzylidenetriaminoguanidinium chloride ([H[subscript 6]Br[subscript 3]L]Cl) by an acidic catalyzed 3-fold imine formation reaction of…

  7. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  8. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  9. Synthesis, characterization, and evaluation of ionizable lysine-based lipids for siRNA delivery.

    PubMed

    Walsh, Colin L; Nguyen, Juliane; Tiffany, Matthew R; Szoka, Francis C

    2013-01-16

    We report the synthesis and characterization of a series of ionizable lysine-based lipids (ILL), novel lipids containing a lysine headgroup linked to a long-chain dialkylamine through an amide linkage at the lysine α-amine. These ILLs contain two ionizable amines and a carboxylate, and exhibit pH-dependent lipid ionization that varies with lipid structure. The synthetic scheme employed allows for the simple, orthogonal manipulation of lipids. This provides a method for the development of a compositionally diverse library with varying ionizable headgroups, tail structures, and linker regions. A focused library of four ILLs was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pK(a) on the biophysical and siRNA transfection characteristics of this new class of lipids. We found that manipulation of lipid structure impacts the protonation behavior, electrostatically driven membrane disruption, and ability to promote siRNA mediated knockdown in vitro. ILL-siRNA liposomal formulations were tested in a murine Factor VII model; however, no significant siRNA-mediated knockdown was observed. These results indicate that ILL may be useful in vitro transfection reagents, but further optimization of this new class of lipids is required to develop an effective in vivo siRNA delivery system.

  10. Synthesis, structure, and properties of chromium(III) sulfates

    NASA Astrophysics Data System (ADS)

    Atkinson, Tom David; Fjellvåg, Helmer; Kjekshus, Arne

    2004-11-01

    Reactions between CrO 3 and 50- 95 wt% H2SO4 are studied at temperatures up to the boiling point of the acid. Depending on the H 2SO 4 concentration and synthesis temperature, Cr 2(SO 4) 3, CrH(SO 4) 2, (H 3O)[Cr(SO 4) 2], Cr 2(SO 4) 3·H 2SO 4·4H 2O (gross formula), and (H 5O 2)[Cr(H 2O) 2(SO 4) 2], are obtained as identified reaction products in addition to the incompletely characterized chromic-sulfuric acid. The Cr III-based sulfates are characterized by X-ray powder diffraction, thermogravimetric, and magnetic susceptibility measurements. The nuclear and magnetic structures of Cr 2(SO 4) 3 at 10 K are determined, the structure type of (H 3O)[Cr(SO 4) 2] is established, and the crystal structure of (H 5O 2)[Cr(H 2O) 2(SO 4) 2] is firmly stipulated. Magnetic susceptibility data suggest that the samples of CrH(SO 4) 2 are in a micro-crystalline rather than in an amorphous state. All Cr III-based sulfates synthesized in this study appear to undergo paramagnetic-to-antiferromagnetic transitions at around 10 K.

  11. Thiazole-based nitrogen mustards: Design, synthesis, spectroscopic studies, DFT calculation, molecular docking, and antiproliferative activity against selected human cancer cell lines

    NASA Astrophysics Data System (ADS)

    Łączkowski, Krzysztof Z.; Świtalska, Marta; Baranowska-Łączkowska, Angelika; Plech, Tomasz; Paneth, Agata; Misiura, Konrad; Wietrzyk, Joanna; Czaplińska, Barbara; Mrozek-Wilczkiewicz, Anna; Malarz, Katarzyna; Musioł, Robert; Grela, Izabela

    2016-09-01

    Synthesis, characterization and investigation of antiproliferative activity of ten thiazole-based nitrogen mustard against human cancer cells lines (MV4-11, A549, MCF-7 and HCT116) and normal mouse fibroblast (BALB/3T3) is presented. The structures of novel compounds were determined using 1H and 13C NMR, FAB(+)-MS, and elemental analyses. Among the derivatives, 5b, 5c, 5e, 5f and 5i were found to exhibit high activity against human leukaemia MV4-11 cells with IC50 values of 2.17-4.26 μg/ml. The cytotoxic activity of compound 5c and 5f against BALB/3T3 cells is up to 20 times lower than against cancer cell lines. Our results also show that compounds 5e and 5i have very strong activity against MCF-7 and HCT116 with IC50 values of 3.02-4.13 μg/ml. Moreover, spectroscopic characterization and cellular localization for selected compound were performed. In order to identify potential drug targets we perform computer simulations with DNA-binding site of hTopoI and hTopoII and quantum chemical calculation of interaction and binding energies in complexes of the five most active compounds with guanine.

  12. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  13. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    NASA Astrophysics Data System (ADS)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  14. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    NASA Astrophysics Data System (ADS)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  15. Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis

    PubMed Central

    Decaris, Martin L.; Gatmaitan, Michelle; FlorCruz, Simplicia; Luo, Flora; Li, Kelvin; Holmes, William E.; Hellerstein, Marc K.; Turner, Scott M.; Emson, Claire L.

    2014-01-01

    Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered turnover rates during evolving fibrosis. These data demonstrate the utility of dynamic proteomics in analyzing changes in ECM protein turnover associated with the onset and progression of fibrotic disease. PMID:24741116

  16. Nyctanthes arbortristis mediated synthesis of silver nanoparticles: Cytotoxicity assay against THP-1 human leukemia cell lines

    NASA Astrophysics Data System (ADS)

    Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.

    2018-05-01

    Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.

  17. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans.

    PubMed

    Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian

    2015-04-07

    Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SbCl3-catalyzed one-pot synthesis of 4,4′-diaminotriarylmethanes under solvent-free conditions: Synthesis, characterization, and DFT studies

    PubMed Central

    2011-01-01

    Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373

  19. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    PubMed

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The result of synthesis analysis of the powder TiO{sub 2}/ZnO as a layer of electrodes for dye sensitized solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retnaningsih, Lilis, E-mail: lilisretna@gmail.com; Muliani, Lia

    2016-04-19

    This study has been conducted synthesis of TiO{sub 2} nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO{sub 2} nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO{sub 2}/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO{sub 2} / ZnO nanoparticles, technique and composition of TiO{sub 2} / ZnO paste preparation is important to get the higher performance of DSSC.more » Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO{sub 2} and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO{sub 2}/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO{sub 2} / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.« less

  1. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  2. Synthesis and Characterization of Novel Biotinylated Carboxyl-terminal Parathyroid Hormone Peptides that Specifically Crosslink to the CPTH-receptor

    PubMed Central

    Banerjee, Santanu; Selim, Hafez; Suliman, Gihan; Geller, Andrew I.; Jüppner, Harald; Bringhurst, F. Richard; Divieti, Paola

    2006-01-01

    Parathyroid hormone (PTH) regulates calcium, phosphorous and skeletal homeostasis via interaction with the G protein-coupled PTH/PTHrP receptor, which is fully activated by the amino-terminal 34 amino-acid portion of the hormone. Recent evidence points to the existence of another class of receptors for PTH that recognize the carboxyl (C)-terminal region of intact PTH(1–84) (CPTHRs) and are highly expressed by osteocytes. Here we report the synthesis and characterization of two novel bifunctional CPTH ligands that include benzoylphenylalanine (Bpa) substitutions near their amino-termini and carboxyl-terminal biotin moieties, as well as a tyrosine34 substitution to enable radioiodination. These peptides are shown to bind to CPTHRs with affinity similar to that of PTH (1–84) and to be specifically and covalently cross-linked to CPTHRs upon exposure to ultraviolet light. Crosslinking to osteocytes or osteoblastic cells generates complexes of 80kDa and 220kDa, of which the larger form represents an aggregate that can be resolved into the 80kDa. The crosslinked products can be further purified using immunoaffinity and avidin-based affinity procedures. While the molecular structure of the CPTHR(s) remains undefined, these bifunctional ligands represent powerful new tools for use in isolating and characterizing CPTHR protein(s). PMID:17028061

  3. Chemical obtaining of LiMO2 and LiM2O4 (M=Co, Mn) oxides, for cathodic applications in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.

    2017-12-01

    This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.

  4. Analysis and synthesis of abstract data types through generalization from examples

    NASA Technical Reports Server (NTRS)

    Wild, Christian

    1987-01-01

    The discovery of general patterns of behavior from a set of input/output examples can be a useful technique in the automated analysis and synthesis of software systems. These generalized descriptions of the behavior form a set of assertions which can be used for validation, program synthesis, program testing, and run-time monitoring. Describing the behavior is characterized as a learning process in which the set of inputs is mapped into an appropriate transform space such that general patterns can be easily characterized. The learning algorithm must chose a transform function and define a subset of the transform space which is related to equivalence classes of behavior in the original domain. An algorithm for analyzing the behavior of abstract data types is presented and several examples are given. The use of the analysis for purposes of program synthesis is also discussed.

  5. Synthesis and Characterization of C-Cinnamal Calix [4] Resorsinarena from Cinnamon Oil Waste West Sumatra

    NASA Astrophysics Data System (ADS)

    Etika, S. B.; Nasra, E.; Rilaztika, I.

    2018-04-01

    Synthesis and characterization of compound C-Cinnamal Calix [4] Resorsinarena (CCCR) of cinnamon oil waste have been done. This study was aimed to synthesis and characterize C-Cinnamal Calix [4] Resorsinarena from cinnamaldehyde violated cinnamon oil waste. C-Cinnamal Calix [4] Resorsinarena was synthesized by electrophilic substitution reaction of cinnamaldehyde isolated by the acid and resorcinol at 77oC temperature for 2 hour. The data analysis spectrum UV-VIS and FT-IR showed that the compound isolated cinnamaldehyde same as pure cinnamaldehyde compound. The characterization of C-Cinnamal Calix [4] Resorsinarena in the form of reddish-colored solids with melting point 3580C by using UV-VIS showed the presence of double bond, FT-IR showed the absorption at the wave number 3323,94 cm-1 indicating the ‑OH group, the wave number 1610,94 cm-1 showed the vibration C=C, the strong region absorption of 1500,86 cm-1 indicating the presence of an aromatic ring, the at 1442,88 cm-1 wave number indicating the presence of CH3.

  6. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  7. Synthesis and anti-microbial activity of hydroxylammonium ionic liquids.

    PubMed

    Ismail Hossain, M; El-Harbawi, Mohanad; Noaman, Yousr Abdulhadi; Bustam, Mohd Azmi B; Alitheen, Noorjahan Banu Mohamed; Affandi, Nor Azrin; Hefter, Glenn; Yin, Chun-Yang

    2011-06-01

    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Interfacial Effects and Organization of Inorganic-Organic Composite Solids.

    DTIC Science & Technology

    1998-05-20

    SITU NMR STUDY OF THE HYDROTHERMAL SYNTHESIS OF TEMPLATE-MEDIATED MICROPOROUS ALUMINOPHOSPHATE MATERIALS, Conne M Gersrdin, Pnnccton Univ, Dept...quantitatively characterize the hydrothermal medium while the synthesis proceeds can yield to a better description of the different steps of the...Inorganic-Organic Composite Solids," focused on recent applications in materials synthesis that use structure-directing agents and self-assembly

  9. The Synthesis and Characterization of Rouaite, a Copper Hydroxy Nitrate: An Integrated First-Year Laboratory Project

    ERIC Educational Resources Information Center

    Bushong, Elizabeth J.; Yoder, Claude H.

    2009-01-01

    The synthesis and analysis of a copper hydroxy nitrate provides an exposure to a simple ionic synthesis, qualitative analysis of copper and nitrate, two gravimetric analyses (copper and nitrate), one volumetric analysis (hydroxide), and a colorimetric analysis (copper). The results allow the student to determine the identity of the double salt and…

  10. The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis

    ERIC Educational Resources Information Center

    Sauvage, Xavier; Delaude, Lionel

    2008-01-01

    The synthesis of "N"-benzyl-2-azanorbornene via aqueous hetero Diels-Alder reaction of cyclopentadiene and benzyliminium chloride formed in situ from benzylamine hydrochloride and formaldehyde is described. Characterization of the product was achieved by IR and NMR spectroscopies. The spectral data acquired are thoroughly discussed. Numerous…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunshah, R.F.; Shabaik, A.H.

    The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides, ultrafine grain cermets. The deposits are characterized by hardness, microstructure and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets, Al/sub 2/O/sub 3/ and VC-TiC alloy carbides is given. Tools of different coating characteristics are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the costing, tool temperature, and cutting forces. Tool life tests show coated high speed steel tools show a 300% improvement in tool life.more » (Author) (GRA)« less

  12. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities

    PubMed Central

    Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S

    2012-01-01

    Objective To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 35–55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries. PMID:23569974

  13. Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties.

    PubMed

    Popescu, L M; Piticescu, R M; Antonelli, A; Rusti, C F; Carboni, E; Sfara, C; Magnani, M; Badilita, V; Vasile, E; Trusca, R; Buruiana, T

    2013-11-01

    The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.

  14. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.

    PubMed

    Guerrero, A; Goñi, S; Campillo, I; Moragues, A

    2004-06-01

    The optimization of parameters of synthesis of belite cement clinker from coal fly ash of high Ca content is presented in this paper. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100 degrees C, 150 degrees C, and 200 degrees C. The precursors obtained during the hydrothermal treatmentwere heated at temperatures of 700 degrees C, 800 degrees C, 900 degrees C, and 1000 degrees C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N2), and thermal analyses. From the results obtained we concluded that the optimum temperature of the hydrothermal treatment was 200 degrees C, and the optimum temperature for obtaining the belite cement clinker was 800 degrees C.

  15. Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety.

    PubMed

    Shanty, Angamaly Antony; Philip, Jessica Elizabeth; Sneha, Eeettinilkunnathil Jose; Prathapachandra Kurup, Maliyeckal R; Balachandran, Sreedharannair; Mohanan, Puzhavoorparambil Velayudhan

    2017-02-01

    Some new Schiff bases (H 1 -H 7 ) have been synthesized by the condensation of 2-aminophenol, 2-amino-4-nitrophenol, 2-amino-4-methylphenol, 2-amino benzimidazole with thiophene-2-carboxaldehyde and pyrrole-2-carboxaldehyde. The structures of newly synthesized compounds were characterized by elemental analysis, FT-IR, 1 H NMR, UV-VIS, and single crystal X-ray crystallography. The in vitro antibacterial activity of the synthesized compounds has been tested against Salmonella typhi, Bacillus coagulans, Bacillus pumills, Escherichia coli, Bacillus circulans, Pseudomonas, Clostridium and Klebsilla pneumonia by disk diffusion method. The quantitative antimicrobial activity of the test compounds was evaluated using Resazurin based Microtiter Dilution Assay. Ampicillin was used as standard antibiotics. Schiff bases individually exhibited varying degrees of inhibitory effects on the growth of the tested bacterial species. The antioxidant activity of the synthesized compounds was determined by the 1,1-diphenyl-2-picrylhydrazyl(DPPH) method. IC 50 value of synthesized Schiff bases were calculated and compared with standard BHA. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  17. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  18. Powerful workhorses for antimicrobial peptide expression and characterization.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Paulsen, Victoria; Haug, Tor; Stensvåg, Klara

    2010-01-01

    Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets. © 2010 Landes Bioscience

  19. Synthesis and characterization of organic/inorganic heterostructure films for hybrid light emitting diode

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki

    2007-10-01

    Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.

  20. Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Bin; Zhang, Yang; Yang, Yingzi; Qiu, Wen; Wang, Xiaoxuan; Liu, Baoping; Wang, Yanli; Sun, Guochang

    2016-11-05

    This present study deals with synthesis, characterization and antibacterial activity of chitosan/TiO2 nanocomposites. Results indicated that chitosan/TiO2 nanocomposite at the ratio of 1:5 showed the strongest inhibition in growth of rice bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, the antibacterial activity of chitosan/TiO2 nanocomposite against Xoo is significantly higher than that of the two individual components under both light and dark conditions. Regardless of the presence or absence of extracellular polymeric substances, chitosan/TiO2 nanocomposite showed strong antibacterial activity, however, the absence increased the sensitivity of Xoo to chitosan/TiO2 nanocomposite. In addition, the surface morphology and physicochemical properties of chitosan/TiO2 nanocomposite is different from the two individual components based on scanning electron microscopic observation, fourier transform infrared spectra, and X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that this synthesized chitosan/TiO2 nanocomposite is promising to be developed as a new antibacterial material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. SAPO-34/AlMCM-41, as a novel hierarchical nanocomposite: preparation, characterization and investigation of synthesis factors using response surface methodology

    NASA Astrophysics Data System (ADS)

    Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon

    2018-06-01

    SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.

  2. Nanoscale Hollow Spheres: Microemulsion-Based Synthesis, Structural Characterization and Container-Type Functionality

    PubMed Central

    Gröger, Henriette; Kind, Christian; Leidinger, Peter; Roming, Marcus; Feldmann, Claus

    2010-01-01

    A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples. PMID:28883333

  3. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.

    PubMed

    Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran

    2017-10-01

    In this study, synthesis of a novel biocompatible stimuli-responsive conducting hydrogel based on agarose/alginate-aniline tetramer with the capability of a tailored electrically controlled drug-release for neuroregeneration is investigated. First, aniline tetramer is synthesized and grafted onto sodium alginate. Then, this material is added to agarose as an electrical conductivity modifier to obtain Agarose/alginate-aniline tetramer hydrogel. The synthesized materials are characterized by H NMR and FTIR. The hydrogels are prepared with varying content of aniline tetramer and their swelling-deswelling and shape memory behavior is evaluated. The electroactivity and ionic conductivity of hydrogels against temperature is measured. The sample with 10% aniline tetramer (AT10) reveals the highest ionic conductivity. In MTT and SEM assays, AT10 shows the best cell viability and cell proliferation due to its highest ionic conductivity highlighting the fact that electrical stimuli cell signaling. Hydrogels also represent great potentials for passive and electro-stimulated dexamethasone release. These results demonstrate that the newly developed conducting hydrogels are promising materials for neuroregenerative medicine.

  4. Heterocyclic energetic materials: Synthesis, characterization and computational design

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman; Pagoria, Philip; Smirnov, Aleksander; Kuklja, Maija

    2017-06-01

    Achievement of the tailored properties (high performance, low sensitivity, etc.) in targeted new energetic materials (EM) remains a great challenge. Recently, attention of researchers has shifted from conventional nitroester-, nitramine-, and nitroaromatic-based explosives to new heterocyclic EM with oxygen- and nitrogenrich molecular structures. They have increased densities and formation enthalpies complemented by attractive performance and high stability to external stimuli. We will demonstrate that oxadiazol-containing heterocycles offer a convenient playground to probe specific chemical functional groups as building blocks for design of EM. We discuss a joint experimental and computational approach for design, characterization, synthesis, and modeling of novel heterocyclic EM. Combinatorically, we comprehensively analyzed how overall stability and performance of each material in the family (BNFF, LLM-172, LLM-175, LLM-191, LLM-192, LLM-200) depends upon their chemical composition and details of the molecular structure (such as a substitution of a nitro group by an amino group and 1,2,5-oxadiazole fragment by 1,2,3- or 1,2,4-oxadiazol ring). We will also discuss proposed new EM with predicted superior chemical and physical properties. P. Pagoria, R. Tsyshevsky, A. Smirnov.

  5. Ultrasonically-enhanced preparation, characterization of CaFe-layered double hydroxides with various interlayer halide, azide and oxo anions (CO32-, NO3-, ClO4-).

    PubMed

    Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2018-01-01

    An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  7. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  8. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep.

    PubMed

    Baur, Benjamin; Solbach, Christoph; Andreolli, Elena; Winter, Gordon; Machulla, Hans-Jürgen; Reske, Sven N

    2014-04-29

    Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min.

  9. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep

    PubMed Central

    Baur, Benjamin; Solbach, Christoph; Andreolli, Elena; Winter, Gordon; Machulla, Hans-Jürgen; Reske, Sven N.

    2014-01-01

    Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min. PMID:24787458

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Kumar, Ajay, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Mohan Sankaran, R., E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu

    Microplasma-assisted gas-phase nucleation has emerged as an important new approach to produce high-purity, nanometer-sized, and narrowly dispersed particles. This study aims to integrate this technique with vacuum conditions to enable synthesis and deposition in an ultrahigh vacuum compatible environment. The ultimate goal is to combine nanoparticle synthesis with photoemission spectroscopy-based electronic structure analysis. Such measurements require in vacuo deposition to prevent surface contamination from sample transfer, which can be deleterious for nanoscale materials. A homebuilt microplasma reactor was integrated into an existing atomic layer deposition system attached to a surface science multi-chamber system equipped with photoemission spectroscopy. As proof-of-concept, wemore » studied the decomposition of ferrocene vapor in the microplasma to synthesize iron oxide nanoparticles. The injection parameters were optimized to achieve complete precursor decomposition under vacuum conditions, and nanoparticles were successfully deposited. The stoichiometry of the deposited samples was characterized in situ using X-ray photoelectron spectroscopy indicating that iron oxide was formed. Additional transmission electron spectroscopy characterization allowed the determination of the size, shape, and crystal lattice of the particles, confirming their structural properties.« less

  11. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof

    NASA Astrophysics Data System (ADS)

    Sidoryk, Katarzyna; Filip, Katarzyna; Cmoch, Piotr; Łaszcz, Marta; Cybulski, Marcin

    2018-02-01

    The synthesis and molecular structure details of R- 3,4-dihydroxyphenyl lactic acid (danshensu) and related compounds, i.e. S isomer and the key intermediates have been described. Danshensu is an important water soluble phenolic acid of Salvia miltiorrhiza herb (danshen or red sag) with numerous applications in traditional Chinese medicine (TCM). Our synthetic approach was based on the Knoevenagel condensation of the protected 3,4-dihydroxybenzaldehyd and Meldrum acid derivative, followed by asymmetric Sharples dihydroxylation, reductive mono dehydroxylation and final deprotection. All compounds were characterized by various spectroscopic techniques: 1H-, 13C- magnetic resonance (NMR); Fourier-transformed infrared (FTIR); Raman, HR mass spectroscopy. For the determination of compound optical purities original HPLC methods were developed which allowed for the efficient resolution of danshensu R and S enantiomers as well as its intermediate enantiomers, using commercially available chiral stationary phases. Furthermore, in order to better understand danshensu specificity as a potential API in drug formulation, the physicochemical properties of the compounds were studied by thermal analysis, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

  12. Hydrothermal synthesis and characterization of vanadyl phosphate based cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chung, Youngmin

    Transition metal phosphate materials have been researched as candidates for lithium-ion battery cathodes for about two decades. Among them, vanadium phosphate compounds are attractive due to their higher free energy of reaction than the corresponding iron compounds, and the greater possible change of oxidation state from V5+ to V3+. This thesis work firstly focuses on the chemical and electrochemical lithiation of epsilon--VOPO4 investigating the possibility of multi-electron intercalation. The second focus is on hydrothermal synthesis and characterization of epsilon--LiVOPO4. The hydrothermal synthesis method developed in this work produces pure epsilon-LiVOPO 4 at high temperature hydrothermal reaction and pure LiVOPO4˙2H 2O at low temperature. The first charge capacity of hydrothermal epsilon-LiVOPO 4 is around 308 mAh/g, which is almost 97% of the theoretical capacity. It also shows good reversibility in the first five cycles after which capacity fading occurs. For more detailed structural analysis of hydrothermal epsilon-LiVOPO 4, we used in-situ synchrotron XRD and EXAFS upon heating combined with TGA-MS. These techniques have revealed intercalated protons that are removed at about 350 °C, and a reversible symmetry change from triclinic to monoclinic at high temperature. Furthermore, we have used chemical lithiation with BuLi to produce and characterize epsilon-Li2VOPO 4 phase. Finally, we have modified the hydrothermal method to produce Cr-substituted epsilon--LiVOPO4 by changing the amount LiOH and adding Cr precursor. Cr substitution is found to modify the stoichiometry of the compound and to improve its cyclability at both high and low current densities.

  13. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    NASA Astrophysics Data System (ADS)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  14. Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite

    NASA Astrophysics Data System (ADS)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2018-03-01

    The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.

  15. Graphene Synthesis and Characterization

    DTIC Science & Technology

    2015-04-08

    for synthesis electrochemical. - A Scanning Electron Microscope (SEM) (EVO MA from Carl Zeiss). 6 6. RESULTS AND...5, 2332-2339, 2011, High-Quality Thin graphene films from fast electrochemical exfoliation. [13] Da Hee Jung , Cheong Kang, Ji Eun Nam, Jin-Seok Kim

  16. Copolymers of polyaniline and poly-o-toluidine: Electrochemical synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja C.; Deshmukh, Megha A.; Patil, Harshada K.; Bodkhe, Gajanan A.; Sayyad, Pasha W.; Ingle, Nikesh N.; Shirsat, Mahendra D.

    2018-05-01

    In the present study we have reported Electrochemical polymerization of poly(Aniline) (PANI), Poly(O-Toluidine) (POT) and poly(Aniline-co-O-Toluidine) (PAOT) copolymers. Electrochemical Synthesis of PANI, POT and Poly(Aniline-co-O-Toluidine) was done by using Cyclic Voltammetry technique. The morphological study done by Atomic Force Microscopy (AFM) which shows that formation of uniform granular structure and topographic changes in each respective thin film. Spectroscopic characterization was done by FTIR spectroscopy. The FT-IR study revealed the formation of PANI/POT/Poly(Aniline co O-Toluidine) with a absorption band are reported. For structural information done by X-ray diffraction(XRD) Characterization.

  17. Novel synthesis and characterization of five isomers of (C(70))(2) fullerene dimers.

    PubMed

    Forman, Grant S; Tagmatarchis, Nikos; Shinohara, Hisanori

    2002-01-16

    The synthesis and characterization of dimers and polymers, wherein two or more cages are linked, represent an important frontier in the chemistry of fullerene derivatives. A simple and novel method that requires no special apparatus has been developed for the dimerization of [70]fullerene to (C70)2. Upon grinding [70]fullerene in a mortar and pestle in the presence of K2CO3, five structural isomers of (C70)2 have been produced. These isomers are separated from one another via high performance liquid chromatography and are characterized by 13C NMR, UV-vis-NIR absorption and mass spectroscopy.

  18. Transition metal complexes of quinolino[3,2-b]benzodiazepine and quinolino[3,2-b]benzoxazepine: synthesis, characterization, and antimicrobial studies.

    PubMed

    Basavaraju, B; Naik, Halehatty S Bhojya; Prabhakara, Mustur C

    2007-01-01

    The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand.

  19. Synthesis, characterization and optical properties of novel star azo-oligomers containing well-defined oligo(ethylene glycol) segments

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Vonlanthen, Mireille; Ortíz-Palacios, Jesús; Ruiu, Andrea; Valderrama-García, Bianca X.; Rivera, Ernesto

    2018-05-01

    In this work, the synthesis and characterization of a series of star azo-oligomers bearing amino, amino-methoxy, amino-nitro and amino-cyano substituted azobenzene units and oligo(ethylene glycol) segments is reported. The full characterization of the obtained compounds was achieved by FTIR, 1H and 13C NMR spectroscopies, and their molecular weights were determined by MALDI-TOF mass spectrometry. The optical properties of these compounds were studied by absorption spectroscopy in solution. Finally, light polarized microscopy experiments as a function of the temperature were performed in order to study the liquid-crystalline behavior of these star azo-oligomers.

  20. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.

  1. A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ, L-glutamic acid)-capped silver nanoparticles

    PubMed Central

    Savanović, Igor; Uskoković, Vuk; Škapin, Srečo D.; Bračko, Ines; Jovanović, Uroš; Uskoković, Dragan

    2013-01-01

    A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,L-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nano-particles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements. PMID:24062597

  2. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  3. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  4. Polyamides based on the renewable monomer, 1,13-tridecane diamine I: synthesis and characterization of nylon 13,T

    DOE PAGES

    He, Jie; Samanta, Satyabrata; Selvakumar, Sermadurai; ...

    2013-06-01

    Nylon 13,T was successfully synthesized and chemical composition, thermal properties, crystal structure, and moisture absorption characterized. Melting temperature and glass transition temperature were determined to be 263 °C and 90 °C, respectively, while the equilibrium melting temperature was determined to be 289 °C. Characterization of the crystallization kinetics showed that nylon 13,T exhibits very fast crystallization compared to the industrially important nylons, nylon 6 and nylon 6,6. In addition, the moisture absorption of nylon 13,T was dramatically lower than nylon 6 and nylon 6,6 which is consistent with the much lower amide content of nylon 13,T. The crystal structure wasmore » determined to be pseudohexagonal.« less

  5. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    PubMed

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles.

    PubMed

    Patil, Maheshkumar Prakash; Kim, Gun-Do

    2017-01-01

    This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.

  7. Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-tropsch synthesis.

    PubMed

    Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang

    2018-04-01

    In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for FTS reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis, characterization, nucleic acid interactions and photoluminescent properties of methaniminium hydrazone Schiff base and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.

    2018-07-01

    An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.

  9. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    DTIC Science & Technology

    2007-09-30

    have attempted to develop methods based on chemical structural modification to prevent galvanically-induced composite corrosion. [9, 10-12] These...of the two metallopolymers 11 and 12 show characteristic MLCT (metal-to-ligand charge transfer) absorption band of tris(bipyridyl)Ru(II) unit at k...showed absorption band at 450 nm and emission band at 325 nm of tris(bipyridyl)Ru(II) units in its respective UV-vis and fluorescence spectra. Very

  10. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    PubMed

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  11. Linear and Nonlinear Optical Response in Silver Nanoclusters: Insight from a Computational Investigation (Postprint)

    DTIC Science & Technology

    2016-01-05

    applying DFT and TDDFT. Synthesis and optical characterization of the silver glutathione nanoclusters Ag32(SG)19 and Ag15(SG)11 were recently reported by...Ag15. Synthesis and optical characterization of the Ag32(SG)19, Ag31(SG)19, and Ag15(SG)11 silver glutathione nanoclusters have been reported.19,20 A...Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Ultrastable Silver Nanoparticles . Nature

  12. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavanya, J.; Gomathi, N., E-mail: sivakumar.gomathi@gmail.com

    2016-04-13

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  13. Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.

    PubMed

    Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M

    2018-04-01

    In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.

  14. Rapid Multistep Synthesis of 1,2,4-Oxadiazoles in a Single Continuous Microreactor Sequence

    PubMed Central

    Grant, Daniel; Dahl, Russell; Cosford, Nicholas D. P.

    2009-01-01

    A general method for the synthesis of bis-substituted 1,2,4-oxadiazoles from readily available arylnitriles and activated carbonyls in a single continuous microreactor sequence is described. The synthesis incorporates three sequential microreactors to produce 1,2,4-oxadiazoles in ~30 min in quantities (40–80 mg) sufficient for full characterization and rapid library supply. PMID:18687005

  15. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  16. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  17. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  19. Environmental chemical exposures and disturbances of heme synthesis.

    PubMed Central

    Daniell, W E; Stockbridge, H L; Labbe, R F; Woods, J S; Anderson, K E; Bissell, D M; Bloomer, J R; Ellefson, R D; Moore, M R; Pierach, C A; Schreiber, W E; Tefferi, A; Franklin, G M

    1997-01-01

    Porphyrias are relatively uncommon inherited or acquired disorders in which clinical manifestations are attributable to a disturbance of heme synthesis (porphyrin metabolism), usually in association with endogenous or exogenous stressors. Porphyrias are characterized by elevations of heme precursors in blood, urine, and/or stool. A number of chemicals, particularly metals and halogenated hydrocarbons, induce disturbances of heme synthesis in experimental animals. Certain chemicals have also been linked to porphyria or porphyrinuria in humans, generally involving chronic industrial exposures or environmental exposures much higher than those usually encountered. A noteworthy example is the Turkish epidemic of porphyria cutanea tarda produced by accidental ingestion of wheat treated with the fungicide hexachlorobenzene. Measurements of excreted heme precursors have the potential to serve as biological markers for harmful but preclinical effects of certain chemical exposures; this potential warrants further research and applied field studies. It has been hypothesized that several otherwise unexplained chemical-associated illnesses, such as multiple chemical sensitivity syndrome, may represent mild chronic cases of porphyria or other acquired abnormalities in heme synthesis. This review concludes that, although it is reasonable to consider such hypotheses, there is currently no convincing evidence that these illnesses are mediated by a disturbance of heme synthesis; it is premature or unfounded to base clinical management on such explanations unless laboratory data are diagnostic for porphyria. This review discusses the limitations of laboratory measures of heme synthesis, and diagnostic guidelines are provided to assist in evaluating the symptomatic individual suspected of having a porphyria. PMID:9114276

  20. Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Lefebvre, Sylvain

    2014-05-01

    Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.

  1. Matrix Synthesis and Characterization

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of NASA in the area of composite material synthesis; evaluation techniques; prediction analysis techniques; solvent-resistant tough composite matrix; resistance to paint strippers; acceptable processing temperature and pressure for thermoplastics; and the role of computer modeling and fiber interface improvement were discussed.

  2. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    PubMed

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe 3 O 4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  3. Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms.

    PubMed

    Bernstein, Hans C; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross P; Miller, Charles D; Peyton, Brent M; Cooksey, Keith E; Gardner, Robert D; Sims, Ronald C

    2014-03-01

    Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for industrial control are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and respiration on two distinct microalgal biofilms cultured using a novel rotating algal biofilm reactor operated at field- and laboratory-scales. Clear differences in oxygenic photosynthesis and respiration were observed based on different culturing conditions, microalgal composition, light intensity and nitrogen availability. The cultures were also evaluated as potential biofuel synthesis strategies. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to traditional planktonic microalgal studies. Physiological characterizations of these microalgal biofilms identify fundamental parameters needed to understand and control process optimization. Published by Elsevier Ltd.

  4. Synthesis and characterization of grinding aid fly ash blended mortar effect on bond strength of masonry prisms

    NASA Astrophysics Data System (ADS)

    Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh

    2018-04-01

    The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.

  5. Structure-based Design, Synthesis, Biochemical and Pharmacological Characterization of Novel Salvinorin A Analogues as Active State Probes of the κ-Opioid Receptor

    PubMed Central

    Yan, Feng; Bikbulatov, Ruslan V.; Mocanu, Viorel; Dicheva, Nedyalka; Parker, Carol E.; Wetsel, William C.; Mosier, Philip D.; Westkaemper, Richard B.; Allen, John A.; Zjawiony, Jordan K.; Roth, Bryan L.

    2009-01-01

    Salvinorin A, the most potent naturally occurring hallucinogen, has gained increasing attention since the κ-opioid receptor (KOR) was identified as its principal molecular target by us (Roth et al, PNAS, 2002). Here we report the design, synthesis and biochemical characterization of novel, irreversible, salvinorin A-derived ligands suitable as active state probes of the KOR. Based on prior substituted cysteine accessibility and molecular modeling studies, C3157.38 was chosen as a potential anchoring point for covalent labeling of salvinorin A-derived ligands. Automated docking of a series of potential covalently-bound ligands suggested that either a haloacetate moiety or other similar electrophilic groups could irreversibly bind with C3157.38. 22-thiocyanatosalvinorin A (RB-64) and 22-chlorosalvinorin A (RB-48) were both found to be extraordinarily potent and selective KOR agonists in vitro and in vivo. As predicted based on molecular modeling studies, RB-64 induced wash-resistant inhibition of binding with a strict requirement for a free cysteine in or near the binding pocket. Mass spectrometry (MS) studies utilizing synthetic KOR peptides and RB-64 supported the hypothesis that the anchoring residue was C3157.38 and suggested one biochemical mechanism for covalent binding. These studies provide direct evidence for the presence of a free cysteine in the agonist-bound state of KOR and provide novel insights into the mechanism by which salvinorin A binds to and activates KOR. PMID:19555087

  6. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.

    PubMed

    Kemençe, Nevsal; Bölgen, Nimet

    2017-01-01

    The aim of this study was the synthesis and characterization of gelatin- and hydroxyapatite (osteoconductive component of bone)-based cryogels for tissue-engineering applications. Preliminary in vitro and in vivo biocompatibility tests were conducted. Gelatin- and hydroxyapatite-based cryogels of varying concentrations were synthesized using glutaraldehyde as the crosslinking agent. Chemical structure, pore morphology, pore size distribution, mechanical properties, swelling characteristics and degradation profiles of the synthesized cryogels were demonstrated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mercury porosimetry, a mechanical test device, swelling ratio tests and weight loss measurements, respectively. In vitro cell viability and in vivo biocompatility tests were performed in order to show the performance of the cryogels in the biological environment. Changing the concentrations of gelatin, hydroxyapatite and crosslinker changed the chemical structure, pore size and pore size distribution of the cryogels, which in turn resulted in the ultimate behaviour (mechanical properties, swelling ratio, degradation profile). In vitro cell culture tests showed the viability of the cells. The cryogels did not show any cytotoxic effects on the cells. Clinical outcomes and the gross pathological results demonstrated that there was no necrosis noted in the abdominal and thoracic regions at the end of implantation and the implanted cryogel was found to be non-irritant and non-toxic at 12 weeks of implantation. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  7. The design, synthesis, and characterization of poly(carbonate-ester)s based on dihydroxyacetone for use as potential biomaterials

    NASA Astrophysics Data System (ADS)

    Weiser, Jennifer Rose

    The creation of new devices and materials with desirable biomedical characteristics, such as biocompatibility and easily tunable physico-chemical parameters, has played a key role in the advancement of the biomedical industry. In recent years, the combination of classical engineering principles with polymer chemistry has led to a wide range of materials that influence the manner in which drugs are delivered, tissues are engineered, and surgery is performed. The work presented in this thesis is focused on the design, synthesis, and characterization of a poly(carbonate-ester) biomaterial based on lactic acid (LA) and a carbonate form of dihydroxyacetone (DHAC) as vehicles for controlled release. The goal of this work was to synthesize a variety of pLAx- co-DHACy copolymers and characterize their behavior to better understand their structure/function relationships. The results show that random copolymers based on dihydroxyacetone and lactic acid are easily and reliably producible, with unique characteristics. In vitro degradation studies showed that the poly(carbonate-ester)s had an unexpected degradation pattern, in that the carbonate bond was more labile to hydrolysis than that of the ester bond. The resulting degradation pattern made from these biomaterials did not appear to have an acidic interior environment, due to a lack of visible viscous core commonly seen with bulk degrading lactic acid based polymers. Due to the insolubility of the poly(carbonate-ester)s, exploration of copolymer degradation was determined by the development of a newly discovered technique to quantify dihydroxyacetone release from the matrix using the bicinchoninic acid assay. Finally, the release kinetics and mechanism from these poly(carbonate-ester)s was studied following the incorporation of two different model proteins, bovine serum albumin and lysozyme. Their release behaviors and activities were analyzed to explore the controlled release capabilities of these materials and to identify their potential for the effective release of proteins.

  8. Morphological and physical - chemical issues of metal nanostructures used in medical field

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Velenciuc, N.; Dobre, E. C.

    2016-06-01

    In recent years applications of nanotechnology integrated into nanomedicine and bio-nanotechnology have attracted the attention of many researchers from different fields. Processes from chemical engineering especially nanostructured materials play an important role in medical and pharmaceutical development. Fundamental researches focused on finding simple, easily accomplished synthesis methods, morphological aspects and physico-chemical advanced characterization of nanomaterials. More over, by controlling synthesis conditions textural characteristics and physicochemical properties such as particle size, shape, surface, porosity, aggregation degree and composition can be tailored. Low cytotoxicity and antimicrobial effects of these nanostructured materials makes them be applied in medicine field. The major advantage of metal based nanoparticles is the use either for their antimicrobial properties or as drug-carriers having the potential to be active at low concentrations against infectious agents.

  9. Synthesis and characterization of zeolite from coal fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  10. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

  11. Greener Route for Synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using Graphene Oxide-Copper Ferrite Nanocomposite as a Recyclable Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Kumar, Aniket; Rout, Lipeeka; Achary, Lakkoji Satish Kumar; Dhaka, Rajendra. S.; Dash, Priyabrat

    2017-02-01

    A facile, efficient and environmentally-friendly protocol for the synthesis of xanthenes by graphene oxide based nanocomposite (GO-CuFe2O4) has been developed by one-pot condensation route. The nanocomposite was designed by decorating copper ferrite nanoparticles on graphene oxide (GO) surface via a solution combustion route without the use of template. The as-synthesized GO-CuFe2O4 composite was comprehensively characterized by XRD, FTIR, Raman, SEM, EDX, HRTEM with EDS mapping, XPS, N2 adsorption-desorption and ICP-OES techniques. This nanocomposite was then used in an operationally simple, cost effective, efficient and environmentally benign synthesis of 14H-dibenzo xanthene under solvent free condition. The present approach offers several advantages such as short reaction times, high yields, easy purification, a cleaner reaction, ease of recovery and reusability of the catalyst by a magnetic field. Based upon various controlled reaction results, a possible mechanism for xanthene synthesis over GO-CuFe2O4 catalyst was proposed. The superior catalytic activity of the GO-CuFe2O4 nanocomposite can be attributed to the synergistic interaction between GO and CuFe2O4 nanoparticles, high surface area and presence of small sized CuFe2O4 NPs. This versatile GO-CuFe2O4 nanocomposite synthesized via combustion method holds great promise for applications in wide range of industrially important catalytic reactions.

  12. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  13. Synthesis and characterization of TiO₂ and TiO₂/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis.

    PubMed

    Ramos, Dayana Doffinger; Bezerra, Paula C S; Quina, Frank H; Dantas, Renato F; Casagrande, Gleison A; Oliveira, Silvio C; Oliveira, Márcio R S; Oliveira, Lincoln C S; Ferreira, Valdir S; Oliveira, Samuel L; Machulek, Amilcar

    2015-01-01

    This paper reports the synthesis, characterization, and application of TiO2 and TiO2/Ag nanoparticles for use in photocatalysis, employing the herbicide methylviologen (MV) as a substrate for photocatalytic activity testing. At suitable metal to oxide ratios, increases in silver surface coating on TiO2 enhanced the efficiency of heterogeneous photocatalysis by increasing the electron transfer constant. The sol-gel method was used for TiO2 synthesis. P25 TiO2 was the control material. Both oxides were subjected to the same silver incorporation process. The materials were characterized by conventional spectroscopy, SEM micrography, X-ray diffraction, calculation of surface area per mass of catalyst, and thermogravimetry. Also, electron transfers between TiO2 or TiO2/Ag and MV in the absence and presence of sodium formate were investigated using laser flash photolysis. Oxides synthesized with 2.0 % silver exhibited superior photocatalytic activity for MV degradation.

  14. Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition. Synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budhi, Sridhar; Peeraphatdit, Chorthip; Pylypenko, Svitlana

    2014-02-07

    We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). Themore » catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.« less

  15. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  16. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies.

    PubMed

    Rahim, Fazal; Malik, Fazal; Ullah, Hayat; Wadood, Abdul; Khan, Fahad; Javid, Muhammad Tariq; Taha, Muhammad; Rehman, Wajid; Ur Rehman, Ashfaq; Khan, Khalid Mohammed

    2015-06-01

    Isatin base Schiff bases (1-20) were synthesized, characterized by (1)H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2±0.25 and 83.5±1.0μM when compared with the standard acarbose (IC50=840±1.73μM). Among the series compound 2 having IC50 value (18.3±0.56μM), 9 (83.5±1.0μM), 11 (3.3±0.25μM), 12 (2.2±0.25μM), 14 (11.8±0.15μM), and 20 (3.0±0.15μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Synthesis and characterization of hybrid nanocomposites as highly-efficient conducting CH4 gas sensor.

    PubMed

    Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir

    2017-02-15

    Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.

  18. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  19. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    PubMed

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.

  20. Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.

    PubMed

    Kastner, Katharina; Puscher, Bianka; Streb, Carsten

    2013-01-07

    We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.

  1. Identification of Novel Triazole-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors Endowed with Antiproliferative and Antiinflammatory Activity.

    PubMed

    Travelli, Cristina; Aprile, Silvio; Rahimian, Reza; Grolla, Ambra A; Rogati, Federica; Bertolotti, Mattia; Malagnino, Floriana; di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Mercalli, Valentina; Massarotti, Alberto; Stortini, Giorgio; Terrazzino, Salvatore; Del Grosso, Erika; Fakhfouri, Gohar; Troiani, Maria Pia; Alisi, Maria Alessandra; Grosa, Giorgio; Sorba, Giovanni; Canonico, Pier Luigi; Orsomando, Giuseppe; Cuzzocrea, Salvatore; Genazzani, Armando A; Galli, Ubaldina; Tron, Gian Cesare

    2017-03-09

    Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme involved in the recycling of nicotinamide to maintain adequate NAD levels inside the cells. It has been postulated to be a pharmacological target, as it is overexpressed in cancer cells as well as in inflammatory diseases. We describe the synthesis and characterization of a novel class of one-digit nanomolar NAMPT inhibitors based on in vitro characterization. The most active compound tested, 30c, displayed activity in xenograft and allograft models, strengthening the potential of NAMPT inhibitors as antitumoral drugs. Furthermore, in the present contribution we describe the ability of 30c to significantly improve the outcome of colitis in mice. Given that this is the first report of an effect of NAMPT inhibitors in colitis, this result paves the way for novel applications for this class of compounds.

  2. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron–Sulfur Clusters – A New Class of Bioinspired Hydrogenase Models

    PubMed Central

    Kaiser, Manuel; Knör, Günther

    2015-01-01

    The air- and moisture-stable iron–sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1′-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron–sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases. PMID:26512211

  3. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Surajit; Dolai, Malay; Dutta, Arpan; Ali, Mahammad

    2016-12-01

    Reaction of a symmetric compartmental Schiff-base ligand, (H2L) with nickel(II) perchlorate hexahydrate in 1:1 M ratio in methanol gives rise to a mononuclear nickel(II) compound, NiL (1). The compound has been characterized by C, H, N microanalyses and UV-Vis spectra. The single crystal X-ray diffraction studies reveal a square planar geometry around the Ni(II) center. The compound crystallizes in monoclinic system with space group C2/c with a = 21.6425(6), b = 9.9481(3), c = 13.1958(4) Å, β = 107.728(2)°, V = 2706.16(14) Å3 and Z = 4. Ground state DFT optimization and TDDFT calculations on the ligand and complex were performed to get their UV-Vis spectral pattern.

  4. A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Du, Hui; Kelley, Tracy; Leitner, Klaus; ter Maat, Johan; Scordilis-Kelley, Chariclea; Sanchez-Carrera, Roel; Kovalev, Igor; Mudalige, Anoma; Kulisch, Jörn; Safont-Sempere, Marina M.; Hartmann, Pascal; Weiβ, Thomas; Schneider, Ling; Hinrichsen, Bernd

    2017-10-01

    Solid electrolytes are the core components for many next generation lithium battery concepts such as all-solid-state batteries (ASSB) or batteries based on metallic lithium anodes protected by a ceramic or composite passivation layer. Therefore, the search for new solid state Li-ion conductors with superior properties and improved electrochemical stabilities remains of high interest. In this work, the synthesis of a new class of silicon-containing, sulfide-based lithium-ion conductors is reported. Very good conductivities of up to ∼2.0-3.0·10-3 S/cm could be achieved for compositions such as Li22SiP2S18, among the highest for silicon sulfide containing materials. Based on the recorded powder XRD diffraction patterns and simulations it could be confirmed that they constitute novel members of the argyrodite family of sulfide lithium-ion conductors. The cubic high-temperature modification of such argyrodites with high lithium-ion conductivity can therefore be stabilized by implementation of silicon into the lattice, while additional doping with halogen atoms is not necessary.

  5. Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells.

    PubMed

    Morris, Sydney E; Feldman, Aaron W; Romesberg, Floyd E

    2017-10-20

    To bestow cells with novel forms and functions, the goal of synthetic biology, we have developed the unnatural nucleoside triphosphates dNaMTP and dTPT3TP, which form an unnatural base pair (UBP) and expand the genetic alphabet. While the UBP may be retained in the DNA of a living cell, its retention is sequence-dependent. We now report a steady-state kinetic characterization of the rate with which the Klenow fragment of E. coli DNA polymerase I synthesizes the UBP and its mispairs in a variety of sequence contexts. Correct UBP synthesis is as efficient as for a natural base pair, except in one sequence context, and in vitro performance is correlated with in vivo performance. The data elucidate the determinants of efficient UBP synthesis, show that the dNaM-dTPT3 UBP is the first generally recognized natural-like base pair, and importantly, demonstrate that dNaMTP and dTPT3TP are well optimized and standardized parts for the expansion of the genetic alphabet.

  6. Facile synthesis of layered V2O5/ZnV2O6 heterostructures with enhanced sensing performance

    NASA Astrophysics Data System (ADS)

    Xiao, Bingxin; Huang, Hao; Yu, Xiantong; Song, Jun; Qu, Junle

    2018-07-01

    A low-cost and environment-friendly hydrothermal approach was used for the synthesis of layered V2O5/ZnV2O6 hybrid nanobelts. Characterization results indicate that the V2O5/ZnV2O6 nanobelts are composed of several thin layers. Additionally, it is illustrated that the chemical formation process of V2O5/ZnV2O6 occurred in the solution. The synthesized V2O5/ZnV2O6 heterostructures were subjected to detailed ethanol sensing tests. Results demonstrate that V2O5/ZnV2O6 based sensor shows about 4.3 of response to 100 ppm of ethanol gases, reveals relatively high sensitivity at relatively low optimal operating temperature of 240 °C, as well as relatively good selectivity and stability. The performance of the sensor is better than most of reported vanadium based sensing devices. Thus this work offers a new insight into the rational regulation of vanadium based sensing devices.

  7. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets.

    PubMed

    Faustini, Marco; Kim, Jun; Jeong, Guan-Young; Kim, Jin Yeong; Moon, Hoi Ri; Ahn, Wha-Seung; Kim, Dong-Pyo

    2013-10-02

    Herein, we report a novel nanoliter droplet-based microfluidic strategy for continuous and ultrafast synthesis of metal-organic framework (MOF) crystals and MOF heterostructures. Representative MOF structures, such as HKUST-1, MOF-5, IRMOF-3, and UiO-66, were synthesized within a few minutes via solvothermal reactions with substantially faster kinetics in comparison to the conventional batch processes. The approach was successfully extended to the preparation of a demanding Ru3BTC2 structure that requires high-pressure hydrothermal synthesis conditions. Finally, three different types of core-shell MOF composites, i.e., Co3BTC2@Ni3BTC2, MOF-5@diCH3-MOF-5, and Fe3O4@ZIF-8, were synthesized by exploiting a unique two-step integrated microfluidic synthesis scheme in a continuous-flow mode. The synthesized MOF crystals were characterized by X-ray diffraction, scanning electron microscopy, and BET surface area measurements. In comparison with bare MOF-5, MOF-5@diCH3-MOF-5 showed enhanced structural stability in the presence of moisture, and the catalytic performance of Fe3O4@ZIF-8 was examined using Knoevenagel condensation as a probe reaction. The microfluidic strategy allowed continuous fabrication of high-quality MOF crystals and composites exhibiting distinct morphological characteristics in a time-efficient manner and represents a viable alternative to the time-consuming and multistep MOF synthesis processes.

  8. Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route

    NASA Astrophysics Data System (ADS)

    Taglieri, Giuliana; Felice, Benito; Daniele, Valeria; Ferrante, Fabiola

    2015-10-01

    Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines. However, the problem of the large-scale synthesis of nanoparticles remains challenging. An original, eco-friendly, single step, and scalable method to produce magnesium hydroxide nanoparticles in aqueous suspensions is here presented. The method, based on an exchange ion process, is extremely simple and rapid (few minutes). It employs cheap or renewable reactants, operates at room temperature and does not require intermediate steps (washings/purifications) to eliminate undesired compounds. Moreover, it is possible to regenerate the exchange material and to reuse it for new operation of synthesis, according to a cyclic procedure, providing potential aptitudes of scalability of nanoparticles production. Some of the synthesis parameters are varied, and structural and morphological features of the produced nanoparticles, after few seconds from the beginning of the synthesis up to the ending time, are investigated by means of several techniques, such as X-ray diffraction (profile fitting and Rietveld refinement), transmission electron microscopy, infrared spectroscopy, thermal analyses, and surface area measurements. In any case, pure and stable suspensions are produced, characterized by crystalline and mesoporous Mg(OH)2 nanoparticles, with lamellar morphology. In particular, the nanolamellas appeared constituted by a superimposition of hexagonally plated and crystalline nanosized precursors (2-3 nm in dimensions), crystallographically oriented.

  9. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less

  10. Synthesis and Oxidation of Silver Nano-particles

    DTIC Science & Technology

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  11. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

    PubMed Central

    Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.

    2016-01-01

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575

  12. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.

    PubMed

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2015-05-28

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  13. Two sodium and lanthanide(III) MOFs based on oxalate and V-shaped 4,4‧-oxybis(benzoate) ligands: Hydrothermal synthesis, crystal structure, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Chongchen; Guo, Guangliang; Wang, Peng

    2013-01-01

    Two lanthanide based metal-organic frameworks, [NaLn(oba)(ox)(H2O)] (Lndbnd6 Eu(1) and Sm(2)) were obtained from 4,4'-oxybisbenzoic acid, sodium oxalate and corresponding lanthanide salts by hydrothermal synthesis. They were characterized by single-crystal X-ray diffraction, IR spectra, and photoluminescent spectra. The crystallographic data reveals that complexes 1 and 2 are isomorphous and isostructural, composed of three-dimensional framework built up of distorted tricapped trigonal EuO9 units, distorted octahedron NaO6 units, 4,4'-oxybis(benzoate) and oxalate. The carboxylate oxygen atoms of the 4,4'-oxybis(benzoate) and oxalate ligand are coordinated to lanthanide ions and sodium ions, resulting into two-dimensional inorganic sheets, which are further linked into three-dimensional network by organic ligands. Thermogravimetric analyses of 1-2 display a considerable thermal stability. Photoluminescent measurements indicated that europium complex 1 displayed strong red emission.

  14. Synthesis of Ammonia-Assisted Porous Nickel Ferrite (NiFe₂O₄) Nanostructures as an Electrode Material for Supercapacitors.

    PubMed

    Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam

    2017-02-01

    In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.

  15. The Complex Sol-Gel Process for producing small ThO2 microspheres

    NASA Astrophysics Data System (ADS)

    Brykala, Marcin; Rogowski, Marcin

    2016-05-01

    Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.

  16. Phosphazene diamines

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Harris, D. H.; Ito, T. I.; Kratzer, R. H.

    1980-01-01

    The synthesis of a specific phosphazene diamine was optimized, other phosphorus-containing diamines were prepared, and their effect upon certain characteristics of epoxy resins, prepared via reaction with MY 720, in particular, char yield at elevated temperatures was evaluated. The synthesis of the phosphazene diamine resulting from the interaction of methylenedianline with 4,4'-bis(diphenylphosphino)biphenyl was simplified into a one step process giving 77 percent yield of the pure product. Using this procedure, a related diamine containing bis(diphenylphosphino)methane was obtained in a 70 percent yield. Preparation of another class of phosphorus containing amines based upon p-aminophenyldiphenyl-phosphine was unsuccessful; the inability to produce p-aminophenylithlum was responsible for this failure. Seven epoxy resins employing Araldite MY 720, diaminodiphenylsulfone, and two of the phosphorus containing diamines were prepared, characterized, and their char yield capacity at elevated temperatures assessed. Based on these investigations, the resins containing phosphorus appear to exhibit significantly better char formation characteristics than materials hardened using conventional amines, without impairing the other properties measured.

  17. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation.

    PubMed

    Shu, Qing; Nawaz, Zeeshan; Gao, Jixian; Liao, Yuhui; Zhang, Qiang; Wang, Dezheng; Wang, Jinfu

    2010-07-01

    A solid acid catalyst that can keep high activity and stability is necessary when low cost feedstocks are utilized for biodiesel synthesis because the reaction medium contains a large amount of water. Three solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt. The structure of these catalysts was characterized by a variety of techniques. A new process that used the coupling of the reaction and separation was employed, which greatly improved the conversion of cottonseed oil (triglyceride) and free fatty acids (FFA) when a model waste oil feedstock was used. The vegetable oil asphalt-based catalyst showed the highest catalytic activity. This was due to the high density and stability of its acid sites, its loose irregular network, its hydrophobicity that prevented the hydration of -OH species, and large pores that provided more acid sites for the reactants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Synthesis of magnetic composite nanoparticles enveloped in copolymers specified for scale inhibition application

    NASA Astrophysics Data System (ADS)

    Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung

    2013-12-01

    We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.

  19. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Covalently functionalized noble metal nanoparticles for molecular imprinted polymer biosensors: Synthesis, characterization, and SERS detection

    NASA Astrophysics Data System (ADS)

    Volkert, Anna Allyse

    This dissertation evaluates how gold nanoparticle structure and local environment influence resulting sensor function when using these nanomaterials for complex sample analysis. Molecular imprinted polymers (MIPs), a class of plastic antibodies, are engineered and incorporated into these nanosensors thereby facilitating the quantitative detection of a variety of small molecules when Raman spectroscopy and surface enhanced Raman scattering (SERS) are used for detection. First, homogeneous seeded growth gold nanosphere synthesis is evaluated as a function of ionic double layer composition and thickness. Systematically increasing the citrate concentration during synthesis improves nanomaterial shape homogeneity; however, further elevations of citrate concentration increase the number of internal and/or external atomic defects in the nanomaterials which leads to decreasing solution-phase stability. Next, spherical gold nanoparticles are modified with self-assembled monolayer (SAM), modeled using interfacial energy calculations, and experimental characterized using transmission electron microscopy, NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation studies to assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and nanoparticle stability, respectively. The number of molecules on the nanostructures increases with increasing ionic strength (by decreasing the electrostatic interfacial energy between assembled molecules) which subsequently promotes nanoparticle stability. Third, plastic antibodies that recognize three drugs commonly used to treat migraines are engineered. These methacrylate-based MIPs are synthesized, extracted, characterized, and used to quantitatively and directly detect over-the-counter drugs in complex samples using Raman microscopy. These results along with numerical approximation methods to estimate drug binding site densities and dissociation constants with the MIPs serve as a foundation for understanding how modest recognition selectivity of MIPs coupled with shifts in the vibrational energy modes from the drugs upon hydrogen binding to the polymer backbone promote sensitive and selective drug detection in complex samples. Finally, nanomaterial incorporation into MIPs for applications in SERS-based biosensors is evaluated. Importantly, gold nanorod concentration increases the detectability of the same drugs using MIPs as pre-concentration and recognition elements. This combination of materials, theory, and applications forms a solid foundation which should aid in the design and development of MIP nanobiosensors for specific and sensitive detection of small molecules in complex matrices.

  1. Cross cultural translation and adaptation to Brazilian Portuguese of the Hearing Implant Sound Quality Index Questionnaire - (HISQUI19).

    PubMed

    Caporali, Priscila Faissola; Caporali, Sueli Aparecida; Bucuvic, Érika Cristina; Vieira, Sheila de Souza; Santos, Zeila Maria; Chiari, Brasília Maria

    2016-01-01

    Translation and cross-cultural adaptation of the instrument Hearing Implant Sound Quality Index (HISQUI19), and characterization of the target population and auditory performance in Cochlear Implant (CI) users through the application of a synthesis version of this tool. Evaluations of conceptual, item, semantic and operational equivalences were performed. The synthesis version was applied as a pre-test to 33 individuals, whose final results characterized the final sample and performance of the questionnaire. The results were analyzed statistically. The final translation (FT) was back-translated and compared with the original version, revealing a minimum difference between items. The changes observed between the FT and the synthesis version were characterized by the application of simplified vocabulary used on a daily basis. For the pre-test, the average score of the interviewees was 90.2, and a high level of reliability was achieved (0.83). The translation and cross-cultural adaptation of the HISQUI19 questionnaire showed suitability for conceptual, item, semantic and operational equivalences. For the sample characterization, the sound quality was classified as good with better performance for the categories of location and distinction of sound/voices.

  2. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    NASA Astrophysics Data System (ADS)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  3. Transition Metal Complexes of Quinolino[3,2-b]benzodiazepine and Quinolino[3,2-b]benzoxazepine: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Basavaraju, B.; Bhojya Naik, Halehatty S.; Prabhakara, Mustur C.

    2007-01-01

    The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand. PMID:18273383

  4. Synthesis and Electrochemical Properties Characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries

    DTIC Science & Technology

    2009-01-01

    Synthesis and electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electrochemical reaction. References 1. N Yabuuchi, T Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium - ion batteries ”, J

  5. Synthesis, characterization, spectroscopic studies and antimicrobial activity of three new Schiff bases derived from Heterocyclic moiety

    NASA Astrophysics Data System (ADS)

    Mesbah, Mounira; Douadi, Tahar; Sahli, Farida; Issaadi, Saifi; Boukazoula, Soraya; Chafaa, Salah

    2018-01-01

    Three new Schiff-bases compounds (I-III) were synthesized by a condensation reaction in 1:2 M ratios of 4,4‧-diaminodiphenyl sulfide and pyrrol/thiophene/furan-2-carboxaldehyde in ethanol. The structural determinations of the Schiff-bases were identified with the help of elemental analysis then confirmed by UV-Vis, FT-IR and 1H NMR. The products were obtained in excellent yields. On the other hand, the in vitro antibacterial and antifungal activities of the synthesized compounds were investigated using disc diffusion method. Schiff bases synthesized individually exhibited varying degrees of inhibitory effects on the growth of the tested microbial species.

  6. Solution phase synthesis of aluminum-doped silicon nanoparticles via room-temperature, solvent based chemical reduction of silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Mowbray, Andrew James

    We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.

  7. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    PubMed

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures ofmore » the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.« less

  9. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) and Fe3O4-NPs. Thermal stability, morphological characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.

    2018-02-01

    The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.

  10. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy,more » transmission electron microscopy (TEM) and magnetic measurements.« less

  11. Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices

    NASA Astrophysics Data System (ADS)

    Thakur, Shashi; Gathania, Arvind K.

    2015-10-01

    YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.

  12. Characterization and Discrimination of Gram-Positive Bacteria Using Raman Spectroscopy with the Aid of Principal Component Analysis.

    PubMed

    Colniță, Alia; Dina, Nicoleta Elena; Leopold, Nicolae; Vodnar, Dan Cristian; Bogdan, Diana; Porav, Sebastian Alin; David, Leontin

    2017-09-01

    Raman scattering and its particular effect, surface-enhanced Raman scattering (SERS), are whole-organism fingerprinting spectroscopic techniques that gain more and more popularity in bacterial detection. In this work, two relevant Gram-positive bacteria species, Lactobacillus casei ( L. casei ) and Listeria monocytogenes ( L. monocytogenes ) were characterized based on their Raman and SERS spectral fingerprints. The SERS spectra were used to identify the biochemical structures of the bacterial cell wall. Two synthesis methods of the SERS-active nanomaterials were used and the recorded spectra were analyzed. L. casei and L. monocytogenes were successfully discriminated by applying Principal Component Analysis (PCA) to their specific spectral data.

  13. Characterization and Discrimination of Gram-Positive Bacteria Using Raman Spectroscopy with the Aid of Principal Component Analysis

    PubMed Central

    Leopold, Nicolae; Vodnar, Dan Cristian; Bogdan, Diana; Porav, Sebastian Alin; David, Leontin

    2017-01-01

    Raman scattering and its particular effect, surface-enhanced Raman scattering (SERS), are whole-organism fingerprinting spectroscopic techniques that gain more and more popularity in bacterial detection. In this work, two relevant Gram-positive bacteria species, Lactobacillus casei (L. casei) and Listeria monocytogenes (L. monocytogenes) were characterized based on their Raman and SERS spectral fingerprints. The SERS spectra were used to identify the biochemical structures of the bacterial cell wall. Two synthesis methods of the SERS-active nanomaterials were used and the recorded spectra were analyzed. L. casei and L. monocytogenes were successfully discriminated by applying Principal Component Analysis (PCA) to their specific spectral data. PMID:28862655

  14. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  15. Synthesis and Characterization of YB4 Ceramics

    DTIC Science & Technology

    2011-06-24

    capa bility at temperatures above 2000°C1 with adequate mechani cal properties and oxidation resistance. Refractory metal borides based on HfB2 and ZrB2...increase in the oxidation resistance was accomplished by the addition of the Group IV VI transition metal borides , which was the result of phase...metal borides for use as materials for ultra high temper ature (UHT) applications. However, for instance, yttrium tet raboride, YB4, appears promising as

  16. A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection.

    PubMed

    Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L; Chan, Leanne Jade G; Wei, Tong; Joe, Anna; Thomas, Nicholas; Pruitt, Rory; Adams, Paul D; Chern, Maw Sheng; Petzold, Christopher J; Liu, Chang C; Ronald, Pamela C

    2016-04-18

    Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.

  17. A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection

    DOE PAGES

    Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L.; ...

    2015-11-27

    Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.

  18. Acquisition of Raman Spectrometer and High Temperature and Pressure Reactor for Synthesis and Characterization of Carbon Based Hybrid Nanoparticles from Waste Wood

    DTIC Science & Technology

    2015-04-27

    from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon

  19. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  20. Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.

    PubMed

    Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra

    2017-03-15

    A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by 1 H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.

Top