Role of linguistic skills in fifth-grade mathematics.
Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo
2018-03-01
The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.
Remedial Instruction to Enhance Mathematical Ability of Dyscalculics
ERIC Educational Resources Information Center
Kumar, S. Praveen; Raja, B. William Dharma
2012-01-01
The ability to do arithmetic calculations is essential to school-based learning and skill development in an information rich society. Arithmetic is a basic academic skill that is needed for learning which includes the skills such as counting, calculating, reasoning etc. that are used for performing mathematical calculations. Unfortunately, many…
ERIC Educational Resources Information Center
Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo
2014-01-01
The present study investigated the role of both cognitive and linguistic predictors in basic arithmetic skills (i.e., addition and subtraction) in 69 first-language (L1) learners and 60 second-language (L2) learners from the second grade of primary schools in the Netherlands. All children were tested on non-verbal intelligence, working memory,…
ERIC Educational Resources Information Center
Schoppek, Wolfgang; Tulis, Maria
2010-01-01
The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…
Basic Mathematics Operations--A Math Practice Booklet.
ERIC Educational Resources Information Center
Herr, Nicholas K.
Intended for use in vocational high schools, the workbook is designed to help the student understand and develop skill in performing the four basic arithmetical operations: addition, subtraction, multiplication, and division. Also stressed is the correct reading and writing of numbers. The booklet consists of explanatory text, arithmetic problems,…
Bartelet, Dimona; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel
2014-01-01
Relations between children's mathematics achievement and their basic number processing skills have been reported in both cross-sectional and longitudinal studies. Yet, some key questions are currently unresolved, including which kindergarten skills uniquely predict children's arithmetic fluency during the first year of formal schooling and the degree to which predictors are contingent on children's level of arithmetic proficiency. The current study assessed kindergarteners' non-symbolic and symbolic number processing efficiency. In addition, the contribution of children's underlying magnitude representations to differences in arithmetic achievement was assessed. Subsequently, in January of Grade 1, their arithmetic proficiency was assessed. Hierarchical regression analysis revealed that children's efficiency to compare digits, count, and estimate numerosities uniquely predicted arithmetic differences above and beyond the non-numerical factors included. Moreover, quantile regression analysis indicated that symbolic number processing efficiency was consistently a significant predictor of arithmetic achievement scores regardless of children's level of arithmetic proficiency, whereas their non-symbolic number processing efficiency was not. Finally, none of the task-specific effects indexing children's representational precision was significantly associated with arithmetic fluency. The implications of the results are 2-fold. First, the findings indicate that children's efficiency to process symbols is important for the development of their arithmetic fluency in Grade 1 above and beyond the influence of non-numerical factors. Second, the impact of children's non-symbolic number processing skills does not depend on their arithmetic achievement level given that they are selected from a nonclinical population. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Moeller, K.; Pixner, S.; Zuber, J.; Kaufmann, L.; Nuerk, H. C.
2011-01-01
It is assumed that basic numerical competencies are important building blocks for more complex arithmetic skills. The current study aimed at evaluating this interrelation in a longitudinal approach. It was investigated whether first graders' performance in basic numerical tasks in general as well as specific processes involved (e.g., place-value…
Sources of Group and Individual Differences in Emerging Fraction Skills
Hecht, Steven A.; Vagi, Kevin J.
2010-01-01
Results from a two year longitudinal study of 181 children from fourth through fifth grade are reported. Levels of growth in children’s computation, word problem, and estimation skills using common fractions were predicted by working memory, attentive classroom behavior, conceptual knowledge about fractions, and simple arithmetic fluency. Comparisons of 55 participants identified as having mathematical difficulties to those without mathematical difficulties revealed that group differences in emerging fraction skills were consistently mediated by attentive classroom behavior and conceptual knowledge about fractions. Neither working memory nor arithmetic fluency mediated group differences in growth in fraction skills. It was also found that the development of basic fraction skills and conceptual knowledge are bidirectional in that conceptual knowledge exerted strong influences on all three types of basic fraction skills, and basic fraction skills exerted a more modest influence on subsequent conceptual knowledge. Results are discussed with reference to how the identification of potentially malleable student characteristics that contribute to the difficulties that some students have with fractions informs interventions and also will contribute to a future theoretical account concerning how domain general and domain specific factors influence the development of basic fraction skills. PMID:21170171
Self-regulated learning of basic arithmetic skills: a longitudinal study.
Throndsen, Inger
2011-12-01
Several studies have examined young primary school children's use of strategies when solving simple addition and subtraction problems. Most of these studies have investigated students' strategy use as if they were isolated processes. To date, we have little knowledge about how math strategies in young students are related to other important aspects in self-regulated learning. The main purpose of this study was to examine relations between young primary school children's basic mathematical skills and their use of math strategies, their metacognitive competence and motivational beliefs, and to investigate how students with basic mathematics skills at various levels differ in respect to the different self-regulation components. The participants were comprised of 27 Year 2 students, all from the same class. The data were collected in three stages (autumn Year 2, spring Year 2, and autumn Year 3). The children's arithmetic skills were measured by age relevant tests, while strategy use, metacognitive competence, and motivational beliefs were assessed through individual interviews. The participants were divided into three performance groups; very good students, good students, and not-so-good students. Analyses revealed that young primary school children at different levels of basic mathematics skill may differ in several important aspects of self-regulated learning. Analyses revealed that a good performance in addition and subtraction was related not only to the children's use of advanced mathematics strategies, but also to domain-specific metacognitive competence, ability attribution for success, effort attribution for failure, and high perceived self-efficacy when using specific strategies. The results indicate that instructional efforts to facilitate self-regulated learning of basic arithmetic skills should address cognitive, metacognitive, and motivational aspects of self-regulation. This is particularly important for low-performing students. ©2010 The British Psychological Society.
Math anxiety and its relationship with basic arithmetic skills among primary school children.
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-09-01
Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.
Improving Soldier Training: An Aptitude-Treatment Interaction Approach.
1979-06-01
magazines. Eighteen percent of American adults lack basic literacy skills to the point where they cannot even fill out basic forms. Dr. Food emphasized...designed to upgrade the literacy and computational skills of Army personnel found deficient. The magnitude of the problem is such, however, that the services...knowledge, (WK); arithmetic reasoning, AR); etc.) predict the aiount learned or the rate of learning or both. Special abilities such as psychomotor skills
Human Services. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge and skills that have been identified and validated by industry as necessary to all Georgia students in secondary-level human services occupations programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking);…
Technical/Engineering. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge and skills that have been identified and validated by industry as necessary to all Georgia students in secondary-level technical/engineering programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking); thinking…
Health Care. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge and skills that have been identified/validated by industry as necessary to all Georgia students in secondary-level health care occupations programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking); thinking…
ERIC Educational Resources Information Center
Education Digest: Essential Readings Condensed for Quick Review, 2010
2010-01-01
As the U.S. economy begins to show signs of improvement, executives say they need a workforce fully equipped with skills beyond just the basics of reading, writing, and arithmetic (the three Rs). Skills such as critical thinking and problem solving, communication, collaboration, and creativity and innovation (the four Cs) will become even more…
Environmental and Agricultural Sciences. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge amd skills that have been identified/validated by industry as necessary to all Georgia students in secondary-level environmental and agricultural sciences programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening,…
Business, Marketing, and Information Management. Georgia Core Standards for Occupational Clusters.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Occupational Studies.
This document lists core standards and occupational knowledge and skills that have been identified and validated by industry as necessary to all Georgia students in business, marketing, and information management programs. First, foundation skills are grouped as follows: basic skills (reading, writing, arithmetic/mathematics, listening, speaking);…
Numerical predictors of arithmetic success in grades 1-6.
Lyons, Ian M; Price, Gavin R; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel
2014-09-01
Math relies on mastery and integration of a wide range of simpler numerical processes and concepts. Recent work has identified several numerical competencies that predict variation in math ability. We examined the unique relations between eight basic numerical skills and early arithmetic ability in a large sample (N = 1391) of children across grades 1-6. In grades 1-2, children's ability to judge the relative magnitude of numerical symbols was most predictive of early arithmetic skills. The unique contribution of children's ability to assess ordinality in numerical symbols steadily increased across grades, overtaking all other predictors by grade 6. We found no evidence that children's ability to judge the relative magnitude of approximate, nonsymbolic numbers was uniquely predictive of arithmetic ability at any grade. Overall, symbolic number processing was more predictive of arithmetic ability than nonsymbolic number processing, though the relative importance of symbolic number ability appears to shift from cardinal to ordinal processing. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Suppes, Patrick; And Others
This report presents a theory of eye movement that accounts for main features of the stochastic behavior of eye-fixation durations and direction of movement of saccades in the process of solving arithmetic exercises of addition and subtraction. The best-fitting distribution of fixation durations with a relatively simple theoretical justification…
Affected Aspects Regarding Literacy and Numeracy in Children Treated for Brain Tumors.
Lönnerblad, Malin; Lovio, Riikka; Berglund, Eva; Van't Hooft, Ingrid
The aim of this study was to investigate the test results of reading speed, reading comprehension, word comprehension, spelling, basic arithmetic skills, and number sense (intuitive understanding of numbers) by children treated for brain tumors. This is a retrospective study based on medical records, including standardized academic tests. In the years of 2010 to 2014, all children in the area of Stockholm between 7 and 18 years (IQ <70) who had no major linguistic or motor difficulties after they had undergone treatment for brain tumors were offered a special education assessment one year after treatment, at school start, or the year before a transition from one stage to another. Our results indicate that children treated for a brain tumor are at risk of having difficulties in spelling, reading speed, and arithmetic and that the test performance may decline over years in arithmetic and spelling. Children diagnosed at age 0 to 6 years may need extra tutoring at school start, especially in basic arithmetic skills. In both reading and mathematics, many children perform better on tests focused on understanding than on tests focused on speed. Continuous special needs assessments including different aspects of literacy and numeracy, are important for understanding each child's specific needs.
ERIC Educational Resources Information Center
Tapson, Frank
1974-01-01
Motivation for practicing basic arithmetic skills is provided by activities based on dart board games. There activities also require participants to devise winning strategies, adding enrichment to the game-type drills. (JP)
Findings of Studies on Dyscalculia--A Synthesis
ERIC Educational Resources Information Center
Raja, B. William Dharma; Kumar, S. Praveen
2012-01-01
Children with learning disabilities face problems in acquiring the basic skills needed for learning. Dyscalculia is one among those learning disorders which affects the ability to acquire arithmetic skills that are needed to perform mathematical calculations. However this is a learning difficulty which is often not recognized. The objectives of…
ERIC Educational Resources Information Center
Anjum, Sabahat
2015-01-01
The progress and prosperity of a country depends on the quality of mathematics taught in its school system. For people to survive and improve the quality of life, basic learning skills, reading, writing, arithmetic and life skills, are necessary and mathematics education is intended to develop these skills. The importance of mathematics transcends…
The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.
Artemenko, Christina; Soltanlou, Mojtaba; Ehlis, Ann-Christine; Nuerk, Hans-Christoph; Dresler, Thomas
2018-03-10
Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
An Examination of Construct Validity for the EARLI Numeracy Skill Measures
ERIC Educational Resources Information Center
Cheng, Weiyi; Lei, Pui-Wa; DiPerna, James C.
2017-01-01
The purpose of the current study was to examine dimensionality and concurrent validity evidence of the EARLI numeracy measures (DiPerna, Morgan, & Lei, 2007), which were developed to assess key skills such as number identification, counting, and basic arithmetic. Two methods (NOHARM with approximate chi-square test and DIMTEST with DETECT…
Supekar, Kaustubh; Swigart, Anna G.; Tenison, Caitlin; Jolles, Dietsje D.; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2013-01-01
Now, more than ever, the ability to acquire mathematical skills efficiently is critical for academic and professional success, yet little is known about the behavioral and neural mechanisms that drive some children to acquire these skills faster than others. Here we investigate the behavioral and neural predictors of individual differences in arithmetic skill acquisition in response to 8-wk of one-to-one math tutoring. Twenty-four children in grade 3 (ages 8–9 y), a critical period for acquisition of basic mathematical skills, underwent structural and resting-state functional MRI scans pretutoring. A significant shift in arithmetic problem-solving strategies from counting to fact retrieval was observed with tutoring. Notably, the speed and accuracy of arithmetic problem solving increased with tutoring, with some children improving significantly more than others. Next, we examined whether pretutoring behavioral and brain measures could predict individual differences in arithmetic performance improvements with tutoring. No behavioral measures, including intelligence quotient, working memory, or mathematical abilities, predicted performance improvements. In contrast, pretutoring hippocampal volume predicted performance improvements. Furthermore, pretutoring intrinsic functional connectivity of the hippocampus with dorsolateral and ventrolateral prefrontal cortices and the basal ganglia also predicted performance improvements. Our findings provide evidence that individual differences in morphometry and connectivity of brain regions associated with learning and memory, and not regions typically involved in arithmetic processing, are strong predictors of responsiveness to math tutoring in children. More generally, our study suggests that quantitative measures of brain structure and intrinsic brain organization can provide a more sensitive marker of skill acquisition than behavioral measures. PMID:23630286
Supekar, Kaustubh; Swigart, Anna G; Tenison, Caitlin; Jolles, Dietsje D; Rosenberg-Lee, Miriam; Fuchs, Lynn; Menon, Vinod
2013-05-14
Now, more than ever, the ability to acquire mathematical skills efficiently is critical for academic and professional success, yet little is known about the behavioral and neural mechanisms that drive some children to acquire these skills faster than others. Here we investigate the behavioral and neural predictors of individual differences in arithmetic skill acquisition in response to 8-wk of one-to-one math tutoring. Twenty-four children in grade 3 (ages 8-9 y), a critical period for acquisition of basic mathematical skills, underwent structural and resting-state functional MRI scans pretutoring. A significant shift in arithmetic problem-solving strategies from counting to fact retrieval was observed with tutoring. Notably, the speed and accuracy of arithmetic problem solving increased with tutoring, with some children improving significantly more than others. Next, we examined whether pretutoring behavioral and brain measures could predict individual differences in arithmetic performance improvements with tutoring. No behavioral measures, including intelligence quotient, working memory, or mathematical abilities, predicted performance improvements. In contrast, pretutoring hippocampal volume predicted performance improvements. Furthermore, pretutoring intrinsic functional connectivity of the hippocampus with dorsolateral and ventrolateral prefrontal cortices and the basal ganglia also predicted performance improvements. Our findings provide evidence that individual differences in morphometry and connectivity of brain regions associated with learning and memory, and not regions typically involved in arithmetic processing, are strong predictors of responsiveness to math tutoring in children. More generally, our study suggests that quantitative measures of brain structure and intrinsic brain organization can provide a more sensitive marker of skill acquisition than behavioral measures.
The Risks and Opportunities Associated with Weak Arithmatic Skills of Accounting Students
ERIC Educational Resources Information Center
Kerr, Stephen; Krull, George
2017-01-01
This paper explored the authors' concerns about students enrolled in their introductory accounting course. Anecdotal evidence suggested that students struggle with basic arithmetic concepts that underlie basic business transactions even though their math placement and ACT scores are high. A survey of 125 students in a first accounting course was…
Improving basic math skills through integrated dynamic representation strategies.
González-Castro, Paloma; Cueli, Marisol; Cabeza, Lourdes; Álvarez-García, David; Rodríguez, Celestino
2014-01-01
In this paper, we analyze the effectiveness of the Integrated Dynamic Representation strategy (IDR) to develop basic math skills. The study involved 72 students, aged between 6 and 8 years. We compared the development of informal basic skills (numbers, comparison, informal calculation, and informal concepts) and formal (conventionalisms, number facts, formal calculus, and formal concepts) in an experimental group (n = 35) where we applied the IDR strategy and in a Control group (n = 37) in order to identify the impact of the procedure. The experimental group improved significantly in all variables except for number facts and formal calculus. It can therefore be concluded that IDR favors the development of the skills more closely related to applied mathematics than those related to automatic mathematics and mental arithmetic.
ERIC Educational Resources Information Center
West, Judy Ferguson
Listening skills are the most used and least taught of the communication skills. However, in 1978 the United States federal government, through the Elementary and Secondary Education Act, added listening and speaking to reading, writing, and arithmetic as determinants of literacy and needed basic competencies. Through the 1978 legislation, funds…
Begin Here. A Maths Pack. Material from the Merseyside and Cheshire Numeracy Lift-Off Project.
ERIC Educational Resources Information Center
Adult Literacy and Basic Skills Unit, London (England).
This skills pack is intended to assist numeracy tutors working with adults needing help with basic arithmetic, time telling, and money concept skills. The following materials are included: money worksheets (dealing with British currency); worksheets introducing subtraction and the various phrases used to express the difference between two numbers;…
How Much Does the 24 Game Increase the Recall of Arithmetic Facts?
ERIC Educational Resources Information Center
Eley, Jonquille
2009-01-01
Sixth grade students come to MS 331 with strong mathematics backgrounds from elementary school. Nevertheless, students often come with a dearth of skills when performing basic math computations. The focus of this study is to investigate the use of the 24 Game in quickening the ability of sixth graders to perform basic computations. The game…
World Perspective Case Descriptions on Educational Programs for Adults: Hong Kong.
ERIC Educational Resources Information Center
Mak, Grace
Adult basic education (ABE) in Hong Kong includes mostly basic Chinese, but also some arithmetic and English. The emphasis is on teaching learners life skills. Both government-run programs and partially government-subsidized programs run by voluntary agencies such as Caritas and the YMCA are common. A case study was made of the Caritas ABE Centre…
Rauscher, Larissa; Kohn, Juliane; Käser, Tanja; Mayer, Verena; Kucian, Karin; McCaskey, Ursina; Esser, Günter; von Aster, Michael
2016-01-01
Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6-8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation.
Moll, Kristina; Snowling, Margaret J.; Göbel, Silke M.; Hulme, Charles
2015-01-01
Two important foundations for learning are language and executive skills. Data from a longitudinal study tracking the development of 93 children at family-risk of dyslexia and 76 controls was used to investigate the influence of these skills on the development of arithmetic. A two-group longitudinal path model assessed the relationships between language and executive skills at 3–4 years, verbal number skills (counting and number knowledge) and phonological processing skills at 4–5 years, and written arithmetic in primary school. The same cognitive processes accounted for variability in arithmetic skills in both groups. Early language and executive skills predicted variations in preschool verbal number skills, which in turn, predicted arithmetic skills in school. In contrast, phonological awareness was not a predictor of later arithmetic skills. These results suggest that verbal and executive processes provide the foundation for verbal number skills, which in turn influence the development of formal arithmetic skills. Problems in early language development may explain the comorbidity between reading and mathematics disorder. PMID:26412946
ERIC Educational Resources Information Center
Resnick, Lauren B.; And Others
This paper discusses a radically different set of assumptions to improve educational outcomes for disadvantaged students. It is argued that disadvantaged children, when exposed to carefully organized thinking-oriented instruction, can acquire the traditional basic skills in the process of reasoning and solving problems. The paper is presented in…
Web-Based Technology for Children with Learning Disabilities
ERIC Educational Resources Information Center
Kumar, S. Praveen; Raja, B. William Dharma
2010-01-01
Individuals with special educational needs may face difficulties in acquiring basic skills needed for learning such as reading, spelling, writing, speaking, understanding, listening, thinking or arithmetic. The difficulties they face in the learning process have begun to attract serious attention throughout the globe. They suffer from severe…
ERIC Educational Resources Information Center
TRAINOR, LOIS M.; AND OTHERS
THE SUMMER PROGRAM IS PART OF A PROGRAM IN WHICH SECOND-GRADE GIFTED STUDENTS ARE GIVEN INSTRUCTION IN BASIC THIRD-GRADE SKILLS IN LANGUAGE AND ARITHMETIC DURING THE SPRING SEMESTER. THE SUMMER SESSION PROVIDES FOR IMPROVEMENT IN THESE SKILLS ON AN INDIVIDUAL BASIS AND FOR ENRICHMENT IN SOCIAL STUDIES. THE UNIT ON THE AMERICAN INDIAN DESCRIBED IS…
1976-12-01
intercorrelated, resulting in several significant relationships involving verbal andtarithmetic skills , particularly the AFQT, GCT, ARI, and the Navy Literacy ...training in literacy and basic arithmetic skills for Category IV personnel would play a role at least as important as course modifications. When... relationship between reading level and performance is, at best, only partially uncovered. Other studies have dealt with concerns related to literacy but
Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard
2018-03-01
A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.
Reading instead of reasoning? Predictors of arithmetic skills in children with cochlear implants.
Huber, Maria; Kipman, Ulrike; Pletzer, Belinda
2014-07-01
The aim of the present study was to evaluate whether the arithmetic achievement of children with cochlear implants (CI) was lower or comparable to that of their normal hearing peers and to identify predictors of arithmetic achievement in children with CI. In particular we related the arithmetic achievement of children with CI to nonverbal IQ, reading skills and hearing variables. 23 children with CI (onset of hearing loss in the first 24 months, cochlear implantation in the first 60 months of life, atleast 3 years of hearing experience with the first CI) and 23 normal hearing peers matched by age, gender, and social background participated in this case control study. All attended grades two to four in primary schools. To assess their arithmetic achievement, all children completed the "Arithmetic Operations" part of the "Heidelberger Rechentest" (HRT), a German arithmetic test. To assess reading skills and nonverbal intelligence as potential predictors of arithmetic achievement, all children completed the "Salzburger Lesetest" (SLS), a German reading screening, and the Culture Fair Intelligence Test (CFIT), a nonverbal intelligence test. Children with CI did not differ significantly from hearing children in their arithmetic achievement. Correlation and regression analyses revealed that in children with CI, arithmetic achievement was significantly (positively) related to reading skills, but not to nonverbal IQ. Reading skills and nonverbal IQ were not related to each other. In normal hearing children, arithmetic achievement was significantly (positively) related to nonverbal IQ, but not to reading skills. Reading skills and nonverbal IQ were positively correlated. Hearing variables were not related to arithmetic achievement. Children with CI do not show lower performance in non-verbal arithmetic tasks, compared to normal hearing peers. Copyright © 2014. Published by Elsevier Ireland Ltd.
How Math Anxiety Relates to Number-Space Associations.
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.
How Math Anxiety Relates to Number–Space Associations
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570
Investigations in Mathematics Education. Volume 20, Number 3.
ERIC Educational Resources Information Center
Suydam, Marilyn N., Ed.; Kasten, Margaret L., Ed.
1987-01-01
This issue contains abstracts and critical comments for 10 papers. The reports are concerned with: (1) children's inferencing behavior; (2) instruction related to problem-solving and basic skills for seventh grade students; (3) remediation of children's subtraction errors; (4) investigation of young children's academic arithmetic contexts; (5)…
Video Based Developmental Mathematics Learning System For Community College Students.
ERIC Educational Resources Information Center
Gormley, Tyrone D.
The University of Maine at Augusta uses an individualized video-taped mathematics instructional system to eliminate students' math weaknesses before they attempt college math. The course, "1 Mth Developmental Mathematics," is part of the Educational Assistance Program and teaches basic skills and concepts of arithmetic and algebra. The…
Long, Imogen; Malone, Stephanie A; Tolan, Anne; Burgoyne, Kelly; Heron-Delaney, Michelle; Witteveen, Kate; Hulme, Charles
2016-12-01
Following on from ideas developed by Gerstmann, a body of work has suggested that impairments in finger gnosis may be causally related to children's difficulties in learning arithmetic. We report a study with a large sample of typically developing children (N=197) in which we assessed finger gnosis and arithmetic along with a range of other relevant cognitive predictors of arithmetic skills (vocabulary, counting, and symbolic and nonsymbolic magnitude judgments). Contrary to some earlier claims, we found no meaningful association between finger gnosis and arithmetic skills. Counting and symbolic magnitude comparison were, however, powerful predictors of arithmetic skills, replicating a number of earlier findings. Our findings seriously question theories that posit either a simple association or a causal connection between finger gnosis and the development of arithmetic skills. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Morsanyi, Kinga; O'Mahony, Eileen; McCormack, Teresa
2017-12-01
Recent evidence has highlighted the important role that number-ordering skills play in arithmetic abilities, both in children and adults. In the current study, we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was mediated by number-ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor that included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Math Anxiety and Its Relationship with Basic Arithmetic Skills among Primary School Children
ERIC Educational Resources Information Center
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-01-01
Background: Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying…
Self-Regulated Learning of Basic Arithmetic Skills: A Longitudinal Study
ERIC Educational Resources Information Center
Throndsen, Inger
2011-01-01
Background: Several studies have examined young primary school children's use of strategies when solving simple addition and subtraction problems. Most of these studies have investigated students' strategy use as if they were isolated processes. To date, we have little knowledge about how math strategies in young students are related to other…
Cipora, Krzysztof; Nuerk, Hans-Christoph
2013-01-01
The SNARC (spatial-numerical association of response codes) described that larger numbers are responded faster with the right hand and smaller numbers with the left hand. It is held in the literature that arithmetically skilled and nonskilled adults differ in the SNARC. However, the respective data are descriptive, and the decisive tests are nonsignificant. Possible reasons for this nonsignificance could be that in previous studies (a) very small samples were used, (b) there were too few repetitions producing too little power and, consequently, reliabilities that were too small to reach conventional significance levels for the descriptive skill differences in the SNARC, and (c) general mathematical ability was assessed by the field of study of students, while individual arithmetic skills were not examined. Therefore we used a much bigger sample, a lot more repetitions, and direct assessment of arithmetic skills to explore relations between the SNARC effect and arithmetic skills. Nevertheless, a difference in SNARC effect between arithmetically skilled and nonskilled participants was not obtained. Bayesian analysis showed positive evidence of a true null effect, not just a power problem. Hence we conclude that the idea that arithmetically skilled and nonskilled participants generally differ in the SNARC effect is not warranted by our data.
ERIC Educational Resources Information Center
Zhang, Xiao; Räsänen, Pekka; Koponen, Tuire; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik
2017-01-01
The longitudinal relations of domain-general and numerical skills at ages 6-7 years to 3 cognitive domains of arithmetic learning, namely knowing (written computation), applying (arithmetic word problems), and reasoning (arithmetic reasoning) at age 11, were examined for a representative sample of 378 Finnish children. The results showed that…
Commentary: Decaying Numerical Skills. "I Can't Divide by 60 in My Head!"
ERIC Educational Resources Information Center
Parslow, Graham R.
2010-01-01
As an undergraduate in the 1960s, the author mostly used a slide rule for calculations and a Marchant-brand motor-operated mechanical calculator for statistics. This was after an elementary education replete with learning multiplication tables and taking speed and accuracy tests in arithmetic. Times have changed and assuming even basic calculation…
Computational Performance of Group IV Personnel in Vocational Training Programs. Final Report.
ERIC Educational Resources Information Center
Main, Ray E.; Harrigan, Robert J.
The document evaluates Navy Group Four personnel gains in basic arithmetic skills after taking experimental courses in linear measurement and recipe conversion. Categorized as Mental Group Four by receiving scores from the 10th to the 30th percentile of the Armed Forces Qualification Test, trainees received instruction tailored to the level of…
Lonnemann, Jan; Li, Su; Zhao, Pei; Li, Peng; Linkersdörfer, Janosch; Lindberg, Sven; Hasselhorn, Marcus; Yan, Song
2017-01-01
Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills. PMID:28384191
Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven
2016-01-01
Symbolic numerical magnitude processing skills are assumed to be fundamental to arithmetic learning. It is, however, still an open question whether better arithmetic skills are reflected in symbolic numerical magnitude processing skills. To address this issue, Chinese and German third graders were compared regarding their performance in arithmetic tasks and in a symbolic numerical magnitude comparison task. Chinese children performed better in the arithmetic tasks and were faster in deciding which one of two Arabic numbers was numerically larger. The group difference in symbolic numerical magnitude processing was fully mediated by the performance in arithmetic tasks. We assume that a higher degree of familiarity with arithmetic in Chinese compared to German children leads to a higher speed of retrieving symbolic numerical magnitude knowledge. PMID:27630606
Individual differences in children's understanding of inversion and arithmetical skill.
Gilmore, Camilla K; Bryant, Peter
2006-06-01
Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.
ERIC Educational Resources Information Center
Petersen, Lori A.
2013-01-01
When counting, the final word used to tag the final item in a set represents the cardinality, or total number, of the set. Understanding of this concept serves as a foundation for children's basic mathematical skills, such as arithmetic. However, little is known about how variations in the early learning environment affect children's understanding…
ERIC Educational Resources Information Center
Andersson, Ulf
2008-01-01
Background: The study was conducted in an attempt to further our understanding of how working memory contributes to written arithmetical skills in children. Aim: The aim was to pinpoint the contribution of different central executive functions and to examine the contribution of the two subcomponents of children's written arithmetical skills.…
Effects of using multi-vide ruler kit in the acquisition of numeracy skills among PROTIM students
NASA Astrophysics Data System (ADS)
Arumugan, Hemalatha A./P.; Obeng, Sharifah Nasriah Wan; Talib, Corrienna Abdul; Bunyamin, Muhammad Abdul Hadi; Ali, Marlina; Ibrahim, Norhasniza; Zawadzki, Rainer
2017-08-01
One effective way to teach arithmetic more interestingly and make it easier to learn is through the use of instructional materials. These can help students master certain mathematical skills, particularly multiplication and division, often considered difficult amongst primary school pupils. Nevertheless, the insufficiency of appropriate instructional materials causes difficulty in understanding how to use the proper technique or apply the concept, especially in multiplication. With this in mind, this study investigated whether the innovative and creative instructional material designed to assist and enhance numeracy skills, namely the Multi-vide Ruler kit, could increase students' ability in solving multiplication and division questions and whether it affected their interest in solving numeracy problems. Participants in this study included ten PROTIM (Program Tiga M [Three M Program] - membaca [reading], menulis [writing] dan mengira [calculate]) students, 9-10 years old, who had difficulties in reading, writing and arithmetic. In order to get appropriate support for qualitative research, a pre and post-test containing ten basic mathematical operations, was implemented together with the Multi-vide Ruler Kit. The findings of the qualitative case study, with the pre and post-tests, showed significant differences in their achievement and interest in two-digit multiplication and division operations. The results suggest that this approach could improve PROTIM student's ability to solve basic mathematical operations. What was most encouraging was the increase in students' interest in solving numeracy problems.
Individual Differences in Children's Understanding of Inversion and Arithmetical Skill
ERIC Educational Resources Information Center
Gilmore, Camilla K.; Bryant, Peter
2006-01-01
Background and aims: In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between…
Physical activity and sedentary time in relation to academic achievement in children.
Haapala, Eero A; Väistö, Juuso; Lintu, Niina; Westgate, Kate; Ekelund, Ulf; Poikkeus, Anna-Maija; Brage, Soren; Lakka, Timo A
2017-06-01
To investigate the independent and combined associations of objectively measured moderate-to-vigorous physical activity (MVPA) and sedentary time (ST) with reading and arithmetic skills. Cross-sectional/prospective. Participants were 89 boys and 69 girls aged 6-8 years. MVPA and ST were measured using a combined heart rate and movement sensor and body fat percentage by dual-energy X-ray absorptiometry in Grade 1. Reading fluency, reading comprehension, and arithmetic skills were assessed using standardized tests in Grades 1-3. The data were analyzed using linear regression analyses and analyses of covariance with repeated measures. In boys, MVPA was directly and ST inversely associated with reading fluency in Grades 1-3 and arithmetic skills in Grade 1 (P<0.05). Higher levels of MVPA were also related to better reading comprehension in Grade 1 (P<0.05). Most of the associations of MVPA and ST with reading and arithmetic skills attenuated after mutual adjustment for MVPA or ST. Furthermore, boys with a combination of lower levels of MVPA and higher levels of ST had consistently poorer reading fluency (P=0.002) and reading comprehension (P=0.027) across Grades 1-3 than other boys. In girls, ST was directly associated with arithmetic skills in Grade 2 (P<0.05). However, this relationship of ST with arithmetic skills was no longer significant after adjustment for body fat percentage. Lower levels of MVPA and higher levels of ST and particularly their combination were related to poorer reading skills in boys. In girls, higher levels of ST were related to better arithmetic skills. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Cognitive and numerosity predictors of mathematical skills in middle school.
Cirino, Paul T; Tolar, Tammy D; Fuchs, Lynn S; Huston-Warren, Emily
2016-05-01
There is a strong research base on the underlying concomitants of early developing math skills. Fewer studies have focused on later developing skills. Here, we focused on direct and indirect contributions of cognitive measures (e.g., language, spatial skills, working memory) and numerosity measures, as well as arithmetic proficiency, on key outcomes of fraction performance, proportional reasoning, and broad mathematics achievement at sixth grade (N=162) via path analysis. We expected a hierarchy of skill development, with predominantly indirect effects of cognitive factors via number and arithmetic. Results controlling for age showed that the combination of cognitive, number, and arithmetic variables cumulatively accounted for 38% to 44% of the variance in fractions, proportional reasoning, and broad mathematics. There was consistency across outcomes, with more proximal skills providing direct effects and with the effects of cognitive skills being mediated by number and by more proximal skills. Results support a hierarchical progression from domain-general cognitive processes through numerosity and arithmetic skills to proportional reasoning to broad mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers
Szkudlarek, Emily; Brannon, Elizabeth M.
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills. PMID:29867624
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.
Szkudlarek, Emily; Brannon, Elizabeth M
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.
ERIC Educational Resources Information Center
Marbach, Joshua
2017-01-01
The Mathematics Fluency and Calculation Tests (MFaCTs) are a series of measures designed to assess for arithmetic calculation skills and calculation fluency in children ages 6 through 18. There are five main purposes of the MFaCTs: (1) identifying students who are behind in basic math fact automaticity; (2) evaluating possible delays in arithmetic…
ERIC Educational Resources Information Center
Norris, Carol A.; Wheeler, Linda
The Adult Reading Academy, a federally-funded service of the Phoenix Union High School District, serves native- and foreign-born adult students who are deficient in the basic skills of reading, writing, arithmetic, and oral communication. In 1980/81, the program served 476 students at 17 sites. Approximately 24 percent of the clients served were…
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
Basic math in monkeys and college students.
Cantlon, Jessica F; Brannon, Elizabeth M
2007-12-01
Adult humans possess a sophisticated repertoire of mathematical faculties. Many of these capacities are rooted in symbolic language and are therefore unlikely to be shared with nonhuman animals. However, a subset of these skills is shared with other animals, and this set is considered a cognitive vestige of our common evolutionary history. Current evidence indicates that humans and nonhuman animals share a core set of abilities for representing and comparing approximate numerosities nonverbally; however, it remains unclear whether nonhuman animals can perform approximate mental arithmetic. Here we show that monkeys can mentally add the numerical values of two sets of objects and choose a visual array that roughly corresponds to the arithmetic sum of these two sets. Furthermore, monkeys' performance during these calculations adheres to the same pattern as humans tested on the same nonverbal addition task. Our data demonstrate that nonverbal arithmetic is not unique to humans but is instead part of an evolutionarily primitive system for mathematical thinking shared by monkeys.
ERIC Educational Resources Information Center
Nortvedt, Guri A.
2011-01-01
This article discusses how 13-year-old students with above-average numeracy skills and below-average reading skills cope with comprehending word problems. Compared to other students who are proficient in numeracy and are skilled readers, these students are more disadvantaged when solving single-step and multistep arithmetic word problems. The…
NASA Astrophysics Data System (ADS)
Follette, K.; McCarthy, D.
2012-08-01
Current trends in the teaching of high school and college science avoid numerical engagement because nearly all students lack basic arithmetic skills and experience anxiety when encountering numbers. Nevertheless, such skills are essential to science and vital to becoming savvy consumers, citizens capable of recognizing pseudoscience, and discerning interpreters of statistics in ever-present polls, studies, and surveys in which our society is awash. Can a general-education collegiate course motivate students to value numeracy and to improve their quantitative skills in what may well be their final opportunity in formal education? We present a tool to assess whether skills in numeracy/quantitative literacy can be fostered and improved in college students through the vehicle of non-major introductory courses in astronomy. Initial classroom applications define the magnitude of this problem and indicate that significant improvements are possible. Based on these initial results we offer this tool online and hope to collaborate with other educators, both formal and informal, to develop effective mechanisms for encouraging all students to value and improve their skills in basic numeracy.
The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds.
Durand, Marianne; Hulme, Charles; Larkin, Rebecca; Snowling, Margaret
2005-06-01
A range of possible predictors of arithmetic and reading were assessed in a large sample (N=162) of children between ages 7 years 5 months and 10 years 4 months. A confirmatory factor analysis of the predictors revealed a good fit to a model consisting of four latent variables (verbal ability, nonverbal ability, search speed, and phonological memory) and two manifest variables (digit comparison and phoneme deletion). A path analysis showed that digit comparison and verbal ability were unique predictors of variations in arithmetic skills, whereas phoneme deletion and verbal ability were unique predictors of variations in reading skills. These results confirm earlier findings that phoneme deletion ability appears to be a critical foundation for learning to read (decode). In addition, variations in the speed of accessing numerical quantity information appear to be a critical foundation for the development of arithmetic skills.
ERIC Educational Resources Information Center
Purpura, David J.; Lonigan, Christopher J.
2013-01-01
Validating the structure of informal numeracy skills is critical to understanding the developmental trajectories of mathematics skills at early ages; however, little research has been devoted to construct evaluation of the Numbering, Relations, and Arithmetic Operations domains. This study was designed to address this knowledge gap by examining…
Specificity and Overlap in Skills Underpinning Reading and Arithmetical Fluency
ERIC Educational Resources Information Center
van Daal, Victor; van der Leij, Aryan; Ader, Herman
2013-01-01
The aim of this study was to examine unique and common causes of problems in reading and arithmetic fluency. 13- to 14-year-old students were placed into one of five groups: reading disabled (RD, n = 16), arithmetic disabled (AD, n = 34), reading and arithmetic disabled (RAD, n = 17), reading, arithmetic, and listening comprehension disabled…
Frontoparietal white matter diffusion properties predict mental arithmetic skills in children
Tsang, Jessica M.; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal
2009-01-01
Functional MRI studies of mental arithmetic consistently report blood oxygen level–dependent signals in the parietal and frontal regions. We tested whether white matter pathways connecting these regions are related to mental arithmetic ability by using diffusion tensor imaging (DTI) to measure these pathways in 28 children (age 10–15 years, 14 girls) and assessing their mental arithmetic skills. For each child, we identified anatomically the anterior portion of the superior longitudinal fasciculus (aSLF), a pathway connecting parietal and frontal cortex. We measured fractional anisotropy in a core region centered along the length of the aSLF. Fractional anisotropy in the left aSLF positively correlates with arithmetic approximation skill, as measured by a mental addition task with approximate answer choices. The correlation is stable in adjacent core aSLF regions but lower toward the pathway endpoints. The correlation is not explained by shared variance with other cognitive abilities and did not pass significance in the right aSLF. These measurements used DTI, a structural method, to test a specific functional model of mental arithmetic. PMID:19948963
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.; Allison, T.G.
The BASIC2 INTERPRETER was developed to provide a high-level easy-to-use language for performing both control and computational functions in the MCS-80. The package is supplied as two alternative implementations, hardware and software. The ''software'' implementation provides the following capabilities: entry and editing of BASIC programs, device-independent I/O, special functions to allow access from BASIC to any I/O port, formatted printing, special INPUT/OUTPUT-and-proceed statements to allow I/O without interrupting BASIC program execution, full arithmetic expressions, limited string manipulation (10 or fewer characters), shorthand forms for common BASIC keywords, immediate mode BASIC statement execution, and capability of running a BASIC program thatmore » is stored in PROM. The allowed arithmetic operations are addition, subtraction, multiplication, division, and raising a number to a positive integral power. In the second, or ''hardware'', implementation of BASIC2 requiring an Am9511 Arithmetic Processing Unit (APU) interfaced to the 8080 microprocessor, arithmetic operations are performed by the APU. The following additional built-in functions are available in this implementation: square root, sine, cosine, tangent, arcsine, arccosine, arctangent, exponential, logarithm base e, and logarithm base 10. MCS-80,8080-based microcomputers; 8080 Assembly language; Approximately 8K bytes of RAM to store the assembled interpreter, additional user program space, and necessary peripheral devices. The hardware implementation requires an Am9511 Arithmetic Processing Unit and an interface board (reference 2).« less
Rodic, Maja; Zhou, Xinlin; Tikhomirova, Tatiana; Wei, Wei; Malykh, Sergei; Ismatulina, Victoria; Sabirova, Elena; Davidova, Yulia; Tosto, Maria Grazia; Lemelin, Jean-Pascal; Kovas, Yulia
2015-01-01
The present study evaluated 626 5-7-year-old children in the UK, China, Russia, and Kyrgyzstan on a cognitive test battery measuring: (1) general skills; (2) non-symbolic number sense; (3) symbolic number understanding; (4) simple arithmetic - operating with numbers; and (5) familiarity with numbers. Although most inter-population differences were small, 13% of the variance in arithmetic skills could be explained by the sample, replicating the pattern, previously found with older children in PISA. Furthermore, the same cognitive skills were related to early arithmetic in these diverse populations. Only understanding of symbolic number explained variation in mathematical performance in all samples. We discuss the results in terms of potential influences of socio-demographic, linguistic and genetic factors on individual differences in mathematics. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Fägerstam, Emilia; Samuelsson, Joakim
2014-01-01
This study aims to explore the influence of outdoor teaching among students, aged 13, on arithmetic performance and self-regulation skills as previous research concerning outdoor mathematics learning is limited. This study had a quasi-experimental design. An outdoor and a traditional group answered a test and a self-regulation skills questionnaire…
Personal Experience and Arithmetic Meaning in Semantic Dementia
ERIC Educational Resources Information Center
Julien, Camille L.; Neary, David; Snowden, Julie S.
2010-01-01
Arithmetic skills are generally claimed to be preserved in semantic dementia (SD), suggesting functional independence of arithmetic knowledge from other aspects of semantic memory. However, in a recent case series analysis we showed that arithmetic performance in SD is not entirely normal. The finding of a direct association between severity of…
ERIC Educational Resources Information Center
Heitzman, Andrew J.
The New York State Center for Migrant Studies conducted this 1968 study which investigated effects of token reinforcers on reading and arithmetic skills learnings of migrant primary school students during a 6-week summer school session. Students (Negro and Caucasian) received plastic tokens to reward skills learning responses. Tokens were traded…
Patterns of problem-solving in children's literacy and arithmetic.
Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James
2009-11-01
Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.
The Development of Arithmetical Abilities
ERIC Educational Resources Information Center
Butterworth, Brian
2005-01-01
Background: Arithmetical skills are essential to the effective exercise of citizenship in a numerate society. How these skills are acquired, or fail to be acquired, is of great importance not only to individual children but to the organisation of formal education and its role in society. Method: The evidence on the normal and abnormal…
The Codevelopment of Children's Fraction Arithmetic Skill and Fraction Magnitude Understanding
ERIC Educational Resources Information Center
Bailey, Drew H.; Hansen, Nicole; Jordan, Nancy C.
2017-01-01
The importance of fraction knowledge to later mathematics achievement, along with U.S. students' poor knowledge of fraction concepts and procedures, has prompted research on the development of fraction learning. In the present study, participants' (N = 536) development of fraction magnitude understanding and fraction arithmetic skills was assessed…
Haapala, Eero A; Poikkeus, Anna-Maija; Kukkonen-Harjula, Katriina; Tompuri, Tuomo; Lintu, Niina; Väistö, Juuso; Leppänen, Paavo H T; Laaksonen, David E; Lindi, Virpi; Lakka, Timo A
2014-01-01
There are no prospective studies that would have compared the relationships of different types of physical activity (PA) and sedentary behavior (SB) with academic skills among children. We therefore investigated the associations of different types of PA and SB with reading and arithmetic skills in a follow-up study among children. The participants were 186 children (107 boys, 79 girls, 6-8 yr) who were followed-up in Grades 1-3. PA and SB were assessed using a questionnaire in Grade 1. Reading fluency, reading comprehension and arithmetic skills were assessed using standardized tests at the end of Grades 1-3. Among all children more recess PA and more time spent in SB related to academic skills were associated with a better reading fluency across Grades 1-3. In boys, higher levels of total PA, physically active school transportation and more time spent in SB related to academic skills were associated with a better reading fluency across the Grades 1-3. Among girls, higher levels of total PA were related to worse arithmetic skills across Grades 1-3. Moreover, total PA was directly associated with reading fluency and arithmetic skills in Grades 1-3 among girls whose parents had a university degree, whereas these relationships were inverse in girls of less educated parents. Total PA, physically active school transportation and SB related to academic skills may be beneficial for the development of reading skills in boys, whereas factors that are independent of PA or SB may be more important for academic skills in girls. ClinicalTrials.gov: NCT01803776.
BASIC MATHEMATICS I FOR THE SECONDARY SCHOOLS.
ERIC Educational Resources Information Center
MCCARTHY, CHARLES T.; AND OTHERS
THE COURSE IS GEARED TO MEET THE NEEDS OF STUDENTS ENTERING SENIOR HIGH SCHOOL WITH A MATHEMATICS ACHIEVEMENT LEVEL BELOW SIXTH GRADE. SINCE TWO PRINCIPAL CAUSES OF SERIOUS DEFICIENCIES IN ARITHMETIC ARE A LACK OF UNDERSTANDING OF THE DECIMAL SYSTEM OF NOTATION AND A LACK OF KNOWLEDGE OF THE BASIC FUNDAMENTALS OF ARITHMETIC, BASIC CONCEPTS MUST BE…
Cui, Jiaxin; Georgiou, George K; Zhang, Yiyun; Li, Yixun; Shu, Hua; Zhou, Xinlin
2017-02-01
Rapid automatized naming (RAN) has been found to predict mathematics. However, the nature of their relationship remains unclear. Thus, the purpose of this study was twofold: (a) to examine how RAN (numeric and non-numeric) predicts a subdomain of mathematics (arithmetic fluency) and (b) to examine what processing skills may account for the RAN-arithmetic fluency relationship. A total of 160 third-year kindergarten Chinese children (83 boys and 77 girls, mean age=5.11years) were assessed on RAN (colors, objects, digits, and dice), nonverbal IQ, visual-verbal paired associate learning, phonological awareness, short-term memory, speed of processing, approximate number system acuity, and arithmetic fluency (addition and subtraction). The results indicated first that RAN was a significant correlate of arithmetic fluency and the correlations did not vary as a function of type of RAN or arithmetic fluency tasks. In addition, RAN continued to predict addition and subtraction fluency even after controlling for all other processing skills. Taken together, these findings challenge the existing theoretical accounts of the RAN-arithmetic fluency relationship and suggest that, similar to reading fluency, multiple processes underlie the RAN-arithmetic fluency relationship. Copyright © 2016 Elsevier Inc. All rights reserved.
Early Integration of Tutorial Support in Beginning Algebra
ERIC Educational Resources Information Center
Copus, Colleen; McKinney, Betsy
2016-01-01
Anecdotal observations reveal that most students with strong arithmetic skills will succeed in the Beginning Algebra course even if they have no previous experience with algebra. In trying to quantify this with an initial teacher-created survey of arithmetic skills, it was observed, for three consecutive semesters, that students who scored in the…
Special education for intellectual disability: current trends and perspectives.
Kauffman, James M; Hung, Li-Yu
2009-09-01
To inform readers of current issues in special education for individuals with intellectual disabilities and summarize recent research and opinion. Two issues dominate special education for students with intellectual disabilities in the early 21st century. First, what should be taught to such students and who should teach them? Second, where should such students be taught - in 'inclusive' settings alongside normal peers or in special settings dedicated to their special needs? Research on teaching reading, arithmetic, and functional daily living skills to students with disabilities suggests the superiority of direct, systematic instruction. Universal design is often seen as supportive of inclusion. Inclusion has been seen as the central issue in special education but is gradually giving way to concern for what students learn. Direct, systematic instruction in reading, arithmetic, and daily living skills is the most effective approach to teaching students with intellectual disabilities. Basic concepts and logic suggest that special and general education cannot be equivalent. We conclude that what students are taught should be put ahead of where they are taught. Our fundamental concern is that students with intellectual disabilities be respected and be taught all they can learn.
Moeller, Korbinian; Martignon, Laura; Wessolowski, Silvia; Engel, Joachim; Nuerk, Hans-Christoph
2011-01-01
Children typically learn basic numerical and arithmetic principles using finger-based representations. However, whether or not reliance on finger-based representations is beneficial or detrimental is the subject of an ongoing debate between researchers in neurocognition and mathematics education. From the neurocognitive perspective, finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills and that training finger gnosis, or “finger sense,” enhances mathematical skills. Therefore neurocognitive researchers conclude that elaborate finger-based numerical representations are beneficial for later numerical development. However, research in mathematics education recommends fostering mentally based numerical representations so as to induce children to abandon finger counting. More precisely, mathematics education recommends first using finger counting, then concrete structured representations and, finally, mental representations of numbers to perform numerical operations. Taken together, these results reveal an important debate between neurocognitive and mathematics education research concerning the benefits and detriments of finger-based strategies for numerical development. In the present review, the rationale of both lines of evidence will be discussed. PMID:22144969
Haapala, Eero A.; Poikkeus, Anna-Maija; Kukkonen-Harjula, Katriina; Tompuri, Tuomo; Lintu, Niina; Väistö, Juuso; Leppänen, Paavo H. T.; Laaksonen, David E.; Lindi, Virpi; Lakka, Timo A.
2014-01-01
Background There are no prospective studies that would have compared the relationships of different types of physical activity (PA) and sedentary behavior (SB) with academic skills among children. We therefore investigated the associations of different types of PA and SB with reading and arithmetic skills in a follow-up study among children. Methods The participants were 186 children (107 boys, 79 girls, 6–8 yr) who were followed-up in Grades 1–3. PA and SB were assessed using a questionnaire in Grade 1. Reading fluency, reading comprehension and arithmetic skills were assessed using standardized tests at the end of Grades 1–3. Results Among all children more recess PA and more time spent in SB related to academic skills were associated with a better reading fluency across Grades 1–3. In boys, higher levels of total PA, physically active school transportation and more time spent in SB related to academic skills were associated with a better reading fluency across the Grades 1–3. Among girls, higher levels of total PA were related to worse arithmetic skills across Grades 1–3. Moreover, total PA was directly associated with reading fluency and arithmetic skills in Grades 1–3 among girls whose parents had a university degree, whereas these relationships were inverse in girls of less educated parents. Conclusions Total PA, physically active school transportation and SB related to academic skills may be beneficial for the development of reading skills in boys, whereas factors that are independent of PA or SB may be more important for academic skills in girls. Trial Registration ClinicalTrials.gov: NCT01803776 PMID:25207813
The relative importance of two different mathematical abilities to mathematical achievement.
Nunes, Terezinha; Bryant, Peter; Barros, Rossana; Sylva, Kathy
2012-03-01
Two distinct abilities, mathematical reasoning and arithmetic skill, might make separate and specific contributions to mathematical achievement. However, there is little evidence to inform theory and educational practice on this matter. The aims of this study were (1) to assess whether mathematical reasoning and arithmetic make independent contributions to the longitudinal prediction of mathematical achievement over 5 years and (2) to test the specificity of this prediction. Data from Avon Longitudinal Study of Parents and Children (ALSPAC) were available on 2,579 participants for analyses of KS2 achievement and on 1,680 for the analyses of KS3 achievement. Hierarchical regression analyses were used to assess the independence and specificity of the contribution of mathematical reasoning and arithmetic skill to the prediction of achievement in KS2 and KS3 mathematics, science, and English. Age, intelligence, and working memory (WM) were controls in these analyses. Mathematical reasoning and arithmetic did make independent contributions to the prediction of mathematical achievement; mathematical reasoning was by far the stronger predictor of the two. These predictions were specific in so far as these measures were more strongly related to mathematics than to science or English. Intelligence and WM were non-specific predictors; intelligence contributed more to the prediction of science than of maths, and WM predicted maths and English equally well. There is clear justification for making a distinction between mathematical reasoning and arithmetic skills. The implication is that schools must plan explicitly to improve mathematical reasoning as well as arithmetic skills. ©2011 The British Psychological Society.
Arithmetic 400. A Computer Educational Program.
ERIC Educational Resources Information Center
Firestein, Laurie
"ARITHMETIC 400" is the first of the next generation of educational programs designed to encourage thinking about arithmetic problems. Presented in video game format, performance is a measure of correctness, speed, accuracy, and fortune as well. Play presents a challenge to individuals at various skill levels. The program, run on an Apple…
ERIC Educational Resources Information Center
Arsic, Sladjana; Eminovic, Fadilj; Stankovic, Ivona
2011-01-01
Calculia is considered to be the ability of performing arithmetic operations, the preconditions for the development of mathematical skills in the complex functioning of psychological functions represented in neuro-anatomical systems, as well in the interaction with the environment. Problems in acquiring arithmetic skills can be described as…
Spatial Skills as a Predictor of First Grade Girls' Use of Higher Level Arithmetic Strategies
ERIC Educational Resources Information Center
Laski, Elida V.; Casey, Beth M.; Yu, Qingyi; Dulaney, Alana; Heyman, Miriam; Dearing, Eric
2013-01-01
Girls are more likely than boys to use counting strategies rather than higher-level mental strategies to solve arithmetic problems. Prior research suggests that dependence on counting strategies may have negative implications for girls' later math achievement. We investigated the relation between first-grade girls' verbal and spatial skills and…
Cognitive precursors of arithmetic development in primary school children with cerebral palsy.
Van Rooijen, M; Verhoeven, L; Smits, D W; Dallmeijer, A J; Becher, J G; Steenbergen, B
2014-04-01
The aim of this study was to examine the development of arithmetic performance and its cognitive precursors in children with CP from 7 till 9 years of age. Previous research has shown that children with CP are generally delayed in arithmetic performance compared to their typically developing peers. In children with CP, the developmental trajectory of the ability to solve addition- and subtraction tasks has, however, rarely been studied, as well as the cognitive factors affecting this trajectory. Sixty children (M=7.2 years, SD=.23 months at study entry) with CP participated in this study. Standardized tests were administered to assess arithmetic performance, word decoding skills, non-verbal intelligence, and working memory. The results showed that the ability to solve addition- and subtraction tasks increased over a two year period. Word decoding skills were positively related to the initial status of arithmetic performance. In addition, non-verbal intelligence and working memory were associated with the initial status and growth rate of arithmetic performance from 7 till 9 years of age. The current study highlights the importance of non-verbal intelligence and working memory to the development of arithmetic performance of children with CP. Copyright © 2014 Elsevier Ltd. All rights reserved.
How Is Phonological Processing Related to Individual Differences in Children's Arithmetic Skills?
ERIC Educational Resources Information Center
De Smedt, Bert; Taylor, Jessica; Archibald, Lisa; Ansari, Daniel
2010-01-01
While there is evidence for an association between the development of reading and arithmetic, the precise locus of this relationship remains to be determined. Findings from cognitive neuroscience research that point to shared neural correlates for phonological processing and arithmetic as well as recent behavioral evidence led to the present…
Verbal and nonverbal communication of events in learning-disability subtypes.
Loveland, K A; Fletcher, J M; Bailey, V
1990-08-01
This study compared a group of nondisabled children (ND) with groups of learning-disabled children who were primarily impaired in reading and arithmetic skills (Reading-Arithmetic Disabled; RAD) and arithmetic but not reading (Arithmetic Disabled; AD) on a set of tasks involving comprehension and production of verbally and nonverbally presented events. Children viewed videotaped scenarios presented in verbal (narrative) and nonverbal (puppet actors) formats and were asked to describe or enact with puppets the events depicted in the stories. Rourke (1978, 1982) has shown that RAD children have problems with verbal skills, whereas AD children have problems with nonverbal skills. Consequently, it was hypothesized that children's performance in comprehending and reproducing stories would be related to the type of learning disability. Results showed that RAD children made more errors than AD children with verbal presentations and describe-responses, whereas AD children made more errors than RAD children with nonverbal presentations and enact-responses. In addition, learning disabled children were more likely than controls to misinterpret affect and motivation depicted in the stories. These results show that learning disabled children have problems with social communication skills, but that the nature of these problems varies with the type of learning disability.
NASA Astrophysics Data System (ADS)
Tohir, M.; Abidin, Z.; Dafik; Hobri
2018-04-01
Arithmetics is one of the topics in Mathematics, which deals with logic and detailed process upon generalizing formula. Creativity and flexibility are needed in generalizing formula of arithmetics series. This research aimed at analyzing students creative thinking skills in generalizing arithmetic series. The triangulation method and research-based learning was used in this research. The subjects were students of the Master Program of Mathematics Education in Faculty of Teacher Training and Education at Jember University. The data was collected by giving assignments to the students. The data collection was done by giving open problem-solving task and documentation study to the students to arrange generalization pattern based on the dependent function formula i and the function depend on i and j. Then, the students finished the next problem-solving task to construct arithmetic generalization patterns based on the function formula which depends on i and i + n and the sum formula of functions dependent on i and j of the arithmetic compiled. The data analysis techniques operative in this study was Miles and Huberman analysis model. Based on the result of data analysis on task 1, the levels of students creative thinking skill were classified as follows; 22,22% of the students categorized as “not creative” 38.89% of the students categorized as “less creative” category; 22.22% of the students categorized as “sufficiently creative” and 16.67% of the students categorized as “creative”. By contrast, the results of data analysis on task 2 found that the levels of students creative thinking skills were classified as follows; 22.22% of the students categorized as “sufficiently creative”, 44.44% of the students categorized as “creative” and 33.33% of the students categorized as “very creative”. This analysis result can set the basis for teaching references and actualizing a better teaching model in order to increase students creative thinking skills.
Vasilyeva, Marina; Laski, Elida V; Shen, Chen
2015-10-01
The present study tested the hypothesis that children's fluency with basic number facts and knowledge of computational strategies, derived from early arithmetic experience, predicts their performance on complex arithmetic problems. First-grade students from United States and Taiwan (N = 152, mean age: 7.3 years) were presented with problems that differed in difficulty: single-, mixed-, and double-digit addition. Children's strategy use varied as a function of problem difficulty, consistent with Siegler's theory of strategy choice. The use of decomposition strategy interacted with computational fluency in predicting the accuracy of double-digit addition. Further, the frequency of decomposition and computational fluency fully mediated cross-national differences in accuracy on these complex arithmetic problems. The results indicate the importance of both fluency with basic number facts and the decomposition strategy for later arithmetic performance. (c) 2015 APA, all rights reserved).
Numbers in action: individual differences and interactivity in mental arithmetic.
Guthrie, Lisa G; Vallée-Tourangeau, Frédéric
2018-02-03
Previous research indicates that interactive arithmetic tasks may alleviate the deleterious impact of maths anxiety on arithmetic performance. Our aim here was to further test the impact of interactivity on maths-anxious individuals and those with poorer numeracy skills. In the experiment reported here participants completed sums in two interactivity contexts. In a low-interactivity condition, sums were completed with hands down. In a second, high-interactivity condition, participants used moveable number tokens. As anticipated, accuracy and efficiency were greater in the high compared to the low-interactivity condition. Correlational analyses indicated that maths anxiety, objective numeracy, measures of maths expertise and working memory were stronger predictors of performance in the low- than in the high-interactivity conditions. Interactivity transformed the deployment of arithmetic skills, improved performance, and reduced the gap between high- and low-ability individuals. These findings suggest that traditional psychometric efforts that identify the cognitive capacities and dispositions involved in mental arithmetic should take into account the degree of interactivity afforded by the task environment.
ERIC Educational Resources Information Center
LeFevre, Jo-Anne; Berrigan, Lindsay; Vendetti, Corrie; Kamawar, Deepthi; Bisanz, Jeffrey; Skwarchuk, Sheri-Lynn; Smith-Chant, Brenda L.
2013-01-01
We examined the role of executive attention, which encompasses the common aspects of executive function and executive working memory, in children's acquisition of two aspects of mathematical skill: (a) knowledge of the number system (e.g., place value) and of arithmetic procedures (e.g., multi-digit addition) and (b) arithmetic fluency (i.e.,…
Baby Arithmetic: One Object Plus One Tone
ERIC Educational Resources Information Center
Kobayashi, Tessei; Hiraki, Kazuo; Mugitani, Ryoko; Hasegawa, Toshikazu
2004-01-01
Recent studies using a violation-of-expectation task suggest that preverbal infants are capable of recognizing basic arithmetical operations involving visual objects. There is still debate, however, over whether their performance is based on any expectation of the arithmetical operations, or on a general perceptual tendency to prefer visually…
Conceptual Knowledge of Decimal Arithmetic
ERIC Educational Resources Information Center
Lortie-Forgues, Hugues; Siegler, Robert S.
2016-01-01
In two studies (N's = 55 and 54), we examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or…
Kuroishi, Rita Cristina Sadako; Garcia, Ricardo Basso; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma Terezinha; Fukuda, Marisa Tomoe Hebihara
2015-01-01
Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. Analytical cross-sectional study with control group conducted in a public university hospital. 42 children (mean age = 8.7 years) who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years) matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords), reading comprehension and arithmetic skills. Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006), arithmetic (P = 0.025) and working memory for pseudowords (P = 0.002), but not for numbers (P = 0.76). Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
A Substituting Meaning for the Equals Sign in Arithmetic Notating Tasks
ERIC Educational Resources Information Center
Jones, Ian; Pratt, Dave
2012-01-01
Three studies explore arithmetic tasks that support both substitutive and basic relational meanings for the equals sign. The duality of meanings enabled children to engage meaningfully and purposefully with the structural properties of arithmetic statements in novel ways. Some, but not all, children were successful at the adapted task and were…
Associations of motor and cardiovascular performance with academic skills in children.
Haapala, Eero A; Poikkeus, Anna-Maija; Tompuri, Tuomo; Kukkonen-Harjula, Katriina; Leppänen, Paavo H T; Lindi, Virpi; Lakka, Timo A
2014-01-01
We investigated the associations of cardiovascular and motor performance in grade 1 with academic skills in grades 1-3. The participants were 6- to 8-yr-old children with complete data in grades 1-2 for 174 children and in grade 3 for 167 children. Maximal workload during exercise test was used as a measure of cardiovascular performance. The shuttle run test (SRT) time, the errors in balance test, and the number of cubes moved in box and block test (BBT) were measures of motor performance. Academic skills were assessed using reading fluency, reading comprehension, and arithmetic skill tests. Among boys, longer SRT time was associated with poorer reading fluency in grades 1-3 (β = -0.29 to -0.39, P < 0.01), reading comprehension in grades 1-2 (β = -0.25 to -0.29, P < 0.05), and arithmetic skills in grades 1-3 (β = -0.33 to -0.40, P < 0.003). Poorer balance was related to poorer reading comprehension (β = -0.20, P = 0.042). The smaller number of cubes moved in BBT was related to poorer reading fluency in grades 1-2 (β = 0.23-0.28, P < 0.03), reading comprehension in grade 3 (β = 0.23, P = 0.037), and arithmetic skills in grades 1-2 (β = 0.21-0.23, P < 0.043). Among girls, longer SRT time was related to poorer reading fluency in grade 3 (β = -0.27, P = 0.027) and arithmetic skills in grade 2 (β = -0.25, P = 0.040). The smaller number of cubes moved in BBT was associated with worse reading fluency in grade 2 (β = 0.26, P = 0.030). Cardiovascular performance was not related to academic skills. Poorer motor performance was associated with worse academic skills in children, especially among boys. These findings emphasize early identification of children with poor motor performance and actions to improve these children's motor performance and academic skills during the first school years.
ERIC Educational Resources Information Center
Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit
2016-01-01
In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…
Murphy, Melissa M; Mazzocco, Michèle M M
2008-01-01
The present study focuses on math and related skills among 32 girls with fragile X (n = 14) or Turner (n = 18) syndrome during late elementary school. Performance in each syndrome group was assessed relative to Full Scale IQ-matched comparison groups of girls from the general population (n = 32 and n = 89 for fragile X syndrome and Turner syndrome, respectively). Differences between girls with fragile X and their comparison group emerged on untimed arithmetic calculations, mastery of counting skills, and arithmetic problem verification accuracy. Relative to girls in the comparison group, girls with Turner syndrome did not differ on untimed arithmetic calculations or problem verification accuracy, but they had limited mastery of counting skills and longer response times to complete the problem verification task. Girls with fragile X or Turner syndrome also differed from their respective comparison groups on math-related abilities, including visual-spatial, working memory, and reading skills, and the associations between math and those related skills. Together, these findings support the notion that difficulty with math and related skills among girls with fragile X or Turner syndrome continues into late elementary school and that the profile of math and related skill difficulty distinguishes the two syndrome groups from each other.
ERIC Educational Resources Information Center
Vasilyeva, Marina; Laski, Elida V.; Shen, Chen
2015-01-01
The present study tested the hypothesis that children's fluency with basic number facts and knowledge of computational strategies, derived from early arithmetic experience, predicts their performance on complex arithmetic problems. First-grade students from United States and Taiwan (N = 152, mean age: 7.3 years) were presented with problems that…
Perceiving fingers in single-digit arithmetic problems.
Berteletti, Ilaria; Booth, James R
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
Perceiving fingers in single-digit arithmetic problems
Berteletti, Ilaria; Booth, James R.
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
ERIC Educational Resources Information Center
Raddatz, Julia; Kuhn, Jörg-Tobias; Holling, Heinz; Moll, Kristina; Dobel, Christian
2017-01-01
The aim of the present study was to investigate the cognitive profiles of primary school children (age 82-133 months) on a battery of basic number processing and calculation tasks. The sample consisted of four groups matched for age and IQ: arithmetic disorder only (AD; n = 20), reading disorder only (RD; n = 40), a comorbid group (n = 27), and an…
Shelton, Chris
2016-06-01
The safe administration of drugs is a focus of attention in healthcare. It is regarded as acceptable that a formula card or mnemonic can be used to find the correct dose and fill a prescription even though this removes any requirement for performing the underlying computation. Feedback and discussion in class reveal that confidence in arithmetic skills can be low even when students are able to pass the end of semester drug calculation exam. To see if confidence in the understanding and performance of arithmetic for drug calculations can be increased by emphasising student's innate powers of logical reasoning after reflection. Remedial classes offered for students who have declared a dislike or lack of confidence in arithmetic have been developed from student feedback adopting a reasoning by logical step methodology. Students who gave up two hours of their free learning time were observed to engage seriously with the learning methods, focussing on the innate ability to perform logical reasoning necessary for drug calculation problems. Working in small groups allowed some discussion of the route to the answer and this was followed by class discussion and reflection. The results were recorded as weekly self-assessment scores for confidence in calculation. A self-selecting group who successfully completed the end of semester drug calculation exam reported low to moderate confidence in arithmetic. After four weeks focussing on logical skills a significant increase in self-belief was measured. This continued to rise in students who remained in the classes. Many students hold a negative belief regarding their own mathematical abilities. This restricts the learning of arithmetic skills making alternate routes using mnemonics and memorised steps an attractive alternative. Practising stepwise logical reasoning skills consolidated by personal reflection has been effective in developing student's confidence and awareness of their innate powers of deduction supporting an increase in competence in drug administration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early but not late blindness leads to enhanced arithmetic and working memory abilities.
Dormal, Valérie; Crollen, Virginie; Baumans, Christine; Lepore, Franco; Collignon, Olivier
2016-10-01
Behavioural and neurophysiological evidence suggest that vision plays an important role in the emergence and development of arithmetic abilities. However, how visual deprivation impacts on the development of arithmetic processing remains poorly understood. We compared the performances of early (EB), late blind (LB) and sighted control (SC) individuals during various arithmetic tasks involving addition, subtraction and multiplication of various complexities. We also assessed working memory (WM) performances to determine if they relate to a blind person's arithmetic capacities. Results showed that EB participants performed better than LB and SC in arithmetic tasks, especially in conditions in which verbal routines and WM abilities are needed. Moreover, EB participants also showed higher WM abilities. Together, our findings demonstrate that the absence of developmental vision does not prevent the development of refined arithmetic skills and can even trigger the refinement of these abilities in specific tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical abilities in dyslexic children: a diffusion tensor imaging study.
Koerte, Inga K; Willems, Anna; Muehlmann, Marc; Moll, Kristina; Cornell, Sonia; Pixner, Silvia; Steffinger, Denise; Keeser, Daniel; Heinen, Florian; Kubicki, Marek; Shenton, Martha E; Ertl-Wagner, Birgit; Schulte-Körne, Gerd
2016-09-01
Dyslexia is characterized by a deficit in language processing which mainly affects word decoding and spelling skills. In addition, children with dyslexia also show problems in mathematics. However, for the latter, the underlying structural correlates have not been investigated. Sixteen children with dyslexia (mean age 9.8 years [0.39]) and 24 typically developing children (mean age 9.9 years [0.29]) group matched for age, gender, IQ, and handedness underwent 3 T MR diffusion tensor imaging as well as cognitive testing. Tract-Based Spatial Statistics were performed to correlate behavioral data with diffusion data. Children with dyslexia performed worse than controls in standardized verbal number tasks, such as arithmetic efficiency tests (addition, subtraction, multiplication, division). In contrast, the two groups did not differ in the nonverbal number line task. Arithmetic efficiency, representing the total score of the four arithmetic tasks, multiplication, and division, correlated with diffusion measures in widespread areas of the white matter, including bilateral superior and inferior longitudinal fasciculi in children with dyslexia compared to controls. Children with dyslexia demonstrated lower performance in verbal number tasks but performed similarly to controls in a nonverbal number task. Further, an association between verbal arithmetic efficiency and diffusion measures was demonstrated in widespread areas of the white matter suggesting compensatory mechanisms in children with dyslexia compared to controls. Taken together, poor fact retrieval in children with dyslexia is likely a consequence of deficits in the language system, which not only affects literacy skills but also impacts on arithmetic skills.
Diagonalization of the symmetrized discrete i th right shift operator
NASA Astrophysics Data System (ADS)
Fuentes, Marc
2007-01-01
In this paper, we consider the symmetric part of the so-called ith right shift operator. We determine its eigenvalues as also the associated eigenvectors in a complete and closed form. The proposed proof is elementary, using only basical skills such as Trigonometry, Arithmetic and Linear algebra. The first section is devoted to the introduction of the tackled problem. Second and third parts contain almost all the ?technical? stuff of the proofE Afterwards, we continue with the end of the proof, provide a graphical illustration of the results, as well as an application on the polyhedral ?sandwiching? of a special compact of arising in Signal theory.
Foley, Alana E; Vasilyeva, Marina; Laski, Elida V
2017-06-01
This study examined the mediating role of children's use of decomposition strategies in the relation between visuospatial memory (VSM) and arithmetic accuracy. Children (N = 78; Age M = 9.36) completed assessments of VSM, arithmetic strategies, and arithmetic accuracy. Consistent with previous findings, VSM predicted arithmetic accuracy in children. Extending previous findings, the current study showed that the relation between VSM and arithmetic performance was mediated by the frequency of children's use of decomposition strategies. Identifying the role of arithmetic strategies in this relation has implications for increasing the math performance of children with lower VSM. Statement of contribution What is already known on this subject? The link between children's visuospatial working memory and arithmetic accuracy is well documented. Frequency of decomposition strategy use is positively related to children's arithmetic accuracy. Children's spatial skill positively predicts the frequency with which they use decomposition. What does this study add? Short-term visuospatial memory (VSM) positively relates to the frequency of children's decomposition use. Decomposition use mediates the relation between short-term VSM and arithmetic accuracy. Children with limited short-term VSM may struggle to use decomposition, decreasing accuracy. © 2016 The British Psychological Society.
Cognitive Analysis of Educational Games: The Number Game.
van der Maas, Han L J; Nyamsuren, Enkhbold
2017-04-01
We analyze the cognitive strategies underlying performance in the Number task, a Math game that requires both arithmetic fluency and mathematical creativity. In this game all elements in a set of numbers (for instance, 2, 5, 9) have to be used precisely once to create a target number (for instance, 27) with basic arithmetic operations (solution: [5-2] × 9). We argue that some instances of this game are NP complete, by showing its relation to the well-known Partition problem. We propose heuristics based on the distinction in forward and backward reasoning. The Number Game is part of Math Garden, a popular online educational platform for practicing and monitoring math skills using innovations in computerized adaptive testing. These educational games generate enormous amounts of rich data on children's cognitive development. We found converging evidence for the use of forward proximity heuristics in the data of Math Garden, consisting of more than 20 million answers to 1,700 items. Item difficulties and the structure of correct answers were analyzed. Copyright © 2016 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Smith, Penny
1985-01-01
Reviews: "ArithMagic (Counting, Addition, Subtraction)" which uses graphics to illustrate/review basic arithmetic concepts; "The Sweet Shop" which uses graphics (and a character called Mr. Jellybean) to teach arithmetic concepts; and "Math Magic," a monster-filled arcade game that teaches addition and subtraction.…
Bailey, Drew H.; Littlefield, Andrew; Geary, David C.
2012-01-01
The ability to retrieve basic arithmetic facts from long-term memory contributes to individual and perhaps sex differences in mathematics achievement. The current study tracked the co-development of preference for using retrieval over other strategies to solve single-digit addition problems, independent of accuracy, and skilled use of retrieval (i.e., accuracy and RT) from first to sixth grade, inclusive (n = 311). Accurate retrieval in first grade was related to working memory capacity and intelligence and predicted a preference for retrieval in second grade. In later grades, the relation between skill and preference changed such that preference in one grade predicted accuracy and RT in the next, as RT and accuracy continued to predict future gains in preference. In comparison to girls, boys had a consistent preference for retrieval over other strategies and had faster retrieval speeds, but the sex difference in retrieval accuracy varied across grades. Results indicate ability influences early skilled retrieval but both practice and skill influence each other in a feedback loop later in development, and provide insights into the source of the sex difference in problem solving approaches. PMID:22704036
Babies and Math: A Meta-Analysis of Infants' Simple Arithmetic Competence
ERIC Educational Resources Information Center
Christodoulou, Joan; Lac, Andrew; Moore, David S.
2017-01-01
Wynn's (1992) seminal research reported that infants looked longer at stimuli representing "incorrect" versus "correct" solutions of basic addition and subtraction problems and concluded that infants have innate arithmetical abilities. Since then, infancy researchers have attempted to replicate this effect, yielding mixed…
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
USDA-ARS?s Scientific Manuscript database
The effects of eating or skipping breakfast on ERP correlates of mental arithmetic were studied in preadolescents differing in experience (age) and mathematical skills. Participants, randomly assigned to treatment [eat (B) or skip (SB) breakfast (each, n = 41)], were sub-grouped by age [8.8 yrs (B: ...
USDA-ARS?s Scientific Manuscript database
The effects of morning nutritional status on ERP correlates of mental arithmetic were studied in preadolescents differing in experience (age) and mathematical skills. Children [right-handed; IQ > 80), randomly assigned to treatment [eat (B) or skip (SB) breakfast (each, n = 41)], were sub-grouped by...
Sign Language for K-8 Mathematics by 3D Interactive Animation
ERIC Educational Resources Information Center
Adamo-Villani, Nicoletta; Doublestein, John; Martin, Zachary
2005-01-01
We present a new highly interactive computer animation tool to increase the mathematical skills of deaf children. We aim at increasing the effectiveness of (hearing) parents in teaching arithmetic to their deaf children, and the opportunity of deaf children to learn arithmetic via interactive media. Using state-of-the-art computer animation…
Using Microcomputers To Help Learning Disabled Student with Arithmetic Difficulties.
ERIC Educational Resources Information Center
Brevil, Margarette
The use of microcomputers to help the learning disabled increase their arithmetic skills is examined. The microcomputer should be used to aid the learning disabled student to practice the concepts taught by the teacher. Computer-aided instruction such as drill and practice may help the learning disabled student because it gives immediate feedback…
Hard Lessons: Why Rational Number Arithmetic Is so Difficult for so Many People
ERIC Educational Resources Information Center
Siegler, Robert S.; Lortie-Forgues, Hugues
2017-01-01
Fraction and decimal arithmetic pose large difficulties for many children and adults. This is a serious problem, because proficiency with these skills is crucial for learning more advanced mathematics and science and for success in many occupations. This review identifies two main classes of difficulties that underlie poor understanding of…
Shalev, Ruth S
2004-10-01
Developmental dyscalculia is a specific learning disability affecting the normal acquisition of arithmetic skills. Genetic, neurobiologic, and epidemiologic evidence indicates that dyscalculia, like other learning disabilities, is a brain-based disorder. However, poor teaching and environmental deprivation have also been implicated in its etiology. Because the neural network of both hemispheres comprises the substrate of normal arithmetic skills, dyscalculia can result from dysfunction of either hemisphere, although the left parietotemporal area is of particular significance. The prevalence of developmental dyscalculia is 5 to 6% in the school-aged population and is as common in girls as in boys. Dyscalculia can occur as a consequence of prematurity and low birthweight and is frequently encountered in a variety of neurologic disorders, such as attention-deficit hyperactivity disorder (ADHD), developmental language disorder, epilepsy, and fragile X syndrome. Developmental dyscalculia has proven to be a persisting learning disability, at least for the short term, in about half of affected preteen pupils. Educational interventions for dyscalculia range from rote learning of arithmetic facts to developing strategies for solving arithmetic exercises. The long-term prognosis of dyscalculia and the role of remediation in its outcome are yet to be determined.
Single-digit arithmetic processing—anatomical evidence from statistical voxel-based lesion analysis
Mihulowicz, Urszula; Willmes, Klaus; Karnath, Hans-Otto; Klein, Elise
2014-01-01
Different specific mechanisms have been suggested for solving single-digit arithmetic operations. However, the neural correlates underlying basic arithmetic (multiplication, addition, subtraction) are still under debate. In the present study, we systematically assessed single-digit arithmetic in a group of acute stroke patients (n = 45) with circumscribed left- or right-hemispheric brain lesions. Lesion sites significantly related to impaired performance were found only in the left-hemisphere damaged (LHD) group. Deficits in multiplication and addition were related to subcortical/white matter brain regions differing from those for subtraction tasks, corroborating the notion of distinct processing pathways for different arithmetic tasks. Additionally, our results further point to the importance of investigating fiber pathways in numerical cognition. PMID:24847238
Specific arithmetic calculation deficits in children with Turner syndrome.
Rovet, J; Szekely, C; Hockenberry, M N
1994-12-01
Study 1 compared arithmetic processing skills on the WRAT-R in 45 girls with Turner syndrome (TS) and 92 age-matched female controls. Results revealed significant underachievement by subjects with TS, which reflected their poorer performance on problems requiring the retrieval of addition and multiplication facts and procedural knowledge for addition and division operations. TS subjects did not differ qualitatively from controls in type of procedural error committed. Study 2, which compared the performance of 10 subjects with TS and 31 controls on the Keymath Diagnostic Arithmetic Test, showed that the TS group had less adequate knowledge of arithmetic, subtraction, and multiplication procedures but did not differ from controls on Fact items. Error analyses revealed that TS subjects were more likely to confuse component steps or fail to separate intermediate steps or to complete problems. TS subjects relied to a greater degree on verbal than visual-spatial abilities in arithmetic processing while their visual-spatial abilities were associated with retrieval of simple multidigit addition facts and knowledge of subtraction, multiplication, and division procedures. Differences between the TS and control groups increased with age for Keymath, but not WRAT-R, procedures. Discrepant findings are related to the different task constraints (timed vs. untimed, single vs. alternate versions, size of item pool) and the use of different strategies (counting vs. fact retrieval). It is concluded that arithmetic difficulties in females with TS are due to less adequate procedural skills, combined with poorer fact retrieval in timed testing situations, rather than to inadequate visual-spatial abilities.
Raghubar, Kimberly P.; Barnes, Marcia A.; Dennis, Maureen; Cirino, Paul T.; Taylor, Heather; Landry, Susan
2015-01-01
Objective Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Method Participants were 9.5-year-old children with SBM (N = 44) and typically developing children (N = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Results Children with SBM performed similarly to peers on exact arithmetic but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention but not alerting and executive attention. Multiple mediation models showed that: fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Conclusions Results are discussed with reference to models of attention, WM, and mathematical cognition. PMID:26011113
Raghubar, Kimberly P; Barnes, Marcia A; Dennis, Maureen; Cirino, Paul T; Taylor, Heather; Landry, Susan
2015-11-01
Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Participants were 9.5-year-old children with SBM (n = 44) and typically developing children (n = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Children with SBM performed similarly to peers on exact arithmetic, but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention, but not on alerting and executive attention. Multiple mediation models showed that fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Results are discussed with reference to models of attention, WM, and mathematical cognition. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Gerhardt, Ira
2015-01-01
An experiment was conducted over three recent semesters of an introductory calculus course to test whether it was possible to quantify the effect that difficulty with basic algebraic and arithmetic computation had on individual performance. Points lost during the term were classified as being due to either algebraic and arithmetic mistakes…
ERIC Educational Resources Information Center
Casey, Beth M.; Lombardi, Caitlin McPherran; Pollock, Amanda; Fineman, Bonnie; Pezaris, Elizabeth
2017-01-01
This study investigated longitudinal pathways leading from early spatial skills in first-grade girls to their fifth-grade analytical math reasoning abilities (N = 138). First-grade assessments included spatial skills, verbal skills, addition/subtraction skills, and frequency of choice of a decomposition or retrieval strategy on the…
Rosenberg-Lee, Miriam; Barth, Maria; Menon, Vinod
2011-01-01
Early elementary schooling in 2nd and 3rd grades (ages 7-9) is an important period for the acquisition and mastery of basic mathematical skills. Yet, we know very little about neurodevelopmental changes that might occur over a year of schooling. Here we examine behavioral and neurodevelopmental changes underlying arithmetic problem solving in a well-matched group of 2nd (n = 45) and 3rd (n = 45) grade children. Although 2nd and 3rd graders did not differ on IQ or grade- and age-normed measures of math, reading and working memory, 3rd graders had higher raw math scores (effect sizes = 1.46-1.49) and were more accurate than 2nd graders in an fMRI task involving verification of simple and complex two-operand addition problems (effect size = 0.43). In both 2nd and 3rd graders, arithmetic complexity was associated with increased responses in right inferior frontal sulcus and anterior insula, regions implicated in domain-general cognitive control, and in left intraparietal sulcus (IPS) and superior parietal lobule (SPL) regions important for numerical and arithmetic processing. Compared to 2nd graders, 3rd graders showed greater activity in dorsal stream parietal areas right SPL, IPS and angular gyrus (AG) as well as ventral visual stream areas bilateral lingual gyrus (LG), right lateral occipital cortex (LOC) and right parahippocampal gyrus (PHG). Significant differences were also observed in the prefrontal cortex (PFC), with 3rd graders showing greater activation in left dorsal lateral PFC (dlPFC) and greater deactivation in the ventral medial PFC (vmPFC). Third graders also showed greater functional connectivity between the left dlPFC and multiple posterior brain areas, with larger differences in dorsal stream parietal areas SPL and AG, compared to ventral stream visual areas LG, LOC and PHG. No such between-grade differences were observed in functional connectivity between the vmPFC and posterior brain regions. These results suggest that even the narrow one-year interval spanning grades 2 and 3 is characterized by significant arithmetic task-related changes in brain response and connectivity, and argue that pooling data across wide age ranges and grades can miss important neurodevelopmental changes. Our findings have important implications for understanding brain mechanisms mediating early maturation of mathematical skills and, more generally, for educational neuroscience. PMID:21620984
Cowan, Richard; Frith, Chris
2009-01-01
Calendrical savants can name the weekdays for dates from different years with remarkable speed and accuracy. Whether calculation rather than just memory is involved is disputed. Grounds for doubting whether they can calculate are reviewed and criteria for attributing date calculation skills to them are discussed. At least some calendrical savants possess date calculation skills. A behavioural characteristic observed in many calendrical savants is increased response time for questions about more remote years. This may be because more remote years require more calculation or because closer years are more practised. An experiment is reported that used functional magnetic resonance imaging to attempt to discriminate between these explanations. Only two savants could be scanned and excessive head movement corrupted one savant's mental arithmetic data. Nevertheless, there was increased parietal activation during both mental arithmetic and date questions and this region showed increased activity with more remote dates. These results suggest that the calendrical skills observed in savants result from intensive practice with calculations used in solving mental arithmetic problems. The mystery is not how they solve these problems, but why. PMID:19528025
Development of preschool and academic skills in children born very preterm.
Aarnoudse-Moens, Cornelieke Sandrine Hanan; Oosterlaan, Jaap; Duivenvoorden, Hugo Joseph; van Goudoever, Johannes Bernard; Weisglas-Kuperus, Nynke
2011-01-01
To examine performance in preschool and academic skills in very preterm (gestational age ≤ 30 weeks) and term-born comparison children aged 4 to 12 years. Very preterm children (n = 200; mean age, 8.2 ± 2.5 years) born between 1996 and 2004 were compared with 230 term-born children (mean age, 8.3 ± 2.3). The Dutch National Pupil Monitoring System was used to measure preschool numerical reasoning and early linguistics, and primary school simple and complex word reading, reading comprehension, spelling, and mathematics/arithmetic. With univariate analyses of variance, we assessed the effects of preterm birth on performance across grades and on grade retention. In preschool, very preterm children performed comparably with term-born children in early linguistics, but perform more poorly (0.7 standard deviation [SD]) in numerical reasoning skills. In primary school, very preterm children scored 0.3 SD lower in complex word reading and 0.6 SD lower in mathematics/arithmetic, but performed comparably with peers in reading comprehension and spelling. They had a higher grade repeat rate (25.5%), although grade repeat did not improve their academic skills. Very preterm children do well in early linguistics, reading comprehension, and spelling, but have clinically significant deficits in numerical reasoning skills and mathematics/arithmetic, which persist with time. Copyright © 2011 Mosby, Inc. All rights reserved.
Cognitive and Numerosity Predictors of Mathematical Skills in Middle School
ERIC Educational Resources Information Center
Cirino, Paul T.; Tolar, Tammy D.; Fuchs, Lynn S.; Huston-Warren, Emily
2016-01-01
There is a strong research base on the underlying concomitants of early developing math skills. Fewer studies have focused on later developing skills. Here, we focused on direct and indirect contributions of cognitive measures (e.g., language, spatial skills, working memory) and numerosity measures, as well as arithmetic proficiency, on key…
Relational Thinking: The Bridge between Arithmetic and Algebra
ERIC Educational Resources Information Center
Kiziltoprak, Ayhan; Köse, Nilüfer Yavuzsoy
2017-01-01
The purpose of this study is to investigate the development of relational thinking skill, which is an important component of the transition from arithmetic to algebra, of 5th grade students. In the study, the qualitative research method of teaching experiment was used. The research data were collected from six secondary school 5th grade students…
ERIC Educational Resources Information Center
Rodic, Maja; Zhou, Xinlin; Tikhomirova, Tatiana; Wei, Wei; Malykh, Sergei; Ismatulina, Victoria; Sabirova, Elena; Davidova, Yulia; Tosto, Maria Grazia; Lemelin, Jean-Pascal; Kovas, Yulia
2015-01-01
The present study evaluated 626 5-7-year-old children in the UK, China, Russia, and Kyrgyzstan on a cognitive test battery measuring: (1) general skills; (2) non-symbolic number sense; (3) symbolic number understanding; (4) simple arithmetic--operating with numbers; and (5) familiarity with numbers. Although most inter-population differences were…
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
Student Math Skills Reference Manual.
ERIC Educational Resources Information Center
Wilson, Odell; And Others
This mathematics support guide is intended for use by vocational students and instructors as a review of essential mathematics concepts and for problem-solving exercises in the vocations. It is designed to accompany the "Mathematical Skills Inventory," which tests mathematics skills, attitudes, and background. A section entitled Arithmetic Skills…
Paranoia.Ada: Sample output reports
NASA Technical Reports Server (NTRS)
1986-01-01
Paranoia.Ada is a program to diagnose floating point arithmetic in the context of the Ada programming language. The program evaluates the quality of a floating point arithmetic implementation with respect to the proposed IEEE Standards P754 and P854. Paranoia.Ada is derived from the original BASIC programming language version of Paranoia. The Paranoia.Ada replicates in Ada the test algorithms originally implemented in BASIC and adheres to the evaluation criteria established by W. M. Kahan. Paranoia.Ada incorporates a major structural redesign and employs applicable Ada architectural and stylistic features.
Deaño, Manuel Deaño; Alfonso, Sonia; Das, Jagannath Prasad
2015-03-01
This study reports the cognitive and arithmetic improvement of a mathematical model based on the program PASS Remedial Program (PREP), which aims to improve specific cognitive processes underlying academic skills such as arithmetic. For this purpose, a group of 20 students from the last four grades of Primary Education was divided into two groups. One group (n=10) received training in the program and the other served as control. Students were assessed at pre and post intervention in the PASS cognitive processes (planning, attention, simultaneous and successive processing), general level of intelligence, and arithmetic performance in calculus and solving problems. Performance of children from the experimental group was significantly higher than that of the control group in cognitive process and arithmetic. This joint enhancement of cognitive and arithmetic processes was a result of the operationalization of training that promotes the encoding task, attention and planning, and learning by induction, mediation and verbalization. The implications of this are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Undergraduate paramedic students cannot do drug calculations.
Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett
2012-01-01
Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they 'did not have any drug calculations issues'. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment.
The Cognitive Profile of Chinese Children with Mathematics Difficulties
ERIC Educational Resources Information Center
Chan, Becky Mee-yin; Ho, Connie Suk-han
2010-01-01
This study examined how four domain-specific skills (arithmetic procedural skills, number fact retrieval, place value concept, and number sense) and two domain-general processing skills (working memory and processing speed) may account for Chinese children's mathematics learning difficulties. Children with mathematics difficulties (MD) of two age…
Developing an Energy Policy for the United States
ERIC Educational Resources Information Center
Keefe, Pat
2014-01-01
Al Bartlett's video "Arithmetic, Population, and Energy" spells out many of the complex issues related to energy use in our society. Bartlett makes the point that basic arithmetic is the fundamental obstacle preventing us from being able to grasp the relationships between energy consumption, population, and lifestyles. In an earlier…
Secret Codes, Remainder Arithmetic, and Matrices.
ERIC Educational Resources Information Center
Peck, Lyman C.
This pamphlet is designed for use as enrichment material for able junior and senior high school students who are interested in mathematics. No more than a clear understanding of basic arithmetic is expected. Students are introduced to ideas from number theory and modern algebra by learning mathematical ways of coding and decoding secret messages.…
Confirmatory factor analysis of the Early Arithmetic, Reading, and Learning Indicators (EARLI)☆
Norwalk, Kate E.; DiPerna, James Clyde; Lei, Pui-Wa
2015-01-01
Despite growing interest in early intervention, there are few measures available to monitor the progress of early academic skills in preschoolers. The Early Arithmetic, Reading, and Learning Indicators (EARLI; DiPerna, Morgan, & Lei, 2007) were developed as brief assessments of critical early literacy and numeracy skills. The purpose of the current study was to examine the factor structure of the EARLI probes via confirmatory factor analysis (CFA) in a sample of Head Start preschoolers (N = 289). A two-factor model with correlated error terms and a bifactor model provided comparable fit to the data, although there were some structural problems with the latter model. The utility of the bifactor model for explaining the structure of early academic skills as well as the utility of the EARLI probes as measures of literacy and numeracy skills in preschool are discussed. PMID:24495496
ERIC Educational Resources Information Center
Brownell, William A.; And Others
Reported are the results and conclusions of an arithmetic investigation made in the schools of Scotland in the spring and fall of 1966. The first problem in this investigation was to ascertain which, if either, of two unlike programs of instruction was more effective in developing skill in computation. The second was to determine the value of an…
The Cognitive Foundations of Reading and Arithmetic Skills in 7- to 10-Year-Olds
ERIC Educational Resources Information Center
Durand, Marianne; Hulme, Charles; Larkin, Rebecca; Snowling, Margaret
2005-01-01
A range of possible predictors of arithmetic and reading were assessed in a large sample (N=162) of children between ages 7 years 5 months and 10 years 4 months. A confirmatory factor analysis of the predictors revealed a good fit to a model consisting of four latent variables (verbal ability, nonverbal ability, search speed, and phonological…
2016-01-01
The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on different magnitude representations and that it is the ability to build an exact representation of symbolic numbers that underlies math learning. Support for these hypotheses has come mainly from correlative studies with inconsistent results. In this study, we developed two training programs aiming at enhancing the magnitude processing of either non-symbolic numbers or symbolic numbers and compared their effects on arithmetic skills. Fifty-six preschoolers were randomly assigned to one of three 10-session-training conditions: (1) non-symbolic training (2) symbolic training and (3) control training working on story understanding. Both numerical training conditions were significantly more efficient than the control condition in improving magnitude processing. Moreover, symbolic training led to a significantly larger improvement in arithmetic than did non-symbolic training and the control condition. These results support the dual-representation view. PMID:27875540
Educational skills: long-term outcome and predictors following paediatric traumatic brain injury.
Catroppa, Cathy; Anderson, Vicki A; Muscara, Frank; Morse, Sue A; Haritou, Flora; Rosenfeld, Jeffrey V; Heinrich, Liesl M
2009-10-01
Given that reading, spelling and arithmetic skills are acquired through childhood, their development may be compromised following a childhood traumatic brain injury (TBI). The present study examined educational skills (reading accuracy, spelling and arithmetic) at a mean follow-up interval of 6.8 years post-injury in children who had sustained a mild, moderate, or severe TBI at two ages: 'Young' (age at injury: 3-7 years, n = 48) and 'Old': (age at injury: 8-12 years, n = 36). Comparisons between the young and old TBI groups resulted in inconsistent findings. While a dose-response relationship for severity was evident for the young group, this was not always the case for the old group. Significant predictors of outcome included both severity and acute intellectual function.
FINANCIAL CAPACITY OF OLDER AFRICAN AMERICANS WITH AMNESTIC MILD COGNITIVE IMPAIRMENT
Triebel, Kristen L.; Okonkwo, Ozioma C.; Martin, Roy; Griffith, H. Randall; Crowther, Martha; Marson, Daniel C.
2010-01-01
This study investigated financial abilities of 154 patients with mild cognitive impairment (MCI) (116 Caucasian, 38 African American) using the Financial Capacity Instrument (FCI). In a series of linear regression models, we examined the effect of race on FCI performance and identified preliminary predictor variables that mediated observed racial differences on the FCI. Prior/premorbid abilities were identified. Predictor variables examined in the models included race and other demographic factors (age, education, gender), performance on global cognitive measures (MMSE, DRS-2 Total Score), history of cardiovascular disease (hypertension, diabetes, hypercholesterolemia), and a measure of educational achievement (WRAT-3 Arithmetic). African American patients with MCI performed below Caucasian patients with MCI on six of the seven FCI domains examined and on the FCI total score. WRAT-3 Arithmetic emerged as a partial mediator of group differences on the FCI, accounting for 54% of variance. In contrast, performance on global cognitive measures and history of cardiovascular disease only accounted for 14% and 2%, respectively, of the variance. Racial disparities in financial capacity appear to exist among patients with amnestic MCI. Basic academic math skills related to educational opportunity and quality of education account for a substantial proportion of the group difference in financial performance. PMID:20625268
Financial capacity of older African Americans with amnestic mild cognitive impairment.
Triebel, Kristen L; Okonkwo, Ozioma C; Martin, Roy; Griffith, Henry Randall; Crowther, Martha; Marson, Daniel C
2010-01-01
This study investigated financial abilities of 154 patients with mild cognitive impairment (MCI) (116 white, 38 African American) using the Financial Capacity Instrument (FCI). In a series of linear regression models, we examined the effect of race on FCI performance and identified preliminary predictor variables that mediated observed racial differences on the FCI. Prior/premorbid abilities were identified. Predictor variables examined in the models included race and other demographic factors (age, education, sex), performance on global cognitive measures (MMSE, DRS-2 Total Score), history of cardiovascular disease (hypertension, diabetes, hypercholesterolemia), and a measure of educational achievement (WRAT-3 Arithmetic). African American patients with MCI performed below white patients with MCI on 6 of the 7 FCI domains examined and on the FCI total score. WRAT-3 Arithmetic emerged as a partial mediator of group differences on the FCI, accounting for 54% of variance. In contrast, performance on global cognitive measures and history of cardiovascular disease only accounted for 14% and 2%, respectively, of the variance. Racial disparities in financial capacity seem to exist among patients with amnestic MCI. Basic academic math skills related to educational opportunity and quality of education account for a substantial proportion of the group difference in financial performance.
Acquisition of Programming Skills
1990-04-01
skills (e.g., arithmetic reasoning, work knowledge, information processing speed); and c) passive versus active learning style. Ability measures...concurrent storage and processing an individual was capable of doing), and an active learning style. Implications of the findings for the development of
Basic mathematical function libraries for scientific computation
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.
Beyond Traditional Literacy: Learning and Transformative Practices Using ICT
ERIC Educational Resources Information Center
Keane, Therese; Keane, William F.; Blicblau, Aaron S.
2016-01-01
Educators, government bodies and employers have acknowledged the need for modern learners to acquire 21st century skills using information and communication technologies, to personalise student learning. Students need broader skills than the 3Rs (reading, writing and arithmetic) to operate in the 21st century. These broader skills known as the 4Cs…
ERIC Educational Resources Information Center
Smith, Gary R.
This publication contains two miniunits to help students in grades 7-12 build skills for the future. The exercises can also be adapted for use in grades 4-6. Each of the miniunits contains several exercises to build specific skills. Miniunit One, "The Arithmetic of Growth," deals with two concepts--exponential growth and doubling time. These two…
Basic Numerical Capacities and Prevalence of Developmental Dyscalculia: The Havana Survey
ERIC Educational Resources Information Center
Reigosa-Crespo, Vivian; Valdes-Sosa, Mitchell; Butterworth, Brian; Estevez, Nancy; Rodriguez, Marisol; Santos, Elsa; Torres, Paul; Suarez, Ramon; Lage, Agustin
2012-01-01
The association of enumeration and number comparison capacities with arithmetical competence was examined in a large sample of children from 2nd to 9th grades. It was found that efficiency on numerical capacities predicted separately more than 25% of the variance in the individual differences on a timed arithmetical test, and this occurred for…
Item Mass and Complexity and the Arithmetic Computation of Students with Learning Disabilities.
ERIC Educational Resources Information Center
Cawley, John F.; Shepard, Teri; Smith, Maureen; Parmar, Rene S.
1997-01-01
The performance of 76 students (ages 10 to 15) with learning disabilities on four tasks of arithmetic computation within each of the four basic operations was examined. Tasks varied in difficulty level and number of strokes needed to complete all items. Intercorrelations between task sets and operations were examined as was the use of…
ERIC Educational Resources Information Center
Van Luit, Johannes E. H.; Van der Molen, Mariet J.
2011-01-01
Background: Children from Asian countries score higher on early years' arithmetic tests than children from Europe or the United States of America. An explanation for these differences may be the way numbers are named. A clear ten-structure like in the Korean language method leads to a better insight into numbers and arithmetic skills. This…
Acquiring Procedural Skills from Lesson Sequences.
1985-08-13
Teachers of Mathematics . Washington, D)C: NCTM . Brueckner, I..J. (1930) Diagnostic aund remedial teaching in arithmetic. Philadelphia. PA: Winston. Burton...arithmetic and algebra, fr-m multi-lesson curricula. The central hypothesis is that students and teachers obey cc: :-.entions that cause the goal hierarchy...students and • . teachers obey conventions that cause the goal hierarchy of the acquired procedure to be a particular structural function of the sequential
Vanbinst, Kiran; Ceulemans, Eva; Peters, Lien; Ghesquière, Pol; De Smedt, Bert
2018-02-01
Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3years of primary education (5-8years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children's ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children's development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children's arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Leinbach, L. Carl
2015-01-01
This paper illustrates a TI N-Spire .tns file created by the author for generating continued fraction representations of real numbers and doing arithmetic with them. The continued fraction representation provides an alternative to the decimal representation. The .tns file can be used as tool for studying continued fractions and their properties as…
Managing Your Mathematics Program: A Total System. A Guide to the U-SAIL Basic Mathematics System.
ERIC Educational Resources Information Center
Hales, Carma M.; Jones, Maurine E.
The Utah System Approach to Individual Learning (U-SAIL) Mathematics System was developed to make it possible for teachers to provide excellence in arithmetic instruction. It is based on the premise that in order to teach arithmetic well, teachers must accurately assess, teach directly, provide students with focused practice, corrective feedback,…
Learning to Apply Algebra in the Community for Adults with Intellectual Developmental Disabilities
ERIC Educational Resources Information Center
Rodriguez, Anthony M.
2016-01-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This…
Fehr, Thorsten; Code, Chris; Herrmann, Manfred
2007-10-03
The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.
Computer Based Screening Dyscalculia: Cognitive and Neuropsychological Correlates
ERIC Educational Resources Information Center
Cangoz, Banu; Altun, Arif; Olkun, Sinan; Kacar, Funda
2013-01-01
Mathematical skills are becoming increasingly critical for achieving academic and professional success. Developmental dyscalculia (DD) is a childhood-onset disorder characterized by the presence of abnormalities in the acquisition of arithmetic skills affecting approximately 5% of school age children. Diagnosing students with possible dyscalculia…
Undergraduate paramedic students cannot do drug calculations
Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett
2012-01-01
BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067
Jenks, Kathleen M; de Moor, Jan; van Lieshout, Ernest C D M; Maathuis, Karel G B; Keus, Inge; Gorter, Jan Willem
2007-01-01
The development of addition and subtraction accuracy was assessed in first graders with cerebral palsy (CP) in both mainstream (16) and special education (41) and a control group of first graders in mainstream education (16). The control group out-performed the CP groups in addition and subtraction accuracy and this difference could not be fully explained by differences in intelligence. Both CP groups showed evidence of working memory deficits. The three groups exhibited different developmental patterns in the area of early numeracy skills. Children with CP in special education were found to receive less arithmetic instruction and instruction time was positively related to arithmetic accuracy. Structural equation modeling revealed that the effect of CP on arithmetic accuracy is mediated by intelligence, working memory, early numeracy, and instruction time.
Cognitive Consequences of Traditional Apprenticeship Training in West Africa
ERIC Educational Resources Information Center
Lave, Jean
1977-01-01
Addresses the question of the impact of native educational institutions on individual cognitive skills. Examines the Liberian tailor apprenticeship system, and focuses upon tailors' arithmetic skills. Concludes that the inductive teaching learning techniques of apprenticeship training do not prevent the formation of general problem solving…
Naming Speed in Dyslexia and Dyscalculia
ERIC Educational Resources Information Center
Willburger, Edith; Fussenegger, Barbara; Moll, Kristina; Wood, Guilherme; Landerl, Karin
2008-01-01
In four carefully selected samples of 8- to 10-year old children with dyslexia (but age adequate arithmetic skills), dyscalculia (but age adequate reading skills), dyslexia/dyscalculia and controls a domain-general deficit in rapid automatized naming (RAN) was found for both dyslexia groups. Dyscalculic children exhibited a domain-specific deficit…
The Role of Cognitive Inhibition in Different Components of Arithmetic
ERIC Educational Resources Information Center
Gilmore, Camilla; Keeble, Sarah; Richardson, Sophie; Cragg, Lucy
2015-01-01
Research has established that executive functions, the skills required to monitor and control thought and action, are related to achievement in mathematics. Until recently research has focused on working memory, but studies are beginning to show that inhibition skills--the ability to suppress distracting information and unwanted responses--are…
Decimal Fraction Arithmetic: Logical Error Analysis and Its Validation.
ERIC Educational Resources Information Center
Standiford, Sally N.; And Others
This report illustrates procedures of item construction for addition and subtraction examples involving decimal fractions. Using a procedural network of skills required to solve such examples, an item characteristic matrix of skills analysis was developed to describe the characteristics of the content domain by projected student difficulties. Then…
Pathways to Arithmetic Fact Retrieval and Percentage Calculation in Adolescents
ERIC Educational Resources Information Center
Träff, Ulf; Skagerlund, Kenny; Olsson, Linda; Östergren, Rickard
2017-01-01
Background: Developing sufficient mathematical skills is a prerequisite to function adequately in society today. Given this, an important task is to increase our understanding regarding the cognitive mechanisms underlying young people's acquisition of early number skills and formal mathematical knowledge. Aims: The purpose was to examine whether…
Transition Mathematics. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"Transition Mathematics" aims to increase 7th- through 12th-grade students' skills in applied arithmetic, pre-algebra, and pre-geometry. This one-year curriculum also addresses general application to different wordings of problems, types of numbers, and contexts for problems and aims to promote mathematical reading skills. The curriculum…
FAST TRACK COMMUNICATION: Reversible arithmetic logic unit for quantum arithmetic
NASA Astrophysics Data System (ADS)
Kirkedal Thomsen, Michael; Glück, Robert; Axelsen, Holger Bock
2010-09-01
This communication presents the complete design of a reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The presented ALU is garbage free and uses reversible updates to combine the standard reversible arithmetic and logical operations in one unit. Combined with a suitable control unit, the ALU permits the construction of an r-Turing complete computing device. The garbage-free ALU developed in this communication requires only 6n elementary reversible gates for five basic arithmetic-logical operations on two n-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible ALU for a programmable computing device is possible and that the V-shape design is a very versatile approach to the design of quantum networks.
Solving Math Problems Approximately: A Developmental Perspective
Ganor-Stern, Dana
2016-01-01
Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224
Siemann, Julia; Petermann, Franz
2018-01-01
This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Somerville, Ros; Ayre, Kate; Tunbridge, Daniel; Cole, Katy; Stollery, Richard; Sanders, Mary
2015-01-01
This study evaluates the efficacy of a mathematics intervention devised by Essex Educational Psychology Service (EPS), UK. The intervention was designed to develop understanding and skills across four key domains within arithmetical development, by applying the principles of errorless learning, distributed practice and teaching to mastery. A…
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY.
This curriculum bulletin is designed to help teachers meet the diverse needs in mathematics of the children in fifth grade classes. In addition to the emphasis that is placed on arithmetic computational skills, the bulletin shows how to include other areas considered important, such as concepts, skills, and ideas from algebra and geometry. The 80…
ERIC Educational Resources Information Center
Honoré, Nastasya; Noël, Marie-Pascale
2017-01-01
Working memory capacities are associated with mathematical development. Many studies have tried to improve working memory abilities through training. Furthermore, the central executive has been shown to be the component of working memory, which is the most strongly related to numerical and arithmetical skills. Therefore, we developed a training…
A Comparative Study of Student Math Skills: Perceptions, Validation, and Recommendations
ERIC Educational Resources Information Center
Jones, Thomas W.; Price, Barbara A.; Randall, Cindy H.
2011-01-01
A study was conducted at a southern university in sophomore level production classes to assess skills such as the order of arithmetic operations, decimal and percent conversion, solving of algebraic expressions, and evaluation of formulas. The study was replicated using business statistics and quantitative analysis classes at a southeastern…
ERIC Educational Resources Information Center
Rappaport, Shelley; Grossman, Jean; Garcia, Ivonne; Zhu, Pei; Avila, Osvaldo; Granito, Kelly
2017-01-01
To succeed in today's economy, students need both proficiency in the "three Rs" (reading, writing and arithmetic) and strong applied skills. Communication skills, team work, and critical thinking have long been at the top of employers' lists of applied skills they seek in employees. States are responding to employers' needs by putting in…
The diagnosis and management of dyscalculia.
Kaufmann, Liane; von Aster, Michael
2012-11-01
Dyscalculia is defined as difficulty acquiring basic arithmetic skills that is not explained by low intelligence or inadequate schooling. About 5% of children in primary schools are affected. Dyscalculia does not improve without treatment. In this article, we selectively review publications on dyscalculia from multiple disciplines (medicine, psychology, neuroscience, education/special education). Many children and adolescents with dyscalculia have associated cognitive dysfunction (e.g., impairment of working memory and visuospatial skills), and 20% to 60% of those affected have comorbid disorders such as dyslexia or attention deficit disorder. The few interventional studies that have been published to date document the efficacy of pedagogic-therapeutic interventions directed toward specific problem areas. The treatment is tailored to the individual patient's cognitive functional profile and severity of manifestations. Psychotherapy and/or medication are sometimes necessary as well. The early identification and treatment of dyscalculia are very important in view of its frequent association with mental disorders. Sufferers need a thorough, neuropsychologically oriented diagnostic evaluation that takes account of the complexity of dyscalculia and its multiple phenotypes and can thus provide a basis for the planning of effective treatment.
Wang, Amber Y; Fuchs, Lynn S; Fuchs, Douglas
2016-12-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2015-01-01
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7–9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. PMID:22682904
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
Rivera, S M; Reiss, A L; Eckert, M A; Menon, V
2005-11-01
Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2012-02-15
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities. Copyright © 2012 Elsevier Inc. All rights reserved.
[Is a specific disorder of arithmetic skills as common as reading/spelling disorder?].
Wyschkon, Anne; Kohn, Juliane; Ballaschk, Katja; Esser, Günter
2009-11-01
Referring to the prevalence rates of learning disorders in the research literature, the numbers of mathematics disorder and reading/spelling disorder are often reported to be identical. However, the correlation between intelligence level and reading/spelling skills is much weaker than between intelligence and arithmetic skills. If the same definition criterion is applied to both disorders, a lower prevalence rate for mathematics disorder should be expected. Are there differences in the prevalence estimates for learning disorders depending on the definition criterion? A large representative sample of German students (N=1970) was used to review the hypothesis. Depending on the definition criterion, we could show a prevalence range of mathematics disorder between 0.1% and 8.1% in the same sample. Using the same definition criterion for both learning disorders, there are two to three times as many students with reading/spelling disorder than those with mathematics disorder. Whenever children with reading/spelling disorder are compared to children with mathematics disorder, the same definition criterion has to be applied.
Longitudinal follow-up of academic achievement in children with autism from age 2 to 18.
Kim, So Hyun; Bal, Vanessa H; Lord, Catherine
2018-03-01
This study examined early predictors of and changes in school-age academic achievement and class placement in children referred for autism spectrum disorder (ASD) at age 2. Of 111 ASD referrals, 74 were diagnosed with ASD at age 18. Regression analyses were performed to identify age 3 predictors of achievement in arithmetic, passage comprehension, word reading, and spelling at ages 9 and 18. Linear Mixed Models were used to examine predictors of academic growth between ages 9 and 18. Academic skills varied widely at 9 and 18, but were mostly commensurate with or higher than expected given cognitive levels. However, 22% (age 9) and 32% (age 18) of children with average/above average IQ showed below/low average achievement in at least one academic domain. Children who remained in general education/inclusion classrooms had higher achievement than those who moved to special education classrooms. Stronger cognitive skills at age 3 and 9 predicted better academic achievement and faster academic growth from age 9 to 18. Parent participation in intervention by age 3 predicted better achievement at age 9 and 18. Many children with ASD achieve basic academic skills commensurate with or higher than their cognitive ability. However, more rigorous screening for learning difficulties may be important for those with average cognitive skills because a significant minority show relative academic delays. Interventions targeting cognitive skills and parent participation in early treatment may have cascading effects on long-term academic development. © 2017 Association for Child and Adolescent Mental Health.
Developing an Energy Policy for the United States
NASA Astrophysics Data System (ADS)
Keefe, Pat
2014-12-01
Al Bartlett's video "Arithmetic, Population, and Energy"1 spells out many of the complex issues related to energy use in our society. Bartlett makes the point that basic arithmetic is the fundamental obstacle preventing us from being able to grasp the relationships between energy consumption, population, and lifestyles. In an earlier version of Bartlett's video, he refers to a "Hagar the Horrible" comic strip in which Hagar asks the critical question, "Good…Now can anybody here count?"
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Swee Fong; Pe, Madeline Lee; Ang, Su Yin; Hasshim, Muhammad Nabil Azhar Mohd; Bull, Rebecca
2012-01-01
Background: Exposure to mathematical pattern tasks is often deemed important for developing children's algebraic thinking skills. Yet, there is a dearth of evidence on the cognitive underpinnings of pattern tasks and how early competencies on these tasks are related to later development. Aims: We examined the domain-specific and domain-general…
A Teacher Quality Primer. For Michigan School Officials, State Policymakers, Media and Residents
ERIC Educational Resources Information Center
Holley, Marc J.
2008-01-01
While Michigan students learn a variety of skills in their time at school, perhaps the most important charge of public schools, beyond providing a safe and healthy environment, is to ensure that students are learning their three fundamental skills: reading, writing and arithmetic. Unfortunately, the achievement levels of Michigan public school…
ERIC Educational Resources Information Center
Cobey, Paul; Williams, David E.
1977-01-01
A mathematical game that reinforces basic multiplication facts, strengthens concepts of factors and multiples, and also provides arithmetic drill is described. Four variations of the game are also provided. (JT)
Imbo, Ineke; Vandierendonck, André
2007-04-01
The current study tested the development of working memory involvement in children's arithmetic strategy selection and strategy efficiency. To this end, an experiment in which the dual-task method and the choice/no-choice method were combined was administered to 10- to 12-year-olds. Working memory was needed in retrieval, transformation, and counting strategies, but the ratio between available working memory resources and arithmetic task demands changed across development. More frequent retrieval use, more efficient memory retrieval, and more efficient counting processes reduced the working memory requirements. Strategy efficiency and strategy selection were also modified by individual differences such as processing speed, arithmetic skill, gender, and math anxiety. Short-term memory capacity, in contrast, was not related to children's strategy selection or strategy efficiency.
Fuchs, Lynn S.; Fuchs, Douglas
2016-01-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942
The inhibition capacities of children with mathematical disabilities.
Censabella, Sandrine; Noël, Marie-Pascale
2008-01-01
Several authors have argued that mathematical disabilities might result from difficulties in inhibiting irrelevant information. The present study addresses this issue by assessing three inhibition functions in 40 ten-year-old children: suppression of irrelevant information from working memory, inhibition of prepotent responses, and interference control. We found no significant differences between children with math disabilities and typically achieving controls, or between children with arithmetic facts disabilities and children with above-average arithmetic facts skills. These findings, along with other empirical evidence and with theoretical considerations, cast doubt on the inhibition deficit hypothesis.
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tolmie, Andy
2012-01-01
Recent years have seen substantial improvements in the teaching of reading and early arithmetic based on rigorous analysis of the component learning skills involved in these areas and of the ways they are developed. Despite the importance attached to science, there has been very little comparable work that might provide a steer to primary school…
RE-NUMERATE: A Workshop to Restore Essential Numerical Skills and Thinking via Astronomy Education
NASA Astrophysics Data System (ADS)
McCarthy, D.; Follette, K.
2013-04-01
The quality of science teaching for all ages is degraded by our students' gross lack of skills in elementary arithmetic and their unwillingness to think, and to express themselves, numerically. Out of frustration educators, and science communicators, often choose to avoid these problems, thereby reinforcing the belief that math is only needed in “math class” and preventing students from maturing into capable, well informed citizens. In this sense we teach students a pseudo science, not its real nature, beauty, and value. This workshop encourages and equips educators to immerse students in numerical thinking throughout a science course. The workshop begins by identifying common deficiencies in skills and attitudes among non-science collegians (freshman-senior) enrolled in General Education astronomy courses. The bulk of the workshop engages participants in well-tested techniques (e.g., presentation methods, curriculum, activities, mentoring approaches, etc.) for improving students' arithmetic skills, increasing their confidence, and improving their abilities in numerical expression. These techniques are grounded in 25+ years of experience in college classrooms and pre-college informal education. They are suited for use in classrooms (K-12 and college), informal venues, and science communication in general and could be applied across the standard school curriculum.
Bug Distribution and Statistical Pattern Classification.
ERIC Educational Resources Information Center
Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.
1987-01-01
The rule space model permits measurement of cognitive skill acquisition and error diagnosis. Further discussion introduces Bayesian hypothesis testing and bug distribution. An illustration involves an artificial intelligence approach to testing fractions and arithmetic. (Author/GDC)
NASA Astrophysics Data System (ADS)
Autapao, Kanyarat; Minwong, Panthul
2018-01-01
Creative thinking was an important learning skill in the 21st Century via learning and innovation to promote students' creative thinking and working with others and to construct innovation. This is one of the important skills that determine the readiness of the participants to step into the complex society. The purposes of this research were 1) to compare the learning achievement of students after using basic character design and animation concepts using the flipped learning and project-based learning and 2) to make a comparison students' creative thinking between pretest and posttest. The populations were 29 students in Multimedia Technology program at Thepsatri Rajabhat University in the 2nd semester of the academic year 2016. The experimental instruments were lesson plans of basic character design and animation concepts using the flipped learning and project based learning. The data collecting instrument was creative thinking test. The data were analyzed by the arithmetic mean, standard deviation and The Wilcoxon Matched Pairs Signed-Ranks Test. The results of this research were 1) the learning achievement of students were statistically significance of .01 level and 2) the mean score of student's creativity assessment were statistically significance of .05 level. When considering all of 11 KPIs, showed that respondents' post-test mean scores higher than pre-test. And 5 KPIs were statistically significance of .05 level, consist of Originality, Fluency, Elaboration, Resistance to Premature Closure, and Intrinsic Motivation. It's were statistically significance of .042, .004, .049, .024 and .015 respectively. And 6 KPIs were non-statistically significant, include of Flexibility, Tolerance of Ambiguity, Divergent Thinking, Convergent Thinking, Risk Taking, and Extrinsic Motivation. The findings revealed that the flipped learning and project based learning provided students the freedom to simply learn on their own aptitude. When working together with project-based learning, Project based learning focusing on the students' project-based learning construction based on their own interests which allowed the students to increase creative project. This can be applied for other courses in order to plan activities to develop students' work process skills and creative skills. We also recommend that researchers carefully consider the design of lesson plans in accordance with all of 11 KPIs to promote students' creative thinking skills.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Metcalfe, Arron W.S.; Swigart, Anna G.; Menon, Vinod
2014-01-01
The study of developmental disorders can provide a unique window into the role of domain-general cognitive abilities and neural systems in typical and atypical development. Mathematical disabilities (MD) are characterized by marked difficulty in mathematical cognition in the presence of preserved intelligence and verbal ability. Although studies of MD have most often focused on the role of core deficits in numerical processing, domain-general cognitive abilities, in particular working memory (WM), have also been implicated. Here we identify specific WM components that are impaired in children with MD and then examine their role in arithmetic problem solving. Compared to typically developing (TD) children, the MD group demonstrated lower arithmetic performance and lower visuo-spatial working memory (VSWM) scores with preserved abilities on the phonological and central executive components of WM. Whole brain analysis revealed that, during arithmetic problem solving, left posterior parietal cortex, bilateral dorsolateral and ventrolateral prefrontal cortex, cingulate gyrus and precuneus, and fusiform gyrus responses were positively correlated with VSWM ability in TD children, but not in the MD group. Additional analyses using a priori posterior parietal cortex regions previously implicated in WM tasks, demonstrated a convergent pattern of results during arithmetic problem solving. These results suggest that MD is characterized by a common locus of arithmetic and VSWM deficits at both the cognitive and functional neuroanatomical levels. Unlike TD children, children with MD do not use VSWM resources appropriately during arithmetic problem solving. This work advances our understanding of VSWM as an important domain-general cognitive process in both typical and atypical mathematical skill development. PMID:23896444
Certification in "The Basics" One Hundred Years Ago
ERIC Educational Resources Information Center
Velz, John W.
1977-01-01
Quotes from the letters of Joseph Crosby regarding the certification of teachers in English grammar, orthography, arithmetic, and geography in 1877, and reproduces the four certification examinations Crosby developed. (DD)
The effects of anxious responding on mental arithmetic and lexical decision task performance.
Hopko, Derek R; McNeil, Daniel W; Lejuez, C W; Ashcraft, Mark H; Eifert, Georg H; Riel, Jim
2003-01-01
Anxiety-related responding and skill deficits historically are associated with performance-based problems such as mathematics anxiety, yet the relative contribution of these variables to substandard performance remains poorly understood. Utilizing a 7% carbon dioxide (CO2) gas to induce anxiety, the present study examined the impact of anxious responding on two performance tasks, mental arithmetic and lexical decision. Independent variables included math anxiety group, gender, and gas condition. Dependent variables included task performance and physiological and self-report indices of anxiety. A total of 64 university undergraduate students participated. Physiological and verbal-report measures of anxiety supported the utility of 7% carbon dioxide-enriched air as an anxiety-inducing stimulus. Behavioral disruption on performance tasks, however, did not differ as a function of carbon dioxide inhalation. Performance did differ as a function of math anxiety. High math anxious individuals generally exhibited higher error rates on mathematical tasks, particularly on tasks designed to measure advanced math skill and those requiring working memory resources. These findings are discussed with reference to processing efficiency theory, discordance among anxiety response systems, and the intricacies associated with skill measurement.
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098
Teaching Facts of Addition to Brazilian Children with Attention-Deficit/Hyperactivity Disorder
ERIC Educational Resources Information Center
Costa, Adriana Corrêa; Rohde, Luis Augusto; Dorneles, Beatriz Vargas
2015-01-01
Storage and/or automatic retrieval of the basic facts of addition from the long-term memory seems to be impaired in children with ADHD presenting arithmetical difficulties. The present study was carried out to evaluate the effectiveness of an educational intervention model designed to teach basic facts of addition as a means of advancing from…
Academic skills in the long term after epilepsy surgery in childhood.
Puka, Klajdi; Smith, Mary Lou
2016-09-01
We evaluated the progression of academic skills in a cohort of patients who underwent, or were considered for, epilepsy surgery in childhood, four to eleven years before. The few existing studies that have evaluated cognitive function in the long term after surgery have examined intelligence and memory. Participants were 97 patients with childhood-onset intractable epilepsy; 61 had undergone resective epilepsy surgery. Participants completed standardized tests of reading, spelling, arithmetic, and intelligence at baseline and, on average, 7years after. Surgical patients were additionally assessed one year postsurgery. At baseline and long-term follow-up, 61% and 69% of patients, respectively, scored at least one standard deviation below normative data in at least one academic domain. Evaluation of change over time while controlling for IQ showed that arithmetic scores were lower at long-term follow-up in comparison with those at baseline among all patient groups, whereas reading and spelling scores remained unchanged. Few advantages were associated with seizure control. Multiple regression analyses found that older age at surgery, cessation of antiepileptic medications, improved IQ, and low baseline scores were independently associated with improvement in some academic domains among all patient groups. We found that arithmetic scores were lower at long-term follow-up, suggesting a lack of ongoing development or deterioration in skills. Reading and spelling scores remained stable suggesting that patients made gains in abilities at a rate expected for their increase in age; this finding contrasts with recent short-term outcome studies identifying significantly lower scores over time in these areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
ERIC Educational Resources Information Center
Smith, Frank
2001-01-01
Struggling students are often victimized by time constraints--arbitrarily imposed timetables for mastering material and meeting standards. People learn best from experience, not by information acquisition, skill development, rote memorization, or assessment. Reading, writing, arithmetic, scientific understanding, and civics require student…
Neural Correlates of Math Gains Vary Depending on Parental Socioeconomic Status (SES)
Demir-Lira, Özlem Ece; Prado, Jérôme; Booth, James R.
2016-01-01
We used functional magnetic resonance imaging (fMRI) to examine the neural predictors of math development, and asked whether these predictors vary as a function of parental socioeconomic status (SES) in children ranging in age from 8 to 13 years. We independently localized brain regions subserving verbal versus spatial processing in order to characterize relations between activation in these regions during an arithmetic task and long-term change in math skill (up to 3 years). Neural predictors of math gains encompassed brain regions subserving both verbal and spatial processing, but the relation between relative reliance on these regions and math skill growth varied depending on parental SES. Activity in an area of the left inferior frontal gyrus (IFG) identified by the verbal localizer was related to greater growth in math skill at the higher end of the SES continuum, but lesser improvements at the lower end. Activity in an area of the right superior parietal cortex identified by the spatial localizer was related to greater growth in math skill at the lower end of the SES continuum, but lesser improvements at the higher end. Results highlight early neural mechanisms as possible neuromarkers of long-term arithmetic learning and suggest that neural predictors of math gains vary with parental SES. PMID:27378987
ERIC Educational Resources Information Center
Nordman, R.; Parker, J.
This report compares two methods of teaching BASIC programming used to develop computer literacy among children in grades three through seven in British Columbia. Phase one of the project was designed to instruct children in grades five to seven on the arithmetic operations of writing simple BASIC programs. Instructional methods included using job…
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-06-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-03-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Multiple task performance as a predictor of the potential of air traffic controller trainees.
DOT National Transportation Integrated Search
1972-01-01
Two hundred and twenty-nine air traffic controller trainees were tested on the CAMI Multiple Task Performance Battery. The battery provides objective measures of monitoring, arithmetical skills, visual discrimination, and group problem solving. The c...
Rodic, Maja; Tikhomirova, Tatiana; Kolienko, Tatiana; Malykh, Sergey; Bogdanova, Olga; Zueva, Dina Y.; Gynku, Elena I.; Wan, Sirui; Zhou, Xinlin; Kovas, Yulia
2015-01-01
Previous research has consistently found an association between spatial and mathematical abilities. We hypothesized that this link may partially explain the consistently observed advantage in mathematics demonstrated by East Asian children. Spatial complexity of the character-based writing systems may reflect or lead to a cognitive advantage relevant to mathematics. Seven hundered and twenty one 6–9-year old children from the UK and Russia were assessed on a battery of cognitive skills and arithmetic. The Russian children were recruited from specialist linguistic schools and divided into four different language groups, based on the second language they were learning (i.e., English, Spanish, Chinese, and Japanese). The UK children attended regular schools and were not learning any second language. The testing took place twice across the school year, once at the beginning, before the start of the second language acquisition, and once at the end of the year. The study had two aims: (1) to test whether spatial ability predicts mathematical ability in 7–9 year-old children across the samples; (2) to test whether acquisition and usage of a character-based writing system leads to an advantage in performance in arithmetic and related cognitive tasks. The longitudinal link from spatial ability to mathematics was found only in the Russian sample. The effect of second language acquisition on mathematics or other cognitive skills was negligible, although some effect of Chinese language on mathematical reasoning was suggested. Overall, the findings suggest that although spatial ability is related to mathematics at this age, one academic year of exposure to spatially complex writing systems is not enough to provide a mathematical advantage. Other educational and socio-cultural factors might play a greater role in explaining individual and cross-cultural differences in arithmetic at this age. PMID:25859235
Rodic, Maja; Tikhomirova, Tatiana; Kolienko, Tatiana; Malykh, Sergey; Bogdanova, Olga; Zueva, Dina Y; Gynku, Elena I; Wan, Sirui; Zhou, Xinlin; Kovas, Yulia
2015-01-01
Previous research has consistently found an association between spatial and mathematical abilities. We hypothesized that this link may partially explain the consistently observed advantage in mathematics demonstrated by East Asian children. Spatial complexity of the character-based writing systems may reflect or lead to a cognitive advantage relevant to mathematics. Seven hundered and twenty one 6-9-year old children from the UK and Russia were assessed on a battery of cognitive skills and arithmetic. The Russian children were recruited from specialist linguistic schools and divided into four different language groups, based on the second language they were learning (i.e., English, Spanish, Chinese, and Japanese). The UK children attended regular schools and were not learning any second language. The testing took place twice across the school year, once at the beginning, before the start of the second language acquisition, and once at the end of the year. The study had two aims: (1) to test whether spatial ability predicts mathematical ability in 7-9 year-old children across the samples; (2) to test whether acquisition and usage of a character-based writing system leads to an advantage in performance in arithmetic and related cognitive tasks. The longitudinal link from spatial ability to mathematics was found only in the Russian sample. The effect of second language acquisition on mathematics or other cognitive skills was negligible, although some effect of Chinese language on mathematical reasoning was suggested. Overall, the findings suggest that although spatial ability is related to mathematics at this age, one academic year of exposure to spatially complex writing systems is not enough to provide a mathematical advantage. Other educational and socio-cultural factors might play a greater role in explaining individual and cross-cultural differences in arithmetic at this age.
The calculating brain: an fMRI study.
Rickard, T C; Romero, S G; Basso, G; Wharton, C; Flitman, S; Grafman, J
2000-01-01
To explore brain areas involved in basic numerical computation, functional magnetic imaging (fMRI) scanning was performed on college students during performance of three tasks; simple arithmetic, numerical magnitude judgment, and a perceptual-motor control task. For the arithmetic relative to the other tasks, results for all eight subjects revealed bilateral activation in Brodmann's area 44, in dorsolateral prefrontal cortex (areas 9 and 10), in inferior and superior parietal areas, and in lingual and fusiform gyri. Activation was stronger on the left for all subjects, but only at Brodmann's area 44 and the parietal cortices. No activation was observed in the arithmetic task in several other areas previously implicated for arithmetic, including the angular and supramarginal gyri and the basal ganglia. In fact, angular and supramarginal gyri were significantly deactivated by the verification task relative to both the magnitude judgment and control tasks for every subject. Areas activated by the magnitude task relative to the control were more variable, but in five subjects included bilateral inferior parietal cortex. These results confirm some existing hypotheses regarding the neural basis of numerical processes, invite revision of others, and suggest productive lines for future investigation.
Finger gnosis predicts a unique but small part of variance in initial arithmetic performance.
Wasner, Mirjam; Nuerk, Hans-Christoph; Martignon, Laura; Roesch, Stephanie; Moeller, Korbinian
2016-06-01
Recent studies indicated that finger gnosis (i.e., the ability to perceive and differentiate one's own fingers) is associated reliably with basic numerical competencies. In this study, we aimed at examining whether finger gnosis is also a unique predictor for initial arithmetic competencies at the beginning of first grade-and thus before formal math instruction starts. Therefore, we controlled for influences of domain-specific numerical precursor competencies, domain-general cognitive ability, and natural variables such as gender and age. Results from 321 German first-graders revealed that finger gnosis indeed predicted a unique and relevant but nevertheless only small part of the variance in initial arithmetic performance (∼1%-2%) as compared with influences of general cognitive ability and numerical precursor competencies. Taken together, these results substantiated the notion of a unique association between finger gnosis and arithmetic and further corroborate the theoretical idea of finger-based representations contributing to numerical cognition. However, the only small part of variance explained by finger gnosis seems to limit its relevance for diagnostic purposes. Copyright © 2016. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Flannery, Carol A.
This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…
Making the Tent Function Complex
ERIC Educational Resources Information Center
Sprows, David J.
2010-01-01
This note can be used to illustrate to the student such concepts as periodicity in the complex plane. The basic construction makes use of the Tent function which requires only that the student have some working knowledge of binary arithmetic.
Barner, David; Alvarez, George; Sullivan, Jessica; Brooks, Neon; Srinivasan, Mahesh; Frank, Michael C
2016-07-01
Mental abacus (MA) is a technique of performing fast, accurate arithmetic using a mental image of an abacus; experts exhibit astonishing calculation abilities. Over 3 years, 204 elementary school students (age range at outset: 5-7 years old) participated in a randomized, controlled trial to test whether MA expertise (a) can be acquired in standard classroom settings, (b) improves students' mathematical abilities (beyond standard math curricula), and (c) is related to changes in basic cognitive capacities like working memory. MA students outperformed controls on arithmetic tasks, suggesting that MA expertise can be achieved by children in standard classrooms. MA training did not alter basic cognitive abilities; instead, differences in spatial working memory at the beginning of the study mediated MA learning. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
The Slow Learner in Mathematics: Aids and Activities
ERIC Educational Resources Information Center
Maletsky, Evan M.
1973-01-01
Specific examples of effective use of multisensory aids are given. All can easily and inexpensively be made by the teacher or the students. Examples are grouped under the following major headings: number patterns, arithmetic skills, geometric concepts, algebraic concepts, and models. (LS)
Functional neuroanatomy of arithmetic and word reading and its relationship to age
Evans, Tanya M.; Flowers, D. Lynn; Luetje, Megan M.; Napoliello, Eileen; Eden, Guinevere F.
2016-01-01
Arithmetic and written language are uniquely human skills acquired during early schooling and used daily. While prior studies have independently characterized the neural bases for arithmetic and reading, here we examine both skills in a single study to capture their shared and unique cognitive mechanisms, as well as the role of age/experience in modulating their neural representations. We used functional MRI in 7- to 29-year-olds who performed single-digit subtraction, single-digit addition, and single-word reading. Using a factorial design, we examined the main effects of Task (subtraction, addition, reading) and Age (as a continuous variable), and their interactions. A main effect of Task revealed preferential activation for subtraction in bilateral intraparietal sulci and supramarginal gyri, right insula, inferior frontal gyrus, and cingulate. The right middle temporal gyrus and left superior temporal gyrus were preferentially active for both addition and reading, and left fusiform gyrus was preferentially active for reading. A main effect of Age revealed increased activity in older participants in right angular gyrus, superior temporal sulcus, and putamen, and less activity in left supplementary motor area, suggesting a left frontal to right temporo-parietal shift of activity with increasing age/experience across all tasks. Interactions for Task by Age were found in right hippocampus and left middle frontal gyrus, with older age invoking greater activity for addition and at the same time less activity for subtraction and reading. Together, in a study conducted in the same participants using similar task and acquisition parameters, the results reveal the neural substrates of these educationally relevant cognitive skills in typical participants in the context of age/experience. PMID:27566261
Refining the quantitative pathway of the Pathways to Mathematics model.
Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda
2015-03-01
In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.
Arán Filippetti, Vanessa; Richaud, María Cristina
2017-10-01
Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.
Basic numerical capacities and prevalence of developmental dyscalculia: the Havana Survey.
Reigosa-Crespo, Vivian; Valdés-Sosa, Mitchell; Butterworth, Brian; Estévez, Nancy; Rodríguez, Marisol; Santos, Elsa; Torres, Paul; Suárez, Ramón; Lage, Agustín
2012-01-01
The association of enumeration and number comparison capacities with arithmetical competence was examined in a large sample of children from 2nd to 9th grades. It was found that efficiency on numerical capacities predicted separately more than 25% of the variance in the individual differences on a timed arithmetical test, and this occurred for both younger and older learners. These capacities were also significant predictors of individual variations in an untimed curriculum-based math achievement test and on the teacher scores of math performance over developmental time. Based on these findings, these numerical capacities were used for estimating the prevalence and gender ratio of basic numerical deficits and developmental dyscalculia (DD) over the grade range defined above (N = 11,652 children). The extent to which DD affects the population with poor ability on calculation was also examined. For this purpose, the prevalence and gender ratio of arithmetical dysfluency (AD) were estimated in the same cohort. The estimated prevalence of DD was 3.4%, and the male:female ratio was 4:1. However, the prevalence of AD was almost 3 times as high (9.35%), and no gender differences were found (male:female ratio = 1.07:1). Basic numerical deficits affect 4.54% of school-age population and affect more boys than girls (2.4:1). The differences between the corresponding estimates were highly significant (α < .01). Based on these contrastive findings, it is concluded that DD, defined as a defective sense of numerosity, could be a distinctive disorder that affects only a portion of children with AD.
NASA Astrophysics Data System (ADS)
Rudnick, Z.
Contents: 1. Introduction 2. Divisibility 2.1. Basics on Divisibility 2.2. The Greatest Common Divisor 2.3. The Euclidean Algorithm 2.4. The Diophantine Equation ax+by=c 3. Prime Numbers 3.1. The Fundamental Theorem of Arithmetic 3.2. There Are Infinitely Many Primes 3.3. The Density of Primes 3.4. Primes in Arithmetic Progressions 4. Continued Fractions 5. Modular Arithmetic 5.1. Congruences 5.2. Modular Inverses 5.3. The Chinese Remainder Theorem 5.4. The Structure of the Multiplicative Group (Z/NZ)^* 5.5. Primitive Roots 6. Quadratic Congruences 6.1. Euler's Criterion 6.2. The Legendre Symbol and Quadratic Reciprocity 7. Pell's Equation 7.1. The Group Law 7.2. Integer Solutions 7.3. Finding the Fundamental Solution 8. The Riemann Zeta Function 8.1 Analytic Continuation and Functinal Equation of ζ(s) 8.2 Connecting the Primes and the Zeros of ζ(s) 8.3 The Riemann Hypothesis References
Relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test.
Smith, T D; Smith, B L
1998-12-01
The present study examined the relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test for a sample of children with learning disabilities in two rural school districts. Data were collected for 87 school children who had been classified as learning disabled and placed in special education resource services. Pearson product-moment correlations between scores on the two measures were significant and moderate to high; however, mean scores were not significantly different on Reading, Spelling, and Arithmetic subtests of the Wide Range Achievement Test 3 compared to those for the basic Reading, Spelling, and Mathematics Reasoning subtests of the Wechsler Individual Achievement Test. Although there were significant mean differences between scores on Reading and Reading Comprehension and on Arithmetic and Numerical Operations, magnitudes were small. It appears that the two tests provide similar results when screening for reading, spelling, and arithmetic.
Desirable floating-point arithmetic and elementary functions for numerical computation
NASA Technical Reports Server (NTRS)
Hull, T. E.
1978-01-01
The topics considered are: (1) the base of the number system, (2) precision control, (3) number representation, (4) arithmetic operations, (5) other basic operations, (6) elementary functions, and (7) exception handling. The possibility of doing without fixed-point arithmetic is also mentioned. The specifications are intended to be entirely at the level of a programming language such as FORTRAN. The emphasis is on convenience and simplicity from the user's point of view. Conforming to such specifications would have obvious beneficial implications for the portability of numerical software, and for proving programs correct, as well as attempting to provide facilities which are most suitable for the user. The specifications are not complete in every detail, but it is intended that they be complete in spirit - some further details, especially syntatic details, would have to be provided, but the proposals are otherwise relatively complete.
Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert
2016-01-01
Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p < .001, β = .41 and p < .001, respectively). Furthermore, counting was a mediating variable between working memory and early numeracy (β = .57, p < .001). Together, these findings highlight the importance of working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training.
ERIC Educational Resources Information Center
Campbell, Mary Jane
Using drawings of various monsters to explain and enhance the learning activities, this arithmetic/mathematics curriculum guide begins with exercises requiring basic number identification. The remainder of the guide includes over one hundred addition and subtraction activities including crossword puzzles, maps, and number matching. (SH)
Figurate Numbers in the Classroom.
ERIC Educational Resources Information Center
Norman, F. Alexander
1991-01-01
A series of activities involving figurate numbers that allow students at various levels to integrate numerical, geometric, arithmetic, patterning, measuring, and problem-solving skills are presented. A discussion of the geometric and numerical aspects of figurate numbers is included. Appended are IBM Logo procedures that will create pentagonal…
DOT National Transportation Integrated Search
1974-11-01
Two hundred and twenty-nine air traffic controller trainees were tested on the CAMI Multiple Task Performance Battery. The battery provides objective measures of monitoring, arithmetical skills, visual discrimination, and group problem solving. The c...
Cognitive skills and academic achievement of deaf children with cochlear implants.
Huber, Maria; Kipman, Ulrike
2012-10-01
To compare cognitive performance between children with cochlear implants (CI) and normal-hearing peers; provide information about correlations between cognitive performance, basic academic achievement, and medical/audiological and social background variables; and assess the predictor quality of these variables for cognition. Cross-sectional study with comparison group, diagnostic test assessment. Data were collected in the authors' clinic (children with CI) and in Austrian schools (normal-hearing children). Forty children with CI (of the initial 65 children eligible for this study), aged 7 to 11 years, and 40 normal-hearing children, matched by age and sex, were tested with (a) the Culture Fair Intelligence Test (CFIT); (b) the Number Sequences subtest of the Heidelberger Rechentest 1-4 (HRT); (c) Comprehension, (d) Coding, (e) Digit Span, and (f) Vocabulary subtests of HAWIK III (German WISC III); (g) the Corsi Block Tapping Test; (h) the Arithmetic Operations subtests of the HRT; and (i) Salzburger Lese-Screening (SLS, reading). In addition, medical, audiological, social, and educational data from children with CI were collected. The children with CI equaled normal-hearing children in (a), (d), (e), (g), (h), and (i) and performed significantly worse in (b), (c) and (f). Background variables correlate significantly with cognitive skills and academic achievement. Medical/audiological variables explain 44.3% of the variance in CFT1 (CFIT, younger children). Social variables explain 55% of CFT1 and 24.5% of the Corsi test. This study augments the knowledge about cognitive skills and academic skills of children with CI. Cognitive performance is dependent on the early feasibility to hear and the social/educational background of the family.
ERIC Educational Resources Information Center
Gilmore, Camilla K.; Papadatou-Pastou, Marietta
2009-01-01
Some theories from cognitive psychology and mathematics education suggest that children's understanding of mathematical concepts develops together with their knowledge of mathematical procedures. However, previous research into children's understanding of the inverse relationship between addition and subtraction suggests that there are individual…
NASA Astrophysics Data System (ADS)
McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.
This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.
Jordan, N C; Montani, T O
1997-01-01
This study examined problem-solving and number-fact skills in two subgroups of third-grade children with mathematics difficulties (MD): MD-specific (n = 12) and MD-general (n = 12). The MD-specific group had difficulties in mathematics but not in reading, and the MD-general group had difficulties in reading as well as in mathematics. A comparison group of nonimpaired children (n = 24) also was included. The findings showed that on both story and number-fact problems, the MD-specific group performed worse than the nonimpaired group in timed conditions but not in untimed conditions. The MD-general group, on the other hand, performed worse than the nonimpaired group, regardless of whether tasks were timed or not. An analysis of children's strategies in untimed conditions showed that both the MD-specific and the MD-general groups relied more on backup strategies than the nonimpaired group. However, children in the MD-specific group executed backup strategies more skillfully than children in the MD-general group, allowing them to achieve parity with children in the nonimpaired group when tasks were not timed. The findings suggest that children with specific MD have circumscribed deficits associated with fact retrieval, whereas children with general MD have more basic delays associated with problem conceptualization and execution of calculation procedures.
Price, Gavin R; Ansari, Daniel
2013-01-01
Developmental dyscalculia (DD) is a learning disorder affecting the acquisition of school level arithmetic skills present in approximately 3-6% of the population. At the behavioral level DD is characterized by poor retrieval of arithmetic facts from memory, the use of immature calculation procedures and counting strategies, and the atypical representation and processing of numerical magnitude. At the neural level emerging evidence suggests DD is associated with atypical structure and function in brain regions associated with the representation of numerical magnitude. The current state of knowledge points to a core deficit in numerical magnitude representation in DD, but further work is required to elucidate causal mechanisms underlying the disorder. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
McGrath, Diane, Ed.
1989-01-01
Provides reviews of courseware entitled: "Mystery Matter," which is a series that supplements the basic inquiry process; "Jumping Math Flash," which is an arcade-game program with arithmetic problems; and "Quest for Files: Science Rocks and Minerals The Upper Crust," which is a database program for earth science.…
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Butler, Ricky (Technical Monitor)
2003-01-01
PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.
Dyscalculia: Issues for Practice in Educational Psychology
ERIC Educational Resources Information Center
Gillum, James
2012-01-01
Dyscalculia has been described as a specific learning difficulty affecting the ability to acquire arithmetical skills. In recent years, it has become a topic for discussion in the popular media, yet there has been little research undertaken by educational psychologists. This paper provides a summary of neuroscientific research into the development…
Mathematics Difficulties: Does One Approach Fit All?
ERIC Educational Resources Information Center
Gifford, Sue; Rockliffe, Freda
2012-01-01
This article reviews the nature of learning difficulties in mathematics and, in particular, the nature and prevalence of dyscalculia, a condition that affects the acquisition of arithmetical skills. The evidence reviewed suggests that younger children (under the age of 10) often display a combination of problems, including minor physical…
New Literacies for Digital Citizenship
ERIC Educational Resources Information Center
Simsek, Eylem; Simsek, Ali
2013-01-01
The meaning of citizenship has usually been associated with the power of individuals in the process of social decision-making. Throughout the history, effective citizenship has required functional literacy skills as the fundamental factor for attending societal life. In the past, the 3Rs (writing, reading, and arithmetic) were considered to be…
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This course is designed to review the arithmetic skills used by many Marines in the daily pursuance of their duties. It consists of six study units: (1) number systems and operations; (2) fractions and percents; (3) introduction to algebra; (4) units of measurement (considering both the metric and United States systems); (5) geometric forms; and…
Can Dyscalculics Estimate the Results of Arithmetic Problems?
ERIC Educational Resources Information Center
Ganor-Stern, Dana
2017-01-01
The present study is the first to examine the computation estimation skills of dyscalculics versus controls using the estimation comparison task. In this task, participants judged whether an estimated answer to a multidigit multiplication problem was larger or smaller than a given reference number. While dyscalculics were less accurate than…
ERIC Educational Resources Information Center
Unal, Hasan
2011-01-01
The purpose of this study was to investigate the preservice secondary mathematics teachers' development of pedagogical understanding in the teaching of modular arithmetic problems. Data sources included, written assignments, interview transcripts and filed notes. Using case study and action research approaches cases of three preservice teachers…
Conservation II. Science Activities in Energy. [Student's and] Teacher's Guide.
ERIC Educational Resources Information Center
Oak Ridge Associated Universities, TN.
Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to the conservation of energy. Eleven student activities using art, economics, arithmetic, and other skills and disciplines help teachers directly involve students in exploring scientific questions and making…
Subitizing and Counting in Typical and Atypical Development
ERIC Educational Resources Information Center
Schleifer, Patrick; Landerl, Karin
2011-01-01
Enumeration performance in standard dot counting paradigms was investigated for different age groups with typical and atypically poor development of arithmetic skills. Experiment 1 showed a high correspondence between response times and saccadic frequencies for four age groups with typical development. Age differences were more marked for the…
The Virginia History Standards and the Cold War
ERIC Educational Resources Information Center
Altschuler, Glenn C.; Rauchway, Eric
2002-01-01
President George W. Bush's approach to education policy has earned him cautious plaudits from otherwise hostile critics, who see much to admire in the implementation of standards for education. However useful such standards for testing students' technical skills like arithmetic and reading, they create problems for less-standardized processes like…
Business Mathematics Syllabus.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.
The course is designed to build the knowledge and skills necessary to solve a variety of arithmetic problems that are commonly found in business situations, specifically for occupationally oriented students who have the ultimate objective of gainful employment in offices or stores, or who are preparing for careers in fields such as agriculture,…
Technical Mathematics: Restructure of Technical Mathematics.
ERIC Educational Resources Information Center
Flannery, Carol A.
Designed to accompany a series of videotapes, this textbook provides information, examples, problems, and solutions relating to mathematics and its applications in technical fields. Chapter I deals with basic arithmetic, providing information on fractions, decimals, ratios, proportions, percentages, and order of operations. Chapter II focuses on…
Design of RISC Processor Using VHDL and Cadence
NASA Astrophysics Data System (ADS)
Moslehpour, Saeid; Puliroju, Chandrasekhar; Abu-Aisheh, Akram
The project deals about development of a basic RISC processor. The processor is designed with basic architecture consisting of internal modules like clock generator, memory, program counter, instruction register, accumulator, arithmetic and logic unit and decoder. This processor is mainly used for simple general purpose like arithmetic operations and which can be further developed for general purpose processor by increasing the size of the instruction register. The processor is designed in VHDL by using Xilinx 8.1i version. The present project also serves as an application of the knowledge gained from past studies of the PSPICE program. The study will show how PSPICE can be used to simplify massive complex circuits designed in VHDL Synthesis. The purpose of the project is to explore the designed RISC model piece by piece, examine and understand the Input/ Output pins, and to show how the VHDL synthesis code can be converted to a simplified PSPICE model. The project will also serve as a collection of various research materials about the pieces of the circuit.
Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu
2012-01-01
The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.
Design and evaluation of online arithmetic for signal processing applications on FPGAs
NASA Astrophysics Data System (ADS)
Galli, Reto; Tenca, Alexandre F.
2001-11-01
This paper shows the design and the evaluation of on-line arithmetic modules for the most common operators used in DSP applications, using FPGAs as the target technology. The designs are highly optimized for the target technology and the common range of precision in DSP. The results are based on experimental data collected using CAD tools. All designs are synthesized for the same type of devices (Xilinx XC4000) for comparison, avoiding rough estimates of the system performance, and generating a more reliable and detailed comparison of on-line signal processing solutions with other state of the art approaches, such as distributed arithmetic. We show that on-line designs have a hard stand for basic DSP applications that use only addition and multiplication. However, we also show that on-line designs are able to overtake other approaches as the applications become more sophisticated, e.g. when data dependencies exist, or when non constant multiplicands restrict the use of other approaches.
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
Xenidou-Dervou, Iro; Van Luit, Johannes E H; Kroesbergen, Evelyn H; Friso-van den Bos, Ilona; Jonkman, Lisa M; van der Schoot, Menno; van Lieshout, Ernest C D M
2018-04-24
Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement. © 2018 John Wiley & Sons Ltd.
On the interrelation of multiplication and division in secondary school children.
Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph
2013-01-01
Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types.
ERIC Educational Resources Information Center
Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert
2017-01-01
Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…
ERIC Educational Resources Information Center
Cowan, Richard; Powell, Daisy
2014-01-01
Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…
Spacing and the Transition from Calculation to Retrieval
ERIC Educational Resources Information Center
Rickard, Timothy C.; Lau, Jonas; Pashler, Harold
2008-01-01
Many arithmetic problems can be solved in two ways: by a calculation involving several steps, and by direct retrieval of the answer. With practice on particular problems, memory retrieval tends to supplant calculation--an important aspect of skill learning. We asked how the distribution of practice on particular problems affects this kind of…
Business and Technology Concepts--Business Computations. Teacher's Guide.
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.
This Illinois State Board of Education teacher's guide on business computations is for students enrolled in the 9th or 10th grade. The course provides a foundation in arithmetic skills and their applications to common business problems for the senior high school vocational business courses. The curriculum guide includes teacher and student…
No Generalization of Practice for Nonzero Simple Addition
ERIC Educational Resources Information Center
Campbell, Jamie I. D.; Beech, Leah C.
2014-01-01
Several types of converging evidence have suggested recently that skilled adults solve very simple addition problems (e.g., 2 + 1, 4 + 2) using a fast, unconscious counting algorithm. These results stand in opposition to the long-held assumption in the cognitive arithmetic literature that such simple addition problems normally are solved by fact…
Strategy Execution in Cognitive Skill Learning: An Item-Level Test of Candidate Models
ERIC Educational Resources Information Center
Rickard, Timothy C.
2004-01-01
This article investigates the transition to memory-based performance that commonly occurs with practice on tasks that initially require use of a multistep algorithm. In an alphabet arithmetic task, item response times exhibited pronounced step-function decreases after moderate practice that were uniquely predicted by T. C. Rickard's (1997)…
When Generating Answers Benefits Arithmetic Skill: The Importance of Prior Knowledge
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Kmicikewycz, Alexander Oleksij
2008-01-01
People remember information better if they generate the information while studying rather than read the information. However, prior research has not investigated whether this generation effect extends to related but unstudied items and has not been conducted in classroom settings. We compared third graders' success on studied and unstudied…
Mathematics in Baseball. Topical Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Stitt, Mary; Ostrom, Nat
The objectives of this module include: (1) improving general arithmetic skills including whole numbers, fractions, and decimal fractions; (2) learning to compute averages; (3) strengthening knowledge of percent; (4) learning to locate needed information or statistical data; (5) reviewing or learning the use of the Pythagorean Theorem; (6)…
Duality of Mathematical Thinking When Making Sense of Simple Word Problems: Theoretical Essay
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie; Freiman, Viktor
2015-01-01
This essay proposes a reflection on the learning difficulties and teaching approaches associated with arithmetic word problem solving. We question the development of word problem solving skills in the early grades of elementary school. We are trying to revive the discussion because first, the knowledge in question--reversibility of arithmetic…
Assessment Administration Guide. Indigenous Mathematics Project. Working Paper 3.
ERIC Educational Resources Information Center
Souviney, Randall J.
The assessement materials described in this report were used by the Indigenous Mathematics Project to document various achievement and cognitive development factors at five sites in Papua New Guinea. The achievement instruments are criteria-referenced and consist of the Primary Maths Achievement Test, The Test of Arithmetic Skills, and the reading…
Mathematics for Commercial Foods.
ERIC Educational Resources Information Center
Wersan, Norman
A review of basic mathematics operations is presented with problems and examples applied to activities in the food service industry. The text is divided into eight units: measurement, fractions, arithmetic operations, money and decimals, percentage, ratio and proportion, wages and taxes, and business records. Each unit contains a series of lessons…
Diagnostic Testing in Mathematics: An Extension of the PIAT?
ERIC Educational Resources Information Center
Algozzine, Bob; McGraw, Karen
1980-01-01
The article addresses the usefulness of the Peabody Individual Achievement Test (PIAT) in assessing various levels of arithmetic performance. The mathematics subtest of the PIAT is considered in terms of purpose; mathematical abilities subsections (foundations, basic facts, applications); diagnostic testing (the error analysis matrix); and poor…
Investigating middle school students’ difficulties in mathematical literacy problems level 1 and 2
NASA Astrophysics Data System (ADS)
Setiawati, S.; Herman, T.; Jupri, A.
2017-11-01
The background of this study is the lack of mathematical literacy skills of students. The proficiency of students’ mathematical literacy skills based on the results of the PISA 2015 study shows that Indonesian students at the proficiency level 1. This fact gave rise to this study which aims to investigate middle school students’ difficulties in mathematical literacy problems level 1 and 2. Qualitative research was used in this study. An individual written test on mathematical literacy problems was administered, followed by interviews. The subjects of the study were 61 students grade VII in Bandung and 26 of them were interviewed afterward. Data analysis revealed that students’ error in performing arithmetic most frequently observed. Other observed difficulties concerned understanding about algebra concept, applying arithmetic operation in algebraic expressions, and interpreting symbols to represent the unknown. In solving mathematical literacy problems, students use their prior knowledge, although sometimes not relevant to the questions. Based on the results, we suggest that mathematics learning in contextual learning and which invites students to participate in the processes of understanding the concepts.
Pina, Violeta; Fuentes, Luis J.; Castillo, Alejandro; Diamantopoulou, Sofia
2014-01-01
It is assumed that children’s performance in mathematical abilities is influenced by several factors such as working memory (WM), verbal ability, intelligence, and socioeconomic status. The present study explored the contribution of those factors to mathematical performance taking a componential view of both WM and mathematics. We explored the existing relationship between different WM components (verbal and spatial) with tasks that make differential recruitment of the central executive, and simple and complex mathematical skills in a sample of 102 children in grades 4–6. The main findings point to a relationship between the verbal WM component and complex word arithmetic problems, whereas language and non-verbal intelligence were associated with knowledge of quantitative concepts and arithmetic ability. The spatial WM component was associated with the subtest Series, whereas the verbal component was with the subtest Concepts. The results also suggest a positive relationship between parental educational level and children’s performance on Quantitative Concepts. These findings suggest that specific cognitive skills might be trained in order to improve different aspects of mathematical ability. PMID:24847306
Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.
2018-01-01
This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723
Geary, D C; Hamson, C O; Hoard, M K
2000-11-01
Based on the stability and level of performance on standard achievement tests in first and second grade (mean age in first grade = 82 months), children with IQ scores in the low-average to high-average range were classified as learning disabled (LD) in mathematics (MD), reading (RD), or both (MD/RD). These children (n = 42), a group of children who showed variable achievement test performance across grades (n = 16), and a control group of academically normal peers (n = 35) were administered a series of experimental and psychometric tasks. The tasks assessed number comprehension and production skills, counting knowledge, arithmetic skills, working memory, the ease of activation of phonetic representations of words and numbers, and spatial abilities. The children with variable achievement test performance did not differ from the academically normal children in any cognitive domain, whereas the children in the LD groups showed specific patterns of cognitive deficit, above and beyond the influence of IQ. Discussion focuses on the similarities and differences across the groups of LD children. Copyright 2000 Academic Press.
Adolescents’ Functional Numeracy Is Predicted by Their School Entry Number System Knowledge
Geary, David C.; Hoard, Mary K.; Nugent, Lara; Bailey, Drew H.
2013-01-01
One in five adults in the United States is functionally innumerate; they do not possess the mathematical competencies needed for many modern jobs. We administered functional numeracy measures used in studies of young adults’ employability and wages to 180 thirteen-year-olds. The adolescents began the study in kindergarten and participated in multiple assessments of intelligence, working memory, mathematical cognition, achievement, and in-class attentive behavior. Their number system knowledge at the beginning of first grade was defined by measures that assessed knowledge of the systematic relations among Arabic numerals and skill at using this knowledge to solve arithmetic problems. Early number system knowledge predicted functional numeracy more than six years later (ß = 0.195, p = .0014) controlling for intelligence, working memory, in-class attentive behavior, mathematical achievement, demographic and other factors, but skill at using counting procedures to solve arithmetic problems did not. In all, we identified specific beginning of schooling numerical knowledge that contributes to individual differences in adolescents’ functional numeracy and demonstrated that performance on mathematical achievement tests underestimates the importance of this early knowledge. PMID:23382934
Time estimation predicts mathematical intelligence.
Kramer, Peter; Bressan, Paola; Grassi, Massimo
2011-01-01
Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity. Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence. We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability.
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
Calculating with light using a chip-scale all-optical abacus.
Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P
2017-11-02
Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.
Model Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
Contextualizing symbol, symbolizing context
NASA Astrophysics Data System (ADS)
Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang
2017-08-01
When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.
The Definition of Basic Skills in Manufacturing Industries.
ERIC Educational Resources Information Center
Jones, Charles M.
1996-01-01
Survey responses from 186 of 250 trainers/human resource managers and a Delphi panel of 21 rated companies' basic skills training provisions and the importance of basic skills. Although most stated their companies provide basic skills training, results show most are reluctant to hire, train, or retain workers with low basic skills. (SK)
Vogel, Daniela; Harendza, Sigrid
2016-01-01
Practical skills are an essential part of physicians' daily routine. Nevertheless, medical graduates' performance of basic skills is often below the expected level. This review aims to identify and summarize teaching approaches of basic practical skills in undergraduate medical education which provide evidence with respect to effective students' learning of these skills. Basic practical skills were defined as basic physical examination skills, routine skills which get better with practice, and skills which are also performed by nurses. We searched PubMed with different terms describing these basic practical skills. In total, 3467 identified publications were screened and 205 articles were eventually reviewed for eligibility. 43 studies that included at least one basic practical skill, a comparison of two groups of undergraduate medical students and effects on students' performance were analyzed. Seven basic practical skills and 15 different teaching methods could be identified. The most consistent results with respect to effective teaching and acquisition of basic practical skills were found for structured skills training, feedback, and self-directed learning. Simulation was effective with specific teaching methods and in several studies no differences in teaching effects were detected between expert or peer instructors. Multimedia instruction, when used in the right setting, also showed beneficial effects for basic practical skills learning. A combination of voluntary or obligatory self-study with multimedia applications like video clips in combination with a structured program including the possibility for individual exercise with personal feedback by peers or teachers might provide a good learning opportunity for basic practical skills.
Vogel, Daniela; Harendza, Sigrid
2016-01-01
Objective: Practical skills are an essential part of physicians’ daily routine. Nevertheless, medical graduates’ performance of basic skills is often below the expected level. This review aims to identify and summarize teaching approaches of basic practical skills in undergraduate medical education which provide evidence with respect to effective students’ learning of these skills. Methods: Basic practical skills were defined as basic physical examination skills, routine skills which get better with practice, and skills which are also performed by nurses. We searched PubMed with different terms describing these basic practical skills. In total, 3467 identified publications were screened and 205 articles were eventually reviewed for eligibility. Results: 43 studies that included at least one basic practical skill, a comparison of two groups of undergraduate medical students and effects on students’ performance were analyzed. Seven basic practical skills and 15 different teaching methods could be identified. The most consistent results with respect to effective teaching and acquisition of basic practical skills were found for structured skills training, feedback, and self-directed learning. Simulation was effective with specific teaching methods and in several studies no differences in teaching effects were detected between expert or peer instructors. Multimedia instruction, when used in the right setting, also showed beneficial effects for basic practical skills learning. Conclusion: A combination of voluntary or obligatory self-study with multimedia applications like video clips in combination with a structured program including the possibility for individual exercise with personal feedback by peers or teachers might provide a good learning opportunity for basic practical skills. PMID:27579364
Interpreting Bivariate Regression Coefficients: Going beyond the Average
ERIC Educational Resources Information Center
Halcoussis, Dennis; Phillips, G. Michael
2010-01-01
Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…
Fundamentals of Digital Logic.
ERIC Educational Resources Information Center
Noell, Monica L.
This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…
Objective Criteria for the Selection of Software.
ERIC Educational Resources Information Center
Burk, Laurena
The seven stages in the system development process are discussed in the context of implementing basic arithmetic drill and practice exercises on a computer-based system: (1) feasibility study; (2) requirements definition; (3) alternative specifications; (4) evaluation and selection of an alternative; (5) system design; (6) development and testing;…
Moore, Alex M.; vanMarle, Kristy; Geary, David C.
2016-01-01
Fluency in first graders’ processing of the magnitudes associated with Arabic numerals, collections of objects, and mixtures of objects and numerals predicts current and future mathematics achievement. The quantitative competencies that support the development of fluent processing of magnitude are not fully understood, however. At the beginning and end of preschool (M = 3 years, 9 months at first assessment; range 3 years, 3 months to 4years, 3 months), 112 (51 boys) children completed tasks measuring numeral recognition and comparison, acuity of the approximate number system, and knowledge of counting principles, cardinality, and implicit arithmetic, and completed a magnitude processing task (number sets test) in kindergarten. Use of Bayesian and linear regression techniques revealed that two measures of preschoolers’ cardinal knowledge and their competence at implicit arithmetic predicted later fluency of magnitude processing, controlling domain general factors, preliteracy skills, and parental education. The results help to narrow the search for the early foundation of children’s emerging competence with symbolic mathematics and provide direction for early interventions. PMID:27236038
Moore, Alex M; vanMarle, Kristy; Geary, David C
2016-10-01
Fluency in first graders' processing of the magnitudes associated with Arabic numerals, collections of objects, and mixtures of objects and numerals predicts current and future mathematics achievement. The quantitative competencies that support the development of fluent processing of magnitude, however, are not fully understood. At the beginning and end of preschool (M=3years 9months at first assessment, range=3years 3months to 4years 3months), 112 children (51 boys) completed tasks measuring numeral recognition and comparison, acuity of the approximate number system, and knowledge of counting principles, cardinality, and implicit arithmetic and also completed a magnitude processing task (number sets test) in kindergarten. Use of Bayesian and linear regression techniques revealed that two measures of preschoolers' cardinal knowledge and their competence at implicit arithmetic predicted later fluency of magnitude processing, controlling domain-general factors, preliteracy skills, and parental education. The results help to narrow the search for the early foundation of children's emerging competence with symbolic mathematics and provide direction for early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Dyscalculia and the Calculating Brain.
Rapin, Isabelle
2016-08-01
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Plass, Jan L.; O'Keefe, Paul A.; Homer, Bruce D.; Case, Jennifer; Hayward, Elizabeth O.; Stein, Murphy; Perlin, Ken
2013-01-01
The present research examined how mode of play in an educational mathematics video game impacts learning, performance, and motivation. The game was designed for the practice and automation of arithmetic skills to increase fluency and was adapted to allow for individual, competitive, or collaborative game play. Participants (N = 58) from urban…
ERIC Educational Resources Information Center
Swanson, Lee; Kim, Kenny
2007-01-01
Working memory (WM) has been associated with the acquisition of arithmetic skills, however, the components of WM that underlie this acquisition have not been explored. This study explored the contribution of two WM systems (the phonological loop and the central executive) to mathematical performance in young children. The results showed that a…
Performance in Mathematical Problem Solving as a Function of Comprehension and Arithmetic Skills
ERIC Educational Resources Information Center
Voyer, Dominic
2011-01-01
Many factors influence a student's performance in word (or textbook) problem solving in class. Among them is the comprehension process the pupils construct during their attempt to solve the problem. The comprehension process may include some less formal representations, based on pupils' real-world knowledge, which support the construction of a…
ERIC Educational Resources Information Center
Piselli, Katherine D.
2017-01-01
Math fluency, which refers to the ability to solve single digit arithmetic problems quickly and accurately, is a foundational mathematical skill. Recent research has examined the role of phonological processing, executive control, and number sense in explaining differences in math fluency performance in school-aged children. Identifying the links…
ERIC Educational Resources Information Center
Sticht, Thomas G.; And Others
The papers in this collection present a description of, and the results of, research in Work Unit REALISTIC. In addition to the first paper which is an overview, the three papers are: "Psychometric Determination of Relationships Among Literacy Skills and Job Proficiency,""Reading Ability, Readability, and Readership: Identifying…
Two Geo-Arithmetic Representations of n[superscript 3]: Sum of Hex Numbers
ERIC Educational Resources Information Center
Unal, Husan
2009-01-01
Studies have shown that students' understanding is typically analytic and not visual. Two possible reasons for this are when the analytic mode, instead of the graphic mode, is most frequently used in instruction or, when students or teachers hold the belief that mathematics consists simply of skillful manipulation of symbols and numbers. The…
ERIC Educational Resources Information Center
Torbeyns, Joke; Schneider, Michael; Xin, Ziqiang; Siegler, Robert S.
2015-01-01
Numerical understanding and arithmetic skills are easier to acquire for whole numbers than fractions. The "integrated theory of numerical development" posits that, in addition to these differences, whole numbers and fractions also have important commonalities. In both, students need to learn how to interpret number symbols in terms of…
Impediment and Challenges of Innovations in Mathematics Education in Africa
ERIC Educational Resources Information Center
El Yacoubi, Nouzha
2013-01-01
In the past, common people were expected to have skills in reading, writing and arithmetic to succeed to have a job. Philosophy and/or Science were required for reaching a high position and belonging to the national elite. In this new millennium, information, knowledge, science and technology constitute a real power, and an educated person is…
ERIC Educational Resources Information Center
Cho, Soohyun; Ryali, Srikanth; Geary, David C.; Menon, Vinod
2011-01-01
Cognitive development and learning are characterized by diminished reliance on effortful procedures and increased use of memory-based problem solving. Here we identify the neural correlates of this strategy shift in 7-9-year-old children at an important developmental period for arithmetic skill acquisition. Univariate and multivariate approaches…
Children's Additive Concepts: Promoting Understanding and the Role of Inhibition
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2013-01-01
This study investigated the promotion of children's understanding and acquisition of arithmetic concepts and the effects of inhibitory skills. Children in Grades 3, 4, and 5 solved two sets of three-term addition and subtraction problems (e.g., 3 + 24 - 24, 3 + 24 - 22) and completed an inhibition task. Half of the participants received a…
ERIC Educational Resources Information Center
Basic Skills Agency, 2006
2006-01-01
The Basic Skills Agency (formerly the Adult Literacy and Basic Skills Unit--ALBSU) is the national development agency for literacy, numeracy and related basic skills in England and Wales. This agency defines basic skills as " the ability to read, write, and speak in English and use mathematics at a level necessary to function and progress at…
Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.
Rodriguez, Anthony M
2016-02-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.
On the interrelation of multiplication and division in secondary school children
Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph
2013-01-01
Multiplication and division are conceptually inversely related: Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types. PMID:24133476
Hauser, Tobias U; Rütsche, Bruno; Wurmitzer, Karoline; Brem, Silvia; Ruff, Christian C; Grabner, Roland H
A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mark, Jorie Lester
A questionnaire was distributed to 1,305 companies to study the basic skills training provided. Of 62 responses, 41 companies had basic skills training programs. Respondents represented these types of companies: communications and utilities, finance and insurance, manufacturing, wholesalers, retailers, health and hospitals, and mining, and had…
Numerical Ordering Ability Mediates the Relation between Number-Sense and Arithmetic Competence
ERIC Educational Resources Information Center
Lyons, Ian M.; Beilock, Sian L.
2011-01-01
What predicts human mathematical competence? While detailed models of number representation in the brain have been developed, it remains to be seen exactly how basic number representations link to higher math abilities. We propose that representation of ordinal associations between numerical symbols is one important factor that underpins this…
A Modularized Tablet-Based Approach to Preparation for Remedial Mathematics
ERIC Educational Resources Information Center
Parker, K. Andrew
2016-01-01
Basic arithmetic forms the foundation of the math courses that students will face in their undergraduate careers. It is therefore crucial that students have a solid understanding of these fundamental concepts. At an open-access university offering both two-year and four-year degrees, incoming freshmen who were identified as lacking in basic…
Remediation for Students with Mathematics Difficulties: An Intervention Study in Middle Schools
ERIC Educational Resources Information Center
Moser Opitz, Elisabeth; Freesemann, Okka; Prediger, Susanne; Grob, Urs; Matull, Ina; Hußmann, Stephan
2017-01-01
As empirical studies have consistently shown, low achievement in mathematics at the secondary level can often be traced to deficits in the understanding of certain basic arithmetic concepts taught in primary school. The present intervention study in middle schools evaluated whether such learning deficits can be reduced effectively and whether the…
Young Children "Solve for X" Using the Approximate Number System
ERIC Educational Resources Information Center
Kibbe, Melissa M.; Feigenson, Lisa
2015-01-01
The Approximate Number System (ANS) supports basic arithmetic computation in early childhood, but it is unclear whether the ANS also supports the more complex computations introduced later in formal education. "Solving for x" in addend-unknown problems is notoriously difficult for children, who often struggle with these types of problems…
Dyslexia and dyscalculia: two learning disorders with different cognitive profiles.
Landerl, Karin; Fussenegger, Barbara; Moll, Kristina; Willburger, Edith
2009-07-01
This study tests the hypothesis that dyslexia and dyscalculia are associated with two largely independent cognitive deficits, namely a phonological deficit in the case of dyslexia and a deficit in the number module in the case of dyscalculia. In four groups of 8- to 10-year-olds (42 control, 21 dyslexic, 20 dyscalculic, and 26 dyslexic/dyscalculic), phonological awareness, phonological and visual-spatial short-term and working memory, naming speed, and basic number processing skills were assessed. A phonological deficit was found for both dyslexic groups, irrespective of additional arithmetic deficits, but not for the dyscalculia-only group. In contrast, deficits in processing of symbolic and nonsymbolic magnitudes were observed in both groups of dyscalculic children, irrespective of additional reading difficulties, but not in the dyslexia-only group. Cognitive deficits in the comorbid dyslexia/dyscalculia group were additive; that is, they resulted from the combination of two learning disorders. These findings suggest that dyslexia and dyscalculia have separable cognitive profiles, namely a phonological deficit in the case of dyslexia and a deficient number module in the case of dyscalculia.
Mental exercises for cognitive function: clinical evidence.
Kawashima, Ryuta
2013-01-01
The purpose of this study was to examine the beneficial effects of a new cognitive intervention program designed for the care and prevention of dementia, namely Learning Therapy. The training program used systematized basic problems in arithmetic and Japanese language as training tasks. In study 1, 16 individuals in the experimental group and 16 in the control group were recruited from a nursing home. In both groups, all individuals were clinically diagnosed with senile dementia of the Alzheimer type. In study 2, we performed a single-blind, randomized controlled trial in our cognitive intervention program of 124 community-dwelling seniors. In both studies, the daily training program using reading and arithmetic tasks was carried out approximately 5 days a week, for 15 to 20 minutes a day in the intervention groups. Neuropsychological measures were determined simultaneously in the groups both prior to and after six months of the intervention. The results of our investigations indicate that our cognitive intervention using reading and arithmetic problems demonstrated a transfer effect and they provide convincing evidence that cognitive training maintains and improves the cognitive functions of dementia patients and healthy seniors.
Model-Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.
ERIC Educational Resources Information Center
Dunlap, William; And Others
Compared were the effects of two experimental arithmetic treatments, called Laboratory and Textbook, upon achievement and attitude development of fourth grade children. Prior to the study, the experimenter employed task analysis procedures to develop hierarchies of skills for the four operations on whole numbers. During the instructional phase of…
ERIC Educational Resources Information Center
Opelika City Schools, AL.
Presented is a curriculum guide for primary and intermediate special education in the areas of communication skills, arithmetic, science, and physical education. The guide, prepared by the Opelika (Alabama) schools, is said to be based on assumptions such as the values of structured individualized learning, use of materials which do not require…
ERIC Educational Resources Information Center
Davis, Nicole; Cannistraci, Christopher J.; Rogers, Baxter P.; Gatenby, J. Christopher; Fuchs, Lynn S.; Anderson, Adam W.; Gore, John C.
2009-01-01
We used functional magnetic resonance imaging (fMRI) to explore the patterns of brain activation associated with different levels of performance in exact and approximate calculation tasks in well-defined cohorts of children with mathematical calculation difficulties (MD) and typically developing controls. Both groups of children activated the same…
The Influence of Working Memory on Reading Growth in Subgroups of Children with Reading Disabilities
ERIC Educational Resources Information Center
Swanson, H. Lee; Jerman, Olga
2007-01-01
This 3-year longitudinal study determined whether (a) subgroups of children with reading disabilities (RD) (children with RD only, children with both reading and arithmetic deficits, and low verbal IQ readers) and skilled readers varied in working memory (WM) and short-term memory (STM) growth and (b) whether growth in an executive system and/or a…
ERIC Educational Resources Information Center
Wang, Amber Y.; Fuchs, Lynn S.; Fuchs, Douglas
2016-01-01
The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working…
Numerical Order Processing in Children: From Reversing the Distance-Effect to Predicting Arithmetic
ERIC Educational Resources Information Center
Lyons, Ian M.; Ansari, Daniel
2015-01-01
Recent work has demonstrated that how we process the relative order--ordinality--of numbers may be key to understanding how we represent numbers symbolically, and has proven to be a robust predictor of more sophisticated math skills in both children and adults. However, it remains unclear whether numerical ordinality is primarily a by-product of…
NASA Astrophysics Data System (ADS)
Rahayu, D. V.
2017-02-01
This study was intended to figure out basic teaching skills of Mathematics Department Students of STKIP Garut at Field Experience Program in academic year 2014/2015. This study was qualitative research with analysis descriptive technique. Instrument used in this study was observation sheet to measure basic teaching mathematics skills. The result showed that ability of content mastery and explaining skill were in average category. Questioning skill, conducting variations skill and conducting assessment skill were in good category. Managing classroom skill and giving motivation skill were in poor category. Based on the result, it can be concluded that the students’ basic teaching skills weren’t optimal. It is recommended for the collegians to get lesson with appropriate strategy so that they can optimize their basic teaching skills.
Spatial transformation abilities and their relation to later mathematics performance.
Frick, Andrea
2018-04-10
Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.
ERIC Educational Resources Information Center
Missouri State Dept. of Education, Jefferson City.
Arranged in two parts, this guide introduces elementary and secondary social studies teachers to a variety of methods for integrating social studies content and basic skills instruction. Chapter I defines basic skills as the skills an individual needs to become a self-directed learner, communicate clearly, and make reasoned decisions, and presents…
ERIC Educational Resources Information Center
Frank, Fiona; Holland, Chris; Jeffery, Sue; Marquand, Alison; Noel, Alison
Designed to familiarize experienced and qualified basic skills tutors and coordinators with issues of teaching basic skills in the workplace in Great Britain, this course can be delivered by experienced workplace basic skills training program coordinators. It can be delivered over three days or as six half-day sessions. Each of the four units…
Deficiencies in Basic Knowledge and Skills among High School Business Education Seniors.
ERIC Educational Resources Information Center
Goddard, M. Lee
1982-01-01
Conducted a study to determine the level of basic skills achievement among Ohio high school business education seniors. Found that these students lacked competency in general knowledge and in computational skills, basic English skills, and typewriting skills. (GC)
Coordination for the Improvement of Basic Skills.
ERIC Educational Resources Information Center
Roberts, Jane M. E.
The Title II Basic Skills legislation, which is part of the Educational Amendments of 1978, requires coordination of basic skills improvement among related federally-supported programs. Coordination, while essential, is made difficult by the proliferation of agencies and bureaus concerned with basic skills and by the need for autonomy among…
Nosworthy, Nadia; Bugden, Stephanie; Archibald, Lisa; Evans, Barrie; Ansari, Daniel
2013-01-01
Recently, there has been a growing emphasis on basic number processing competencies (such as the ability to judge which of two numbers is larger) and their role in predicting individual differences in school-relevant math achievement. Children’s ability to compare both symbolic (e.g. Arabic numerals) and nonsymbolic (e.g. dot arrays) magnitudes has been found to correlate with their math achievement. The available evidence, however, has focused on computerized paradigms, which may not always be suitable for universal, quick application in the classroom. Furthermore, it is currently unclear whether both symbolic and nonsymbolic magnitude comparison are related to children’s performance on tests of arithmetic competence and whether either of these factors relate to arithmetic achievement over and above other factors such as working memory and reading ability. In order to address these outstanding issues, we designed a quick (2 minute) paper-and-pencil tool to assess children’s ability to compare symbolic and nonsymbolic numerical magnitudes and assessed the degree to which performance on this measure explains individual differences in achievement. Children were required to cross out the larger of two, single-digit numerical magnitudes under time constraints. Results from a group of 160 children from grades 1–3 revealed that both symbolic and nonsymbolic number comparison accuracy were related to individual differences in arithmetic achievement. However, only symbolic number comparison performance accounted for unique variance in arithmetic achievement. The theoretical and practical implications of these findings are discussed which include the use of this measure as a possible tool for identifying students at risk for future difficulties in mathematics. PMID:23844126
A Structural Equation Model of the Writing Process in Typically Developing Sixth Grade Children
ERIC Educational Resources Information Center
Koutsoftas, Anthony D.
2010-01-01
Educational reform initiatives of the last decade have focused on the three R's: reading, writing, and arithmetic, with writing receiving the least attention in the research literature (National Commission on Writing, 2003). Studies of writing performance in United States schoolchildren indicate that many are writing only at basic levels. The…
ERIC Educational Resources Information Center
Ormond, Christine
2012-01-01
Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…
Neurocognitive predictors of financial capacity in traumatic brain injury.
Martin, Roy C; Triebel, Kristen; Dreer, Laura E; Novack, Thomas A; Turner, Crystal; Marson, Daniel C
2012-01-01
To develop cognitive models of financial capacity (FC) in patients with traumatic brain injury (TBI). Longitudinal design. Inpatient brain injury rehabilitation unit. Twenty healthy controls, and 24 adults with moderate-to-severe TBI were assessed at baseline (30 days postinjury) and 6 months postinjury. The FC instrument (FCI) and a neuropsychological test battery. Univariate correlation and multiple regression procedures were employed to develop cognitive models of FCI performance in the TBI group, at baseline and 6-month time follow-up. Three cognitive predictor models of FC were developed. At baseline, measures of mental arithmetic/working memory and immediate verbal memory predicted baseline FCI performance (R = 0.72). At 6-month follow-up, measures of executive function and mental arithmetic/working memory predicted 6-month FCI performance (R = 0.79), and a third model found that these 2 measures at baseline predicted 6-month FCI performance (R = 0.71). Multiple cognitive functions are associated with initial impairment and partial recovery of FC in moderate-to-severe TBI patients. In particular, arithmetic, working memory, and executive function skills appear critical to recovery of FC in TBI. The study results represent an initial step toward developing a neurocognitive model of FC in patients with TBI.
Adult Basic Skills and the Kansas Workforce. Executive Report.
ERIC Educational Resources Information Center
Krider, Charles E.; And Others
This report considers the basic skills levels of adults in Kansas, the provision of basic skills training by public and private agencies, and policy options for improving the basic skills of Kansas's workforce. Following a detailed executive report, chapter 1 reviews the workforce challenge, economic and technological changes, and shifts in…
Rickard, Timothy C; Bajic, Daniel
2006-07-01
The applicability of the identical elements (IE) model of arithmetic fact retrieval (T. C. Rickard, A. F. Healy, & L. E. Bourne, 1994) to cued recall from episodic (image and sentence) memory was explored in 3 transfer experiments. In agreement with results from arithmetic, speedup following even minimal practice recalling a missing word from an episodically bound word triplet did not transfer positively to other cued recall items involving the same triplet. The shape of the learning curve further supported a shift from episode-based to IE-based recall, extending some models of skill learning to cued recall practice. In contrast with previous findings, these results indicate that a form of representation that is independent of the original episodic memory underlies cued-recall performance following minimal practice. Copyright 2006 APA, all rights reserved.
Cueing Strategies and Basic Skills in Early Reading.
ERIC Educational Resources Information Center
Beebe, Mona J.; Bulcock, Jeffrey W.
The extent to which cuing strategies and basic skills explanations of early reading constitute complementary approaches was examined in a study involving 94 fourth grade students. Basic skills--a unidimensional component based on measures of vocabulary development, language skills, and work-study skills--proved to be a powerful variable mediating…
ERIC Educational Resources Information Center
Noser, Thomas C.; Tanner, John R.; Shah, Situl
2008-01-01
The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…
ERIC Educational Resources Information Center
Rees, Libby
This guide provides information on basic skills needs and programs in the workplace and issues affecting basic skills provision from a British perspective. Section 1 aims to provide a context for workplace basic skills provision. Sections 2-7 provide practical suggestions and advice on the following topics: (1) marketing; (2) contacting employers;…
ERIC Educational Resources Information Center
Fiero, Diane M.
2013-01-01
Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…
ERIC Educational Resources Information Center
Uno, Akira; Wydell, Taeko N.; Haruhara, Noriko; Kaneko, Masato; Shinya, Naoko
2009-01-01
Four hundred and ninety-five Japanese primary-school children aged from 8 (Grade-2) to 12 (Grade-6) were tested for their abilities to read/write in Hiragana, Katakana, and Kanji, for their size of vocabulary and for other cognitive abilities including arithmetic, visuo-spatial and phonological processing. Percentages of the children whose…
Development of Mathematical Knowledge in Young Children: Attentional Skill and the Use of Inversion
ERIC Educational Resources Information Center
Watchorn, Rebecca P. D.; Bisanz, Jeffrey; Fast, Lisa; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Smith-Chant, Brenda L.
2014-01-01
The principle of "inversion," that a + b - b "must" equal a, is a fundamental property of arithmetic, but many children fail to apply it in symbolic contexts through 10 years of age. We explore three hypotheses relating to the use of inversion that stem from a model proposed by Siegler and Araya (2005). Hypothesis 1 is that…
Health literacy interventions for immigrant populations: a systematic review.
Fernández-Gutiérrez, M; Bas-Sarmiento, P; Albar-Marín, M J; Paloma-Castro, O; Romero-Sánchez, J M
2018-03-01
Health literacy is considered a social health determinant that influences improvement in health, patient empowerment and reduction in inequalities. There is a lack of health literacy interventions for vulnerable social groups (i.e. immigrants), and nurses have shown little familiarity with the concept. This study aimed to identify and analyse whether interventions directed at immigrant populations improve the functional (basic reading, writing and arithmetic skills), interactive (social and cognitive skills) and critical (advanced cognitive and social skills in critically analyzing information and making informed decisions) dimensions of health literacy, taking into account the role played by nursing in these interventions. A systematic review of four databases including PubMed, PsycINFO, the Cochrane Library and ERIC was conducted to identify relevant articles published between 2000 and 2015. Thirty-four articles met the inclusion criteria, and nine articles used a validated instrument. Few specific health literacy interventions for immigrant populations were found. The main findings of the studies showed positive changes in functional health literacy. However, the interventions were less effective in improving interactive and critical health literacy. Several of the findings of this review were based on studies that had their own limitations. The assessment of the articles was not blinded, and the review was restricted to articles written in Spanish and English. The interventions studied were reported as being effective in improving health literacy in immigrants, particularly the functional aspects. Regarding the role played by nursing, this review observed little involvement. It is important for educational strategies to include health literacy dimensions. The concept of health literacy should be included as a Nursing Outcomes Classification and in its subsequent validation taxonomy. To promote community health, health literacy must be a prioritized objective of health management and policies. © 2017 International Council of Nurses.
New Directions in the Army's Basic Skills Education Program (BSEP).
ERIC Educational Resources Information Center
Pilgrim, Mark T.
The Army has given to the Training and Doctrine Command the task of developing four Basic Skills Education Program (BSEP) curricula to provide functional, job-related basic skills training. These would be Military Occupational Specialty (MOS) Baseline Skills, English-as-a-Second Language (ESL), Military Life Coping Skills, and Learning Strategies.…
ERIC Educational Resources Information Center
Comings, John; Sum, Andrew; Uvin, Johan
The role of adult education in sustaining economic growth and expanding opportunity in Massachusetts was explored. The analysis focused on the new basic skills needed for a new economy, groups lacking the new basic skills, the demand for adult basic education (ABE), funding for ABE, building basic skills through adult education, ABE's costs and…
ERIC Educational Resources Information Center
Begland, Robert R.
In reviewing the Army Continuing Education System in 1979, the Assistant Secretary of the Army found a basic skills program based on traditional academic level goals was inadequate to meet the Army's requirement to provide functional, job-related basic skill education. Combining the shrinking manpower pool and projected basic skill deficiencies of…
The Effects of Basketball Basic Skills Training on Gross Motor Skills Development of Female Children
ERIC Educational Resources Information Center
Bayazit, Betul
2015-01-01
The purpose of this study was to investigate the effects of basketball basic skills training on gross motor skills development of female children in Turkey. For that purpose, 40 female children took part in the study voluntarily. Basketball basic skills test was used to improve the gross motor skills of the female children in the study. Also,…
Response to "Reply to O'Neill: The Privatisation of Public Schooling in New Zealand"
ERIC Educational Resources Information Center
O'Neill, John
2011-01-01
This article presents the author's response to Strathdee's "Reply to O'Neill: The privatisation of public schooling in New Zealand." Strathdee has alerted the editors to a basic arithmetic error in the author's paper (O'Neill 2011, 24). He also makes substantive criticisms. Strathdee's criticisms focus on the two cases that are used to…
ERIC Educational Resources Information Center
Spüler, Martin; Walter, Carina; Rosenstiel, Wolfgang; Gerjets, Peter; Moeller, Korbinian; Klein, Elise
2016-01-01
Numeracy is a key competency for living in our modern knowledge society. Therefore, it is essential to support numerical learning from basic to more advanced competency levels. From educational psychology it is known that learning is most effective when the respective content is neither too easy nor too demanding in relation to learners'…
Leff, Daniel Richard; Orihuela-Espina, Felipe; Athanasiou, Thanos; Karimyan, Vahe; Elwell, Clare; Wong, John; Yang, Guang-Zhong; Darzi, Ara W
2010-12-01
To test the hypothesis that fatigue-induced performance decline in surgical residents is associated with changes in brain function as detected by functional near-infrared spectroscopy. Surgical residents (n = 7) participated in a prospective study involving 2-hourly objective measurements of neurocognitive skill (arithmetic calculations using Nintendo "brain training"), technical performance (surgical knot tying on a trainer, and monitoring time taken, path length and number of movements), and introspective fatigue (questionnaire-based) across 10 hours of acute sleep deprivation (10:00 PM to 8:00 PM. Simultaneously, changes in cortical oxyhemoglobin (HbO₂), deoxyhemoglobin (HHb), and total hemoglobin (HbT), inferring prefrontal function, were recorded by using functional near-infrared spectroscopy. Arithmetic performance remained stable despite increasing levels of subject fatigue (time: P = 0.07, errors: P = 0.70, efficiency: P = 0.58). Technical skill improved between the first (10:00 PM and the second (12:00 AM sessions (P < 0.05) and stabilized thereafter (12:00 AM to 8:00 AM. Greater activation was required to complete cognitive versus technical drills. Stimulus type (0: cognitive, 1: technical) was found to be an independent predictor of changes in cortical excitation (HbO₂: P < 0.01, HHb: P < 0.05, HbT: P < 0.01). Cortical responses to the cognitive task increased over the course of the simulated night shift. In addition, "time interval" was observed to be an independent predictor of cortical hemodynamic change (HbO₂: P < 0.01, HbT: P < 0.01). Neurocognitive tasks may tax the sleep-deprived resident more than well-learned technical skills. Performing cognitive skills at night, such as decision making, may depend upon enhanced prefrontal recruitment indicative of a focused attentional strategy and/or compensation to sleep deprivation. Further work should focus on determining whether errors in performance are associated with attentional lapses and failure of cortical compensation.
ERIC Educational Resources Information Center
Zeidenberg, Matthew; Cho, Sung-Woo; Jenkins, Davis
2010-01-01
To increase the rate at which adult basic skills students advance to and succeed in college-level occupational programs, the Washington State Board for Community and Technical Colleges (SBCTC) developed the Integrated Basic Education and Skills Training, or I-BEST. In the I-BEST model, a basic skills instructor and an occupational instructor team…
ERIC Educational Resources Information Center
Yow, Alma V.
2010-01-01
Research has documented that many new entrants to the workforce from adult basic education (ABE) programs are critically lacking in the preparation and technology skills needed for workplace success. To address this problem, this basic interpretive qualitative study was implemented to examine and identify the basic technology skills perceived by…
Intangible heritage for sustainable future: mathematics in the paddy field
NASA Astrophysics Data System (ADS)
Dewanto, Stanley P.; Kusuma, Dianne A.; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje
2017-10-01
Mathematics, as the only general language, can describe all phenomena on earth. Mathematics not only helps us to understand these phenomena, but it also can sustain human activities, consequently ensure that the future development is sustainable. Indonesia, with high cultural diversity, should aware to have its understanding, skills, and philosophies developed by certain societies, with long histories of interaction with their natural surroundings, which will provide a foundation for locally appropriate sustainable development. This paper discussed the condition and situation on certain area in Cigugur, Indonesia, and what skills, knowledge, and concept can be transmitted, regarding simple mathematics (arithmetic). Some examples are provided.
Mathematics skills in good readers with hydrocephalus.
Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather
2002-01-01
Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.
ERIC Educational Resources Information Center
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
Arithmetic Skills in Using Algorithms
1990-06-01
that this bulb is really defective? (table continues) 3 Table 1 (continued) Dyslexia Dyslexia is a disorder characterized by an impaired ability to...read. Two percent (2%) of all first graders have dyslexia . A screen4ng test for dyslexia has recently been devised that can be used with first graders...whether the child has dyslexia . The screening test is not completely accurate. For children who really have dyslexia , the screening test is positive
ERIC Educational Resources Information Center
Madawaska School District, ME.
Project CAPABLE (Classroom Action Program: Aim: Basic Learning Effectiveness) is a classroom approach which integrates the basic learning skills with content. The goal of the project is to use basic learning skills to enhance the learning of content and at the same time use the content to teach basic learning skills. This manual illustrates how…
Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles
2016-01-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138
Non-symbolic approximate arithmetic training improves math performance in preschoolers.
Park, Joonkoo; Bermudez, Vanessa; Roberts, Rachel C; Brannon, Elizabeth M
2016-12-01
Math proficiency at early school age is an important predictor of later academic achievement. Thus, an important goal for society should be to improve math readiness in preschool-age children, especially in low-income children who typically arrive in kindergarten with less mathematical competency than their higher income peers. The majority of existing research-based math intervention programs target symbolic verbal number concepts in young children. However, very little attention has been paid to the preverbal intuitive ability to approximately represent numerical quantity, which is hypothesized to be an important foundation for full-fledged mathematical thinking. Here, we tested the hypothesis that repeated engagement of non-symbolic approximate addition and subtraction of large arrays of items results in improved math skills in very young children, an idea that stems from our previous studies in adults. In the current study, 3- to 5-year-olds showed selective improvements in math skills after multiple days of playing a tablet-based non-symbolic approximate arithmetic game compared with children who played a memory game. These findings, collectively with our previous reports, suggest that mental manipulation of approximate numerosities provides an important tool for improving math readiness, even in preschoolers who have yet to master the meaning of number words. Copyright © 2016 Elsevier Inc. All rights reserved.
McCaskey, Ursina; von Aster, Michael; Maurer, Urs; Martin, Ernst; O'Gorman Tuura, Ruth; Kucian, Karin
2017-01-01
Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD) and DD children. During a study period of 4 years, 28 children (8-11 years) were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus), pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.
Non-symbolic approximate arithmetic training improves math performance in preschoolers
Park, Joonkoo; Bermudez, Vanessa; Roberts, Rachel C.; Brannon, Elizabeth M.
2016-01-01
Math proficiency in early school age is an important predictor of later academic achievement. Thus, an important goal for society should be to improve math readiness in pre-school age children, especially in low-income children who typically arrive in kindergarten with less mathematical competency than their higher-income peers. The majority of existing research-based math intervention programs target symbolic, verbal number concepts in young children. However, very little attention has been paid to the preverbal, intuitive ability to approximately represent numerical quantity, which is hypothesized to be an important foundation for full-fledged mathematical thinking. Here, we test the hypothesis that repeated engagement of non-symbolic approximate addition and subtraction of large array of items results in improved math skills in very young children, an idea that stems from our previous studies in adults. Three to five year-old children showed selective improvements in math skills after multiple days of playing a tablet-based non-symbolic approximate arithmetic game compared to children who played a memory game. These findings, collectively with our previous reports, suggest that mental manipulation of approximate numerosities provides an important tool for improving math readiness, even in preschoolers who have yet to master the meaning of number words. PMID:27596808
McCaskey, Ursina; von Aster, Michael; Maurer, Urs; Martin, Ernst; O'Gorman Tuura, Ruth; Kucian, Karin
2018-01-01
Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD) and DD children. During a study period of 4 years, 28 children (8–11 years) were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus), pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time. PMID:29354041
Increase in counselling communication skills after basic and advanced microskills training.
Kuntze, Jeroen; van der Molen, Henk T; Born, Marise P
2009-03-01
Mastering counselling communication skills is one of the requirements that lead to the diploma of a registered European psychologist. The microcounseling method proves to be effective in training these skills. Research into the effectiveness of the microcounseling method often reports overall effect sizes only. The aim of this study was to investigate the adequate use of separate counselling communication skills (seven basic skills: minimal encouragements; asking questions; paraphrasing; reflection of feeling; concreteness; summarizing; and situation clarification and five advanced skills: advanced accurate empathy; confrontation; positive relabelling; examples of one's own; and directness) after respectively a basic and an advanced training in these skills. Participants were 583 first year or second year bachelor students in psychology who took the counselling communication skills progress test (CSPT). The participants are divided in a group of freshmen, who had not received any training in counselling communication skills; first year students, who had received a training in basic skills; second year students who had followed a training in advanced skills and a control group. A between-subject design, a within-subject design and a pre-test-post-test-control group design were used to examine the scores on these skills. Seven basic skills and four advanced skills had large effect sizes. One advanced skill had a moderate effect size. The microcounseling method is very effective on the level of separate microskills. However, students perform better on the basic skills than on the advanced skills. More training seems to be needed in the latter to achieve the same level of mastery.
ERIC Educational Resources Information Center
Carman, Priscilla; Van Horn, Barbara; Hamilton, KayLynn; Williams, Mary Kay
This guide contains activities and resources to help adult learners develop the work-based foundation skills and knowledge areas included on the Foundation Skills Framework wheel (Institute for the Study of Adult Literacy 2000). Its four sections (basic employability skills, basic workplace knowledge, basic workplace skills, and lifelong learning…
ERIC Educational Resources Information Center
Kentucky State Dept. of Education, Frankfort.
This document is a statement of the basic music skills that Kentucky students should develop. This skills list does not replace any locally developed curriculum. It is intended as a guide for local school districts in Kentucky in their development of a detailed K-12 curriculum. The skills presented are considered basic to a sound education program…
ERIC Educational Resources Information Center
De Maria, Richard
This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The document consists of matrices that describe the relationship of vocational skills to basic communication, mathematics, and science skills within the entrepreneur…
Survival Skills: A Basic Skills Program.
ERIC Educational Resources Information Center
Mahoney, Don
The guide describes an approach designed to promote the basic skills of hearing impaired students Basic or survival skills are identified which cover the student's daily functioning at home, school, and in the community. The guide is aimed at the 10-15 year old hearing impaired student, but techniques are expected to be applicable to both…
McAnena, P F; O'Halloran, N; Moloney, B M; Courtney, D; Waldron, R M; Flaherty, G; Kerin, M J
2018-05-01
Basic surgical skills modules in medical education are effective in teaching skills and increasing confidence among students approaching surgery. However, these modules are not delivered universally and their effect on the professional development of graduates has not been established. We aimed to assess the impact of a 10-week basic surgical skills module on attitudes and technical skills of first year medical students compared to interns. Eighteen students participated and were assessed using a 4-part questionnaire. Technical skills were assessed by observing students perform a basic interrupted suture, using the objective structured assessment of technical skills (OSATS) tool. Fourteen interns were recruited. Students were more confident in surgical scrubbing (mean score 4.0 vs. 2.86, p = 0.001), and performing a basic suture (4.05 vs. 1.93, p = 0.000), more enthusiastic about assisting with an operation (4.5 vs. 3.0, p = 0.001) and more likely to consider a career in surgery (4.16 vs. 2.28, p = 0.000). Technical skills were greater in the student group (mean score 30.8 vs. 19.6, p = 0.001). Five interns had taken part in surgical skills modules as undergraduates. Their technical skills were significantly higher compared to interns who had not (n = 9) (28.8 vs. 14.5, p = 0.006), and they were more likely to consider a career in surgery (3.6 vs. 1.5, p = 0.036). The introduction of surgical skills teaching to the undergraduate medical curriculum has a positive impact on students' attitudes towards surgery and accelerates basic technical skills development. Consideration should be given to development of a standardised undergraduate core curriculum in basic surgical skills teaching.
Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko
2016-01-01
The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.
Mathematics anxiety in children with developmental dyscalculia.
Rubinsten, Orly; Tannock, Rosemary
2010-07-15
Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety.
IQ of four-year-olds who go on to develop dyslexia.
van Bergen, Elsje; de Jong, Peter F; Maassen, Ben; Krikhaar, Evelien; Plakas, Anna; van der Leij, Aryan
2014-01-01
Do children who go on to develop dyslexia show normal verbal and nonverbal development before reading onset? According to the aptitude-achievement discrepancy model, dyslexia is defined as a discrepancy between intelligence and reading achievement. One of the underlying assumptions is that the general cognitive development of children who fail to learn to read has been normal. The current study tests this assumption. In addition, we investigated whether possible IQ deficits are uniquely related to later reading or are also related to arithmetic. Four-year-olds (N = 212) with and without familial risk for dyslexia were assessed on 10 IQ subtests. Reading and arithmetic skills were measured 4 years later, at the end of Grade 2. Relative to the controls, the at-risk group without dyslexia had subtle impairments only in the verbal domain, whereas the at-risk group with dyslexia lagged behind across IQ tasks. Nonverbal IQ was associated with both reading and arithmetic, whereas verbal IQ was uniquely related to later reading. The children who went on to develop dyslexia performed relatively poorly in both verbal and nonverbal abilities at age 4, which challenges the discrepancy model. Furthermore, we discuss possible causal and epiphenomenal models explaining the links between early IQ and later reading. © Hammill Institute on Disabilities 2013.
Project EASE II. Workplace Education Curricula: From Teaching Basic Skills to Training the Trainer.
ERIC Educational Resources Information Center
Northern Illinois Univ., De Kalb.
This curriculum guide was created to guide workplace basic skills instructors in the design of customized curricula for Project Employment Assistance and Skill Enhancement (EASE II), an on-the-job literacy and basic skills improvement project for employees of small companies in the metal working industry in the Chicago area. The guide contains…
Money Management and the Consumer, Basic Economic Skills: "Baffled, Bothered, Bewildered".
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Div. of Elementary and Secondary Education.
This document, one in a series of six Project SCAT (Skills for Consumers Applied Today) units for senior high school students, provides an overview of basic economic skills and consumer practices. Project SCAT is designed to help students develop basic skills, solve problems, and apply consumer knowledge necessary for making wise choices in the…
Profiles of Learning. The Basic Skills Testing Program in New South Wales: 1989.
ERIC Educational Resources Information Center
Masters, Geofferey; And Others
This publication on the New South Wales' Basic Skills Testing Program (BSTP) describes the development of the program's tests, the analysis of students' results, and the communication of results to parents, teachers, and schools. In BSTP tests, basic skills are defined not as low-level, rudimentary survival skills, but as major areas of learning…
Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.
Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P
2017-09-01
Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.
ERIC Educational Resources Information Center
Comings, John P.; Strucker, John; Bell, Brenda
2017-01-01
This article describes two assessment tools that have been used to assess the reading skills of youth participating in alternative basic skills and livelihood skills training programs. The Rapid Assessment of Reading Skills (RARS) was developed to identify potential participants who needed to improve their reading skills before beginning training…
Mathematical modelling of Bit-Level Architecture using Reciprocal Quantum Logic
NASA Astrophysics Data System (ADS)
Narendran, S.; Selvakumar, J.
2018-04-01
Efficiency of high-performance computing is on high demand with both speed and energy efficiency. Reciprocal Quantum Logic (RQL) is one of the technology which will produce high speed and zero static power dissipation. RQL uses AC power supply as input rather than DC input. RQL has three set of basic gates. Series of reciprocal transmission lines are placed in between each gate to avoid loss of power and to achieve high speed. Analytical model of Bit-Level Architecture are done through RQL. Major drawback of reciprocal Quantum Logic is area, because of lack in proper power supply. To achieve proper power supply we need to use splitters which will occupy large area. Distributed arithmetic uses vector- vector multiplication one is constant and other is signed variable and each word performs as a binary number, they rearranged and mixed to form distributed system. Distributed arithmetic is widely used in convolution and high performance computational devices.
A programmable controller based on CAN field bus embedded microprocessor and FPGA
NASA Astrophysics Data System (ADS)
Cai, Qizhong; Guo, Yifeng; Chen, Wenhei; Wang, Mingtao
2008-10-01
One kind of new programmable controller(PLC) is introduced in this paper. The advanced embedded microprocessor and Field-Programmable Gate Array (FPGA) device are applied in the PLC system. The PLC system structure was presented in this paper. It includes 32 bits Advanced RISC Machines (ARM) embedded microprocessor as control core, FPGA as control arithmetic coprocessor and CAN bus as data communication criteria protocol connected the host controller and its various extension modules. It is detailed given that the circuits and working principle, IiO interface circuit between ARM and FPGA and interface circuit between ARM and FPGA coprocessor. Furthermore the interface circuit diagrams between various modules are written. In addition, it is introduced that ladder chart program how to control the transfer info of control arithmetic part in FPGA coprocessor. The PLC, through nearly two months of operation to meet the design of the basic requirements.
Multinode reconfigurable pipeline computer
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M. (Inventor); Littman, Michael G. (Inventor)
1989-01-01
A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly.
Realization of arithmetic addition and subtraction in a quantum system
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Kim, Kihwan; Kim, M. S.; Nha, Hyunchul
2015-05-01
We report an experimental realization of the conventional arithmetic on a bosonic system, in particular, phonons of a 171Yb+ ion trapped in a harmonic potential. The conventional addition and subtraction are totally different from the quantum operations of creation ↠and annihilation â that have the modification of √{ n } factor due to the symmetric nature of bosons. In our realization, the addition and subtraction do not depend on the number of particles originally in the system and nearly deterministically bring a classical state into a non-classical state. We implement such operations by applying the scheme of transitionless shortcuts to adiabaticity on anti-Jaynes-Cummings transition. This technology enables quantum state engineering and can be applied to many other experimental platforms. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178.
Soltész, Fruzsina; Szucs, Dénes; Szucs, Lívia
2010-02-18
The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others, that a rather domain general magnitude representation provides the later basis for a specialized representation of numerical magnitudes. For this representational specialization, the acquisition of the concept of abstract numbers, together with the development of other cognitive abilities, is indispensable.
2010-01-01
Background The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. Methods The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Results and discussion Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. Conclusion We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others, that a rather domain general magnitude representation provides the later basis for a specialized representation of numerical magnitudes. For this representational specialization, the acquisition of the concept of abstract numbers, together with the development of other cognitive abilities, is indispensable. PMID:20167066
Intrinsic motivation and learning in a schizophrenia spectrum sample.
Choi, Jimmy; Medalia, Alice
2010-05-01
A motivation is a telling hallmark of negative symptomatology in schizophrenia, and it impacts nearly every facet of behavior, including inclination to attempt the difficult cognitive tasks involved in cognitive remediation therapy. Experiences of external reward, reinforcement, and hedonic anticipatory enjoyment are diminished in psychosis, so therapeutics which instead target intrinsic motivation for cognitive tasks may enhance task engagement, and subsequently, remediation outcome. We examined whether outpatients could attain benefits from an intrinsically motivating instructional approach which (a) presents learning materials in a meaningful game-like context, (b) personalizes elements of the learning materials into themes of high interest value, and (c) offers choices so patients can increase their control over the learning process. We directly compared one learning method that incorporated the motivational paradigm into an arithmetic learning program against another method that carefully manipulated out the motivational variables in the same learning program. Fifty-seven subjects with schizophrenia or schizoaffective disorder were randomly assigned to one of the two learning programs for 10 thirty-minute sessions while an intent-to-treat convenience subsample (n=15) was used to account for practice effect. Outcome measures were arithmetic learning, attention, motivation, self competency, and symptom severity. Results showed the motivational group (a) acquired more arithmetic skill, (b) possessed greater intrinsic motivation for the task, (c) reported greater feelings of self competency post-treatment, and (d) demonstrated better post-test attention. Interestingly, baseline perception of self competency was a significant predictor of post-test arithmetic scores. Results demonstrated that incorporating intrinsically motivating instructional techniques into a difficult cognitive task promoted greater learning of the material, higher levels of intrinsic motivation to attempt the demanding task, and greater feelings of self efficacy and achievement to learn. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Basic Skills Applications in Occupational Investigation.
ERIC Educational Resources Information Center
Hendrix, Mary
This guide contains 50 lesson plans for learning activities that incorporate basic skills into content areas of career education, mathematics, science, social studies, communications, and productive work habits. Each lesson consists of a purpose, basic skills applications, approximate time required, materials needed, things for the teacher to do…
ERIC Educational Resources Information Center
Lundetrae, Kjersti; Gabrielsen, Egil; Mykletun, Reidar
2010-01-01
Basic skills and educational level are closely related, and both might affect employment. Data from the Adult Literacy and Life Skills Survey were used to examine whether basic skills in terms of literacy and numeracy predicted youth unemployment (16-24 years) while controlling for educational level. Stepwise logistic regression showed that in…
The functional architectures of addition and subtraction: Network discovery using fMRI and DCM.
Yang, Yang; Zhong, Ning; Friston, Karl; Imamura, Kazuyuki; Lu, Shengfu; Li, Mi; Zhou, Haiyan; Wang, Haiyuan; Li, Kuncheng; Hu, Bin
2017-06-01
The neuronal mechanisms underlying arithmetic calculations are not well understood but the differences between mental addition and subtraction could be particularly revealing. Using fMRI and dynamic causal modeling (DCM), this study aimed to identify the distinct neuronal architectures engaged by the cognitive processes of simple addition and subtraction. Our results revealed significantly greater activation during subtraction in regions along the dorsal pathway, including the left inferior frontal gyrus (IFG), middle portion of dorsolateral prefrontal cortex (mDLPFC), and supplementary motor area (SMA), compared with addition. Subsequent analysis of the underlying changes in connectivity - with DCM - revealed a common circuit processing basic (numeric) attributes and the retrieval of arithmetic facts. However, DCM showed that addition was more likely to engage (numeric) retrieval-based circuits in the left hemisphere, while subtraction tended to draw on (magnitude) processing in bilateral parietal cortex, especially the right intraparietal sulcus (IPS). Our findings endorse previous hypotheses about the differences in strategic implementation, dominant hemisphere, and the neuronal circuits underlying addition and subtraction. Moreover, for simple arithmetic, our connectivity results suggest that subtraction calls on more complex processing than addition: auxiliary phonological, visual, and motor processes, for representing numbers, were engaged by subtraction, relative to addition. Hum Brain Mapp 38:3210-3225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Computer Architecture for Energy Efficient SFQ
2014-08-27
IBM Corporation (T.J. Watson Research Laboratory) 1101 Kitchawan Road Yorktown Heights, NY 10598 -0000 2 ABSTRACT Number of Papers published in peer...accomplished during this ARO-sponsored project at IBM Research to identify and model an energy efficient SFQ-based computer architecture. The... IBM Windsor Blue (WB), illustrated schematically in Figure 2. The basic building block of WB is a "tile" comprised of a 64-bit arithmetic logic unit
Basic Techniques in Environmental Simulation.
1982-07-01
the devel- ’I or oper is liable for all necessary changes in the model or its supporting computer software . After the 90-day warranty expires, the user...processing unit, that part of a computer which accom- plishes arithmetic and logical operations DCFLOS Dynamic cloud -free line-of-sight, a simulation... Software Development ......... 12 1.7.7 Operational Environment, Interfaces, and Constraints. . 12 1.7.8 Effectiveness Evaluation, Value Analysis, and
LAVA: Large scale Automated Vulnerability Addition
2016-05-23
memory copy, e.g., are reasonable attack points. If the goal is to inject divide- by-zero, then arithmetic operations involving division will be...ways. First, it introduces deterministic record and replay , which can be used for iterated and expensive analyses that cannot be performed online... memory . Since our approach records the correspondence between source lines and program basic block execution, it would be just as easy to figure out
LLL 8080 BASIC-II interpreter user's manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.; Dickinson, J.; Allison, T.G.
1978-04-03
Scientists are finding increased applications for microprocessors as process controllers in their experiments. However, while microprocessors are small and inexpensive, they are difficult to program in machine or assembly language. A high-level language is needed to enable scientists to develop their own microcomputer programs for their experiments on location. Recognizing this need, LLL contracted to have such a language developed. This report describes the resulting LLL BASIC interpreter, which opeates with LLL's 8080-based MCS-8 microcomputer system. All numerical operations are done using Advanced Micro Device's Am9511 arithmetic processor chip or optionally by using a software simulation of that chip. 1more » figure.« less
Numbers for the Innumerate: Everyday Arithmetic and Atlantic Capitalism.
Rosenthal, Caitlin
In nineteenth-century America and the Atlantic world, the "rule of three" was usually regarded as the endpoint of a basic mathematics education. This essay considers the importance of the rule as a technology that enabled broader access to the calculations necessary to participate in the increasingly global market economy. Used by workmen, women, and even the enslaved, the rule and related tools translated basic literacy into practical numeracy. By doing so, it offered a diverse range of people the ability to negotiate more effectively. At the same time, however, the rule's spread helped to legitimate particular types of exchange and commensuration, and with them the emerging capitalist economy.
21st centuries skill implication on educational system
NASA Astrophysics Data System (ADS)
Wrahatnolo, T.; Munoto
2018-01-01
The purpose of this article is to identify skill needed in 21st centuries and its implication on Indonesia’s educational system. This research found that the 21st centuries skill application has more measurable benefits in some sections of life, such as critical thinking and problem solving, initiative, creativity, and entrepreneurship, communication, teamwork, metacognition (change of mindset), digital literature. This study applied qualitative data analysis. The data were taken from different sources and literature. The analysis showed that The 21st centuries education concept’s implementation can be applied in the curriculum of the required subject that is addressed to achieve learning and innovation skills competence and also technology and information media skills competence. While supporting subject group directed to achieve life and career skills competence. All subjects are the derivation from core subject 3R, which are reading, writing, and arithmetic. Based on the description above, it can be concluded that 21st centuries skill needs; (1) a life planning; (2) flexibility and adaptability; (3) initiative and self-management (4) entrepreneurship; (5) social and cultural interaction; (6) productivity and accountability; (7) leadership; (8) critical thinking, (9) problem solving; (10) communication; (11) collaboration and teamwork; (12) lifelong learning; and (13) digital literation.
The California Basic Skills Initiative
ERIC Educational Resources Information Center
Illowsky, Barbara
2008-01-01
This article describes the evolution and implementation of the California Basic Skills Initiative (CA BSI), a statewide effort to address ongoing basic skills and ESL needs of community college students and of all campus faculty, administrators, and staff who support these students. CA BSI strategies include assisting every college in assessing…
ERIC Educational Resources Information Center
Tuijnman, Albert C., Ed.; Kirsch, Irwin S., Ed.; Wagner, Daniel A., Ed.
This book contains 13 papers examining innovations in measuring adults' basic skills and analyzing adult literacy policy. The following papers are included: "Series Preface" (Daniel A. Wagner); "Foreword" (Torsten Husen); "Introduction" (Albert Tuijnman); "Adult Basic Skills: Policy Issues and a Research…
Basic Language Skills and Young Children's Understanding of Causal Connections during Storytelling
ERIC Educational Resources Information Center
Brown, Danielle D.; Lile, Jacquelyn; Burns, Barbara M.
2011-01-01
The current study examined the role of basic language skills for individual differences in preschoolers' understanding of causal connections. Assessments of basic language skills, expressive vocabulary, phonological processing, and receptive language comprehension were examined in relation to the production of causal connections in a storytelling…
Basic Skills in Asian Studies: India.
ERIC Educational Resources Information Center
Hantula, James
Designed for an Asian studies program at the secondary level and using learning activities centering on India, the guide develops four basic skills: reading, applying critical thinking, interpreting the geography, and understanding history. Five learning activities are provided for each basic skill and each unit is introduced with a description…
Alternative Environments for Basic Skills Development.
ERIC Educational Resources Information Center
Crowe, Michael R.; And Others
This study focused on the identification and description of environmental characteristics and their relationship to basic skills exposure. The objectives of the study were to identify the major factors that characterize environments in which learning is intended to occur, and to delineate patterns of co-exposure to basic skills and environmental…
Basic Skills Support in Business and Industry.
ERIC Educational Resources Information Center
Byatt, Janet; Davies, Karen
This guide is designed as a tool for English and Welsh businesses wanting to provide basic skills training for their employees. It provides practical solutions to the problems of identifying employees' basic skills needs and selecting the best model of training delivery to address identified training needs. The introductory section discusses basic…
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Div. of Elementary Education.
The specific educational objectives or basic learning skills are listed for the Virginia elementary school grades. Minimum skills are listed in reading, communications, and mathematics. Terminal objectives for reading include skills in word identification or decoding, comprehension, and study skills. Communication skills include listening,…
Mathematics anxiety affects counting but not subitizing during visual enumeration.
Maloney, Erin A; Risko, Evan F; Ansari, Daniel; Fugelsang, Jonathan
2010-02-01
Individuals with mathematics anxiety have been found to differ from their non-anxious peers on measures of higher-level mathematical processes, but not simple arithmetic. The current paper examines differences between mathematics anxious and non-mathematics anxious individuals in more basic numerical processing using a visual enumeration task. This task allows for the assessment of two systems of basic number processing: subitizing and counting. Mathematics anxious individuals, relative to non-mathematics anxious individuals, showed a deficit in the counting but not in the subitizing range. Furthermore, working memory was found to mediate this group difference. These findings demonstrate that the problems associated with mathematics anxiety exist at a level more basic than would be predicted from the extant literature. Copyright 2009 Elsevier B.V. All rights reserved.
Remediation for Students With Mathematics Difficulties: An Intervention Study in Middle Schools.
Moser Opitz, Elisabeth; Freesemann, Okka; Prediger, Susanne; Grob, Urs; Matull, Ina; Hußmann, Stephan
As empirical studies have consistently shown, low achievement in mathematics at the secondary level can often be traced to deficits in the understanding of certain basic arithmetic concepts taught in primary school. The present intervention study in middle schools evaluated whether such learning deficits can be reduced effectively and whether the type of instruction influences students' progress. The sample consisted of 123 students in 34 classes, split among one control group and two intervention groups: (a) small group instruction and (b) independent work partially integrated into regular classrooms. Over a period of 14 weeks, students were taught basic concepts, such as place value and basic operations. In addition, they practiced fact retrieval and counting (in groups). Multilevel regression analyses demonstrated that the interventions can be used to reduce given deficits.
The Sex Difference in Basic Surgical Skills Learning: A Comparative Study.
Lou, Zheng; Yan, Fei-Hu; Zhao, Zhi-Qing; Zhang, Wei; Shui, Xian-Qi; Liu, Jia; Zhuo, Dong-Lan; Li, Li; Yu, En-da
2016-01-01
Very little is known of sex-related differences among medical students in the acquisition of basic surgical skills at an undergraduate level. The aim of this study was to investigate the sex differences in basic surgical skills learning and the possible explanations for sex disparities within basic surgical skills education. A didactic description of 10 surgical skills was performed, including knot tying, basic suture I, basic suture II, sterile technique, preoperative preparation, phlebotomy, debridement, laparotomy, cecectomy, and small bowel resection with hand-sewn anastomosis. The students were rated on a 100-point scale for each basic surgical skill. Later during the same semester all the students took the final theoretical examination. A total of 342 (male = 317 and female = 25) medical students participated in a single skills laboratory as part of their third-year medical student clerkship. The mean scores for each of the 10 surgical skills were higher in female group. The difference in sterile technique, preoperative preparation, cecectomy, and small bowel resection with hand-sewn anastomosis reached the significant level. Compared with male medical students, the mean theory examination score was significantly higher in female medical students. Approximately 76% of the (19 of 25) female students expressed their interest in pursuing a surgical career, whereas only 65.5% (207 of 317) male students wanted to be surgical professionals (p = 0.381). Female medical students completed basic surgical skills training more efficiently and passed the theoretical examination with significantly higher scores than male medical students. In the future, studies should be done in other classes in our institution and perhaps other schools to see if these findings are reliable or valid or just a reflection of this 1 sample. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Buchanan, Anne E.; Romberg, Thomas A.
As part of a 3-year study of arithmetic problem-solving skills in young children, pretests were administered to 180 middle class first grade students. Following each of three instructional units, another achievement test was administered. The three first grade units corresponded to the Developing Mathematical Processes curriculum and involved…
Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles
2016-07-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.
Griffith, H Randall; Stewart, Christopher C; Stoeckel, Luke E; Okonkwo, Ozioma C; den Hollander, Jan A; Martin, Roy C; Belue, Katherine; Copeland, Jacquelynn N; Harrell, Lindy E; Brockington, John C; Clark, David G; Marson, Daniel C
2010-02-01
To better understand how brain atrophy in amnestic mild cognitive impairment (MCI) as measured using magnetic resonance imaging (MRI) volumetrics could affect instrumental activities of daily living (IADLs) such as financial abilities. Controlled, matched-sample, cross-sectional analysis regressing MRI volumetrics with financial performance measures. University medical and research center. Thirty-eight people with MCI and 28 older adult controls. MRI volumetric measurement of the hippocampi, angular gyri, precunei, and medial frontal lobes. Participants also completed neuropsychological tests and the Financial Capacity Instrument (FCI). Correlations were performed between FCI scores and MRI volumes in the group with MCI. People with MCI performed significantly below controls on the FCI and had significantly smaller hippocampi. Among people with MCI, performance on the FCI was moderately correlated with angular gyri and precunei volumes. Regression models demonstrated that angular gyrus volumes were predictive of FCI scores. Tests of mediation showed that measures of arithmetic and possibly attention partially mediated the relationship between angular gyrus volume and FCI score. Impaired financial abilities in amnestic MCI correspond with volume of the angular gyri as mediated by arithmetic knowledge. The findings suggest that early neuropathology within the lateral parietal region in MCI leads to a breakdown of cognitive abilities that affect everyday financial skills. The findings have implications for diagnosis and clinical care of people with MCI and AD.
Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.
2009-01-01
Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410
2016-01-01
Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930
Job-Related Basic Skills: Cases and Conclusions.
ERIC Educational Resources Information Center
Sticht, Thomas G.; Mikulecky, Larry
This monograph describes the job-related basic skills requirements of the work force and explores ways of developing and improving the reading, writing, and computational abilities of workers. The paper first examines trends that are influencing the demand for basic skills, such as the decline in youth population and the increase in service and…
Typical and Atypical Development of Basic Numerical Skills in Elementary School
ERIC Educational Resources Information Center
Landerl, Karin; Kolle, Christina
2009-01-01
Deficits in basic numerical processing have been identified as a central and potentially causal problem in developmental dyscalculia; however, so far not much is known about the typical and atypical development of such skills. This study assessed basic number skills cross-sectionally in 262 typically developing and 51 dyscalculic children in…
Basic Workplace Skills: The Foundation for Productivity Improvement. Workforce Brief #4.
ERIC Educational Resources Information Center
Bergman, Terri
Studies have confirmed that there is a strong correlation between employees' levels of basic workplace skills and their productivity in the workplace. Programs to build basic workplace skills have been shown to yield the following positive results: more instances of employees using reading and writing on the job, higher employee participation in…
Community College Basic Skills Math Instructors' Experiences with Universal Design for Learning
ERIC Educational Resources Information Center
Greene, Sunny
2016-01-01
Multiple approaches have been used in U.S. community colleges to address the learning needs of postsecondary students who are underprepared in basic skills math. The purpose of this exploratory interview study was to gain a deeper understanding of community college basic skills math learning through instructors' lived experiences using the…
The Cost to Industry. Basic Skills and the UK Workforce.
ERIC Educational Resources Information Center
Adult Literacy and Basic Skills Unit, London (England).
In Fall 1992, 400 telephone interviews established levels of basic skills difficulties among the work force as encountered or perceived by employers in the United Kingdom. Costs to employers of poor basic skills and the effect of these on their operation were quantified and described. Respondents were mainly personnel/training managers or…
Responsive Multicultural Basic Skills Handbook for Teachers and Parents: Overview.
ERIC Educational Resources Information Center
Lewis, Francione N.; Margold, Jane
A rationale for helping primary grade children learn about and value their own and other cultures while acquiring basic academic skills is provided. The handbook is based on the responsive multicultural basic skills approach (RMBS), which states that the school curriculum should reflect society's multicultural nature. The RMBS approach emphasizes…
Basic Skills & the Health Care Industry. Workforce & Workplace Literacy Series. Revised.
ERIC Educational Resources Information Center
BCEL Brief, 1993
1993-01-01
This brief is a combination directory of contact persons and annotated bibliography designed to provide information on developing and implementing basic skills training programs for workers in the health care industry. The first section contains information on 33 contact persons currently operating employee basic skills programs for health care…
Exploring the Past. "A Senior Literacy Model." Final Report.
ERIC Educational Resources Information Center
Greater Erie Community Action Committee, PA.
A program of basic language/writing skills was designed to enhance the literacy levels of 24 multicultural seniors, aged 65 or older, who were recruited from senior centers throughout Erie County, Pennsylvania. Computer literacy and basic word processing skills were taught along with basic language/writing skills in a nonthreatening learning…
Roadsigns from Research. BASICS: Bridging Vocational and Academic Skills.
ERIC Educational Resources Information Center
Sechler, Judith A.; Crowe, Michael R.
This document responds to the need for integration of basic skills into vocational education by providing a summary of research findings, implications, and practical suggestions for teachers. The six sections and four complementary posters are intended as tools for staff development of teachers engaged in teaching basic skills. Sections can also…
Issues in Basic Skills Assessment and Placement in the California Community Colleges
ERIC Educational Resources Information Center
Academic Senate for California Community Colleges, 2004
2004-01-01
When the Academic Senate for California Community Colleges compiled best practices for serving basic skills students in 2002-2003, assessment practices were notably absent. In this paper, problems with current assessment and placement practices with regards to basic skills are explored. The paper begins with a review of the matriculation process…
Mathematics anxiety in children with developmental dyscalculia
2010-01-01
Background Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Methods Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Result Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. Conclusion These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety. PMID:20633269
Landerl, Karin
2013-01-01
Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310
Development of common neural representations for distinct numerical problems
Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod
2015-01-01
How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287
Nanu, Cristina E; McMullen, Jake; Munck, Petriina; Hannula-Sormunen, Minna M
2018-05-01
Previous studies in a variety of countries have shown that there are substantial individual differences in children's spontaneous focusing on numerosity (SFON), and these differences are positively related to the development of early numerical skills in preschool and primary school. A total of 74 5-year-olds participated in a 7-year follow-up study, in which we explored whether SFON measured with very small numerosities at 5 years of age predicts mathematical skills and knowledge, math motivation, and reading in fifth grade at 11 years of age. Results show that preschool SFON is a unique predictor of arithmetic fluency and number line estimation but not of rational number knowledge, mathematical achievement, math motivation, or reading. These results hold even after taking into account age, IQ, working memory, digit naming, and cardinality skills. The results of the current study further the understanding of how preschool SFON tendency plays a role in the development of different formal mathematical skills over an extended period of time. Copyright © 2017 Elsevier Inc. All rights reserved.
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-01-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically-defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division vs. multiplication and subtraction vs. addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distributed representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. PMID:21616086
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-07-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division versus multiplication and subtraction versus addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distribute representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. Copyright © 2011 Elsevier Ltd. All rights reserved.
[The impact of precursors on reading, spelling, and arithmetic at school 2nd grade].
Daseking, M; Petermann, F
2011-10-01
The aim of this study was to determine the role of precursors in the prediction of school achievement. 372 children were followed from health examination for school entry to the second grade. Preschool skills assessed by a screening of developmental stage (SOPESS) were related to second-grade reading (ELFE 1-6), spelling (DERET 1-2+), and arithmetic (DEMAT 1+) by correlation and regression analyses. Correlations between numeracy and math abilities (r=0,340) met with our expectations as also did those between verbal abilities and spelling (r=0,276). The subtests of attention and counting (SOPESS) contribute significantly to an explanation of the variance in school achievement. Numeracy predicts math achievement, and verbal memory contributes to school achievement in math and spelling. Our findings support the contribution of visual selective attention, phonological memory, and verbal abilities to the development of reading, spelling, and math at primary school. © Georg Thieme Verlag KG Stuttgart · New York.
Interventions for Primary School Children With Difficulties in Mathematics.
Dowker, Ann
2017-01-01
Difficulty with arithmetic is a common problem for children and adults, though there has been some work on the topic for a surprisingly long time. This chapter will review some of the research that has been done over the years on interventions with primary school children. Interventions can be of various levels of intensiveness, ranging from whole-class approaches that take account of individual differences through small-group and limited-time individual interventions to extended-time individual interventions. Interventions discussed here include those involving peer tuition and group collaboration; those involving board and computer games; and those that involve assessing children's strengths and weaknesses in different components of mathematics; and targeting remedial activities to the assessed weaknesses. Most of the interventions discussed in this chapter specifically involve mathematics (usually mainly arithmetic), but there is also some discussion of attempts to improve mathematics by training children in domain-general skills, including Piagetian operations, metacognition, and executive functions. © 2017 Elsevier Inc. All rights reserved.
The Basic/Essential Skills Taxonomy. Second Edition--Revised.
ERIC Educational Resources Information Center
Snyder, Lester M., Jr.
This revision of the "Basic/Essential Skills Taxonomy" exhibits changes based on use of the original taxonomy in the field. It features more precise definitions of the levels of key words and phrases, the deletion of some science items that ranged above basic skills, the combination of the language arts sections from the original two parts, and…
Interpreting Mathematics Scores on the New Jersey College Basic Skills Placement Test.
ERIC Educational Resources Information Center
Dass, Jane; Pine, Charles
The New Jersey College Basic Skills Placement Test (NJCBSPT) is designed to measure certain basic language and mathematics skills of students entering New Jersey colleges. The primary purpose of the two mathematics sections is to determine whether students are prepared to begin certain college-level work without a handicap in computation or…
Aligning CASAS Competencies and Assessments to Basic Skills Content Standards. Second Edition
ERIC Educational Resources Information Center
CASAS - Comprehensive Adult Student Assessment Systems (NJ1), 2009
2009-01-01
Since its inception, the Comprehensive Adult Student Assessment System (CASAS) has focused on teaching and assessing basic skills in contexts that are relevant and important to adult learners. CASAS has developed and continues to refine a highly formalized hierarchy of competencies, the application of basic skills that adults need to be fully…
ERIC Educational Resources Information Center
Evaluation and Training Inst., Los Angeles, CA.
This handbook was produced as a result of a project that studied California community college programs that teach basic skills in vocational education programs. The project included a literature review, a telephone survey, and 12 site visits. The handbook contains four sections: (1) steps for integrating basic skills and vocational instruction;…
The Alpha Mu Study: A Report on the Survey of Basic Business Survival Skills.
ERIC Educational Resources Information Center
Whitney, Eugene P.
A study was conducted to secure information relating to the following questions: (1) Are high school graduates leaving school with sufficient basic business skills to adequately manage their personal business affairs? and (2) what role is the business education department playing to provide all students with these basic business skills? A list of…
ERIC Educational Resources Information Center
Reio, Thomas G., Jr.; Maciolek, C. Lynn; Weiss, Erin M.
Although there is considerable evidence that kindergartners in child-centered programs have more opportunities to increase prosocial behavior and are more internally motivated than children in basic skills programs, the efficacy of child-centered versus basic skills programs with regard to prosocial behavior has not been examined among preschool…
The Effects of Computer Games on the Achievement of Basic Mathematical Skills
ERIC Educational Resources Information Center
Sayan, Hamiyet
2015-01-01
This study aims to analyze the relationship between playing computer games and learning basic mathematics skills. It shows the role computer games play in the learning and achievement of basic mathematical skills by students. Nowadays it is clear that individuals, especially young persons are very fond of computer and computer games. Since…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This guide provides information and guidelines intended to assist vocational administrators in developing and evaluating programs to improve the basic skills of vocational-technical students. Part one provides background information about basic skills and examines their role in vocational education. Discussed next are various program types,…
ERIC Educational Resources Information Center
Waugh, Sue
Workplace literacy and basic skills may be defined as skills needed by employees at work: reading, writing, math, and problem solving. Workplace literacy and skill requirements are based on the needs of each workplace and its workers. These skills are important because the work force needs to be highly skilled and adaptable to compete in a global…
ERIC Educational Resources Information Center
Powell, William R.; And Others
This report recommends that an annual report be made to the citizens of Florida about the state of literacy in Florida. The concept of literacy is defined in terms of levels of literacy and basic skills required to achieve the different levels. A review of the literature on literacy is the basis for three suggested levels of literacy: (1)…
Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi
2016-09-01
Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Culjak, Zoran; Miletic, Durdica; Kalinski, Suncica Delas; Kezic, Ana; Zuvela, Frane
2014-04-01
The objectives of this study were: a) to examine the influence of an 18-week basic artistic gymnastics program on fundamental movement skills (FMS) development in seven-year-old children; b) to determine correlations between children's daily activities and successful performance of FMS and basic artistic gymnastics skills. Seventy five first grade primary school children took part in this study. A physical education teacher specialized in artistic gymnastics conducted a gymnastics program for 18 weeks, three times a week. The level of gymnastics skills and FMS were identified at the beginning and at the end of the program. The level of gymnastics skills was evaluated by performance of eight artistic gymnastics skills, while FMS were evaluated by the use of FMS-polygon. Physical activity and inactivity was evaluated by using a proxy-questionnaire "Netherlands Physical Activity Questionnaire˝ (NPAQ). According to the dependent samples t test, significant differences were found in the FMS-polygon and all gymnastics skills before and after the 18-week gymnastics program. Increasing correlations were established over time between gymnastics skills and the FMS-polygon. Unorganized daily activity of children significantly correlated with their mastering of gymnastics skills and FMS. The presented findings confirm: (1) the thesis that basic artistic gymnastics skills and FMS could be developed simultaneously, (2) the theory of positive transfer of similar skills between FMS and artistic gymnastic skills. Mastering basic artistic gymnastics skills will provoke improvement of FMS and finally become a prerequisite for successful introduction of learning more complex gymnastics skills. The obtained results imply that an increase of children's unorganized daily activities can improve the mastering of basic gymnastics skills and simultaneously the development of FMS.
Culjak, Zoran; Miletic, Durdica; Kalinski, Suncica Delas; Kezic, Ana; Zuvela, Frane
2014-01-01
Abstract Objective The objectives of this study were: a) to examine the influence of an 18-week basic artistic gymnastics program on fundamental movement skills (FMS) development in seven-year-old children; b) to determine correlations between children’s daily activities and successful performance of FMS and basic artistic gymnastics skills. Methods Seventy five first grade primary school children took part in this study. A physical education teacher specialized in artistic gymnastics conducted a gymnastics program for 18 weeks, three times a week. The level of gymnastics skills and FMS were identified at the beginning and at the end of the program. The level of gymnastics skills was evaluated by performance of eight artistic gymnastics skills, while FMS were evaluated by the use of FMS-polygon. Physical activity and inactivity was evaluated by using a proxy-questionnaire “Netherlands Physical Activity Questionnaire˝ (NPAQ). Findings According to the dependent samples t test, significant differences were found in the FMS-polygon and all gymnastics skills before and after the 18-week gymnastics program. Increasing correlations were established over time between gymnastics skills and the FMS-polygon. Unorganized daily activity of children significantly correlated with their mastering of gymnastics skills and FMS. The presented findings confirm: (1) the thesis that basic artistic gymnastics skills and FMS could be developed simultaneously, (2) the theory of positive transfer of similar skills between FMS and artistic gymnastic skills. Conclusion Mastering basic artistic gymnastics skills will provoke improvement of FMS and finally become a prerequisite for successful introduction of learning more complex gymnastics skills. The obtained results imply that an increase of children’s unorganized daily activities can improve the mastering of basic gymnastics skills and simultaneously the development of FMS. PMID:25535529
Predicting Arithmetic Abilities: The Role of Preparatory Arithmetic Markers and Intelligence
ERIC Educational Resources Information Center
Stock, Pieter; Desoete, Annemie; Roeyers, Herbert
2009-01-01
Arithmetic abilities acquired in kindergarten are found to be strong predictors for later deficient arithmetic abilities. This longitudinal study (N = 684) was designed to examine if it was possible to predict the level of children's arithmetic abilities in first and second grade from their performance on preparatory arithmetic abilities in…
Life Management Skills, 8230. Home Economics Education.
ERIC Educational Resources Information Center
Loudoun County Public Schools, Leesburg, VA.
The middle school home economics curriculum on Life Management Skills I (eighth grade) meets the needs of the early adolescent. It is based upon three major concepts: (1) basic skills; (2) self-knowledge/understanding/decision making; and (3) independence/interdependence. Emphasis on the basic skills of reading, writing, communicating, using…
Developing Skills in Severely and Profoundly Handicapped Children.
ERIC Educational Resources Information Center
Thomas, M. Angele, Ed.
Included in the publication are 10 articles on developing basic skills in severely and profoundly handicapped children. The first paper focuses on the development of object permanence, a basic cognitive skill, while the second and third review procedures for developing self care skills (toileting and eating). A fourth paper discusses an…
5 CFR 9701.361 - Special skills payments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Special skills payments. 9701.361 Section... RESOURCES MANAGEMENT SYSTEM Pay and Pay Administration Special Payments § 9701.361 Special skills payments... at the same time as basic pay or in periodic lump-sum payments. Special skills payments are not basic...
The Rise and Fall of Workplace Basic Skills Programmes: Lessons for Policy and Practice
ERIC Educational Resources Information Center
Wolf, Alison; Aspin, Liam; Waite, Edmund; Ananiadou, Katerina
2010-01-01
Since the publication of the Moser Report in 1999, improving the basic skills of adults has been a major priority for all of the UK's governments. There has been a particular interest in building up workplace provision, because of the assumed relationship between the basic skills of the employed population and productivity. A longitudinal study…
ERIC Educational Resources Information Center
National Inst. of Education (DHEW), Washington, DC.
Extracts from the papers and position statements presented at the National Conference on Achievement Testing and Basic Skills are provided in an attempt to capture both the diversity and the consensus among the participants. Six sessions are summarized: (1) achievement tests and basic skills: the issues and the setting--by Harold Howe II; (2)…
ERIC Educational Resources Information Center
Junge, Denis A.; And Others
This study was conducted to assess business and industry's perceptions of the basic skills needed for entry-level successful employment. It also assessed business and industry's perceptions of the competencies that entry-level employees now have. Information was gathered via a basic skills questionnaire that was mailed to the personnel directors…
Critical thinking skills of basic baccalaureate and Accelerated second-degree nursing students.
Newton, Sarah E; Moore, Gary
2013-01-01
The purpose of this study was to describe the critical thinking (CT) skills of basic baccalaureate (basic-BSN) and accelerated second-degree (ASD) nursing students at nursing program entry. Many authors propose that CT in nursing should be viewed as a developmental process that increases as students' experiences with it change. However, there is a dearth of literature that describes basic-BSN and ASD students' CT skills from an evolutionary perspective. The study design was exploratory descriptive. The results indicated thatASD students had higher CT scores on a quantitative critical thinking assessment at program entry than basic-BSN students. CT data are needed across the nursing curriculum from basic-BSN and ASD students in order for nurse educators to develop cohort-specific pedagogical approaches that facilitate critical thinking in nursing and produce nurses with good CT skills for the future.
Basic Employability Skills: A Triangular Design Approach
ERIC Educational Resources Information Center
Rosenberg, Stuart; Heimler, Ronald; Morote, Elsa-Sofia
2012-01-01
Purpose: This paper seeks to examine the basic employability skills needed for job performance, the reception of these skills in college, and the need for additional training in these skills after graduation. Design/methodology/approach: The research was based on a triangular design approach, in which the attitudes of three distinct groups--recent…
Integration of Basic Skills into Social Studies Content.
ERIC Educational Resources Information Center
Lunstrum, John P.; Irvin, Judith L.
1981-01-01
A basic skills model is presented which stresses the skills of writing, reading, study, and research for elementary school pupils. The model focuses on lesson background, the purpose of the reading, independent reading, follow-up discussion, developing related skills, and extending and applying ideas. A lesson about the 1910 British expedition to…
ERIC Educational Resources Information Center
Hamre, S.
The author discusses the need for severely handicapped students to acquire basic home living skills, reviews task analysis principles, and provides sample instructional programs. Listed are basic grooming, dressing, domestic maintenance, and cooking skills. A sample task analysis procedure is demonstrated for the skill of brushing teeth. Reported…
Education in Basic Skills and Training for Productive Work
NASA Astrophysics Data System (ADS)
Labarca, Guillermo
1998-09-01
The success of global policies and strategies aimed at training for productive work depends to a large extent on the level of development of basic skills among the work force and, likewise, training costs will vary according to the level of general preparation of those entering on the process. In view of the close relationship between the structure of the school system, the development of basic skills and actual training, different options are available to resolve imbalances between training for productive employment and previous basic education. Our conclusions are that training cannot replace basic education, that the process of technological change goes hand in hand with an increased demand for workers with a high level of education, that substituting training in specific skills for good basic education is not the most efficient option, and that one of the favorable effects of primary education is that it facilitates after- school training. This article seeks to identify certain dimensions of human resource training which are often overlooked in relation to both basic skills and specific training proper: namely, the imbalances existing between vocational training and previous education, and the options available for correcting them.
ERIC Educational Resources Information Center
National Inst. of Education (DHEW), Washington, DC.
In October 1975 a conference was convened in Euclid, Ohio, by the Basic Skills Group of the National Institute of Education (NIE). Thirty-three participants presented position papers addressing two major questions: (1) What are basic mathematical skills and learning? (2) What are the major problems related to children's acquisition of basic…
ERIC Educational Resources Information Center
Wells, Randall L.
A project was undertaken to enhance the basic skill levels of marketing and distributive education students identified as disadvantaged by using a tutorial approach. After determining the basic skill competencies needed for students to succeed in marketing and distributive education, project staff identified existing materials in the areas of math…
ERIC Educational Resources Information Center
Grubb, W. Norton; Boner, Elizabeth; Frankel, Kate; Parker, Lynette; Patterson, David; Gabriner, Robert; Hope, Laura; Schiorring, Eva; Smith, Bruce; Taylor, Richard; Walton, Ian; Wilson, Smokey
2011-01-01
While increases in remedial education (or basic skills instruction or developmental education) have taken place at several levels of the education and training system, there are reasons for thinking that the issue is particularly acute in community colleges. This introductory working paper divides the problem into two. The first is the high…
ERIC Educational Resources Information Center
Gibbs, Marilyn J.
1988-01-01
Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)
20 CFR 628.515 - Objective assessment.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., work history, education, basic and occupational skills, interests, aptitudes (including interests and... assessment shall include an examination of the basic skills and supportive service needs of each participant... appropriate means to measure skills, abilities, attitudes, and interests of the participants. The methods used...
ERIC Educational Resources Information Center
Hirsh, Deborah Duggin
2011-01-01
A small but growing body of evidence in reports, journal articles and conference papers indicates that if basic skills are embedded within specific career training programs, under-prepared students can acquire life enhancing basic skills at a higher rate than when those skills are taught in the traditional, unconnected way (Baker et al., 2009; Kuh…
Verbal and Academic Skills in Children with Early-Onset Type 1 Diabetes
ERIC Educational Resources Information Center
Hannonen, Riitta; Komulainen, Jorma; Eklund, Kenneth; Tolvanen, Asko; Riikonen, Raili; Ahonen, Timo
2010-01-01
Aim: Basic verbal and academic skills can be adversely affected by early-onset diabetes, although these skills have been studied less than other cognitive functions. This study aimed to explore the mechanism of learning deficits in children with diabetes by assessing basic verbal and academic skills in children with early-onset diabetes and in…
Readers in Adult Basic Education: Component Skills, Eye Movements, and Fluency
ERIC Educational Resources Information Center
Barnes, Adrienne E.; Kim, Young-Suk; Tighe, Elizabeth L.; Vorstius, Christian
2017-01-01
The present study explored the reading skills of a sample of 48 adults enrolled in a basic education program in northern Florida, United States. Previous research has reported on reading component skills for students in adult education settings, but little is known about eye movement patterns or their relation to reading skills for this…
ERIC Educational Resources Information Center
Miller, Daniel R.; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the chemical applicator is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are essential…
ERIC Educational Resources Information Center
Literacy Volunteers of America--Connecticut, Hartford.
The set of instructional materials is designed as a training module for volunteer tutors in English as a Second Language (ESL) for adults. It presents the content of a workshop, about 2.5 hours long, with three main objectives: to (1) help tutors understand the distinction between basic skills and life skills in ESL; (2) develop skills in two…
Workplace Basics: The Skills Employers Want.
ERIC Educational Resources Information Center
Carnevale, Anthony P.; And Others
1989-01-01
Identifies the basic skills needed by workers to function in today's high technology workplace. Examines ways of training employees in learning and communication skills, adaptability, personal management, group effectiveness, and organizational leadership. Describes the eight-step training approach used by Mazda Motor Manufacturing Corporation.…
Brinkmann, Christian; Fritz, Mathias; Pankratius, Ulrich; Bahde, Ralf; Neumann, Philipp; Schlueter, Steffen; Senninger, Norbert; Rijcken, Emile
Simulation training improves laparoscopic performance. Laparoscopic basic skills can be learned in simulators as box- or virtual-reality (VR) trainers. However, there is no clear recommendation for either box or VR trainers as the most appropriate tool for the transfer of acquired laparoscopic basic skills into a surgical procedure. Both training tools were compared, using validated and well-established curricula in the acquirement of basic skills, in a prospective randomized trial in a 5-day structured laparoscopic training course. Participants completed either a box- or VR-trainer curriculum and then applied the learned skills performing an ex situ laparoscopic cholecystectomy on a pig liver. The performance was recorded on video and evaluated offline by 4 blinded observers using the Global Operative Assessment of Laparoscopic Skills (GOALS) score. Learning curves of the various exercises included in the training course were compared and the improvement in each exercise was analyzed. Surgical Skills Lab of the Department of General and Visceral Surgery, University Hospital Muenster. Surgical novices without prior surgical experience (medical students, n = 36). Posttraining evaluation showed significant improvement compared with baseline in both groups, indicating acquisition of laparoscopic basic skills. Learning curves showed almost the same progression with no significant differences. In simulated laparoscopic cholecystectomy, total GOALS score was significantly higher for the box-trained group than the VR-trained group (box: 15.31 ± 3.61 vs. VR: 12.92 ± 3.06; p = 0.039; Hedge׳s g* = 0.699), indicating higher technical skill levels. Despite both systems having advantages and disadvantages, they can both be used for simulation training for laparoscopic skills. In the setting with 2 structured, validated and almost identical curricula, the box-trained group appears to be superior in the better transfer of basic skills into an experimental but structured surgical procedure. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Quality of Arithmetic Education for Children with Cerebral Palsy
ERIC Educational Resources Information Center
Jenks, Kathleen M.; de Moor, Jan; van Lieshout, Ernest C. D. M.; Withagen, Floortje
2010-01-01
The aim of this exploratory study was to investigate the quality of arithmetic education for children with cerebral palsy. The use of individual educational plans, amount of arithmetic instruction time, arithmetic instructional grouping, and type of arithmetic teaching method were explored in three groups: children with cerebral palsy (CP) in…
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
US Consumers' Understanding of Nutrition Labels in 2013: The Importance of Health Literacy.
Persoskie, Alexander; Hennessy, Erin; Nelson, Wendy L
2017-09-28
We examined US adults' understanding of a Nutrition Facts panel (NFP), which requires health literacy (ie, prose, document, and quantitative literacy skills), and the association between label understanding and dietary behavior. Data were from the Health Information National Trends Survey, a nationally representative survey of health information seeking among US adults (N = 3,185) conducted from September 6, 2013, through December 30, 2013. Participants viewed an ice cream nutrition label and answered 4 questions that tested their ability to apply basic arithmetic and understanding of percentages to interpret the label. Participants reported their intake of sugar-sweetened soda, fruits, and vegetables. Regression analyses tested associations among label understanding, demographic characteristics, and self-reported dietary behaviors. Approximately 24% of people could not determine the calorie content of the full ice-cream container, 21% could not estimate the number of servings equal to 60 g of carbohydrates, 42% could not estimate the effect on daily calorie intake of foregoing 1 serving, and 41% could not calculate the percentage daily value of calories in a single serving. Higher scores for label understanding were associated with consuming more vegetables and less sugar-sweetened soda, although only the association with soda consumption remained significant after adjusting for demographic factors. Many consumers have difficulty interpreting nutrition labels, and label understanding correlates with self-reported dietary behaviors. The 2016 revised NFP labels may address some deficits in consumer understanding by eliminating the need to perform certain calculations (eg, total calories per package). However, some tasks still require the ability to perform calculations (eg, percentage daily value of calories). Schools have a role in teaching skills, such as mathematics, needed for nutrition label understanding.
Basic Science Living Skills for Today's World. Teacher's Edition.
ERIC Educational Resources Information Center
Zellers (Robert W.) Educational Services, Johnstown, PA.
This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…
Laparoscopic skills acquisition: a study of simulation and traditional training.
Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J
2014-12-01
Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.
Typewriting Methodology 1977: Eight Basic Principles for Good Results
ERIC Educational Resources Information Center
Winger, Fred E.
1977-01-01
The eight basic principles of teaching methodology discussed are as follows: Stress position and technique, stress skill building, stress the pretest/practice/posttest method, stress action research, stress true production skills, stress good proofreading skills, stress performance goals, and stress individualized instruction. (TA)
ERIC Educational Resources Information Center
Austin Independent School District, TX.
Designed for junior high and high school students and their parents, this brochure explains the structure, function, and method for interpretation of the Iowa Tests of Basic Skills and the Sequential Tests of Educational Progress. A question and answer format is used to provide information on scope and purposes of the tests, meaning and accuracy…
ERIC Educational Resources Information Center
Austin Independent School District, TX.
Designed for parents of kindergarten and elementary school children in Austin, Texas, this brochure explains the structure and function of the Iowa Tests of Basic Skills. A question and answer format is used to provide information on the scope and purposes of the tests, grade level differences in testing, meaning and accuracy of the scores, and…
ERIC Educational Resources Information Center
Miller, Daniel R.; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the bulk fertilizer plant worker is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are…
ERIC Educational Resources Information Center
Cooke, Fred C.; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the animal health assistant is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are…
ERIC Educational Resources Information Center
Byrd, J. Rick; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the swine farmer is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are essential for…
ERIC Educational Resources Information Center
Waddy, Paul H.; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the tree service worker is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are essential…
ERIC Educational Resources Information Center
Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…
Construction Upgrade. A Pack To Improve Communication, Numerical and IT Skills for NVQ.
ERIC Educational Resources Information Center
Rylands, Judy
This pack of materials is designed to help students working to improve their basic skills as part of their carpentry and joinery course. An introduction lists relevant core skills units and basic skills standards. The six individual sections of the pack are divided into task sheets and fact sheets. The fact sheets give information and teaching…
ERIC Educational Resources Information Center
Pennsylvania Blue Shield, Camp Hill.
A project developed a model curriculum to be delivered by computer-based instruction to teach the required literacy skills for entry workers in the health insurance industry. Literacy task analyses were performed for the targeted jobs and then validated with focus groups. The job tasks and related basic skills were divided into modules. The job…
Implicit Learning of Arithmetic Regularities Is Facilitated by Proximal Contrast
Prather, Richard W.
2012-01-01
Natural number arithmetic is a simple, powerful and important symbolic system. Despite intense focus on learning in cognitive development and educational research many adults have weak knowledge of the system. In current study participants learn arithmetic principles via an implicit learning paradigm. Participants learn not by solving arithmetic equations, but through viewing and evaluating example equations, similar to the implicit learning of artificial grammars. We expand this to the symbolic arithmetic system. Specifically we find that exposure to principle-inconsistent examples facilitates the acquisition of arithmetic principle knowledge if the equations are presented to the learning in a temporally proximate fashion. The results expand on research of the implicit learning of regularities and suggest that contrasting cases, show to facilitate explicit arithmetic learning, is also relevant to implicit learning of arithmetic. PMID:23119101
Fundamental Movement Skill Proficiency amongst Adolescent Youth
ERIC Educational Resources Information Center
O' Brien, Wesley; Belton, Sarahjane; Issartel, Johann
2016-01-01
Background: Literature suggests that physical education programmes ought to provide intense instruction towards basic movement skills needed to enjoy a variety of physical activities. Fundamental movement skills (FMS) are basic observable patterns of behaviour present from childhood to adulthood (e.g. run, skip and kick). Recent evidence indicates…
Arithmetic Circuit Verification Based on Symbolic Computer Algebra
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.
Triebel, Kristen L; Novack, Thomas A; Kennedy, Richard; Martin, Roy C; Dreer, Laura E; Raman, Rema; Marson, Daniel C
2016-01-01
To identify neurocognitive predictors of medical decision-making capacity (MDC) in participants with mild and moderate/severe traumatic brain injury (TBI). Academic medical center. Sixty adult controls and 104 adults with TBI (49 mild, 55 moderate/severe) evaluated within 6 weeks of injury. Prospective cross-sectional study. Participants completed the Capacity to Consent to Treatment Instrument to assess MDC and a neuropsychological test battery. We used factor analysis to reduce the battery test measures into 4 cognitive composite scores (verbal memory, verbal fluency, academic skills, and processing speed/executive function). We identified cognitive predictors of the 3 most clinically relevant Capacity to Consent to Treatment Instrument consent standards (appreciation, reasoning, and understanding). In controls, academic skills (word reading, arithmetic) and verbal memory predicted understanding; verbal fluency predicted reasoning; and no predictors emerged for appreciation. In the mild TBI group, verbal memory predicted understanding and reasoning, whereas academic skills predicted appreciation. In the moderate/severe TBI group, verbal memory and academic skills predicted understanding; academic skills predicted reasoning; and academic skills and verbal fluency predicted appreciation. Verbal memory was a predictor of MDC in controls and persons with mild and moderate/severe TBI. In clinical practice, impaired verbal memory could serve as a "red flag" for diminished consent capacity in persons with recent TBI.
The neural circuits for arithmetic principles.
Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin
2017-02-15
Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Wilson-Sands, Cathy; Brahn, Pamela; Graves, Kristal
2015-01-01
Validating participants' ability to correctly perform cardiopulmonary resuscitation (CPR) skills during basic life support courses can be a challenge for nursing professional development specialists. This study compares two methods of basic life support training, instructor-led and computer-based learning with voice-activated manikins, to identify if one method is more effective for performance of CPR skills. The findings suggest that a computer-based learning course with voice-activated manikins is a more effective method of training for improved CPR performance.
Managers' perceptions of radiographers' skills: current and future needs.
Akroyd, D; Wold, B
1996-01-01
As the healthcare delivery system changes, it is imperative to assess the skills of practitioners to ensure consistency between educational preparation and work place needs. The purpose of this study was to examine radiology managers' perception of selected workplace skills and new radiography graduates' ability to perform them. A random sample of 1,932 members of the American Healthcare Radiology Administrators (AHRA) received a questionnaire containing 35 skills categorized as basic, intermediate or advanced. Skills were ranked by the magnitude of the difference between managers' rating of importance of each skill and their rating of graduates' ability to perform that skill satisfactorily. In the basic skill area, the four top-ranked skills represented problem-solving ability or critical thinking. Of the five highest-ranked intermediate skills, the top three were patient care skills: venipuncture, taking vital signs and monitoring patient equipment. In the advanced skill area, six skills exhibited high values for the difference between importance and ability. Two of those related to patient care, three were non-technical and the sixth was the ability to perform CT in addition to basic radiography. Employers and educators should work together to seek educational methods that produce radiographers who are better prepared for the fast-changing workplace.
Text-interpreter language for flexible generation of patient notes and instructions.
Forker, T S
1992-01-01
An interpreted computer language has been developed along with a windowed user interface and multi-printer-support formatter to allow preparation of documentation of patient visits, including progress notes, prescriptions, excuses for work/school, outpatient laboratory requisitions, and patient instructions. Input is by trackball or mouse with little or no keyboard skill required. For clinical problems with specific protocols, the clinician can be prompted with problem-specific items of history, exam, and lab data to be gathered and documented. The language implements a number of text-related commands as well as branching logic and arithmetic commands. In addition to generating text, it is simple to implement arithmetic calculations such as weight-specific drug dosages; multiple branching decision-support protocols for paramedical personnel (or physicians); and calculation of clinical scores (e.g., coma or trauma scores) while simultaneously documenting the status of each component of the score. ASCII text files produced by the interpreter are available for computerized quality audit. Interpreter instructions are contained in text files users can customize with any text editor.
Low numeracy predicts reduced accuracy of retrospective reports of frequency of sexual behavior.
McAuliffe, Timothy L; DiFranceisco, Wayne; Reed, Barbara R
2010-12-01
Assessment of the frequency of sexual behavior relies on participants' ability to arithmetically aggregate information over time and across partners. This study examines the effect of numeracy (arithmetic skills) on the accuracy of retrospective reports of sexual behavior. For 91 days, the participants completed daily reports about their sexual activity. Participants then completed a survey on sexual behavior over the same period. The discrepancies between the survey-based and the diary-based measures of frequency of vaginal and anal intercourse were evaluated. Multiple regression analysis showed that the discrepancy between retrospective and diary measurements of sexual intercourse increased with lower numeracy (P = 0.026), lower education (P = 0.001), aggregate question format compared to partner-by-partner format (P = 0.031) and higher frequency of intercourse occasions (P < 0.001). Lower numeracy led to a 1.5-fold increase (adjusted mean = 14.1-20.9) in the discrepancy for those using the aggregate question format and a 2.0-fold increase (adjusted mean = 3.7-7.6) for those using the partner-by-partner format.
Blood money: Harvey's De motu cordis (1628) as an exercise in accounting.
Neuss, Michael J
2018-04-13
William Harvey's famous quantitative argument from De motu cordis (1628) about the circulation of blood explained how a small amount of blood could recirculate and nourish the entire body, upending the Galenic conception of the blood's motion. This paper argues that the quantitative argument drew on the calculative and rhetorical skills of merchants, including Harvey's own brothers. Modern translations of De motu cordis obscure the language of accountancy that Harvey himself used. Like a merchant accounting for credits and debits, intake and output, goods and moneys, Harvey treated venous and arterial blood as essentially commensurate, quantifiable and fungible. For Harvey, the circulation (and recirculation) of blood was an arithmetical necessity. The development of Harvey's circulatory model followed shifts in the epistemic value of mercantile forms of knowledge, including accounting and arithmetic, also drawing on an Aristotelian language of reciprocity and balance that Harvey shared with mercantile advisers to the royal court. This paper places Harvey's calculations in a previously underappreciated context of economic crisis, whose debates focused largely on questions of circulation.
Index of Workplace & Adult Basic Skills Software.
ERIC Educational Resources Information Center
Askov, Eunice N.; Clark, Cindy Jo
This index of workplace and adult basic skills computer software includes 108 listings. Each listing is described according to the following classifications: (1) teacher/tutor tools (customizable or mini-authoring systems); (2) assessment and skills; (3) content; (4) instruction method; (5) system requirements; and (6) name, address, and phone…
Girls' Touch Football, Physical Education: 5551.03.
ERIC Educational Resources Information Center
King, Kathy
This course outline is a guide for teaching basic understanding of fundamental skills and rules of girls' touch football in grades 7-12. The course format includes lectures, demonstrations, practice of basic skills, visual aids, lead-up games, presentation and practice of officiating techniques, tournaments, and written and skills tests. Course…
Exploring Alignment of Community College Students for Preparedness and Achievement of Basic Skills
ERIC Educational Resources Information Center
Jeffcoat, Kendra; Weisblat, Irina A.; Bresciani, Marilee J.; Sly, Robert W.; Tucker, Mark; Herrin, Bridget; Cao, LiuHui
2014-01-01
This mixed-method study explored the alignment of expected student learning outcomes (SLOs) and expected student entrance skills, as stated within "course outlines of record" (CORs), for basic skills courses in one California community college district. Researchers evaluated consistencies and discrepancies in course alignment. There were…
Basic Emergency Medical Technician Skills Manual.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This manual was developed to help students preparing to become emergency medical technicians (EMTs) learn standardized basic skills in the field. The manual itemizes the steps and performance criteria of each required skill and uses an accompanying videotape series (not included) to enhance the educational experience. The five units of the manual,…
ERIC Educational Resources Information Center
Sweetwater Union High School District, Chula Vista, CA.
The Employability Skills Center (ESC) of the Division of Adult and Continuing Education (DACE) of the Sweetwater Union High School District (California) was created out of a need to help adult students develop the basic skills that are required for success in their chosen vocational programs but not taught in regular adult basic education classes.…
Welding. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.
ERIC Educational Resources Information Center
Browning, Terry
This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…
AN ANALYSIS OF THE BEHAVIORAL PROCESSES INVOLVED IN SELF-INSTRUCTION WITH TEACHING MACHINES.
ERIC Educational Resources Information Center
HOLLAND, JAMES G.; SKINNER, B.F.
THIS COLLECTION OF PAPERS CONSTITUTES THE FINAL REPORT OF A PROJECT DEVOTED TO AN ANALYSIS OF THE BEHAVIORAL PROCESSES UNDERLYING PROGRAMED INSTRUCTION. THE PAPERS ARE GROUPED UNDER THREE HEADINGS--(1) "PROGRAMING RESEARCH," (2) "BASIC SKILLS--RATIONALE AND PROCEDURE," AND (3) "BASIC SKILLS--SPECIFIC SKILLS." THE…
Job-Related Basic Skills. ERIC Digest No. 94.
ERIC Educational Resources Information Center
Kerka, Sandra
Seven job-related basic skills identified as skills employers want are as follows: (1) learning to learn; (2) reading, writing, and computation; (3) oral communication and listening; (4) creative thinking and problem solving; (5) personal management, including self-esteem, goal setting, motivation, and personal and career development; (6) group…
Sport Skills (Selected). Curriculum Support Series.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This resource package provides an overview of basic physical education skills. The first section describes the rationale, lists the objectives, and provides a scope and sequence chart indicating the times at which different activities can be introduced. The next three sections contain lists of the basic sport skills as well as teaching and…
ERIC Educational Resources Information Center
Greene, Margret
A curriculum and teacher guide are provided for a program to teach daily living skills to 0-4 level adult basic education students. The guide presents a method of instruction and lists the materials provided. Teaching plans (content outlines) are provided for these areas: cooking, housekeeping, laundry, leisure skills, and medication awareness. A…