Sample records for basic astronomical phenomena

  1. Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System

    ERIC Educational Resources Information Center

    Gazit, Elhanan; Yair, Yoav; Chen, David

    2005-01-01

    This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…

  2. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  3. Developing the Use of Visual Representations to Explain Basic Astronomy Phenomena

    ERIC Educational Resources Information Center

    Galano, Silvia; Colantonio, Arturo; Leccia, Silvio; Marzoli, Irene; Puddu, Emanuella; Testa, Italo

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] Several decades of research have contributed to our understanding of students' reasoning about astronomical phenomena. Some authors have pointed out the difficulty in reading and interpreting images used in school textbooks as factors that may justify the persistence…

  4. Teaching Astrophysics to Upper Level Undergraduates

    NASA Astrophysics Data System (ADS)

    Van Dorn Bradt, Hale

    2010-03-01

    A Socratic peer-instruction method for teaching upper level undergraduates is presented. Basically, the instructor sits with the students and guides their presentations of the material. My two textbooks* (on display) as well as many others are amenable to this type of teaching. *Astronomy Methods - A Physical Approach to Astronomical Observations (CUP 2004) *Astrophysics Processes-The Physics of Astronomical Phenomena (CUP 2008)

  5. Initiating Young Children into Basic Astronomical Concepts and Phenomena

    NASA Astrophysics Data System (ADS)

    Kallery, M.

    2010-07-01

    In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.

  6. Astronomical phenomena: events with high impact factor in teaching optics and photonics

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan

    2014-07-01

    Astronomical phenomena fascinate people from the very beginning of mankind up to today. They have a enthusiastic effect, especially on young people. Among the most amazing and well-known phenomena are the sun and moon eclipses. The impact factor of such events is very high, as they are being covered by mass media reports and the Internet, which provides encyclopedic content and discussion in social networks. The principal optics and photonics topics that can be included in such lessons originate from geometrical optics and the basic phenomena of reflection, refraction and total internal reflection. Lenses and lens systems up to astronomical instruments also have a good opportunity to be presented. The scientific content can be focused on geometrical optics but also diffractive and quantum optics can be incorporated successfully. The author will present how live streams of the moon eclipses can be used to captivate the interest of young listeners for optics and photonics. The gathered experience of the last two moon eclipses visible from Germany (on Dec, 21 2010 and Jun, 15 2011) will be considered. In an interactive broadcast we reached visitors from more than 135 countries.

  7. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  8. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    NASA Astrophysics Data System (ADS)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  9. Some remarks on a current study involving preservice elementary teachers and some basic astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro; Iglesias, María; Quinteros, Cynthia

    2011-06-01

    Recent studies have shown that not only primary school students but also their future teachers reach science courses with pre-constructed and consistent models of the world surrounding them. These ideas include many misconceptions which turn out to be robust and hence make difficult an appropriate teaching-learning process. We have designed some tools (and show here results with a questionnaire) that proved helpful in putting in evidence some of the most frequently used alternative models on a few basic astronomical notions. We have tested this questionnaire with preservice elementary teachers from various normal schools in Buenos Aires and made a first analysis of the results. The collection of data recovered so far shows that some non-scientific conceptions are indeed part of the prospective teachers' (scientific) background and, therefore, that the issue deserves special attention during their formal training.

  10. Cosmic Discovery

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    1984-04-01

    In the remarkable opening section of this book, a well-known Cornell astronomer gives precise thumbnail histories of the 43 basic cosmic discoveries - stars, planets, novae, pulsars, comets, gamma-ray bursts, and the like - that form the core of our knowledge of the universe. Many of them, he points out, were made accidentally and outside the mainstream of astronomical research and funding. This observation leads him to speculate on how many more major phenomena there might be and how they might be most effectively sought out in afield now dominated by large instruments and complex investigative modes and observational conditions. The book also examines discovery in terms of its political, financial, and sociological context - the role of new technologies and of industry and the military in revealing new knowledge; and methods of funding, of peer review, and of allotting time on our largest telescopes. It concludes with specific recommendations for organizing astronomy in ways that will best lead to the discovery of the many - at least sixty - phenomena that Harwit estimates are still waiting to be found.

  11. Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein

    NASA Astrophysics Data System (ADS)

    Sinclair, R.

    2013-04-01

    Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.

  12. Phenomena and Diosignes of Aratous

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  13. Preparing for the Eclipse

    ERIC Educational Resources Information Center

    Hurst, Anna; Plummer, Julia; Gurton, Suzanne; Schatz, Dennis

    2017-01-01

    On August 21, 2017, sky gazers all across North America will experience a total solar eclipse, arguably the most breathtaking of all astronomical phenomena. The August eclipse is an ideal astronomical event to observe with young children because it allows them to observe a powerful and easily accessible astronomical phenomenon. Observing…

  14. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the role and nature of eclipses, comets, meteors, impact events, and certain variable stars. I also test the hypothesis that certain types of stone arrangements have preferred orientations that probably relate to astronomical phenomena. This research shows that Aboriginal astronomical traditions explain the motions of celestial bodies and the relationship between events in the sky and events on Earth. I explore how Aboriginal people perceived and made use of particular astronomical phenomena, such as meteors and comets, and show that Aboriginal people made careful observations of the motions of celestial bodies. I provide evidence that Aboriginal people noticed the change in brightness of particular stars, described the kinematics of eclipses, explained how lunar phases are related to ocean tides, and acknowledged the relationship between meteors, meteorites, impact events, and impact craters. I then show that linear stone arrangements in New South Wales have a preferred orientation to the cardinal points and explore astronomical reasons for this. In the Appendix, I include biographical details of William Edward Stanbridge, one of the first people to write in depth about Aboriginal astronomical traditions, which were compiled from historic records.

  15. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    NASA Astrophysics Data System (ADS)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of astronomical awareness.

  16. Contact Information Regarding Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You UTGPS (GPS-based UT1-like quantity). Astronomy Products Astronomical phenomena, astronomical data

  17. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  18. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  19. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  20. Australian Aboriginal Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical component includes a deep understanding of the motion of objects in the sky, and this knowledge was used for practical purposes such as constructing calendars. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, paid careful attention to unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees.

  1. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  2. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  3. Pueblo Folklore, Landscape Phenomenology and the Visual Poetics of Fajada Butte

    NASA Astrophysics Data System (ADS)

    Carey, C.

    2009-08-01

    In the interest of reexamining the site of Fajada Butte in Chaco Canyon, this paper seeks to recontextualize discussions of its controversial spiral petroglyphs and astronomical phenomena (Sun Daggers) with reference to landscape phenomenology, visual and literary poetics, and the astronomical orientation of contemporary Pueblo ceremonial practices. The dearth of recent scholarship on Fajada Butte may have arisen from the many controversial arguments about its function from a variety of disciplinary locations including archaeology, anthropology, geology, and archeoastronomy. Via an emphasis on the physical landscape, storytelling, contemporary ceremonial practices and ancestral ties to Chaco Canyon, the Zuni and Hopi pueblos provide a context for re-examining the astronomical phenomena of Fajada Butte as a natural shrine of the of Chacoan culture and repository of an array of symbolic content.

  4. Reading Alien Landscapes: Thick versus Thin Descriptions in Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Malville, J. McKim

    2015-05-01

    This paper reviews the nature of "thick descriptions" promoted by Clifford Geertz and explores the application of this methodology to archaeoastronomy. The approach aims to describe and explain human behavior in the realms of the sacred and secular. Thick description emphasizes the emic signification of social action; an etic analysis would be viewed as thin. A useful application of this methodology is to consider astronomical events contained in the archaeological record as signifiers of deeper meaning and purpose within the culture. By following the string of signification one can delve deeply into the culture and attempt to explain behavior associated with ancient astronomy. Another element of thick descriptions is the use of redundancy as a test for thoroughness. An archaeoastronomical phenomenon that appears to be unique and idiosyncratic may mean that the investigator has not searched the archaeological record sufficiently thoroughly or needs to alter the basic interpretation. Examples from India and Peru are discussed in which the interpretation of astronomical phenomena could lead to misrepresentations of meaning and function if only a thin description is attempted.

  5. Fallen star legends and traditional religion of Japan: an aspect of star lore

    NASA Astrophysics Data System (ADS)

    Goto, Akira

    2015-08-01

    Japanese star lore is a complex mixture of animism, Buddhism, Shinto-ism, Confucianism and folk beliefs. Although some studies have been done on rituals concerning constellation developed in esoteric Buddhism (e.g. Journal Culture and Cosmos, Vol. 10 no 1 and 2), studies on other aspects of Japanese star lore are limited, in particular, to the English audience.In historic literatures, there often mentioned abnormal astronomical phenomena, such as, eclipse, meteors and comets. In this paper, I will discuss the possibility of reference to these astronomical phenomena in order to talk about some historical facts.In western part of Japan, there are Shinto shrines and Buddhistic temples that are said to be built as monuments of fallen stars. Usually fallen stars were divided into three, and a trio of shrines/temples are said to be the remnants of this phenomenon. Similar legends are found in Kudamatsu (that means "fallen pine=pine where stars fallen") of Yamaguchi Prefecture, Bisei-cho (that means "beautiful star") of Okayama Prefecture, Hoshida (that means "rice field or village of star") shrine of Osaka, and also Hoshida shrine of Nagoya.The purpose of this presentation is not to argue whether fallen star legend was truly astronomical phenomenon, such as, meteor or not. Instead, I will discuss why similar legends have been talked concerning the origin of particular shrines or temples. Citing Eliade who related gorge and alchemy producing spark to astronomical phenomena, I will disclose the possibility to relate these astronomical legends to the coming of the naturalized Japanese from Korean Peninsula who introducd forge to Japan abound 5 to 6 centuries.

  6. Astronomical Applications - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Information Center Background information on common astronomical phenomena, calendars and time, and related topics Rise, Set, and Twilight Definitions World Time Zone Map Phases of the Moon and Percent of the Moon

  7. The Discovery of the Regular Movements of Celestial Bodies and the Development of Monotheism in the Ancient Near East

    NASA Astrophysics Data System (ADS)

    Lanfranchi, G. B.

    2011-06-01

    For Ancient Mesopotamians, astronomical phenomena were signs signifying the gods' judgment on human behaviour. Mesopotamian scholars studied celestial phenomena for understanding the gods' will, and strongly developed astrology. From the 8th to the 6th century BC Assyrian and Babylonian astronomers achieved the ability to predict solar and lunar eclipses, and the planets' movements through mathematical calculations. Predictability of astral phenomena solicited the awareness that they are all regular, and that the universe is governed by an eternal, immutable order fixed at its very beginning. This finally favoured the idea that the cosmic order depended on the will of one god only, displacing polytheism in favour of monotheism; and astrology lost its religious importance as a mean to know the divine will.

  8. New astronomical references in two Catalonian late medieval documents.

    PubMed

    Martínez, María José; Marco, Francisco J

    2014-01-01

    In 2008, after 13 years of preparation, the Generalitat of Catalunya finished the publication of the 10 volumes of the Dietaris de la Generalitat de Catalunya. The Dietaris, as well as a closely related source, the llibre de Jornades 1411/1484 de Jaume Safont, cover the period of 1411 to 1539. In this article, we examine astronomical references contained in these two sources, and place them in their historical context. Our main focus lies on astronomical phenomena that have not previously been published in the astronomical literature. In fact, relatively few astronomical records are accessible in Spanish medieval and early modern history, and our paper intends to fill this gap partially.

  9. Determination of the Size and Depth of Craters on the Moon

    ERIC Educational Resources Information Center

    Grubelnik, Vladimir; Marhl, Marko; Repnik, Robert

    2018-01-01

    Experimental work in the research of astronomical phenomena is often difficult or even impossible because of long-lasting processes or too distant objects and correspondingly too expensive equipment. In this paper, we present an example of observation of the Moon, which is our nearest astronomic object and therefore does not require professional…

  10. Experiment S030: Dim sky photography/orthicon

    NASA Technical Reports Server (NTRS)

    Dunkelman, L.; Mercer, R. D.; Ney, E. P.; Hemenway, C. L.

    1971-01-01

    During Gemini missions, the image orthicon system was used to obtain photographic data on faint and diffuse astronomical phenomena. Results show that the photographs may be used to determine the airglow geometry. Although it was sensitive, the original photographic system was unsuitable for use in the study of dim and diffuse astronomical light sources.

  11. The inspiration of astronomical phenomena (INSAP). Proceedings. Conference, Rocca di Papa (Italy), 27 Jun - 2 Jul 1994.

    NASA Astrophysics Data System (ADS)

    The papers concern the inspiration provided by astronomy to the fields of art, philosophy, religion and various human cultures. Individual papers cover the following topics: the Qur'anic conception of astronomical phenomena on Islamic civilization, the Milky Way and society, the mythology and ritual of India, the Varanasi Sun temples, celestial bodies meanings in pre-Hispanic Mexico, the celestial basis of civilization, Mexican eclipse imagery, Chinese dynastic ideology - astrological origins, NW Europe stone rows, stars and seasons in southern Africa, the Pleiades and Hesperides, stars and philosophy, the search for extraterrestrial life, the significance of the pre-Copernican revolution, Judaeo-Christian revelation, Maria Magdalena - the Morning Star, Chaucer's Canterbury Tales, stellar poetry, John Bauer's star-spangled fairy-tale world, Polish romantic poetry, the expansion of astronomical horizons, recent comet research and ancient sky implications, civilization Spenglerian model and punctuational crises, Anaxagoras and the scientist/laity interaction.

  12. Summary: Special Session SpS15: Data Intensive Astronomy

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-03-01

    A new paradigm in astronomical research has been emerging - ``Data Intensive Astronomy'' that utilizes large amounts of data combined with statistical data analyses. The first research method in astronomy was observations by our eyes. It is well known that the invention of telescope impacted the human view on our Universe (although it was almost limited to the solar system), and lead to Keplerfs law that was later used by Newton to derive his mechanics. Newtonian mechanics then enabled astronomers to provide the theoretical explanation to the motion of the planets. Thus astronomers obtained the second paradigm, theoretical astronomy. Astronomers succeeded to apply various laws of physics to reconcile phenomena in the Universe; e.g., nuclear fusion was found to be the energy source of a star. Theoretical astronomy has been paired with observational astronomy to better understand the background physics in observed phenomena in the Universe. Although theoretical astronomy succeeded to provide good physical explanations qualitatively, it was not easy to have quantitative agreements with observations in the Universe. Since the invention of high-performance computers, however, astronomers succeeded to have the third research method, simulations, to get better agreements with observations. Simulation astronomy developed so rapidly along with the development of computer hardware (CPUs, GPUs, memories, storage systems, networks, and others) and simulation codes.

  13. Astronomy in the Middle of the World: a physical analysis of the astronomic phenomena at Latitude Zero

    NASA Astrophysics Data System (ADS)

    Silva, J. N.; Voelzke, M. R.; Araújo, M. S. T.

    2018-03-01

    Although Astronomy is part of everyday life of the people, peculiarities are little-known for an observer on the equator, as residents in Macapá-AP, located at Latitude Zero. So, this work aims to support physics teaching focusing on the correct diffusion of some physical phenomena which have an intrinsic relationship with Astronomy from the sight of an observer at latitude zero, highlighting the celestial sphere visualization and emphasizing which constellations are visible during an earth year, being proposed the elaboration of a planisphere to this latitude. It's also discussed about the Solstices and, more specifically, about the Equinoxes and their particularities for an observer in latitude zero. The offered approach can help teachers of Physics and Science who work in regular education schools to explore these important astronomical phenomena.

  14. The Astronomy of Aboriginal Australia

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    2011-06-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, which is usually reported in terms of songs or stories associated with stars and constellations. Here we argue that the astronomical components extend further, and include a search for meaning in the sky, beyond simply mirroring the earth-bound understanding. In particular, we have found that traditional Aboriginal cultures include a deep understanding of the motion of objects in the sky, and that this knowledge was used for practical purposes such as constructing calendars. We also present evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, and paid careful attention to unexpected phenomena such as eclipses and meteorite impacts.

  15. Dawes Review 5: Australian Aboriginal Astronomy and Navigation

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2016-08-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical knowledge includes a deep understanding of the motion of objects in the sky, which was used for practical purposes such as constructing calendars and for navigation. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, recorded unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees. Putative explanations of celestial phenomena appear throughout the oral record, suggesting traditional Aboriginal Australians sought to understand the natural world around them, in the same way as modern scientists, but within their own cultural context. There is also a growing body of evidence for sophisticated navigational skills, including the use of astronomically based songlines. Songlines are effectively oral maps of the landscape, and are an efficient way of transmitting oral navigational skills in cultures that do not have a written language. The study of Aboriginal astronomy has had an impact extending beyond mere academic curiosity, facilitating cross-cultural understanding, demonstrating the intimate links between science and culture, and helping students to engage with science.

  16. From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium

    ERIC Educational Resources Information Center

    Chastenay, Pierre

    2016-01-01

    An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an…

  17. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  18. Identification and Support of Outstanding Astronomy Students

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  19. Archaeoastronomy as a Tool for Understanding Celestial Phenomena

    NASA Astrophysics Data System (ADS)

    Koufos, S.; Chatzichristou, E.

    2017-09-01

    To key feature of the wise and Modern Man was, is and will be the observation of the sky. The acquisition of knowledge by observing the majesty of the sky and studying these phenomena (stars, planets, sun, moon, comets, asteroids, meteors, orbits, seasons, etc.). decisively influenced all human cultures. Therefore the research on the astronomical knowledge and their usefulness for each culture may reveal important anthropological data. With this scientific article the ARCHAEOASTRONOMY engaged in a global dimension. With common ground among even distant peoples. The purpose of the speech is both the externalization of ARCHAEOASTRONOMY secondly the education and students interested in astronomy in a simple manner and methodology as used by our ancestors in order to better understand the basic rules of the celestial dome. Applied methods with the participation of students from local schools and experiments in ancient monuments in Rhodes existed before with great success since the beginning of 2000 and continues today enriching the resources and people of all ages, the island where noted and considered the "father" astronomy of Hipparchus, the island where construction probably the "Antikythera mechanism"

  20. Using Virtual Reality Computer Models to Support Student Understanding of Astronomical Concepts

    ERIC Educational Resources Information Center

    Barnett, Michael; Yamagata-Lynch, Lisa; Keating, Tom; Barab, Sasha A.; Hay, Kenneth E.

    2005-01-01

    The purpose of this study was to examine how 3-dimensional (3-D) models of the Solar System supported student development of conceptual understandings of various astronomical phenomena that required a change in frame of reference. In the course described in this study, students worked in teams to design and construct 3-D virtual reality computer…

  1. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  2. The Role of Amateur Astronomy to Outreach Astronomical Knowledge

    NASA Astrophysics Data System (ADS)

    Khachatryan, Vachik; Voskanyan, Tsovak

    2016-12-01

    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  3. Basic principles of a flexible astronomical data processing system in UNIX environment.

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Erukhimov, B. L.; Monosov, M. L.; Chernenkov, V. N.; Shergin, V. S.

    Methods of construction of a flexible system for astronomical data processing (FADPS) are described. An example of construction of such a FADPS for continuum radiometer data of the RATAN-600 is presented. The Job Control Language of this system is the Job Control Language of OS UNIX. It is shown that using basic commands of the data processing system (DPS) a user, knowing basic principles of Job in OS UNIX, can create his own mini-DPS. Examples of such mini-DPSs are presented.

  4. Discovering astronomy

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1978-01-01

    An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.

  5. The Results of Observations of Mutual Phenomena of the Galilean Satellites of Jupiter in 2009 and 2015 IN Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Pomazan, A.; Maigurova, N.; Kryuchkovskiy, V.

    The Earth and Jupiter once in 6 years have simultaneous passage of the ecliptic plane due to their orbital movement around the Sun. This makes it possible to observe the mutual occultations and eclipses in the Galilean satellites of Jupiter. We took part in the observational campaigns of the mutual phenomena in 2009 and 2014-15. The observations were made with a B/W CCD camera WAT-902H at the telescope MCT (D = 0.115 m, F = 2.0 m) of the Nikolaev Astronomical Observatory. The light curves of mutual phenomena in the satellites of Jupiter were obtained as a result of processing photometric observations. The exact moments of maximum phases and the amplitudes of the light variation have been determined from the analysis of the light curves. The data sets for the light curves have been sent in the IMCCE (Institute de Mecanique et de calcul des ephemerides, France) that coordinates the PHEMU campaigns.

  6. Astronomical and Atmospheric Observations in the Anglo-Saxon Chronicle and in Bede

    NASA Astrophysics Data System (ADS)

    Härke, H.

    2012-01-01

    Textual sources of the early Middle Ages (fifth to tenth centuries AD) contain more astronomical observations than is popularly assumed. The Anglo-Saxon Chronicle lists some 40 observations of astronomical and atmospheric events for the just over 600 years it covers. But the contexts in which these are set show that eclipses, comets, meteor showers and aurorae were seen as portents of evil events, not as objects of early scientific curiosity. The case of Bede in the early eighth century shows that this was true, to an extent, even for the educated ecclesiastical elite. BedeÕs eclipse records also appear to show that astronomical events could be used to explain unusual phenomena such as the postulated volcanic Ôdust-veilÕ event of AD 536.

  7. Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants

    NASA Technical Reports Server (NTRS)

    Lieske, J. H.; Lederle, T.; Fricke, W.; Morando, B.

    1977-01-01

    The structure of the expressions usually employed in calculating the effects of precession is examined, and a method is outlined for revising the expressions to account for changes in the fundamental astronomical constants. It is shown that the basic set of parameters, upon which depend the lengthy polynomials for computing the mean obliquity of data and the elements of the precession matrix, consists of the mean obliquity, the speed of general precession in longitude at a fixed epoch, and the system of planetary masses. Special attention is given to the motion of the ecliptic pole, formulations for a basic epoch as well as an arbitrary epoch, and ecliptic motion relative to the basic epoch. Numerical precession quantities at epoch J2000.0 (JED 2451545.0) are presented which result from the revision of astronomical constants adopted at the XVI General Assembly of the IAU.

  8. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine.

  9. Simulation and Experimentation in an Astronomy Laboratory, Part II

    NASA Astrophysics Data System (ADS)

    Maloney, F. P.; Maurone, P. A.; Hones, M.

    1995-12-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for non-scientist students. We report on a strategy for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. Direct observation of physical phenomena, such as Hooke's Law, begins by using a computer and hardware interface as a data-collection and presentation tool. In this way, the student is encouraged to explore the physical conditions of the experiment and re-discover the fundamentals involved. The hardware frees the student from the tedium of manual data collection and presentation, and permits experimental design which utilizes data that would otherwise be too fleeting, too imprecise, or too voluminous. Computer simulation of astronomical phenomena allows the student to travel in time and space, freed from the vagaries of weather, to re-discover such phenomena as the daily and yearly cycles, the reason for the seasons, the saros, and Kepler's Laws. By integrating the knowledge gained by experimentation and simulation, the student can understand both the scientific concepts and the methods by which they are discovered and explored. Further, students are encouraged to place these discoveries in an historical context, by discovering, for example, the night sky as seen by the survivors of the sinking Titanic, or Halley's comet as depicted on the Bayeux tapestry. We report on the continuing development of these laboratory experiments. Futher details and the text for the experiments are available at the following site: http://astro4.ast.vill.edu/ This work is supported by a grant from The Pew Charitable Trusts.

  10. Inspiration Today: Music, Astronomy, and Popular Culture

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2016-01-01

    We explore a variety of examples of music inspired by serious astronomy (as opposed to simply an astronomical title or quick allusion to spooning in June to the light of the Moon). The examples are drawn from my recently published catalog of 133 such pieces, including both classical and popular genres of music. We discuss operas based on the life and work of astronomers, six songs based on a reasonable understanding of the properties of black holes, constellation pieces written by composers from around the world who are or were active amateur astronomers, the song that compares walking on the Moon to being in love, the little-known rock song that became a reference in the Astrophysical Journal, pieces that base the patterns of the music on the rhythms of astronomical phenomena, and a number of others.

  11. Interpretation of Historically Significant Solar and Lunar Eclipses

    NASA Astrophysics Data System (ADS)

    Muradyan, Armine; Mickaelian, A. M.

    2016-12-01

    Most of the ancient civilizations reacted with great awe and fear to the phenomena occurring in the sky and their changes. Periodically recurring movements of the Sun and the Moon attracting the attention of the astronomers, have given possibility to ancient civilizations to develop various calendars, including quite complicated ones. Since ancient times, Lunar and Solar eclipses were also among the forecasted phenomena, which have played an important role in human history. In the modern era, due to the cooperation of astronomers and historians, precise historical years and dates have been identified and the most important scientific discoveries of mankind have been proved with the help of eclipses. Most important historical Solar and Lunar eclipses, their impact on people, societies, history and science are presented and the interpretation of available to us historical events is given in this article.

  12. Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test

    NASA Astrophysics Data System (ADS)

    Greco, G.; Kondrashov, D.; Kobayashi, S.; Ghil, M.; Branchesi, M.; Guidorzi, C.; Stratta, G.; Ciszak, M.; Marino, F.; Ortolan, A.

    We present a data-adaptive spectral method - Monte Carlo Singular Spectrum Analysis (MC-SSA) - and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.

  13. Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Over forty years ago, observations in the new field of infrared astronomy showed a broad spectral feature at 10 microns; the feature was quickly associated with the presence of silicate-rich dust. Since that time, improvements in infrared astronomy have led to the discovery of a plethora of additional spectral features attributable to dust. By combining these observations with spectroscopic data acquired in the laboratory, astronomers have a diagnostic tool that can be used to explore underlying astronomical phenomena. As the laboratory data improves, so does our ability to interpret the astronomical observations. Here, we discuss some recent progress in laboratory spectroscopy and attempt to identify future research directions.

  14. Enchantment and the Awe of the Heavens

    NASA Astrophysics Data System (ADS)

    Campion, N.

    2011-06-01

    The dominant narrative in astronomy is of the disinterested scientist, pursuing the quest for mathematical data, neutral, value-free and objective. Yet, many astronomy books refer to the "awe" of the night sky, and most amateur astronomers are thrilled by the sight of, say Saturn's rings or Jupiter's moons. This talk addresses the issue of the "inspiration" of astronomical phenomena and argues that astronomers should be more forthright about the emotional, irrational appeal of the heavens. Reference will be made to the sociologist Max Weber's theory of "enchantment". Weber argued that science and technology are automatically disenchanting. This paper will qualify Weber's theory and argue that astronomy can be seen as fundamentally enchanting.

  15. The Hands of the Pleiades: The Celestial Clock in the Classical Arabic Poetry of Dhū al-Rumma

    NASA Astrophysics Data System (ADS)

    Adams, W. B.

    2011-06-01

    In the desert poetry of Dhū al-Rumma (d. 117 AH/735 CE), astronomical phenomena sometimes function as familiar celestial timepieces that indicate the poetic timeframe literally and accurately. The literary, lexical, floral and astronomical analyses of a selection from this poetry illustrate the role of the Pleiades star cluster as a celestial clock and illuminate the utility of naked-eye astronomy in interpreting Arabic poetry of the early Islamic period.

  16. Working data together: the accountability and reflexivity of digital astronomical practice.

    PubMed

    Hoeppe, Götz

    2014-04-01

    Drawing on ethnomethodology, this article considers the sequential work of astronomers who combine observations from telescopes at two observatories in making a data set for scientific analyses. By witnessing the induction of a graduate student into this work, it aims at revealing the backgrounded assumptions that enter it. I find that these researchers achieved a consistent data set by engaging diverse evidential contexts as contexts of accountability. Employing graphs that visualize data in conventional representational formats of observational astronomy, experienced practitioners held each other accountable by using an 'implicit cosmology', a shared (but sometimes negotiable) characterization of 'what the universe looks like' through these formats. They oriented to data as malleable, that is, as containing artifacts of the observing situation which are unspecified initially but can be defined and subsequently removed. Alternating between reducing data and deducing astronomical phenomena, they ascribed artifacts to local observing conditions or computational procedures, thus maintaining previously stabilized phenomena reflexively. As researchers in data-intensive sciences are often removed from the instruments that generated the data they use, this example demonstrates how scientists can achieve agreement by engaging stable 'global' data sets and diverse contexts of accountability, allowing them to bypass troubling features and limitations of data generators.

  17. Astrophotography Basics: Meteors, Comets, Eclipses, Aurorae, Star Trails. Revised.

    ERIC Educational Resources Information Center

    Eastman Kodak Co., Rochester, NY.

    This pamphlet gives an introduction to the principles of astronomical picture-taking. Chapters included are: (1) "Getting Started" (describing stationary cameras, sky charts and mapping, guided cameras, telescopes, brightness of astronomical subjects, estimating exposure, film selection, camera filters, film processing, and exposure for…

  18. Astronomy textbook images: do they really help students?

    NASA Astrophysics Data System (ADS)

    Testa, Italo; Leccia, Silvio; Puddu, Emanuella

    2014-05-01

    In this paper we present a study on the difficulties secondary school students experience in interpreting textbook images of elementary astronomical phenomena, namely, the changing of the seasons, Sun and lunar eclipses and Moon phases. Six images from a commonly used textbook in Italian secondary schools were selected. Interviews of 45 min about the astronomical concepts related to the images were carried out with eighteen students attending the last year of secondary school (aged 17-18). Students’ responses were analyzed through a semiotic framework based on the different types of visual representation structures. We found that the wide range of difficulties shown by students come from naïve or alternative ideas due to incorrect or inadequate geometric models of the addressed phenomena. As a primary implication of this study, we suggest that teachers should pay attention to specific iconic features of the discussed images, e.g., the compositional structure and the presence of real/symbolic elements.

  19. A study of the impact of the Space Shuttle environment on faint far-UV geophysical and astronomical phenomena

    NASA Technical Reports Server (NTRS)

    Lampton, Michael; Sasseen, Timothy P.; Wu, Xiaoyi; Bowyer, Stuart

    1993-01-01

    FAUST is a far ultraviolet (1400-1800 A) photon-counting imaging telescope featuring a wide field of view (7.6 deg) and a high sensitivity to extended emission features. During its flight as part of the ATLAS-1 payload aboard the STS-45 mission in March 1992, 19 deep-space nighttime viewing opportunities were utilized by FAUST. Here we report the observed fluxes and their time and space variations, and identify the signatures of postsunset airglow phenomena and Orbiter Vernier attitude control thruster firing events. We find that the Space Shuttle nighttime environment at 296 km altitude is often sufficiently dark to permit geophysical and astronomical UV observations down to levels on the order of 1000 photons/sq cm sr A sec, or 0.01 Rayleighs/A. We also find evidence for occasional geophysical fluxes of some tens or hundreds of Rayleighs in the upward-looking direction.

  20. Science News or Astrological Debating: Chinese Records of the Transit of Venus of 1874

    NASA Astrophysics Data System (ADS)

    Lu, Lingfeng

    2012-09-01

    The Venus transit is very important in the measuring of the distance between the sun and the earth. It ever occurred in 1874, but this time it was visible only in China and some other places in eastern sphere. So many astronomers of the western countries had to come to China to observe it. In traditional Chinese astrological explanation, the sun represented the emperor. If the sun were invaded by other stars, it means that the emperor and the country would have some ominous disasters. In late 19th century, western astronomical knowledge was widely translated into Chinese and understood by Chinese intellectuals. The Venus transit should easily be understood by Chinese intellectuals as one kind of astronomical phenomena. But early before the Venus transit taking place in 1874, many Chinese publications had to introduce this kind of celestial phenomena as science news because at same time, some influential news papers and journals also had some discussion on what astrological connection between the Venus transit of this time and the fortune of the country. This article collects these interesting Chinese records and discusses what different attitude to the Venus transit by Chinese intellectuals and officials during that period in which western learning was widely disseminated in China.

  1. Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2013-09-01

    During the two decades before World War I, many physicists, astronomers and earth scientists engaged in interdisciplinary research projects with the aim of integrating terrestrial, solar and astronomical phenomena. Under the umbrella label "cosmical physics" they studied, for example, geomagnetic storms, atmospheric electricity, cometary tails and the aurora borealis. According to a few of the cosmical physicists, insights in solar-terrestrial and related phenomena might be extrapolated to the entire solar system or beyond it. Inspired by their research in the origin and nature of the aurora, Kristian Birkeland from Norway and Svante Arrhenius from Sweden proposed new theories of the universe that were of a physical rather than astronomical nature. Whereas Birkeland argued that electrons and other charged particles penetrated the entire universe - and generally that electromagnetism was of no less importance to cosmology than gravitation - Arrhenius built his cosmology on the hypothesis of dust particles being propelled throughout the cosmos by stellar radiation pressure. Both of the Scandinavian scientists suggested that the universe was infinitely filled with matter and without a beginning or an end in time. Although their cosmological speculations did not survive for long, they are interesting early attempts to establish physical cosmologies and for a while they attracted a good deal of attention.

  2. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  3. Constructing Concept Schemes From Astronomical Telegrams Via Natural Language Clustering

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Zhang, M.; Djorgovski, S. G.; Donalek, C.; Drake, A. J.; Mahabal, A.

    2012-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using hierarchical clustering of processed natural language. This allows us to automatically organize ATELs based on the vocabulary used. We conclude that we can use simple algorithms to process and extract meaning from astronomical textual data.

  4. Astronomy and its importance for everyday life

    NASA Astrophysics Data System (ADS)

    Tiron, Stefan

    2010-12-01

    The author is dialogging with a journalist from the Moldavian National radio about the following topics: 1) The winter solstice 2) The astronomical phenomena for 2011 in Moldova (Sun's and Moon's eclipses) 3) The solar activity, its increasing during next year and its maximum

  5. Conceptual Astronomy Knowledge among Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Berendsen, Margaret L.

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2, an online survey was developed as an assessment. In particular, astronomy club members with at least some college-level astronomy education score substantially higher on the assessment (mean score: 85) than do college undergraduates after taking their first astronomy course (mean score: 47). Astronomy club members scored up to 17% higher than unaffiliated amateurs, an indication that regular contact with like-minded hobbyists improves basic knowledge. Proportionally more astronomy club members report doing outreach than do unaffiliated amateurs (87% vs. 46%). It appears that those who are likely to be more knowledgeable are also those doing more outreach.

  6. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  7. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  8. Basic dynamics from a pulse-coupled network of autonomous integrate-and-fire chaotic circuits.

    PubMed

    Nakano, H; Saito, T

    2002-01-01

    This paper studies basic dynamics from a novel pulse-coupled network (PCN). The unit element of the PCN is an integrate-and-fire circuit (IFC) that exhibits chaos. We an give an iff condition for the chaos generation. Using two IFC, we construct a master-slave PCN. It exhibits interesting chaos synchronous phenomena and their breakdown phenomena. We give basic classification of the phenomena and their existence regions can be elucidated in the parameter space. We then construct a ring-type PCN and elucidate that the PCN exhibits interesting grouping phenomena based on the chaos synchronization patterns. Using a simple test circuit, some of typical phenomena can be verified in the laboratory.

  9. Spatial Thinking in Astronomy Education Research

    ERIC Educational Resources Information Center

    Cole, Merryn; Cohen, Cheryl; Wilhelm, Jennifer; Lindell, Rebecca

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] Multiple studies show that spatial thinking skills contribute to students' performance in science, technology, engineering, and mathematics disciplines. The study of astronomy is no different with the understanding of many astronomical phenomena requiring spatial…

  10. Perspectives of intellectual processing of large volumes of astronomical data using neural networks

    NASA Astrophysics Data System (ADS)

    Gorbunov, A. A.; Isaev, E. A.; Samodurov, V. A.

    2018-01-01

    In the process of astronomical observations vast amounts of data are collected. BSA (Big Scanning Antenna) LPI used in the study of impulse phenomena, daily logs 87.5 GB of data (32 TB per year). This data has important implications for both short-and long-term monitoring of various classes of radio sources (including radio transients of different nature), monitoring the Earth’s ionosphere, the interplanetary and the interstellar plasma, the search and monitoring of different classes of radio sources. In the framework of the studies discovered 83096 individual pulse events (in the interval of the study highlighted July 2012 - October 2013), which may correspond to pulsars, twinkling springs, and a rapid radio transients. Detected impulse events are supposed to be used to filter subsequent observations. The study suggests approach, using the creation of the multilayered artificial neural network, which processes the input raw data and after processing, by the hidden layer, the output layer produces a class of impulsive phenomena.

  11. Theory of Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Cunha, Margarida S.

    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.

  12. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  13. Is an eclipse described in the Odyssey?

    PubMed

    Baikouzis, Constantino; Magnasco, Marcelo O

    2008-07-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.

  14. The Invisible Universe Online for Teachers - A SOFIA and SIRTF EPO Project

    NASA Astrophysics Data System (ADS)

    Gauthier, A.; Bennett, M.; Buxner, S.; Devore, E.; Keller, J.; Slater, T.; Thaller, M.; Conceptual Astronomy; Physics Education Research CAPER Team

    2003-12-01

    The SOFIA and SIRTF EPO Programs have partnered with the Conceptual Astronomy and Physics Education Research (CAPER) Team in designing, evaluating, and facilitating an online program for K-12 teachers to experience multiwavelength astronomy. An aggressive approach to online course design and delivery has resulted in a highly successful learning experience for teacher-participants. Important aspects of the Invisible Universe Online will eventually be used as a part of SOFIA's Airborne Ambassadors Program for pre-flight training of educators. The Invisible Universe Online is delivered via WebCT through the Montana State University National Teacher Enhancement Network (http://btc.montana.edu/). Currently in its fourth semester, the course has served 115 K-12 teachers. This distance learning online class presents our search for astronomical origins and provides an enhanced understanding of how astronomers use all energies of light to unfold the secrets of the universe. We cover the long chain of events from the birth of the universe through the formation of galaxies, stars, and planets by focusing on the scientific questions, technological challenges, and space missions pursuing this search for origins. Through textbook and internet readings, inquiry exploration with interactive java applets, and asynchronous discussions, we help our students achieve the following course goals: develop scientific background knowledge of astronomical objects and phenomena at multiple wavelengths; understand contemporary scientific research questions related to how galaxies formed in the early universe and how stars and planetary systems form and evolve; describe strategies and technologies for using non-visible wavelengths of EM radiation to study various phenomena; and integrate related issues of astronomical science and technology into K-12 classrooms. This course is being developed, evaluated, and offered through the support of SOFIA and SIRTF EPO Programs, two NASA infrared missions associated with the Origins program.

  15. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  16. Close Encounters with the Fourth Dimension.

    ERIC Educational Resources Information Center

    Alexander, Mary, Ed.

    1984-01-01

    Most of the 11,108 sightings of unidentified flying objects (UFOs) between 1947 and 1966 were explained by the Air Force as astronomical phenomena, aircraft, or balloons. The document from the National Archives produced here for use in secondary classes is typical of those sighting reports. Classroom activities are suggested. (RM)

  17. Introducing the Moon's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2014-01-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…

  18. Big Ideas: A Review of Astronomy Education Research 1974-2008

    ERIC Educational Resources Information Center

    Lelliott, Anthony; Rollnick, Marissa

    2010-01-01

    This paper reviews astronomy education research carried out among school students, teachers, and museum visitors over a 35-year period from 1974 until 2008. One hundred and three peer-reviewed journal articles were examined, the majority of whose research dealt with conceptions of astronomical phenomena with 40% investigating intervention…

  19. Modeling the Round Earth through Diagrams

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Ramadas, Jayashree

    2008-01-01

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students…

  20. Virtual Solar System Project: Building Understanding through Model Building.

    ERIC Educational Resources Information Center

    Barab, Sasha A.; Hay, Kenneth E.; Barnett, Michael; Keating, Thomas

    2000-01-01

    Describes an introductory astronomy course for undergraduate students in which students use three-dimensional (3-D) modeling tools to model the solar system and develop rich understandings of astronomical phenomena. Indicates that 3-D modeling can be used effectively in regular undergraduate university courses as a tool to develop understandings…

  1. The Astronomical Almanac Online - Welcome

    Science.gov Websites

    (incl. eclipses) Time-Scales and Coordinate Systems Sun Moon Planets Natural Satellites Dwarf Planets version contains precise ephemerides of the Sun, Moon, planets, and satellites, data for eclipses and : Phenomena (incl. eclipses) Section B: Time-Scales and Coordinate Systems Section C: Sun Section D: Moon

  2. The System for Quick Search of the Astronomical Objects and Events in the Digital Plate Archives.

    NASA Astrophysics Data System (ADS)

    Sergeev, A. V.; Sergeeva, T. P.

    From the middle of the XIX century observatories all over the world have accumulated about three millions astronomical plates contained the unique information about the Universe which can not be obtained or restored with the help of any newest facilities and technologies but may be useful for many modern astronomical investigations. The threat of astronomical plate archives loss caused by economical, technical or some other causes have put before world astronomical community a problem: the preservation of the unique information kept on those plates. The problem can be solved by transformation of the information from plates to digital form and keeping it on electronic data medium. We began a creation of a system for quick search and analysing of astronomical events and objects in digital plate archive of the Ukrainian Main astronomical observatory of NAS. Connection of the system to Internet will allow a remote user (astronomer or observer) to have access to digital plate archive and to work with it. For providing of the high efficiency of this work the plate database (list of the plates with all information about them and access software) are preparing. Modular structure of the system basic software and standard format of the plate image files allow future development of problem-oriented software for special astronomical researches.

  3. Problems facing promotion of astronomy in Arab countries

    NASA Astrophysics Data System (ADS)

    Osman, Anas M. I.

    Promotion of astronomy in Arab countries is facing many scientific and technical problems. Teaching astronomy starts very late in schools, with very simple and limited courses. Many teachers lack a suitable astronomical background, which can lead to incorrect understanding by students of many astronomical ideas and phenomena. Teaching astronomy at higher levels is also very limited, for example: among the 16 universities in Egypt, astronomy is taught in only two faculties of science, just for two years. Graduate students find many difficulties in obtaining jobs related to astronomical activities and this is a serious limitation on the attraction of the study of astronomy. On the other hand, astronomical institutions are suffering from a serious lack of the new sophisticated equipment, while the budget allotted for maintenance is very small, and there is a serious shortage of technical staff. The training of astronomers and technicians is badly needed, since good research work depends on modern technological equipment and the complicated software used in controlling such equipment and in data analysis. Good libraries are needed for promotion of astronomy especially, the Internet facilities available for the staff is very limited. The effects of culture are very clear; many authorities in developing countries believe that astronomy is a luxury. Finally, most of astronomers are engaged with a lot of administration for all matters, so the free time left for science is very limited.

  4. Imagine the Universe. 4

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    1999-01-01

    This CD-ROM contains compilations of three NASA Website pages from the Laboratory for High Energy Astrophysics at the Goddard Space Flight Center. The three sites on the CD-ROM are: (1) the Imagine the Universe!, (for ages 14 on up), which is dedicated to discussion of the Universe, what we know, how it is evolving and the kinds of objects and phenomena it contains; (2) StarChild: A learning center for young astronomers, (for ages 4-14), contains information about the Solar System, the Universe and space explorations; and (3) the Astronomy picture of the day, which offers a new astronomical image and caption for each calendar day.

  5. IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application

    NASA Astrophysics Data System (ADS)

    Gopu, A.; Hayashi, S.; Young, M. D.

    2014-05-01

    Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.

  6. Astronomical Correlates of Architecture and Landscape in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Šprajc, Ivan

    Mesoamerican civic and ceremonial buildings were largely oriented to astronomical phenomena on the horizon, mostly to sunrises and sunsets on particular dates; some orientations were probably intended to mark major lunar standstills and Venus extremes. Solar orientations must have had a practical function, allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. Moreover, some important buildings seem to have been erected on carefully selected places, with the purpose of employing prominent peaks on the local horizon as natural markers of sunrises and sunsets on relevant dates. However, the characteristics of buildings incorporating deliberate alignments, their predominant clockwise skew from cardinal directions, and their relations to the surrounding natural and cultural landscape reveal that the architectural and urban planning in Mesoamerica was dictated by a complex set of rules, in which astronomical considerations were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  7. Aboriginal astronomical traditions from Ooldea, South Australia. Part 1: Nyeeruna and 'The Orion Story'

    NASA Astrophysics Data System (ADS)

    Leaman, Trevor M.; Hamacher, Duane W.

    2014-07-01

    Whilst camped at Ooldea, South Australia, between 1919 and 1935, the amateur anthropologist Daisy Bates CBE recorded the daily lives, lore and oral traditions of the Aboriginal people of the Great Victoria Desert region surrounding Ooldea. Among her archived notes are stories regarding the Aboriginal astronomical traditions of this region. One story in particular, involving the stars making up the modern western constellations of Orion and Taurus, and thus referred to here as 'The Orion Story', stands out for its level of detail and possible references to transient astronomical phenomena. Here, we critically analyse several important elements of 'The Orion Story', including its relationship to an important secret-sacred male initiation rite. This paper is the first in a series attempting to reconstruct a more complete picture of the sky knowledge and star lore of the Aboriginal people of the Great Victoria Desert.

  8. The Solar Eclipse Mural Series by Howard Russell Butler

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Olson, R. J. M.

    2016-01-01

    There is a rich trove of astronomical phenomena in works of art by artists from the greater New York area, a trend that is even more pronounced in the oeuvres of New York City residents through the present day. A case in point is the trio of oil paintings by artist (and former physics professor) Howard Russell Butler depicting total solar eclipses in 1918, 1923, and 1925 that are based on his own observations. They were long displayed in the former art-deco building of the Hayden Planetarium of the American Museum of Natural History, the location of this conference. (The Museum also has nine other Butler paintings, none of which are currently exhibited.) Since the eclipse paintings have been in storage for many years, these once famous works are now virtually forgotten. Based on our research as an astronomer who has seen sixty-two solar eclipses and an art historian who has written extensively about astronomical imagery, we will discuss Butler's Solar Eclipse Triptych to explore its place in the history of astronomical imaging.

  9. Reporting Astronomical Discoveries: Past, Now, and Future

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere. All discoverers are encouraged to send their discovery information for transients to the CBAT (particularly for those objects brighter than visual or red magnitude 20).

  10. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  11. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  12. The South African Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.

  13. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomical Concepts: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas

    2004-01-01

    The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…

  14. Total Eclipse

    ERIC Educational Resources Information Center

    Schatz, Dennis; Fraknoi, Andrew

    2017-01-01

    This summer, on August 21, 500 million people across North America will experience one of the most beautiful astronomical phenomena: an eclipse of the Sun. It will be a "must teach" moment, when all students will want to know the "what, when, and why" of the event. In addition, many high school science teachers are likely to be…

  15. Astronomy Textbook Images: Do They Really Help Students?

    ERIC Educational Resources Information Center

    Testa, Italo; Leccia, Silivo; Puddu, Emanuella

    2014-01-01

    In this paper we present a study on the difficulties secondary school students experience in interpreting textbook images of elementary astronomical phenomena, namely, the changing of the seasons, Sun and lunar eclipses and Moon phases. Six images from a commonly used textbook in Italian secondary schools were selected. Interviews of 45 min about…

  16. Mirrors in the Air: Mirages in Nature and in the Laboratory

    ERIC Educational Resources Information Center

    Vollmer, M.

    2009-01-01

    Although mostly not perceived consciously, mirages are very familiar phenomena of everyday life. They can generally occur if light is incident on media with a gradient of refractive index. This article starts with the easiest mirage effect, known as astronomical refraction, then presents examples for inferior and superior multiple image mirages,…

  17. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  18. Multi-scale and multi-domain computational astrophysics.

    PubMed

    van Elteren, Arjen; Pelupessy, Inti; Zwart, Simon Portegies

    2014-08-06

    Astronomical phenomena are governed by processes on all spatial and temporal scales, ranging from days to the age of the Universe (13.8 Gyr) as well as from kilometre size up to the size of the Universe. This enormous range in scales is contrived, but as long as there is a physical connection between the smallest and largest scales it is important to be able to resolve them all, and for the study of many astronomical phenomena this governance is present. Although covering all these scales is a challenge for numerical modellers, the most challenging aspect is the equally broad and complex range in physics, and the way in which these processes propagate through all scales. In our recent effort to cover all scales and all relevant physical processes on these scales, we have designed the Astrophysics Multipurpose Software Environment (AMUSE). AMUSE is a Python-based framework with production quality community codes and provides a specialized environment to connect this plethora of solvers to a homogeneous problem-solving environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Lunar interferometric astronomy: Some basic questions

    NASA Technical Reports Server (NTRS)

    Woolf, Neville

    1992-01-01

    The author examines some basic questions as to why there should be astronomical facilities on the far side of the moon. The questions are ones of appropriateness, i.e., is this a proper use for human resources, what the real goals are, and are the present concepts the best match for the goals.

  20. The accelerations of the earth and moon from early astronomical observations

    NASA Technical Reports Server (NTRS)

    Muller, P. M.; Stephenson, F. R.

    1975-01-01

    An investigation has compiled a very large amount of data on central or near central solar eclipses as recorded in four principal ancient sources (Greek and Roman classics, medieval European chronicles, Chinese annals and astronomical treatises, and Late Babylonian astronomical texts) and applied careful data selectivity criteria and statistical methods to obtain reliable dates, magnitudes, and places of observation of the events, and thereby made estimates of the earth acceleration and lunar acceleration. The basic conclusion is that the lunar acceleration and both tidal and nontidal earth accelerations have been essentially constant during the period from 1375 B.C. to the present.

  1. From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium

    NASA Astrophysics Data System (ADS)

    Chastenay, Pierre

    2016-02-01

    An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.

  2. Extracting meaning from astronomical telegrams

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Conwill, L.; Djorgovski, S. G.; Mahabal, A.; Donalek, C.; Drake, A.

    2011-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using aspects of natural language processing. We demonstrate that it is possible to infer the subject of an ATEL from the vocabulary used and to identify previously unassociated reports.

  3. Is an eclipse described in the Odyssey?

    PubMed Central

    Baikouzis, Constantino; Magnasco, Marcelo O.

    2008-01-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey (“Theoclymenus's prophecy”) to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192–1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250–1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse. PMID:18577587

  4. Atmospheric Propagation Effects Relevant to Optical Communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  5. Atmospheric propagation effects relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  6. Heavenly Bodies and Phenomena in Petroglyphs

    NASA Astrophysics Data System (ADS)

    Tokhatyan, Karen

    2016-12-01

    In Armenian culture are amply reflected realities connected with Universe. Their figurative expressions are also petroglyphs in which there are representations of solar signs, swastika, Moon crescend, planets, stars, star groups, constellations, Milky Way, Earth. Among heavenly and atmospheric phenomena are: eclipce, meteor, comet, ligthning, cloud, rain and rainbow. There are many products of scientific thinking: stellar maps, calendars, compasses, astronomical records, Zodiac signs and ideograms. Thousands of the Armenian petroglyphs that were created millennia ago by an indigenous ethnos - Armenians, point to the significant place of celestial bodies and luminaries, especially the Sun, stars, and stellar constellations in our ancestors' cosmological perceptions.

  7. Alexander William Bickerton: New Zealand’s First Astrophysicist?

    NASA Astrophysics Data System (ADS)

    Gilmore, Gerard F.

    Alexander Bickerton (1842-1929) is of interest to the student of New Zealand astronomical history in several ways. He was the first Professor at Canterbury University College, and had a significant effect on the early development of the University; he was a prominent and successful teacher, Ernest Rutherford being his most famous student; he was a social activist in Victorian Christchurch, eventually establishing a small commune; and he was the originator of the stellar collision theory of novae and other astronomical phenomena. This chapter, which is a slightly revised version of Gilmore (Southern Stars, 29, 87-108, 1982), provides a summary of Bickerton's life and theories, and a bibliography for further reading.

  8. How Documentalists Update SIMBAD

    NASA Astrophysics Data System (ADS)

    Buga, M.; Bot, C.; Brouty, M.; Bruneau, C.; Brunet, C.; Cambresy, L.; Eisele, A.; Genova, F.; Lesteven, S.; Loup, C.; Neuville, M.; Oberto, A.; Ochsenbein, F.; Perret, E.; Siebert, A.; Son, E.; Vannier, P.; Vollmer, B.; Vonflie, P.; Wenger, M.; Woelfel, F.

    2015-04-01

    The Strasbourg astronomical Data Center (CDS) was created in 1972 and has had a major role in astronomy for more than forty years. CDS develops a service called SIMBAD that provides basic data, cross-identifications, bibliography, and measurements for astronomical objects outside the solar system. It brings to the scientific community an added value to content which is updated daily by a team of documentalists working together in close collaboration with astronomers and IT specialists. We explain how the CDS staff updates SIMBAD with object citations in the main astronomical journals, as well as with astronomical data and measurements. We also explain how the identification is made between the objects found in the literature and those already existing in SIMBAD. We show the steps followed by the documentalist team to update the database using different tools developed at CDS, like the sky visualizer Aladin, and the large catalogues and survey database VizieR. As a direct result of this teamwork, SIMBAD integrates almost 10.000 bibliographic references per year. The service receives more than 400.000 queries per day.

  9. The Message of Starlight, Book 4. The University of Illinois Astronomy Program.

    ERIC Educational Resources Information Center

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book four in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This document terms the analysis of light as an essential clue to understanding astronomical phenomena. Topics discussed include: thm behavior of light; the wave model and…

  10. Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Schutz, B.; Murdin, P.

    2000-11-01

    Gravity is one of the fundamental forces of nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of SPECIAL RELATIVITY. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that, when the gravitational field of an object changes, the changes ripple outwards throu...

  11. To Catch A Comet...Learning From Halley's.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  12. Percepción del tamaño de la Luna

    NASA Astrophysics Data System (ADS)

    Lares, M.

    When Lunar astronomical phenomena are communicated to the general public, changes in the Lunar disc size are usually bring out. However, the perception of such change is different to the change itself. In this work a quantification of the sensation of change in the area is proposed, based on results from cognitive sciences. FULL TEXT IN SPANISH

  13. Overview of the observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Viotti, Roberto

    1993-01-01

    The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.

  14. Imaging Young Stellar Objects with VLTi/PIONIER

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.

    2014-04-01

    Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.

  15. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    NASA Astrophysics Data System (ADS)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will discuss implications for undergraduate astronomy education towards increasing future teachers’ proficiency in doing astronomy in ways that move them towards understanding how astronomers investigate the universe.

  16. Joint use of eclipse records in China, Japan and Korea for the study of the earth's paleorotation

    NASA Astrophysics Data System (ADS)

    Li, Zhisen

    It has become a new field to use the ancient records of astronomical phenomena for studying the secular change of the earth's rotation. China is very rich in ancient astronomical observations, to which much attention has been given recently. But the continuum of the observational series is affected critically by gaps with lengths of over half a century (TABLE 1). China, Japan and Korea are close neighbours, either adjacent to each other, or separated by a sea, and have a long history of contact and exchange in culture and science. Their ancient astronomies are similar in many aspects, and their astronomical records may be regarded as a unit. Japan and Korea have also accumulated a wealth of ancient records in astronomy, including 232 time observations from AD 840 to 1639 and 149 records of central eclipses from AD 61 to 862 (TABLE 2). However, they have not been utilized in this field. The author has especially analyzed the records of the central eclipse and eclipse time of these three countries, compared their respective merits and shortcomings, and concluded that their joint use may compose a valuable record series for the study of the earth's rotation. This work could change the situation of neglect of the ancient records of east Asia in this field. From TABLE 3 it may be seen that the united series of records are more excellent than any others. The ancient records of astronomical phenomena may also be used to study the evolution of the Earth-Moon system and to test the theoritical predictions of general relativity. The author has completed the analyses of the records of eclipse time, equinox time and the central eclipse, and points out that China, Japan and Korea have the potential for studying this subject. Our hope is laid on the new development of archaeology of remote ages and inscriptions on hones of the Shang Dynasty, and on interdisciplinary cooperation.

  17. Astronomy in the Age of Leonardo.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    1997-12-01

    In the 1450s, when Leonardo da Vinci was born, horoscopes were still based primarily on the 13th-century tables developed in the court of Alfonso el Sabio of Spain. By the 15th century European astronomers were computing revised forms of the tables. In Italy, for example, Giovanni Bianchini of Ferrara completed his Tabulae astronomicae in the 1440s. It was finally published posthumously in Venice in 1495. By the 1480s Domenico Maria Novara, a professor of astronomy in Bologna, was publishing annual prognostications of eclipses, conjunctions, and other celestial phenomena. Against this background of traditional astronomy in Italy, two Florentines recorded observations of the sun and moon, comets, and meteorology. Paolo dal Pozzi Toscanelli flourished in the first half of the 15th century and Leonardo da Vinci in the last half. Their observations of celestial phenomena were not primarily for astronomical purposes; they were spinoffs of other pursuits such as medicine, astrology, optics, engineering, and studies of light and shadow. As a physician and cartographer, Toscanelli practiced astrology, studied omens, observed comets and plotted their paths on homemade maps. He also was associated with the construction of a gnomon at the top of the Duomo to observe the summer solstice. It was this project that may have brought him into contact with the young artisan, Leonardo da Vinci. As a painter, Leonardo's approach to science and engineering was to observe, sketch and analyze. His interest in light and shadow led him to notice how the earth, moon and planets all reflect sunlight. His extant manuscripts have geometric sketches for eclipses and for the phenomenon known as "old moon in new moon's arms." Unfortunately, because neither Toscanelli nor Leonardo published their observations, they made no impact on the history of astronomical thought or observation. Their contemporaries did not know or write about their work. Astronomers in the 16th century did not know about their manuscripts.

  18. A Development of the astronomical teaching materials which raise a student's time and and space concept by using of movement of the Moon, the Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Taketa, I.; Matsumoto, I.

    2013-12-01

    In recent years, such as a return of the asteroid probe in 2010 "Hayabusa", a gold ring solar eclipse in 2012, and solar Face passage of Venus in 2012, there were many astronomical phenomena which pull a not only child but also citizen's interest, and they were greatly reported by the media in Japan. Thus, it is thought that the interest and concern about the universe of a child and a citizen are increasing. However, the earth science contents of a subject, such as the universe in school education are fields that it make comparatively poor at a teacher. So, this research aimed at the Development of the new space education teaching material which is easy to treat the teacher who has consciousness weak to the astronomical field at schools, and raise a child's time and space concepts. We did this research using the following Methods. 1) We carried out the questionnaire to the primary teacher of the Matsue city, and performed the opinion poll to a teacher's astronomical field. 2) We considered the subject on the education of the astronomical teaching materials used now. 3) As mentioned above 1) and 2), We developed the teaching materials which the waxing and waning of the moon based on the acquired content.

  19. Photoelectric photometry era at the Astronomical Institute of the Slovak Academy of Sciences II. Software and reduction techniques

    NASA Astrophysics Data System (ADS)

    Vaňko, M.; Komžík, R.; Kollár, V.; Sekeráš, M.

    2014-10-01

    We present a continuation of Paper9 I describing the photoelectric photometry at the Astronomical Institute of the Slovak Academy of Sciences at Tatranská Lomnica. In this article we show the observation principles and the basic ideas and philosophy of the photometer control software — the code UNIV, written by R. Komžík and V. Kollár, and used for the data resulting from observations.

  20. Astronomy Education with Movement and Music

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.

    2006-08-01

    This paper will address the development of two multi-sensory approaches to astronomy education: 1) Kinesthetic Astronomy - an innovative series of lessons for 6th grade through adult learners that teach basic astronomical concepts through choreographed bodily movements; and 2) AstroJazz - a novel planetarium or auditorium-based public education program that blends live jazz music with astronomical imagery and dramatic insights into the wonders of our universe. The paper will discuss results from field testing these approaches.

  1. The Seungjeongwon Ilgi as a Major Source of Korean Astronomical Records

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    The importance of early Korean records of supernovae, comets, meteors and aurorae in modern astronomy is well-known. However, the most extensive Korean source of such data, the Seungjeongwon Ilgi (Daily records of the Office of Royal Secretariat), has received relatively little attention among historians of astronomy. Written in Chinese (Hanmun), the Seungjeongwon Ilgi is a day-to-day chronicle of important events. The main emphasis is on matters of court and state, but observations of a wide variety of astronomical phenomena are regularly included. Although maintenance of the chronicle began early in the Joseon Dynasty (AD 1392-1910), due to wars and rebellions only the records from AD 1623 to 1894 now survive. Nevertheless, the remaining text is substantial, containing more than 3,000 chapters. In this paper, the general format of the astronomical records in the Seungjeongwon Ilgi is discussed, together with examples of the various types of celestial observations which this huge compilation contains.

  2. The Structures and Possible Sources of Preservice Elementary Teachers' Mental Models About Moon Phases

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Young; Kang, Yong-Hee; Yoo, Kye-Hwa

    2005-09-01

    This study was to understand the components that influence preservice elementary teachers' mental models about `astronomical phenomena' such as the Seasons of the year, and the Lunar Phases of the month. We selected university of education students among whom 23 were in the second year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had apparent synthetic Mental models, and that the 'distance theory, and occultation theory' had most important effects on their Mental Models. It can be said that preservice elementary teachers' initial mental models of the `astronomical phenomenon' have their origin in their belief sets (specific theory) related to `astronomical phenomenon', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their mental models for overcoming these synthetic mental models were also discussed.

  3. Fifth Fundamental Catalogue (FK5). Part 1: Basic fundamental stars (Fricke, Schwan, and Lederle 1988): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1990-01-01

    The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The Basic FK5 provides improved mean positions and proper motions for the 1535 classical fundamental stars that had been included in the FK3 and FK4 catalogs. The machine version of the catalog contains the positions and proper motions of the Basic FK5 stars for the epochs and equinoxes J2000.0 and B1950.0, the mean epochs of individual observed right ascensions and declinations used to determine the final positions, and the mean errors of the final positions and proper motions for the reported epochs. The cross identifications to other designations used for the FK5 stars that are given in the published catalog were not included in the original machine versions, but the Durchmusterung numbers have been added at the Astronomical Data Center.

  4. Helios: a tangible and augmented environment to learn optical phenomena in astronomy

    NASA Astrophysics Data System (ADS)

    Fleck, Stéphanie; Hachet, Martin

    2015-10-01

    France is among the few countries that have integrated astronomy in primary school levels. However, for fifteen years, a lot of studies have shown that children have difficulties in understanding elementary astronomic phenomena such as day/night alternation, seasons or moon phases' evolution. To understand these phenomena, learners have to mentally construct 3D perceptions of aster motions and to understand how light propagates from an allocentric point of view. Therefore, 4-5 grades children (8 to 11 years old), who are developing their spatial cognition, have many difficulties to assimilate geometric optical problems that are linked to astronomy. To make astronomical learning more efficient for young pupils, we have designed an Augmented Inquiry-Based Learning Environment (AIBLE): HELIOS. Because manipulations in astronomy are intrinsically not possible, we propose to manipulate the underlying model. With HELIOS, virtual replicas of the Sun, Moon and Earth are directly manipulated from tangible manipulations. This digital support combines the possibilities of Augmented Reality (AR) while maintaining intuitive interactions following the principles of didactic of sciences. Light properties are taken into account and shadows of Earth and Moon are directly produced by an omnidirectional light source associated to the virtual Sun. This AR environment provides users with experiences they would otherwise not be able to experiment in the physical world. Our main goal is that students can take active control of their learning, express and support their ideas, make predictions and hypotheses, and test them by conducting investigations.

  5. A Handbook of Descriptive and Practical Astronomy

    NASA Astrophysics Data System (ADS)

    Chambers, George Frederick

    2010-06-01

    Book I. A Sketch of the Solar System: 1. The sun; 2. The planets; 3. Vulcan; 4. Mercury; 5. Venus; 6. The earth; 7. The moon; 8. Mars; 9. The minor planets; 10. Jupiter; 11. Saturn; 12. Uranus; 13. Neptune; Book II. Eclipses and their Associated Phenomena: 1. General outlines; 2. Eclipses of the sun; 3. The total eclipse of the sun of July 28, 1851; 4. The annular eclipse of the sun of March 14-15, 1858; 5. The total eclipse of the sun of July 18, 1860; 6. Historical notices; 7. Eclipses of the moon; 8. Suggestions for observing annular eclipses of the sun; 9. Transits of the inferior planets; 10. Occultations; Book III. The Tides: 1. Introduction; 2. Local disturbing influences; Book IV. Miscellaneous Astronomical Phenomena: 1. Variation in the obliquity of the ecliptic; 2. Aberration; 3. Refraction; Book V. Comets: 1. General remarks; 2. Periodic comets; 3. Remarkable comets; 4. Cometary statistics; 5. Historical notices; Book VI. Chronological Astronomy: 1. What time is; 2. Hours; 3. Means of measuring time; 4. The Dominical or Sunday letter; 5. Tables for the conversion of time; Book VII. The Starry Heavens: 1. The Pole-Star; 2. Double stars; 3. Variable stars; 4. Clusters and nebulae; 5. The Milky Way; 6. The constellations; Book VIII. Astronomical Instruments: 1. Telescopes; 2. Telescope stands; 3. The equatorial; 4. The transit instrument; 5. Other astronomical instruments; 6. History of the telescope; Book IX. A Sketch of the History of Astronomy; Book X. Meteoric Astronomy: 1. Classification of the subject; 2. The origin of aërolites; 3. Shooting stars; Appendices; Index.

  6. Observations of Comets and Eclipses in the Andes

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Mariusz

    There is no doubt that the Incas possessed a system for observing and interpreting unusual astronomical phenomena, such as eclipses or comets. References to it, however, are scarce, often of anecdotal nature and are not collected into any coherent "Inca observation catalog". The best documented of such events is the "Ataw Wallpa's comet", seen in Cajamarca in July of 1533 and the solar eclipse, that in 1543, prevented conquistador Lucas Martínez from discovering the rich silver mines in northern Chile. Archived descriptions of the Andean population's reaction to these phenomena indicate that they were treated as extremely important omens, that should not, under any circumstances, be ignored.

  7. Stimulating Interest in Natural Sciences and Training Observation Skills: The UAP Observations Reporting Scheme

    NASA Astrophysics Data System (ADS)

    Ailleris, P.

    2012-04-01

    For a number of reasons the general public and many young people are fascinated by the ideas of UFOs and extra-terrestrial life. As mysteries motivate to gain interest and knowledge, an opportunity exists, throughout these topics, to stimulate the people's interests to natural sciences and technology. A major problem however exists, concerning the fact that the general public generally associates any strange aerial sighting to something exotic, unknown, and to the possibility of extraterrestrial visitations. Rumours, irrational thinking and conspiracy theories prevail around these topics. Launched under the framework of the 2009 International Year of Astronomy, the Unidentified Aerospace Phenomena (UAP) Observations Reporting Scheme seeks to tackle this situation through approaching the topic from a professional and rational perspective, providing an opportunity to teach the public how to think more critically, demystifying UFO events, and ultimately attempting to stimulate the interest in natural sciences and technological disciplines. This is tentatively attempted through the following resources: Firstly, the project's website (1) provides an extensive resource for inquiry-based learning regarding the various natural or man-made phenomena that often give rise to false UAP sightings. It serves as a general forum for educating the public about human, atmospheric and astrophysical phenomena that could be observed in the sky. Secondly, the basic educational information provided on the web site allows potential UAP witnesses to critically evaluate the potential cause of their sightings. Visual descriptions, photos, video clips, tools, and links to relevant websites are provided for each category of phenomena, in order to assist the observer in his self-analysis. Amateur astronomers and societies who receive questions about UFOs can redirect queries to the website. Thirdly, the website provides novice observers viewing tips (e.g. elevation, azimuth, angular size) about how to record as accurately as possible a UAP event, in order to facilitate future identification and study. Lastly, one of the project's objectives is also to collect reports of trained observers (astronomers) of apparently inexplicable events for further analysis. Certainly, whenever there are unexplained observations there is the possibility that scientists could learn something new by studying these events. During this presentation, we will provide an overview of the project, present the website's extensive and well illustrated list of misidentifications, describe how people can further check details, develop their knowledge (e.g. satellite paths, stars/planets charts, characteristics of meteors, pictures of sprites, clouds classification) and enhance their observation skills. In order to show the relevance of the project, a short illustrated list of UAP cases received by the project will be featured, both explained and inexplicable. Finally, we will explore potential plans for strengthening the visibility and usefulness of the project, while requesting feedback from the community of atmospheric and natural sciences' researchers. (1) www.uapreporting.org (*): Disclaimer: Work undertaken as personal work; not endorsed as research activity by ESA.

  8. Observational Mishaps - a Database

    NASA Astrophysics Data System (ADS)

    von Braun, K.; Chiboucas, K.; Hurley-Keller, D.

    1999-05-01

    We present a World-Wide-Web-accessible database of astronomical images which suffer from a variety of observational problems. These problems range from common phenomena, such as dust grains on filters and/or dewar window, to more exotic cases like, for instance, deflated support airbags underneath the primary mirror. The purpose of this database is to enable astronomers at telescopes to save telescope time by discovering the nature of the trouble they might be experiencing with the help of this online catalog. Every observational mishap contained in this collection is presented in the form of a GIF image, a brief explanation of the problem, and, to the extent possible, a suggestion of what might be done to solve the problem and improve the image quality.

  9. Shirakatsi Astronomical and Natural Philosophical Views

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Lilit

    2016-12-01

    Our work is aimed at presenting Shirakatsi astronomical and natural philosophical views. Karl Anania Shirakatsi is classified as one of the world-class intellectual geniuses. He was endowed with exceptional talent and analyzing scientific understanding of natural phenomena. He refers his philosophical works to almost all fields of science, cosmography, mathematics, calendarology, historiography, etc. Shirakatsy's earnings of natural science and natural philosophy in medieval is too big He was the first prominent scholar and thinker of his time, creating a unique, comprehensive gitapilisopayakan system that still feeds the human mind. The scientific value of Shirakatsi has great importance not only for Armenians but also for the whole world of science, history, culture and philosophy. Shirakatsi can be considered not only national but also universal greatness.

  10. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  11. Scientix in our school- discovering STEM

    NASA Astrophysics Data System (ADS)

    Melcu, Cornelia

    2017-04-01

    My name is Cornelia Melcu and I am a primary school teacher in Brasov. Additionally, I am a teacher trainer of Preparatory Class Curriculum, Google Application in Education Course and European Projects Course and a mentor to new teachers and students in university. I am an eTwinning, Scientix and ESERO ambassador too. During the last three school years my school was involved in several STEM projects, part of Scientix community. The main goal of those projects was to develop basic STEM skills of our students based on project work integrated into the curriculum. Open the Gates to the Universe (http://gatestotheuniverse.blogspot.ro; https://twinspace.etwinning.net/12520/home) is an eTwinning project for primary school students started on September 2015 and finished on September 2016. Some of our partners were from the Mediterranean area. The students discovered different aspects of space science and astronomy working on international groups. They explored some aspects of Science included in their curriculum using resources from ESERO, ROEDUSEIS and Space Awareness (e.g. Calculate with Rosetta, Writing the travel diary, Build Rosetta, How to become an astronaut, etc.) The project was a great opportunity to apply integrated learning methods for developing competencies which are a part of the primary school curriculum in Romania. In Language and Communication classes the students talked about their partners living places and their traditions and habits. They learnt some basic words in their partners language related to the weather. They created stories- both in Romanian and English; they described life in space and astronomical phenomena. They talked to the other partners during the several online meetings we organized and wrote short stories in English. In Mathematics and Science they found out about the Milky Way, the Solar System, the weather, famous astronauts and astronomers. They calculated, solved problems, made experiments and explained specific natural phenomena related to Space. During the ICT lessons, they used different devices for creating and playing online games and quizzes, took photos and edited them, searched for and found specific information related to the topic. In Art they made cards, posters, drawings and paintings. They learnt songs in Music and in PE made outdoor experiments (like calculating the distance between planets in our Solar System using a scale). During the Personal Development lessons the students found out solutions for problems (e.g. How would you survive in Space?) and they presented their project work to their schoolmates, teachers and parents. The project 'started where the children were', it was built on the knowledge and ideas children brought with them to lessons and helped them to develop their understanding of scientific concepts related to the Universe. It helped them to understand the diversity of weather conditions and as part of a world community and their responsibility for the environment. The students are able to identify main planets and stars on the sky and they have of basic notions related to Earth and Sun; In conclusion, the project provides opportunities for learning STEM topics in pre-primary and primary education. Implementing the project gave the children and all the adults involved (staff, parents) a lot of fun and satisfaction.

  12. Student comprehension of mathematics through astronomy

    NASA Astrophysics Data System (ADS)

    Search, Robert

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship between these sciences has been reinforced repeatedly in history. In the early 20th century, for example, astronomer Arthur Eddington used photographic evidence from a 1919 solar eclipse to verify Einstein's mathematical theory of relativity. This study was conducted in 5 undergraduate mathematics classes over the course of 2 years. An introductory course in ordinary differential equations, taught in Spring Semester 2013, involved 4 students. A similar course in Spring Semester 2014 involved 6 students, a Summer Semester 2014 Calculus II course involved 2 students, and a Summer 2015 Astronomy course involved 8 students. The students were asked to use Kepler's astronomical evidence to deduce mathematical laws normally encountered on an undergraduate level. They were also asked to examine the elementary mathematical aspects involved in a theoretical trajectory to the planet Neptune. The summer astronomy class was asked to draw mathematical conclusions about large numbers from the recent discoveries concerning the dwarf planet Pluto. The evidence consists primarily of videotaped PowerPoint presentations conducted by the students in both differential equations classes, along with interviews and tests given in all the classes. All presentations were transcribed and examined to determine the effect of astronomy as a generator of student understanding of mathematics. An analysis of the data indicated two findings: definite student interest in a subject previously unknown to most of them and a desire to make the mathematical connection to celestial phenomena.

  13. How to Pluck a Spectrum from a Planet

    NASA Image and Video Library

    2007-02-21

    This diagram illustrates how astronomers using NASA Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object light spread apart into its basic components, or wavelengths.

  14. Evaluation of the night sky quality at El Leoncito and LEO++ in Argentina

    NASA Astrophysics Data System (ADS)

    Aubé, Martin; García, Beatriz; Fortin, Nicolas; Turcotte, Sara; Mancilla, Alexis; Maya, Javier

    2015-08-01

    Light pollution is a growing concern at many levels, but especially for the astronomical community. Artificial lighting veil celestial objects and disturbs the measurement of night time atmospheric phenomena. This is what motivates our sky brightness measurement experiment in Argentina. Our goal was to determine the quality of two Argentinian observation sites: LEO++ and El Leoncito. Both sites were candidates to host the Cherenkov Telescope Array (CTA). This project consists of an arrangement of many telescopes that can measure high-energy gamma ray emissions via their Cherenkov radiation produced when entering the earth's atmosphere. Even if the two argentinian sites has been excluded from the final CTA site competition, they are still of great interest for other astronomical projects. Especially the El Leoncito site which already hots the CASLEO astronomical complex. In this presentation, we describe the measurement methods used to determine the sky quality. We compared our results with different renowned astronomical sites (Kitt Peak, Arizona, USA, and Mont-Mégantic, Canada). Amongst our results, we found that LEO++ is a high quality site, however there are a lot of aerosols that can interfere with the measurements. El Leoncito shows very low sky brightness levels, which are optimal for low light level detection.

  15. A Study on the Armillary Spheres of the Confucianists in Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Lee, Min Soo; Jeong, Jang Hae

    2010-12-01

    Armillary sphere, generally known as, not only astronomical instrument for observing astronomical phenomena but also symbolizes the royal authority and royal political ideology which is based on Confucianism. Among the well-reputed Confucian scholars were built their own armillary spheres. However, these armillary spheres which exist are damaged and most of parts of its have been lost. We analyzed and measured the remnants of armillary spheres which were made by Toegye Lee Hwang, Uam Song Si-Yeol and Goedam Bae Sang-Yeol who were well-reputed Confucian scholars in Joseon Dynasty, and have been executed the restorations of Toegye Lee Hwang and Song Si-Yeols armillary sphere based on the drawings which were drawn as the original form by analysis and measurement of its remnants.

  16. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  17. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  18. Using Telescopic Observations to Explore the Science of AGN with High School Students

    NASA Astrophysics Data System (ADS)

    McLin, K. M.; Cominsky, L. R.

    2010-12-01

    Over the past several years the NASA E/PO Group at Sonoma State University has operated a small robotic telescope in northern Sonoma County, California. The telescope is used by high school and college instructors and their students from around the United States. Observations have been used both in classroom settings and in after-school or extracurricular activities. It has also been central over the past two summers (2009/2010) as part of a summer science internship program for Sonoma County high school students. The program gave these students an in-depth experience collecting and analyzing astronomical data. This poster describes some of the ways that the telescope has been used to make scientific measurements (as opposed to “pretty pictures”) of astronomical phenomena in high school settings. Some of the obstacles to implementing a set of astronomical observations in the high school classroom will be described, as will the steps we have taken to overcome them. Information is provided on how instructors can become involved in using the telescope and what support is available to help them get started in their classes.

  19. Discovery of Prehistoric Skies

    NASA Astrophysics Data System (ADS)

    Gurshtein, A. A.

    1995-12-01

    It was Charles Francois Dupui, of France, who two centuries ago in his twelve-volume "Origine de tous les cults" (1795) worked out a proposition that all the different religious customs, stories, and dogmas will be found upon examination to have a cradle as one or another aspect of the natural, mainly, astronomical phenomena. It is absolutely correct but he and his spirited followers failed to develop a basic scientific quantitative argument focused on astronomy - chronological distribution of events. It is the first time that a combination of the up-to-date knowledge in archaic symbology and the professional astronomical data for precession and other regular astronomical events constitutes conditions for an absolutely new approach. An astronomical reconstruction of the evolution of the Zodiacal constellations was made, based on the Indo-european and Sumero-Akkadian religio-cultural data, including artifacts such as cult statuettes, cuneiform tablets, cylinder seals and boundary stones. It was argued that the development of 12 houses of the Zodiac in 3 groups of 4 over some six millennia was dictated by the changes made by precession in the positions of the vernal and autumnal equinoxes and the summer and winter solstices. The first quartet of the Zodiacal constellations (Gemini, Virgo, Sagittarius, Pisces) was recognized by the first agriculturists from the Fertile Crescent to learn the four most important Sun positions and to predict the ongoing seasons; it was done as far back as 5,600 B.C. (with a formal error of this determination about +/- 150 years). The second one (Taurus, Leo, Scorpio, Aquarius) was introduced in 2,700 +/- 250 years B.C. by Egyptians with their own animal symbolism that was the etymological root for the term the Zodiac (a circle of animals). This event was followed with the acquaintance of the new calendar and erection of the great pyramids as an eternal sanctuary for their mental triumph. In the first half of 14 century B.C. the Egyptian pharaoh Ekhnaton (Amenhotep 1V) attempted to inaugurate a new four constellation set to fixate the Sun track. The attempt was in vain but it seems the knowledge to go via Moses and the tribes left Egypt for Canaan. According our precessional dating the final design of the Zodiac with 12 houses appeared at 1,200 +/- 400 years B.C. In opposite to the figure 7 which was from the Paleolithic, the first great opus where figure 12 appeared as a sacred one was the Holy Bible. Many other details of the concept proposed are discussed.

  20. Structures of twilight patrol in the "Churyumov's Unified network" to ensure continuous monitoring

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Steklov, E. A.; Slipchenko, A. S.; Romaniuk, Ya. O.; Nevodovskyi, P. V.

    2016-10-01

    1. Three types of astronomical observations, and three classes of astronomical observatories. Over 70% of the observer's time in astronomical observatories accounted for the night of observation after the end of astronomical twilight. Prior to 15.02.2013, from the famous invasion of the Chelyabinsk large meteoroid in morning twilight, astronomers practically no carried out the twilight observations. But it is such morning and evening twilight observation, became the main "highlight" of the authors in the past four years [3, 5, 7]. Results were unexpected, and they allowed us to state that in our time the astronomical observatory (AO) should be divided into AO for nighttime astronomical observations (NAO), daily astronomical observations (DAO) and AO for twilight astronomical observations (SAO). 2. The real problem of AO DAO and SAO. We affirm, that in the interest of health and safety the inhabitants of our cities, astronomers are obliged significantly expand a circle and list of observations; need to include in it astrophysical observations and registration of facts and traces of all kinds of hazardous aerospace invasions into the sky over our cities. Society and the state allocate their money on the development of astronomical observatories, and therefore are entitled to demand recoil in the form of constant monitoring to ensure nocturnal, daytime and twilight control, for their safety the realities of modern complex time. And it is, in the conditions of aggravation of ecological problems, at climate evolution and of the increasing amount of harmful technogenic pollutants emissions in conditions of constant asteroid and comet hazard [10, 11], and especially within the present conditions of hybrid wars [8, 9]. That is why it is necessary give off sufficient observational time for the monitoring control on the facts and trail of all sorts of dangerous invasions. All astronomical observatories could create their own sectors, which would provide ground and space calibrating control of facts and traces of all kinds of dangerous invasions. 3. Twilight patrol of "Churyumov Unified Network" and the study of invasions of fragments of cometary nuclei in the Earth's atmosphere. The costs of the study of the comet Churyumov-Gerasimenko 67P and its nuclei, on all mission of Rosetta-Philae, amounted to about EUR 2 billion [6]. Its results have significantly improved our understanding of the physics of cometary phenomena have further exacerbated problems of asteroid and comet hazard. In 2016, astronomers a lot of effort and time allocated for study of the disintegration of cometary nucleus of Ikeya - Murakami (P / 2010 V1) at least 17 of fragments. The authors have created a twilight patrol of "United Network Churyumov" to implement of daytime and twilight observations

  1. The Future of the Universe.

    ERIC Educational Resources Information Center

    Pasachoff, Jay M.

    1979-01-01

    Discusses some of the basic theories in cosmology, such as Hubble's laws and the big-bang theories, and looks at some of the ideas of astronomers and scientists with respect to their evaluation of the future of the universe. (GA)

  2. Making Science Work.

    ERIC Educational Resources Information Center

    Thomas, Lewis

    1981-01-01

    Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)

  3. Using the software Stellarium teaching as a resource for Astronomy topics in education in Secondary Education

    NASA Astrophysics Data System (ADS)

    Vieira, G. C.; Paganotti, A.; Voelzke, M. R.

    2016-07-01

    This article presents an account of an activity in which the Stellarium software was used for astronomical events education for high school students of IFMG Congonhas. one short course was given, lasting three hours, about eclipses and seasons using Stellarium simulations. In the short course was tried to work and to develop teaching and student learning about astronomical phenomena. For obtaining data two questionnaires were used. The first questionnaire aimed to diagnose the students' knowledge about the occurrence of the phases of the moon, solar eclipses, lunar and seasons. The second questionnaire applied at the end of the short course, sought to analyse whether there was conceptual gain in the learning of the participating students. It was found that most students did not properly explain the reason for the occurrence of the phases of the moon, eclipses and seasons. It was found in the second questionnaire that there was an improvement in the responses. Moreover, it was reported by some students that the using of the software facilitated the understanding of the approached phenomena. In this work emphasis was given to the answers given by students about eclipses and seasons. Part of the data was analysed based on Bardin content analysis techniques (1994).

  4. Oscillators and relaxation phenomena in Pleistocene climate theory

    PubMed Central

    Crucifix, Michel

    2012-01-01

    Ice sheets appeared in the northern hemisphere around 3 Ma (million years) ago and glacial–interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard–Oeschger and Heinrich events. There are numerous theories about these oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow–fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronization between internal climate dynamics and astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 Ma ago. All theories on rapid events reviewed here rely on the concept of a limit cycle excited by changes in the surface freshwater balance of the ocean. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. PMID:22291227

  5. Comets, meteors, and eclipses: Art and science in early Renaissance Italy

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    2002-11-01

    We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more believable, convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (circa 1301-1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards. Halley's Comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and "astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328-30; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20) contain dazzling meteor showers that reveal the artist's observed astronomical phenomena, such as the "radiant" effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent meteors, which do not emanate from the radiant. It is also significant that these artists observed differences between comets and meteors, facts that were not absolutely established until the eighteenth century. In addition we demonstrate that artistic and scientific visual acuity were part of the burgeoning empiricism of the fourteenth century, which eventually yielded modern observational astronomy.

  6. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. Copyright 2002 S. Karger AG, Basel

  7. Light Pollution: A Primer for Astronomers to Engage in Teaching and Outreach

    NASA Astrophysics Data System (ADS)

    Caton, Daniel Bruce

    2018-01-01

    Most astronomers are familiar with the basic problem of light pollution but may not have explored how to teach their students about the problem or to inform officials in their community in order to help mitigate the problem. Indeed, many professional and amateur astronomers leave their light-polluted community to observe the sky from dark research observatories and rural star parties,, and then return to take no action to alleviate and reduce the light pollution in their own community. This is not a sustainable approach, and eventually this will lead to fewer sites to do their observations.In this presentation we give the basics of the problem and provide information on effective solutions. A link will be provided to download a sample PowerPoint, with Notes providing guidance to edit it to include images of both good and bad lighting in their own community. This can be shown to students as part of introductory astronomy and observational techniques courses, so the students might be able to help their with the problem in their own communities. Indeed this may satisfy curriculum requirements as a component of sustainable development. It may also be presented to local planning and permitting officials to develop at least a simple outdoor lighting ordinance.

  8. Life Starting Materials Found in Dusty Disk

    NASA Image and Video Library

    2005-12-20

    This graph, or spectrum, from NASA Spitzer Space Telescope tells astronomers that some of the most basic ingredients of DNA and protein are concentrated in a dusty planet-forming disk circling a young sun-like star called IRS 46.

  9. East Asian observations

    NASA Astrophysics Data System (ADS)

    Stephenson, F. R.

    East Asian observations are of established importance in Applied Historical Astronomy. The earliest astronomical records from this part of the world (China, Japan and Korea) originate from China. These observations, mainly of lunar eclipses, are recorded on oracle bones from the period ca. 1300 - 1050 BC. Virtually all later Chinese and other East Asian astronomical records now exist only in printed copies. The earliest surviving series of solar eclipse observations from any part of the world is contained in the Chunqiu (722 - 481 BC), a chronicle of the Chinese state of Lu. However, not until after 200 BC, with the establishment of a stable empire in China, do detailed astronomical records survive. These are mainly contained in specially compiled astrological treatises in the official dynastic histories. Such records, following the traditional style, extend down to the start of the present century. All classes of phenomena visible to the unaided eye are represented: solar and lunar eclipses, lunar and planetary movements among the constellations, comets, novae and supernovae, meteors, sunspots and the aurora borealis. Parallel, but independent series of observations are recorded in Japanese and Korean history, especially after about AD 800. Sources of Japanese records tend to be more diverse than their Chinese and Korean counterparts, but fortunately Kanda Shigeru (1935) and Ohsaki Shyoji (1994) have made extensive compilations of Japanese astronomical observations down to the 1860s. Throughout East Asia, dates were expressed in terms of a luni-solar calendar.

  10. C++, objected-oriented programming, and astronomical data models

    NASA Technical Reports Server (NTRS)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  11. Consensus on core phenomena and statements describing Basic Body Awareness Therapy within the movement awareness domain in physiotherapy.

    PubMed

    Skjaerven, L H; Mattsson, M; Catalan-Matamoros, D; Parker, A; Gard, G; Gyllensten, A Lundvik

    2018-02-26

    Physiotherapists are facing complex health challenges in the treatment of persons suffering from long-lasting musculoskeletal disorders and mental health problems. Basic Body Awareness Therapy (BBAT) is a physiotherapy approach within the movement awareness domain developed to bridge physical, mental, and relational health challenges. The purpose of this study was to reach a consensus on core phenomena and statements describing BBAT. A consensus-building process was conducted using the nominal group technique (NGT). Twenty-one BBAT experts from 10 European countries participated in a concentrated weekend workshop of 20 hours. All participants signed informed consent. Participants reached a consensus on 138 core phenomena, clustered in three overarching categories: clinical core, historical roots, and research and evaluation phenomena. Of the 106 clinical core phenomena, the participants agreed on three categories of phenomena: movement quality, movement awareness practice, and movement awareness therapy and pedagogy. Furthermore, the participants reached 100 percent consensus on 16 of 30 statements describing BBAT. This study provides a consensus on core phenomena and statements describing BBAT. The data reveal phenomena implemented when promoting movement quality through movement awareness. Data provide clarity in some aspects of the vocabulary as fundamental theory. Further reearch will be developed.

  12. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  13. Strong earthquakes, novae and cosmic ray environment

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    Observations about the relationship between seismic activity and astronomical phenomena are discussed. First, after investigating the seismic data (magnitude 7.0 and over) with the method of superposed epochs it is found that world seismicity evidently increased after the occurring of novae with apparent magnitude brighter than 2.2. Second, a great many earthquakes of magnitude 7.0 and over occurred in the 13th month after two of the largest ground level solar cosmic ray events (GLEs). The causes of three high level phenomena of global seismic activity in 1918-1965 can be related to these, and it is suggested that according to the information of large GLE or bright nova predictions of the times of global intense seismic activity can be made.

  14. feets: feATURE eXTRACTOR for tIME sERIES

    NASA Astrophysics Data System (ADS)

    Cabral, Juan; Sanchez, Bruno; Ramos, Felipe; Gurovich, Sebastián; Granitto, Pablo; VanderPlas, Jake

    2018-06-01

    feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

  15. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1976-01-01

    Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.

  16. Categorization of alternative astronomical and scientifical conceptions of the teachers from the north coast of São Paulo

    NASA Astrophysics Data System (ADS)

    Gonzaga, E. P.

    2016-05-01

    This work deals with the analysis of scientific and alternative astronomical concepts found in the responses of teachers who teach classes Science, Geography and Physic in Basic Education (BE) of the state of the North Coast of São Paulo and how to address the alternative astronomical concepts with students from students Fundamental Education (FE) and Medium Education (ME). Bringing the legal documents regarding the Astronomy in BE, within the national and the São Paulo regions curriculum level, also with rationed researches to the teacher's formation, conceptual errors in books, knowledge non-formal spaces, alternative concepts, Astronomical studies and content analysis for fundamental theoretical. The task executed with the teachers was done via Technical Orientations (TO), promoted by the Director of Education (DE) from Caraguatatuba and region, with the premise to threat the continuous formation giving moments of discussion, practical activities and using the Digital Mobile Planetarium (DMP) with non-formal spaces of knowledge to the Astronomical studies gathering data via questions. Within the analysis of the answers analysis by the teachers, tables were created with the categories that highlight actual situations on the astronomical studies in the North Coast of São Paulo, and demarked the possible paths where the continuous formation will be followed in the future. Aspects checked in the survey were highlighted; such as teachers understand that they need continuing education; teachers have scientific astronomical views on various aspects know to teach concepts of Astronomy at BE; TO is a viable option as continued training and the use of DMP as no formal teaching and learning.

  17. Correlation between the Mayan calendar and ours: Astronomy helps to answer why the most popular correlation (GMT) is wrong

    NASA Astrophysics Data System (ADS)

    Klokočník, J.; Kostelecký, J.; Böhm, V.; Böhm, B.; Vondrák, J.; Vítek, F.

    2008-05-01

    The Maya used their own very precise calendar. When transforming data from the Mayan calendar to ours, or vice versa, a surprisingly large uncertainty is found. The relationship between the two calendars has been investigated by many researchers during the last century and about 50 different values of the transformation coefficient, known as the correlation, have been deduced. They can differ by centuries, potentially yielding an incredibly large error in the relation of Mayan history to the history of other civilizations. The most frequently used correlation is the GMT one (of Goodman-Martínez-Thompson), based largely on historical evidence from colonial times. Astronomy (celestial mechanics) may resolve the problem of the correlation, provided that historians have correctly decoded the records of various astronomical phenomena discovered, namely, in one extremely important and rare Mayan book, the Dresden Codex (DC). This describes (among other matters) observations of various astronomical phenomena (eclipses, conjunctions, maximum elongations, heliacal aspects, etc), made by the Maya. Modern celestial mechanics enables us to compute exactly when the phenomena occurred in the sky for the given place on the Earth, even though far back in time. Here we check (by a completely independent method), confirming the value of the correlation obtained by Böhm & Böhm (1996, 1999). In view of these tests, we advocate rejecting the GMT correlation and replacing it by the Böhm's correlation. We also comment on the criticism of GMT by some investigators. The replacement of GMT by another correlation seems, however, unacceptable to many Mayanists, as they would need to rewrite the whole history of Mesoamerica. The history of the Maya would be - for example with Böhm's correlation - closer to our time by 104 years.

  18. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  19. Interdisciplinary Professional Development: Astrolabes for Medievalists

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2014-06-01

    Astronomers and astronomy educators have significantly broadened the intended audience for their outreach activities, from the traditional venues of public schools, libraries and planetariums to national parks, coffee houses, and concert halls. At the same time, significant attention has been paid to improving the quality and relevance of professional development directed toward preservice and inservice science teachers. Many of our outreach and professional development programs have also become increasingly creative in their use of interdisciplinary connections to astronomy, such as cultural astronomy and the history of astronomy. This poster describes a specific example of interdisciplinary professional development directed at a different audience, humanities faculty and researchers, through hands-on workshops on the basic astronomical background and usage of an astrolabe conducted at the International Congress on Medieval Studies at Western Michigan University in 2013 and 2014. The goal was to explain the basic astronomy behind astrolabes (as well as their cultural relevance) to medieval scholars in history, literature, and other disciplines. The intention was to increase their comfort with manipulating and explaining astrolabes to a basic level where they could share their knowledge with their own college classes. In this way the relevance of astronomy to myriad human endeavors could be reinforced by humanities faculty within their own courses.

  20. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 34 Bow Shock Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 2 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Astronomy and its role in ancient Mesoamerica

    NASA Astrophysics Data System (ADS)

    Šprajc, Ivan

    2011-06-01

    The observation of the sky had an important rôle among the Maya, Aztecs and other prehispanic peoples of Mesoamerica. Their familiarity with the regularities of the apparent motion of the Sun, the Moon and bright planets is attested in a large amount of astronomical data contained in codices and monumental hieroglyphic inscriptions, as well as in their sophisticated calendrical system. On the other hand, the study of architectural alignments has disclosed that civic and ceremonial buildings were largely oriented on astronomical grounds, mostly to sunrises and sunsets on certain dates, allowing the use of observational calendars that facilitated a proper scheduling of agricultural and the associated ritual activities in the yearly cycle. Both accurate knowledge and other astronomically-derived concepts reveal that the significance attributed to certain celestial events by the ancient Mesoamericans can be explained in terms of the relationship of these phenomena with specific environmental and cultural facts, such as seasonal climatic changes and subsistence strategies. It was particularly due to its practical utility that astronomy, intertwined with religious ideas and practices, had such an important place in the worldview and, consequently, in the cosmologically substantiated political ideology of Mesoamerican societies

  3. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  4. You Can Touch This! Bringing HST images to life as 3-D models

    NASA Astrophysics Data System (ADS)

    Christian, Carol A.; Nota, A.; Grice, N. A.; Sabbi, E.; Shaheen, N.; Greenfield, P.; Hurst, A.; Kane, S.; Rao, R.; Dutterer, J.; de Mink, S. E.

    2014-01-01

    We present the very first results of an innovative process to transform Hubble images into tactile 3-D models of astronomical objects. We have created a very new, unique tool for understanding astronomical phenomena, especially designed to make astronomy accessible to visually impaired children and adults. From the multicolor images of stellar clusters, we construct 3-D computer models that are digitally sliced into layers, each featuring touchable patterning and Braille characters, and are printed on a 3-D printer. The slices are then fitted together, so that the user can explore the structure of the cluster environment with their fingertips, slice-by-slice, analogous to a visual fly-through. Students will be able to identify and spatially locate the different components of these complex astronomical objects, namely gas, dust and stars, and will learn about the formation and composition of stellar clusters. The primary audiences for the 3D models are middle school and high school blind students and, secondarily, blind adults. However, we believe that the final materials will address a broad range of individuals with varied and multi-sensory learning styles, and will be interesting and visually appealing to the public at large.

  5. Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

    NASA Image and Video Library

    2017-12-08

    AUGUST 31, 2011: A team of scientists has collected enough high-resolution Hubble Space Telescope images over a 14-year period to stitch together time-lapse movies of powerful jets ejected from three young stars. The jets, a byproduct of gas accretion around newly forming stars, shoot off at supersonic speeds in opposite directions through space. These phenomena are providing clues about the final stages of a star’s birth, offering a peek at how our Sun came into existence 4.5 billion years ago. Hubble’s unprecedented sharpness allows astronomers to see changes in the jets over just a few years’ time. Most astronomical processes change over timescales that are much longer than a human lifetime. To read more go to: www.nasa.gov/mission_pages/hubble/science/supersonic-jets... Object Name: HH 47 Image Type: Astronomical Credit: NASA, ESA, and P. Hartigan (Rice University)..NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. SIP: A Web-Based Astronomical Image Processing Program

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  7. Celestial-themed Cartoons Captivate Children

    NASA Astrophysics Data System (ADS)

    Cappelli, V.; di Benedetto, C.

    2010-12-01

    Attivamente: Big discoveries with Galileo and Phineas & Ferb, an educational entertainment project for children, was a collaboration between Disney Television Italy and the Education and Public Outreach office of the INAF Astronomical Observatory of Padua, Italy. The project started during the International Year of Astronomy 2009 and came to an end in June 2010. It consisted of a cartoon series, several articles in a Disney magazine and an educational kit focused on Galileo Galilei and the Moon. The kit, called the First Astronomical Kit, was distributed to 30 000 children in Italy, and included a board game about the Moon, an observation diary and a lunar fact card. The aim of the kit was to give children some basic astronomical knowledge and to demonstrate the essential role that observation plays in understanding the heavens. This article discusses how a research institute and a major entertainment company -- each with very different working practices -- were able to work together to form a successful partnership.

  8. Spreading DIRT with Web Services

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.; Plante, R. L.

    2005-12-01

    Most of the systems currently used to analyze astronomical data were designed and implemented more than a decade ago. Although they still are very useful for analysis, one often would like a better interface to newer concepts like archives, Virtual Observatories and GRID. Further, incompatibilities between most of the current systems with respect to control language and semantics make it cumbersome to mix applications from different origins. An OPTICON Network, funded by the Sixth Framework Programme of the European Commission, started this year to discuss high-level needs for an astronomical data analysis environment which could provide a flexible access to both legacy applications and new astronomical resources. The main objective of the Network is to establish widely accepted requirements and basic design recommendations for such an environment. The hope is that this effort will help other projects, which consider to implement such systems, in collaborating and achieving a common environment.

  9. Tsunami propagation modelling - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Dao, M. H.; Tkalich, P.

    2007-12-01

    Indian Ocean (2004) Tsunami and following tragic consequences demonstrated lack of relevant experience and preparedness among involved coastal nations. After the event, scientific and forecasting circles of affected countries have started a capacity building to tackle similar problems in the future. Different approaches have been used for tsunami propagation, such as Boussinesq and Nonlinear Shallow Water Equations (NSWE). These approximations were obtained assuming different relevant importance of nonlinear, dispersion and spatial gradient variation phenomena and terms. The paper describes further development of original TUNAMI-N2 model to take into account additional phenomena: astronomic tide, sea bottom friction, dispersion, Coriolis force, and spherical curvature. The code is modified to be suitable for operational forecasting, and the resulting version (TUNAMI-N2-NUS) is verified using test cases, results of other models, and real case scenarios. Using the 2004 Tsunami event as one of the scenarios, the paper examines sensitivity of numerical solutions to variation of different phenomena and parameters, and the results are analyzed and ranked accordingly.

  10. Systematic Serendipity: A Method to Discover the Anomalous

    NASA Astrophysics Data System (ADS)

    Giles, Daniel; Walkowicz, Lucianne

    2018-01-01

    One of the challenges in the era of big data astronomical surveys is identifying anomalous data, data that exhibits as-of-yet unobserved behavior. These data may result from systematic errors, extreme (or rare) forms of known phenomena, or, most interestingly, truly novel phenomena that has historically required a trained eye and often fortuitous circumstance to identify. We describe a method that uses machine clustering techniques to discover anomalous data in Kepler lightcurves, as a step towards systematizing the detection of novel phenomena in the era of LSST. As a proof of concept, we apply our anomaly detection method to Kepler data including Boyajian's Star (KIC 8462852). We examine quarters 4, 8, 11, and 16 of the Kepler data which contain Boyajian’s Star acting normally (quarters 4 and 11) and anomalously (quarters 8 and 16). We demonstrate that our method is capable of identifying Boyajian’s Star’s anomalous behavior in quarters of interest, and we further identify other anomalous light curves that exhibit a range of interesting variability.

  11. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  12. Marae o te Rangi, Temples of the Heavens: Explorations in Polynesian Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Kirch, Patrick V.

    2015-08-01

    It is well established that the ancient Polynesians possessed sophisticated knowledge of astronomy, applying their understanding of the movements of heavenly bodies among other things to long-distance navigation and to their calendrical systems. Nonetheless, Polynesian archaeologists have been reticent to apply the methods of archaeoastronomy to the interpretation of prehistoric monumental sites, especially temples (marae and heiau). This presentation draws upon examples from the Mangareva and Hawaiian archipelagoes to demonstrate that Polynesian ritual architecture frequently exhibits regular patterns of orientation, suggesting that these temples were aligned with particular astronomical phenomena, such as solstice, equinox, and Pleiades rising positions. The argument is advanced that Polynesian temples were not only places of offering and sacrifice to the gods, but also locations for formal astronomical observation. In part, such observation was presumably crucial to keeping the Polynesian lunar calendar synchronized with the solar year.

  13. A linguist's angle on the Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Coates, Richard

    2008-10-01

    There is no shortage of suggestions for the astronomical events that may have given rise to the Bible's descriptions of the Star of Bethlehem. In this account, I consider the question from a linguist's point of view, focusing on the language used to describe phenomena in the sky around 2000 years ago. What would an astrologer have meant by ``we have seen his star in the East''? And what events might have been both visible in the conditions described, and considered of significance? Scholars working in this area cluster in groups: the comet group, the planetary group, the supernova group, and so on. None has yet succeeded in delivering a fatal blow to the others' accounts. I may be in a group of one for the time being: the astrological group. I present here a type of argument that may reconcile astronomical events, astrological learning of 2000 years ago and biblical accounts.

  14. Zöllner's Universe

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2012-12-01

    The idea that space is not Euclidean by necessity, and that there are other kinds of "curved" spaces, diffused slowly to the physical and astronomical sciences. Until Einstein's general theory of relativity, only a handful of astronomers contemplated a connection between non-Euclidean geometry and real space. One of them, the German astrophysicist Johann Carl Friedrich Zöllner (1834-1882), suggested in 1872 a remarkable cosmological model describing a finite universe in closed space. I examine Zöllner's little-known contribution to cosmology and also his even more unorthodox speculations of a four-dimensional space including both physical and spiritual phenomena. I provide an overview of Zöllner's scientific work, of his status in the German scientific community, and of the controversies caused by his polemical style of science. Zöllner's cosmology was effectively forgotten, but there is no reason why it should remain an unwritten chapter in the history of science.

  15. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  16. Infrared upconversion for astronomy

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.

    1977-01-01

    The basic theory of upconversion is presented, along with a brief historical summary of upconversion techniques. Upconverters were used in astronomical studies, but have met with only modest success. Upconversion will become a useful detection method for astronomy only if substantial but perhaps forseeable, improvements can be realized.

  17. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  18. Proyecto multidisciplinar `Marte nos visita'

    NASA Astrophysics Data System (ADS)

    Merlo, D.; Merlo, N.; Parodi, B.; Garis, A.; Peralta, G.; Rovessi, V.; Urrutia, S.; Calderón, J.; Bustos Fierro, I.; Melia, R.

    The planets Earth and Mars reached in August 2003 the most approximation in the last 58,000 years. In order to that we carried out a transversal study of red planet, joining the knowledges from several subjects of second school year of unified basic cycle (eighth basic general education) at I.P.E.M. No 249 "Nicolás Copérnico" (a public secondary institution from Córdoba, Argentine). In this study, activities in accordance with current contents has been proposed by common consents of each teacher. Besides, students visited Córdoba Astronomical Observatory in order to search informations and received a multimedia exposition about of astronomical event and a performance of the "Carl Sagan" Moveable Planetary. Finally, each student carried out practical works and wrote an integrative report, which one has been evaluated and exposed at ExpoIPEM 2003, an annual exhibition of several specialities that Institution offers in its specialization cycle (10-12 grade), where the annual students' activities are exhibited too (workshops, school projects, etc.).

  19. Disappearance and disintegration of comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  20. Evaluating the Eclipse: How good was it?

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; InsightSTEM Evaluation Team

    2018-01-01

    We present findings from the evaluation program carried out of education, public outreach, and communication activities around the "Great American Eclipse" of August 21, 2017. We include findings drawn from the experiences of 30 participants in planning activities prior to the eclipse and 31 recipients of mini-grants for eclipse activities supported by the American Astronomical Society through a grant from the National Science Foundation. We synthesize evaluations gathered by these and other volunteering organizations to provide a multi-site picture of experiences and learning outcomes at eclipse-related events - both in the path of totality and in partial eclipse settings. We make use of qualitative and quantitative responses representing over 30,000 individuals who observed (or tried to observe) the eclipse. We will share findings from across the range of programs included in our evaluation network along with specific highlights. We emphasize a reflection on the motivation and activity behind the 2017 eclipse, and how to leverage the lessons learned for future events on this scale (such as the eclipse of April 8, 2024) along with messages relevant to other events connected with astronomical phenomena, or in multi-site settings.This work was supported in part by the National Science Foundation under Grant No. 1564535 awarded to the American Astronomical Society. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the American Astronomical Society.

  1. sick: The Spectroscopic Inference Crank

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.

  2. 21-cm Observations with the NASA ADAS 18-meter Antenna System: Baseline Astronomical Observations and Measurements of Performance Characteristics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2001-12-01

    Herein we report astronomical observations made with the NASA Advanced Data Acquisition System (ADAS). The NASA ADAS antenna, located at NASA Goddard Spaceflight Center's Wallops Flight Facility, Virginia, is an 18-meter X-band antenna system that has been primarily used for satellite tracking and served as the telecommunication station for the NASA IUE satellite until ca. 1997. A joint NASA-Morehead State University (MSU)-Kentucky NSF EPSCoR venture has been initiated to upgrade and relocate the antenna system to MSU's Astrophysics Laboratory where it will provide a research instrument and active laboratory for undergraduate students as well as be engaged in satellite tracking missions. As part of the relocation efforts, many systems will be upgraded including replacement of a hydrostatic azimuth bearing with a high-precision electromechanical bearing, a new servo system, and Ku-capable reflector surface. It is widely believed that there are still contributions that small aperture centimeter-wave instruments can make utilizing three primary observing strategies: 1.) longitudinal studies of RF variations in cosmic phenomena, 2.) surveys of large areas of sky, and 3.) fast reactions to transient phenomena. MSU faculty and staff along with NASA engineers re-outfitted the ADAS system with RF systems and upgraded servo controllers during the spring and summer of 2001. Empirical measurements of primary system performance characteristics were made including G/T (at S- and L bands), noise figures, pointing and tracking accuracies, and drive speeds and accelerations. Baseline astronomical observations were made with the MSU L-band receiver using a 6 MHz bandwidth centered at 1420 MHz (21-cm) and observing over a range of frequencies (up to 2.5 MHz, tunable over the 6 MHz window) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. Baseline observations of radio sources herein reported include Cygnus A, 3C 157, 3C 48 and the Andromeda Galaxy. After its transition to Morehead State University (which is expected to be completed in 2004), the 18-meter will be available for use by students and faculty from all U.S. institutions for astronomical observations. Transitioning of the 18-meter antenna is made possible by NASA, and the Kentucky NSF EPSCoR program and by grants from the U.S. Small Business Administration.

  3. Astrophysics: An Integrative Course

    ERIC Educational Resources Information Center

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  4. Variable interstellar absorption lines in young stellar aggregates

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.; Vješnica, S.; Melekh, D.; Bondar, A.

    2018-06-01

    The variability of interstellar atomic lines, sporadically reported in the astronomical literature, has been confirmed both in the case of the nearby hot star δ Ori and the very young and violent star-forming region η Carinae, using high-resolution echelle spectra. The presented variability concerns the intensities and profiles of Na I, K I and Ca II. The time-scale of the above-mentioned variations clearly suggests very local phenomena as their cause. It is important to say that not all interstellar lines vary in unison.

  5. AXAF: The Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pellerin, Charles J.; Weisskopf, Martin C.; Neal, Valerie

    2005-01-01

    X-rays are produced by violent, energetic, and explosive phenomena in the universe. The Advanced X-Ray Astrophysics Facility (AXAF) is an orbiting observatory designed to view these X-rays. The National Academy of Sciences Survey Committee on Astronomy and Astrophysics has recommended AXAF as the #1 priority among all major new astronomy programs. The scientific importance of AXAF was also highlighted by the Academy's Survey Committee on Physics. Why has AXAF earned such enthusiastic support, not only among astronomers, but also broadly within the nation's scientific community?

  6. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  7. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  8. Cirrus and Future Space Based Astronomy

    NASA Technical Reports Server (NTRS)

    Gautier, T. N.

    1993-01-01

    Astronomical observations from space make possible observations of sensitivity and spatial resolution impossible in the past. This increase in sensitivity will both make possible the observation of new phenomena and will bring observations against limitations not encountered before. This paper discusses the effects that infrared cirrus and diffuse interstellar clouds will have on space based observations. Some special opportunities provided by space observations of cirrus are presented and a partial list of currently planned observations of cirrus by space telescopes is given.

  9. Hidden Attraction - The History and Mystery of Magnetism

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    1996-04-01

    Long one of nature's most fascinating phenomena, magnetism was once the subject of many superstitions. Magnets were thought useful to thieves, effective as a love potion, and as a cure for gout or spasms. They could remove sorcery from women and put demons to flight and even reconcile married couples. It was said that a lodestone pickled in the salt of sucking fish had the power to attract gold. Today, these beliefs have been put aside, but magnetism is no less remarkable for our modern understanding of it. In Hidden Attraction , Gerrit L. Verschuur, a noted astronomer and National Book Award nominee for The Invisible Universe , traces the history of our fascination with magnetism, from the mystery and superstition that propelled the first alchemical experiments with lodestone, through the more tangible works of Faraday, Maxwell, Hertz and other great pioneers of magnetism (scientists responsible for the extraordinary advances in modern science and technology, including radio, the telephone, and computers, that characterize the twentieth century), to state-of-the-art theories that see magnetism as a basic force in the universe. Boasting many informative illustrations, this is an adventure of the mind, using the specific phenomenon of magnetism to show how we have moved from an era of superstitions to one in which the Theory of Everything looms on the horizon.

  10. Teaching cardiovascular physiology with equivalent electronic circuits in a practically oriented teaching module.

    PubMed

    Ribaric, Samo; Kordas, Marjan

    2011-06-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.

  11. The Parallel Globe: A Powerful Instrument to Perform Investigations of Earth's Illumination

    ERIC Educational Resources Information Center

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2015-01-01

    Many researchers have documented the difficulties for learners of different ages and preparations in understanding basic astronomical concepts. Traditional instructional strategies and communication media do not seem to be effective in producing meaningful understanding, or even induce misconceptions and misinterpretations. In line with recent…

  12. Optical Transformation during Movement: Review of the Optical Concomitants of Egomotion

    DTIC Science & Technology

    1982-10-01

    Sir Fred Hioyle, thq astronomer, derivEd thp basic relationship in a footnote tD a science fiction Look ( Hoyle , 1973, pp. 15-17). Succr-.ssuliy...I. Memo No. 572, Artificial Intelligence Laboratory, d~ssachusetts Institute of Technology, April 1980. Egomotion Flow Pattern 66 Hoyle , F. The black

  13. Falsification and Demarcation in Astronomy and Cosmology

    ERIC Educational Resources Information Center

    Sovacool, Benjamin

    2005-01-01

    This work inaugurates a critical inquiry into whether the ideas of Karl Popper, a philosopher of science, are used by astronomers and astrophysicists, a practicing community of scientists. It examines four basic components of Karl Popper's philosophy falsification, prohibition, simplicity, and risk taking and the extent that these themes become…

  14. A Question and Answer Guide to Astronomy

    NASA Astrophysics Data System (ADS)

    Christian, Carol; Roy, Jean-René

    2017-03-01

    Preface; 1. The sky viewed from Earth; 2. The Earth and Moon system; 3. The Solar System; 4. Stars and stellar systems; 5. Galaxies and the Universe; 6. Life in the Universe; 7. Amateur astronomy; 8. Telescopes and instruments; Unit conversion and basic physical and astronomical measurements; References; Bibliography; Index.

  15. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  16. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  17. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    The night sky, with all its delights and mysteries, enthrall professional and amateur astronomers alike. The discrete data sets acquired by professional astronomers via their approved observing programs at various national facilities are supplemented by the nearly daily observations of the same celestial object by amateur astronomers around the world. The emerging partnerships between professional and dedicated amateur astronomers rely on creating a niche for long timeline of multispectral remote sensing. "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by ground-based professional astronomers and spacecraft missions. We shall present results from our collaborations to observe the recent global upheaval on Jupiter for the past five years and illustrate the strong synergy between the two groups. Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. One set of features we are currently tracking is the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images (1980-1981). Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. During the recent NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-μm hot spots as early as April 2012, with corresponding visible dark spots. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions. With the active inclusion and use of emerging social media (Facebook, Twitter, etc.), the near daily communication and updates (via email, Skype, Facebook) between the professional and amateur astronomers is becoming a powerful tool for ground-based remote sensing. The archival of amateur data via global repositories such as Planetary Virtual Observatory and Laboratory (PVOL), The Association of Lunar and Planetary Observers (ALPO) and British Astronomical Association (BAA); and development of data reduction software, independent of professional astronomer community, provides an additional resource and dimension to scientific research. We shall present preliminary results that are the outcomes of the "Pro-Am" collaboration in the case of the re-emergence of Jupiter's 5-micron hot spots and highlight several members of our global amateur astronomer network.

  18. Supernatural/Paranormal Phenomena: A Passionate Closer Look

    NASA Astrophysics Data System (ADS)

    Hameed, S.; Robinson, G.; Maulton, J.

    2003-05-01

    A collaboration between a psychologist, a philosopher, and an astronomer resulted in an inter-term (January) course, titled "Supernatural/Paranormal Phenomena: A Passionate Closer Look" at Smith College. The main purpose of the course was to provide students with the tools to evaluate the pseudo-sciences that are so enticing in today's complex and stressful world. We examined some of the reasons why people are attracted to New-Age enterprises that claim to: provide personal insight and social guidance from stars and planets; communicate with the dead; predict the future; prove contact with extraterrestrial beings. The course provided us with an opportunity to introduce the methodology of science and compare it with the claims made by the defenders of pseudo-sciences. We also conducted a survey of paranormal beliefs of enrolled students before and after our inter-term class.

  19. Did Aboriginal Australians record a simultaneous eclipse and aurora in their oral traditions?

    NASA Astrophysics Data System (ADS)

    Fuller, Robert S.; Hamacher, Duane W.

    2017-12-01

    We investigate an Australian Aboriginal cultural story that seems to describe an extraordinary series of astronomical events occurring at the same time. We hypothesise that this was a witnessed natural event and explore natural phenomena that could account for the description. We select a thunderstorm, total solar eclipse, and strong Aurora Australis as the most likely candidates, then conclude a plausible date of 764 CE. We evaluate the different factors that would determine whether all these events could have been visible, include meteorological data, alternative total solar eclipse dates, solar activity cycles, aurorae appearances, and sky brightness during total solar eclipses. We conduct this study as a test-case for rigorously and systematically examining descriptions of rare natural phenomena in oral traditions, highlighting the difficulties and challenges with interpreting this type of hypothesis.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  1. Integration of the digital technologies in the teaching of astronomy

    NASA Astrophysics Data System (ADS)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group has researched little or no knowledge of astronomy-related topics, which can be explained by the exclusion of astronomy in basic education in Brazil; (iii) the analysis of the final questionnaire showed that there was significant learning (Ausubel; Novak and Hanesian, 1978), since the results indicate a significant improvement in student responses, (iv) the results indicate a high level of student satisfaction, and; (v) viability of resource use involving digital technologies in the teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs. When the study of sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources such as models, observations, real and virtual experiments, animations, simulations, video classes, can arouse students' interest in the conceptual content, different from what occurs when the study permits only using conventional resources, as books and handouts. D.P. Ausubel; J.D. Novak; H. Hanesian. Educational psychology: a cognitive view. 2nd. ed. New York: Holt, Rinehart and Winston, 1978. 733p. M. R. Voelzke; E. P. Gonzaga. Analysis of the astronomical concepts presented by teachers of some brazilian state schools. Journal of Science Education, v. 14, n.1, 23-25, 2013.

  2. Kinds of Astronomy-5

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Astronomers study light and basically, almost everything we know about the universe has been figured out through the study of light gathered by telescopes on the earth, in the earth's atmosphere, and in space. This light comes in many different colors, the sum of which comprises what is commonly I known as the electromagnetic (EM) spectrum. Unfortunately, the earth's atmosphere blocks almost all of wavelengths in the EM spectrum. Only the visible (400-700 mn) and radio (approx. 1-150 m) "windows" are accessible from the ground, and thus have the longest observational "history." These early restrictions on the observational astronomer also gave rise to classifying "kinds" of astronomy based on their respective EM portion, such as the term "radio astronomy."

  3. A concept of a space hazard counteraction system: Astronomical aspects

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.

    2013-07-01

    The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.

  4. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  5. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  6. The first astronomical hypothesis based on cinematographical observations: Costa Lobo's 1912 evidence for polar flattening of the moon

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor; Malaquias, Isabel; Fernandes, João

    2010-07-01

    Acceptance by the scientific community of results obtained with new technology can be a complex process. A particularly good example is provided by the unexpected hypothesis raised by Francisco Miranda da Costa Lobo upon examination of the cinematographic film obtained during the solar eclipse of 17 April 1912. Contrary to contemporary practice this eclipse was eagerly awaited in view of its astrometrical rather than astrophysical scientific interest. The observation of this hybrid eclipse provided, in theory, a good opportunity to improve several astrometric parameters, and in particular the Moon's apparent diameter. Observations were performed from Portugal to Russia and, for the first time, movie cameras were widely deployed to register astronomical phenomena. Upon analysing the film obtained at Ovar (Portugal), Costa Lobo realised that during totality Baily's Beads were not symmetrically distributed around the Moon. As an explanation and opposing current belief he proposed a lunar flattening in the range 1/1156 to 1/380. Initially other eclipse observers supported Costa Lobo's claim. In particular, Father Willaert obtained a flattening value of 1/2050 from his cinematographic film taken at Namur (Belgium). However, these results were quickly disregarded by the international astronomical community which favoured an explanation based upon the irregularities of the lunar profile. In this paper we recall the characteristics of the 17 April 1912 eclipse and the cinematographic observations, and review the results obtained. We conclude that the lack of attention paid by the astronomical community to the new cinematographical results and Camille Flammarion's superficial analysis of the data were instrumental in the rejection of Costa Lobo's hypothesis.

  7. Special astronomical configurations, solar activity and deep degassing as a trigger of natural hazards

    NASA Astrophysics Data System (ADS)

    Natyaganov, Vladimir; Syvorotkin, Vladimir; Fedorov, Valeriy; Shopin, Sergey

    2016-04-01

    Extraordinary cases of tectonic events (strong earthquakes, volcano eruptions), mine explosions, typhoons, hurricanes, tornado outbreak sequences, ball lightnings, transient luminous events are analyzed in relation with special astronomical configurations, which are specific relative positions of the Sun, Earth, Moon and the closest planets of the Solar System (Venus, Mars and Jupiter) [1]. Usage of special astronomical coordinate systems give evidence not only of correlations but also of hidden causes-and-effect relations between the analyzed phenomena. The geocentric ecliptic latitude system is an example of such astronomical coordinate systems. It gives clear evidence of coherence between strong earthquakes and the maximal Moon declination from the plane of the ecliptic. Extraordinary cases of planet activity from the beginning of XX century till the present time are shown in the years of special astronomical configurations and abrupt increasing of solar activity. According to the empirical scheme of short-term earthquake prediction [3], geomagnetic disturbances are the triggers of earthquakes. Geomagnetic disturbances perform electromagnetic pumping (electromagnetic excitation) of the Earth's interior in the regions of intersections of seismomagnetic meridians with the plate boundaries as a result of electrothermal breakdowns in the heterogeneous medium of tectonic faults. This results in the local intensification of deep degassing [4], decreasing of shear strength of the medium that triggers earthquakes usually after 2 or 3 weeks (±2 days) after the geomagnetic disturbance. Examples of officially registered predictions of Kamchatka earthquakes with M7+ without missing events, including deep-focus earthquakes in the Okhotsk Sea since the year of 2002, are shown. It is discussed correlations and possible cause-and-effect relations between a different phenomena such as - dangerous natural hazardous events such as the record tornado outbreak sequences in the USA (May 2003, 400 tornadoes in 20 states and the 2011 Superb Outbreak in April 2011 (580 tornadoes), which corresponds to a third and about a half of the average annual number of tornadoes) - naturally-anthropogenic accidents with gas explosions in diggings and coal mines [4]; - special Moon phases (new moons and full moons); - local intensification of deep hydrogen-methane degassing; - extensive spatial anomalies of total ozone content in the stratosphere; - strong geomagnetic disturbances. The work was financially supported by the Ministry of Education and Science of the Russian Federation (in accordance with the requirements of the contract No. 14.577.21.0109, project UID RFMEFI57714X0109) References 1. V. M. Fedorov, Gravitational factors and astronomical chronology of geosphere processes [Gravitacionnye faktory i astronomicheskaja hronologija geosfernyh processov]. Moscow State University, Moscow, 2000. 368p. (In Russian) 2. V. L. Natyaganov, A. M. Nechaev, I. V. Stepanov, "Spatio-tempral relations of planet tectonic activity [Prostranstvenno-vremennye zakonomernosti tektonicheskoj aktivnosti planety]", Eurasian Union of Scientists, 2015, No. 3(12), Vol. 8. pp. 120-123. (In Russian) 3. L. N. Doda, V. L. Natyaganov, I. V. Stepanov, "An empirical scheme of short-term earthquake prediction," Doklady Earth Sciences, vol. 453, no.5, pp.551-557, Dec., 2013 4. V. L. Syvorotkin. Deep degassing and global catastrophes. Geoinformcentr. Moscow, 2002, 250 p. (In Russian)

  8. A classroom activity and laboratory on astronomical scale

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael

    2017-10-01

    The four basics "scales" at which astronomy is studied, that of (1) the Earth-Moon system, (2) the solar system, (3) the galaxy, and (4) the universe (Fig. 1), are a common place to start an intro astronomy course. In fact, courses and textbooks are often divided into approximately four sections based on these scales.

  9. Angles and Range: Initial Orbital Determination with the Air Force Space Surveillance Telescope (AFSST)

    DTIC Science & Technology

    2008-09-01

    Tycho-2 [12], UCAC-2 [8], USNO-B1.0 [7] supplemented with data from 2MASS [13]. The final intrinsic issue is whether terrestrial parallax...www.ipac.caltech.edu/ 2mass /releases/allsky/ [14] Strand, K. Aa. 1963, “Trigonometric Parallaxes” in Basic Astronomical Data (University of Chicago

  10. Astronomical! 44 Activities, Experiments, and Projects. Classroom Resource 0-27440.

    ERIC Educational Resources Information Center

    Walker, Ormiston H.

    This is a resource book for four major areas of study: basic astronomy, a star's life, the planets, and the atmosphere. The activities and demonstrations included can be done in a classroom setting during the day by using readily available materials. Topics covered include: refracting and reflecting telescopes, star finder, circumpolar…

  11. Studies in the History of Astronomy. Issue 32 %t Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXII

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy. Its basic headlines are: Cosmology and cosmogony of the 20th century; History of observations and astronomical organizations; Scientists and their works; Astronomy and society; Publications and memoirs; Astronomy and astrology; Memory of scientists

  12. Back to Basics: Naked-Eye Astronomical Observation

    ERIC Educational Resources Information Center

    Barclay, Charles

    2003-01-01

    For pupils of both sexes and all ages from about six upwards, the subject of Astronomy holds many fascinations--the rapid changes in knowledge, the large resource of available IT packages and above all the beautiful pictures from Hubble and the large Earth-based telescopes. This article, however, stresses the excitement and importance of naked-eye…

  13. JWST NIRCam Time Series Observations

    NASA Technical Reports Server (NTRS)

    Greene, Tom; Schlawin, E.

    2017-01-01

    We explain how to make time-series observations with the Near-Infrared camera (NIRCam) science instrument of the James Webb Space Telescope. Both photometric and spectroscopic observations are described. We present the basic capabilities and performance of NIRCam and show examples of how to set its observing parameters using the Space Telescope Science Institute's Astronomer's Proposal Tool (APT).

  14. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  15. Optical Instability of the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kucherov, N. I. (Editor)

    1966-01-01

    The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.

  16. A Stand-Alone Interactive Physics Showcase

    ERIC Educational Resources Information Center

    Pfaff, Daniel; Hagelgans, Anja; Weidemuller, Matthias; Bretzer, Klaus

    2012-01-01

    We present a showcase with interactive exhibits of basic physical experiments that constitutes a complementary method for teaching physics and interesting students in physical phenomena. Our interactive physics showcase, shown in Fig. 1, stimulates interest for science by letting the students experience, firsthand, surprising phenomena and…

  17. Supporting Evidence for the Astronomically Calibrated Age of Fish Canyon Sanidine

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.; Storey, M.; Zeeden, C.; Kuiper, K.; Hilgen, F.

    2010-12-01

    The relative nature of the 40Ar/39Ar radio-isotopic dating technique requires that the age and error of the monitor mineral be accurately known. The most widely accepted monitor for Cenozoic geochronology is the Fish Canyon sanidine (FCs), whose recommended published ages have varied by up to 2% over the past two decades. To reconcile the discrepancy among recommended ages, researchers have turned to the use of (i) intercalibration experiments with primary argon standards, (ii) cross-calibration with U-Pb ages, and (iii) cross-calibration with sanidine-hosted tephras present in astronomically tuned stratigraphic sections. The increasingly robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years, suggests this method of intercalibration as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated age of 28.201 ± 0.046 Ma (2σ), based upon the Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from a tephra intercalated in another Mediterranean-based astronomically tuned section. The direct tuning of this section was achieved through correlation to long (~400 kyr) and short (~100 kyr) eccentricity, followed by tuning of basic sedimentary cycles to precession and summer insolation, using the La2004(1,1) astronomical solution (Laskar, et al., 2004). We employed a Nu Instruments Noblesse multi-collector noble gas mass spectrometer for the 40Ar/39Ar experiments, analyzing single crystals of FCs relative to sanidines from the astronomically dated tephra. The use of the multi-collector instrument allowed us to obtain high precision analyses with a level of precision for fully propagated external errors for FCs near the 0.1% goal of EARTHTIME. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 215458.

  18. A Distant Planet: Finding Superman's Krypton

    NASA Astrophysics Data System (ADS)

    Ricca, B.

    2016-01-01

    In 2012, Neil deGrasse Tyson made headlines when he appeared in a Superman comic book and pinpointed a real planet (located in Corvus) that matched the description of Superman's homeworld, the fictional planet of Krypton. This story tracked all over the world. Why? I will look at the figure of Superman, whose backstory—orphan from an exploding planet—is somehow known by everyone from the age of eight on. I will look at how specific astronomical phenomena (in the sky and in the news) may have inspired Superman's young teenaged creators in the 1930s to create this iconic modern myth—a myth, like many, grounded in astronomy. My goal is to show that comics—which we normally think of as juvenile, throwaway entertainment— actually tried to base themselves (and certainly were inspired by) actual astronomical events in the thirties and forties, made more accessible to the public by new scientific explanations, including a real supernova that may have inspired the destruction of Krypton.

  19. Conference Summary

    NASA Astrophysics Data System (ADS)

    Sanders, David B.

    2014-07-01

    This conference on ``Multi-wavelength AGN Surveys and Studies'' has provided a detailed look at the explosive growth over the past decade, of available astronomical data from a growing list of large scale sky surveys, from radio-to-gamma rays. We are entering an era were multi-epoch (months to weeks) surveys of the entire sky, and near-instantaneous follow-up observations of variable sources, are elevating time-domain astronomy to where it is becoming a major contributor to our understanding of Active Galactic Nuclei (AGN). While we can marvel at the range of extragalactic phenomena dispayed by sources discovered in the original ``Markarian Survey'' - the first large-scale objective prism survey of the Northern Sky carried out at the Byurakan Astronomical Observtory almost a half-century ago - it is clear from the talks and posters presented at this meeting that the data to be be obtained over the next decade will be needed if we are to finally understand which phase of galaxy evolution each Markarian Galaxy represents.

  20. Astronomy Education using the Web and a Computer Algebra System

    NASA Astrophysics Data System (ADS)

    Flurchick, K. M.; Culver, Roger B.; Griego, Ben

    2013-04-01

    The combination of a web server and a Computer Algebra System to provide students the ability to explore and investigate astronomical concepts presented in a class can help student understanding. This combination of technologies provides a framework to extend the classroom experience with independent student exploration. In this presentation we report on the developmen of this web based material and some initial results of students making use of the computational tools using webMathematica^TM. The material developed allow the student toanalyze and investigate a variety of astronomical phenomena, including topics such as the Runge-Lenz vector, descriptions of the orbits of some of the exo-planets, Bode' law and other topics related to celestial mechanics. The server based Computer Algebra System system allows for computations without installing software on the student's computer but provides a powerful environment to explore the various concepts. The current system is installed at North Carolina A&T State University and has been used in several undergraduate classes.

  1. Partnerships between Professional and Amateur Astronomers: A Shift in Research Paradigm

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Casquinha, P.; Coffelt, A.; Delcroix, M.; Go, C.; Hueso, R.; Jaeschke, W.; Kardasis, M.; Kraaikamp, E.; Morales, E.; Peach, D.; Rogers, J.; Wesley, A.; Willems, F.; Wilson, T.

    2012-10-01

    "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. The night sky, with all its delights and mysteries, enthralls professional and amateur astronomers, and students who will form the next generation of scientists and engineers. These students are matriculating in an era of reduced funding for core competencies such as science, technology, mathematics and engineering (STEM) sciences and an ongoing general decline in these sciences. How then do we re-generate their interest and engage students while we perform cutting-edge planetary science in a fiscally constrained environment? One promising solution is to promote the emerging partnerships between professional and dedicated proficient amateur astronomers, that rely on creating a niche for long timeline of multispectral remote sensing. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by professional ground-based professional astronomers and spacecraft missions. We shall focus on our collaboration or "Citizen Astronomy: Jupiter and Saturn" for the past five years and illustrate the strong synergy between the two groups that has produced new scientific results. With the active inclusion and use of emerging social media (Facebook, Twitter, etc.), the near daily communication and updates (via email, Skype, Facebook) between the two groups is becoming a powerful tool for ground-based remote sensing. However, what is sorely lacking in this paradigm is the inclusion of teachers and students and, therefore, its inclusion in the secondary and tertiary classrooms. We will provide various scenarios to address this issue, and emphasize the various aspects of STEM learning/teaching that is necessary for students and teachers - all that can be performed at low cost; and showcase some of our contributors and current science investigations.

  2. AstroDAbis: Annotations and Cross-Matches for Remote Catalogues

    NASA Astrophysics Data System (ADS)

    Gray, N.; Mann, R. G.; Morris, D.; Holliman, M.; Noddle, K.

    2012-09-01

    Astronomers are good at sharing data, but poorer at sharing knowledge. Almost all astronomical data ends up in open archives, and access to these is being simplified by the development of the global Virtual Observatory (VO). This is a great advance, but the fundamental problem remains that these archives contain only basic observational data, whereas all the astrophysical interpretation of that data — which source is a quasar, which a low-mass star, and which an image artefact — is contained in journal papers, with very little linkage back from the literature to the original data archives. It is therefore currently impossible for an astronomer to pose a query like “give me all sources in this data archive that have been identified as quasars” and this limits the effective exploitation of these archives, as the user of an archive has no direct means of taking advantage of the knowledge derived by its previous users. The AstroDAbis service aims to address this, in a prototype service enabling astronomers to record annotations and cross-identifications in the AstroDAbis service, annotating objects in other catalogues. We have deployed two interfaces to the annotations, namely one astronomy-specific one using the TAP protocol (Dowler et al. 2011), and a second exploiting generic Linked Open Data (LOD) and RDF techniques.

  3. The Amateur Astronomer's Introduction to the Celestial Sphere

    NASA Astrophysics Data System (ADS)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  4. University Students' Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina

    2013-01-01

    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…

  5. Concerning the use of multifunctional photometer - polarimeter for studying the invasion of cosmic bodies into the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.

    2018-05-01

    Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.

  6. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1979-01-01

    Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.

  7. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  8. Myths and Prehispanic Astronomy: A Look from the Colonial Perspective

    NASA Astrophysics Data System (ADS)

    Ruiz Gallut, María Elena

    2016-11-01

    The information from the documents written during colonial times by Spanish friars attempted to provide an overview of the thought of Mesoamerican indigenous societies. These ideas are permanently imprinted religious concepts that ordered the culture, and that signal the efforts of men to find its role in the world and give sense to the astronomical and natural phenomena that are integrated into their religion, particularly in the creation of myths. The generation of the gods, their tasks and areas of action are explored here through the texts of Fray Andres del Olmo.

  9. Drevnyaya astronomiya Yuzhnoj Ameriki %t Ancient astronomy of the South America

    NASA Astrophysics Data System (ADS)

    Yurevich, V. A.

    The article portrays our knowledge of the astronomy of the South America before its discovery by European. The archeoastronomical monuments display that the astronomy was the basis for the calendar, and its probable reconstruction is proposed. The author demonstrated that all solar and moon directions of the horizon astronomy were used in it. First chronicles and ethnographic data give information about the cosmological ideas of native-Americans, their worships of the celestial objects (the Sun, Moon), implication of astronomical phenomena in their religious rituals and feasts.

  10. Modeling the Round Earth through Diagrams

    NASA Astrophysics Data System (ADS)

    Padalkar, Shamin; Ramadas, Jayashree

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.

  11. Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXI %t Studies in the History of Astronomy. Issue 31

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and international astronomy. Its basic headlines are: astronomy and cosmology of the 20th century; researches and findings; history of observatories and astronomical organisations; amateur astronomy in Russia. Among the most interesting problems investigated in this issue: the history of the observed structure and stability of planetary rings explanation, the history of prediction of giant vortexes in galaxies; the newest history of planetary cartography; the Old Russian calendars; the Russian observations of the 1874 Venus transit; the history of the Pulkovo Observatory for the last 50 years; the autobiography of the distinguished Russian astronomer academician V. G. Fesenkov; Byelorussian folk astronomy; and many others.

  12. ΛCDM Cosmology for Astronomers

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Matthews, A. M.

    2018-07-01

    The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.

  13. Simon Newcomb: America's Unofficial Astronomer Royal

    NASA Astrophysics Data System (ADS)

    Graham, John

    2007-10-01

    Bill Carter and Merri Sue Carter Mantazas; xiii + 213 pp.; ISBN 1-59113-803-5 2006; $26.95 This book introduced me to a commanding figure in American science from the late nineteenth century: Simon Newcomb. Newcomb has been called the nineteenth-century equivalent of Carl Sagan and Albert Einstein. He rose from humble beginnings to be the preeminent American astronomer of his generation. He made basic, far-reaching, and enduring contributions to positional astronomy and planetary dynamics. On the more practical side, he determined a remarkably accurate value for the velocity of light, one within 0.01% of the value accepted today. His work provided an experimental grounding for the special and general theories of relativity to be formulated by Einstein in the coming twentieth century.

  14. Annual Conference on Nuclear and Space Radiation Effects, 21st, Colorado Springs, CO, July 23-25, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Winokur, P. S. (Editor)

    1984-01-01

    Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.

  15. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  16. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  17. Using the Quirk-Schofield Diagram to Explain Environmental Colloid Dispersion Phenomena

    ERIC Educational Resources Information Center

    Mays, David C.

    2007-01-01

    Colloid dispersion, through its role in soil science, hydrology, and contaminant transport, is a basic component of many natural resources and environmental education programs. However, comprehension of colloid dispersion phenomena is limited by the numerous variables involved. This article demonstrates how the Quirk-Schofield diagram can be used…

  18. Hubble Space Telescope cycle 5 call for proposals

    NASA Technical Reports Server (NTRS)

    Bond, Howard E. (Editor)

    1994-01-01

    This document invites and supports participation by the international astronomical community in the HST General Observer and Archival Research programs. These documents contain the basic procedural and technical information required for HST proposal preparation and submission, including applicable deadlines. The telescope and its instruments were built under the auspices of the NASA and the European Space Agency.

  19. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    ERIC Educational Resources Information Center

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-01-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics…

  20. 7th Class Students' Opinions on Sun, Earth and Moon System

    ERIC Educational Resources Information Center

    Aydin, Suleyman

    2017-01-01

    This study is conducted to detect the students' perceptions on Sun, Moon and Earth (SME) system and define the 7th grade students' attitudes on the subject. In the study, since it was aimed to detect and evaluate the students' perceptions on some basic astronomical concepts without changing the natural conditions, a descriptive approach was…

  1. Shifting Landscape: A Phenomenological Study of Latinos Social and Academic Integration on Campus

    ERIC Educational Resources Information Center

    Ruiz, Manuel

    2013-01-01

    A college degree is widely accepted as a basic goal in education, and the United States labor market reinforces that expectation with substantial financial rewards. Today, Latinos are enrolling in colleges and universities at astronomical rates. As educators, we must provide this growing student population with the adequate programs and resources…

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  6. Working Group Proposed to Preserve Archival Records

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.

    2013-01-01

    The AAS and AIP co-hosted a Workshop in April 2012 with NSF support (AST-1110231) that recommends establishing a Working Group on Time Domain Astronomy (WGTDA) to encourage and advise on preserving historical observations in a form meaningful for future scientific analysis. Participants specifically considered archival observations that could describe how astronomical objects change over time. Modern techniques and increased storage capacity enable extracting additional information from older media. Despite the photographic plate focus, other formats also concerned participants. To prioritize preservation efforts, participants recommended considering the information density, the amount of previously published data, their format and associated materials, their current condition, and their expected deterioration rate. Because the best digitization still produces an observation of an observation, the originals should be retained. For accessibility, participants recommended that observations and their metadata be available digitally and on-line. Standardized systems for classifying, organizing, and listing holdings should enable discovery of historical observations through the Virtual Astronomical Observatory. Participants recommended pilot projects that produce scientific results, demonstrate the dependence of some advances on heritage data, and open new avenues of exploration. Surveying a broad region of the sky with a long time-base and high cadence should reveal new phenomena and improve statistics for rare events. Adequate financial support is essential. While their capacity to produce new science is the primary motivation for preserving astronomical records, their potential for historical research and citizen science allows targeting cultural institutions and other private sources. A committee was elected to prepare the WGTDA proposal. The WGTDA executive committee should be composed of ~10 members representing modern surveys, heritage materials, data management, data standardization and integration, follow-up of time-domain discoveries, and virtual observatories. The Working Group on the Preservation of Astronomical Heritage Web page includes a full report.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  10. Wide-Field Plate Database

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.

    The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.

  11. Research-Based Astronomy Workshops for Secondary School Students in Thailand

    NASA Astrophysics Data System (ADS)

    Rujopakarn, Wiphu; Kirdkao, Thagoon

    We present the results of the Learning Center for Earth Sciences and Astronomy (LESA). Thai-land organizes a series of research-based astronomical workshops for secondary school students in the country during 2006 present. The goal of LESA is to apply the research-based learn-ing approach to complement astronomy education, which has been included in the national curriculum since 2002, and to let students gain first-hand experience in astronomical research. Realization of research-based astronomical education in Thailand has long been held back by the limited availability of astronomical facilities in the country. We therefore developed work-shop modules for students using professional astronomical data generously made available to us through various collaborations and on-line archives. Two major difficulties we have overcame in developing these modules are, first, to seek research topics that are meaningful, inspiring, and can demonstrate the process of astronomical research with minimal background in astrophysics, and second, to find the software capable of processing large amounts of astronomical data, yet easily accessible for students. Our workshop modules centered on the basic research methods in observational astronomy, including astrometry, photometry, and spectroscopy. Data for these analysis modules were obtained through collaboration with various research groups, such as re-mote robotic telescopes access from the Robotic Optical Transient Search Experiment and the Las Cumbres Observatory Global Telescope Network, archival images from the Catalina Sky Survey, archival spectra from the Observatoire de Haute-Provence, and imaging and spectral data from the Sloan Digital Sky Survey. We adapt the raw data such that they can be accessed and analyzed with freely-available astronomical software such as the Iris or SAOImage ds9 and VSpec for imaging and spectral data, respectively. In each of the past five years, we have organized year-round workshops for students to carry out research projects using these modules and present their work in poster and oral presentations at our annual meetings. Examples of student projects are the search for variable stars and minor planets, light curve analyzes of variable stars and type Ia supernovae, spectral analyzes of stars and galaxies, and exoplanet searches using the radial velocity technique. To date, more than 80 students from 25 schools in Thailand have participated in our workshops. Our results demonstrate the feasibility of adapt-ing astronomical data or remotely available telescopes to carry out research-based education, despite the lack of locally available astronomical infrastructures.

  12. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of itsmore » source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal-to-noise ratio spectra of M67 stars reveals atomic diffusion processes on the order of 0.05 dex, previously only measurable with differential analysis techniques in high-resolution spectra. sick is easy to use, well-tested, and freely available online through GitHub under the MIT license.« less

  13. Evolution of the Astronomy Concepts Along Basic Education Cycle. (Breton Title: Evolução dos Conceitos de Astronomia no Decorrer da Educação Básica.) La Evolución de los Conceptos de Astronomía Durante la Educación Básica

    NASA Astrophysics Data System (ADS)

    Darroz, Luiz Marcelo; da Rosa, Cleci Werner; Becker da Rosa, Álvaro; Samudio Pèrez, Carlos Ariel

    2014-07-01

    Although astronomy is considered one of the older sciences of humanity and that the understanding of its concepts has brought tremendous advances to Science and therefore, to society, it is observed that a significant portion of people live outside of this kind of knowledge. According to the Parâmetros Curriculares Nacionais for basic education, it is the school responsibility the dissemination of scientifically correct concepts, including those related to astronomy. Concerning this issue, we present a survey of 140 students of ninth grade of elementary school and 120 third-grade high-school students from four schools in the region of Passo Fundo/RS. We sought to determine, through a questionnaire consisting of open and multiple choice questions, the knowledge of this group of students about the basic terms and astronomical phenomena, and also verify that the hit rate increases as they advance through the different and progressive grades of primary and secondary education. Overall, the results show that the teaching of astronomy in basic education is facing problems. Of the 20 issues investigated, in 17 the indicators are similar in the correct answers given by students for elementary and middle school, revealing that many misconceptions still remain along basic education. This demonstrates that such issues are not - or are rarely - covered during these two school levels. Thus, we conclude that the discussion of concepts related to astronomy should receive greater emphasis on approaching different subjects, requiring a national action in support of their teaching. It is believed that a national action should be supported by a triple pillar of collective actors: the scientific community, semi-professional astronomy community and the school community. Finally, this pillar would be the basis for future discussions related to the performance of these protagonists as a means to promote active changes in the curricular structure, providing, in more effective ways, the learning of astronomy in basic education. Embora a astronomia seja considerada uma das ciências mais antigas da humanidade e ainda que a compreensão de seus conceitos tenha trazido enormes avanços para a Ciência e, consequentemente, para a sociedade, observa-se que uma parcela significativa de pessoas encontra-se à margem desses conhecimentos. De acordo com os Parâmetros Curriculares Nacionais para a Educação Básica, cabe à escola a difusão dos conceitos cientificamente corretos, entre eles os relacionados à área de astronomia. Pertinente a essa questão, apresenta-se uma pesquisa realizada com 140 estudantes do nono ano do ensino fundamental e com 120 estudantes da terceira série do ensino médio de quatro escolas da região de Passo Fundo/RS. Buscou-se averiguar, por meio de um questionário composto de questões abertas e de múltipla escolha, o conhecimento desse grupo de estudantes acerca de termos e fenômenos astronômicos básicos e, também, verificar se o índice de acertos cresce à medida que eles avançam nas diferentes e gradativas séries dos ensinos fundamental e médio. De modo geral, os resultados apresentados demonstram que o ensino de astronomia na educação básica enfrenta deficiências. Das 20 questões investigadas, em 17 os índices de acertos são semelhantes nas respostas dadas por estudantes de nível fundamental e médio, revelando que muitas concepções equivocadas permanecem ao longo da educação básica. Isso evidencia que tais temas não são - ou são pouco - abordados durante esses dois níveis de escolarização. Assim, conclui-se que a discussão dos conceitos relacionados com a astronomia deve receber maior ênfase na abordagem dos diferentes conteúdos, sendo necessária uma ação nacional em prol do seu ensino. Acredita-se que essa ação nacional deve estar apoiada em um pilar triplo de atores coletivos: comunidade científica, comunidade astronômica semiprofissional e comunidade escolar. Por fim, esse pilar seria a base para futuras discussões relacionadas à atuação dessas instâncias como meio de promover mudanças ativistas na estrutura curricular, proporcionando, mais efetivamente, a educação em astronomia no ensino básico. Si bien la astronomía es considerada una de las ciencias más antiguas de la humanidad y aunque la comprensión de sus conceptos haya traído enormes avances para la ciencia y, consecuentemente, para la sociedad, se observa que una parte significativa de personas se encuentran al margen de estos conocimientos. De acuerdo con los Parámetros Curriculares Nacionales para la Educación Básica, corresponde a la escuela la difusión de los conceptos científicamente correctos, entre ellos los relacionados al área de astronomía. Sobre esta cuestión, se presenta una investigación realizada con 140 estudiantes del noveno año de la enseñanza fundamental y con 120 estudiantes del tercer año de la enseñanza de nivel medio de cuatro escuelas de la región de Passo Fundo/RS. Se pretendía averiguar, por medio de un cuestionario compuesto de preguntas abiertas y de opción múltiple, el conocimiento de este grupo de alumnos sobre términos y fenómenos astronómicos básicos y, también, si el índice de aciertos crece en la medida que los alumnos avanzan a los diferentes y sucesivos años de la enseñanza fundamental y media. De modo general, los resultados demuestran que la enseñanza de astronomía en la educación básica muestra deficiencias. De los 20 asuntos investigados, 17 revelan índices de aciertos semejantes en las respuestas dadas por los estudiantes de nivel básico y medio, mostrando que muchas concepciones equivocadas permanecen a lo largo de la educación básica. Esto hace evidente que estos temas no son - o son poco - abordados durante esos niveles de escolarización. Así, puede concluirse que la discusión de los conceptos relacionados a la astronomía debe recibir un mayor énfasis en cuanto al abordaje de los diferentes contenidos, siendo necesaria una acción nacional en pro de su enseñanza. Es necesario destacar que esa acción nacional debe estar apoyada en un pilar triple de actores colectivos: comunidad científica, comunidad de astronomía semi profesional y la comunidad escolar. En fin, ese pilar sería la base para futuras discusiones relacionadas a la actuación de esas instancias como vía para promover cambios en la estructura curricular, proporcionando más efectivamente, la educación en astronomía en la enseñanza de nivel básico.

  14. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  15. SEARCHING FOR EXTRATERRESTRIAL INTELLIGENCE SIGNALS IN ASTRONOMICAL SPECTRA, INCLUDING EXISTING DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, Ermanno F., E-mail: borra@phy.ulaval.ca

    The main purpose of this article is to make astronomers aware that Searches for Extraterrestrial Intelligence (SETIs) can be carried out by analyzing standard astronomical spectra, including those they have already taken. Simplicity is the outstanding advantage of a search in spectra. The spectra can be analyzed by simple eye inspection or a few lines of code that uses Fourier transform software. Theory, confirmed by published experiments, shows that periodic signals in spectra can be easily generated by sending light pulses separated by constant time intervals. While part of this article, like all articles on SETIs, is highly speculative themore » basic physics is sound. In particular, technology now available on Earth could be used to send signals having the required energy to be detected at a target located 1000 lt-yr away. Extraterrestrial Intelligence (ETI) could use these signals to make us aware of their existence. For an ETI, the technique would also have the advantage that the signals could be detected both in spectra and searches for intensity pulses like those currently carried out on Earth.« less

  16. Key Characteristics of Successful Science Learning: The Promise of Learning by Modelling

    ERIC Educational Resources Information Center

    Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton

    2015-01-01

    The basic premise underlying this research is that scientific phenomena are best learned by creating an external representation that complies with the complex and dynamic nature of such phenomena. Effective representations are assumed to incorporate three key characteristics: they are graphical, dynamic, and provide a pre-specified outline of the…

  17. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    ERIC Educational Resources Information Center

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  18. Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior

    PubMed Central

    Alberts, Jeffrey R.

    2013-01-01

    Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081

  19. Atmospheric tides and other relationships: ``Interpreting the Phenomena'' at the time of the Seeberg conference

    NASA Astrophysics Data System (ADS)

    Kokott, Wolfgang

    Lalande's account of his experiences at Gotha and on his journey back to France [AGE 2 (1798), 381-382] contains an interesting attempt to explain the extremely rainy September weather (``at a time of the year when it is raining more rarely in our countries'') by means of the Moon's southern declination. Actually, there are several other documents on the same subject; Lagrange was trying to prove his version of lunar influence against Lamarck who claimed exactly the opposite correlation to be true. In the light of Lalande's own work on oceanic tides, his interest in this meteorological problem is readily understood. While stringent limits for tidal variations of air pressure had already been established by d'Alembert (1747) and Toaldo (1779), no consistent theory of tidal mechanics was yet available. Theoretical and empirical investigations of alleged lunar influences on our weather did remain on the agenda well into the 19th century - the names of Olbers and Arago stand for many contemporaries. Moreover, the Earth's atmosphere was an object of fundamental interest to astronomers not only because of its influence on observational results, but also because it was the only accessible planetary atmosphere. Not only were sizeable gaseous envelopes of planetary bodies (with the apparent exception of only the Moon) considered as commonplace (Herschel, Schröter, etc.); the quest for understanding them was also an importent issue. As early as 1780, J.E. Bode tried (following Euler) to explain the blue colour of the sky by means of blue (scattering?) particles in the upper atmosphere; consequently, he raised the question of whether the red colour of Mars was due to this planet's surface materials or rather to a different atmospheric composition. In our time and age, a new and very successful branch of science called Comparative Planetology did emerge from apparently very modern roots; two centuries ago, its basic objectives were an undisputed part of everyday astronomical research. The Seeberg conference took place in an environment of (prolonged) change from natural history to modern science. In astronomy, the interaction between descriptive, phenomenological methods and quantitative investigations and results was particularly fruitful. Many of the results did emerge slowly: Seemingly atmospheric phenomena, like meteors, did turn out to be of extraterrestrial origin; objects like ejecta from lunar volcanoes eventually became mere figments of imagination. In both cases, unprejudiced observations and their theoretical evaluation were necessary. Chladni's work (1794) on the origin of meteorites did need to be verified by the ``stone shower'' of l'Aigle (1803). And the quest for the missing planet between Mars and Jupiter did not only produce literally many results - it also led to the ``Theoria Motus''.

  20. Learning in Earth and space science: a review of conceptual change instructional approaches

    NASA Astrophysics Data System (ADS)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-03-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.

  1. The Art of Astronomy: A New General Education Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  2. The Cline Observatory at Guilford Technical Community College

    NASA Astrophysics Data System (ADS)

    English, T.; Martin, A.; Herrick, D.; Cline, D.

    2003-12-01

    The Cline Observatory at the Jamestown, NC campus of Guilford Technical Community College (GTCC) was dedicated in 1997. It is the only such facility in the community college systems of the Carolinas. GTCC employs two astronomy faculty and offers multiple sections of introductory courses. The facility utilizes a 16-inch Meade LX-200 under a 6-meter dome, along with accessories for digital imaging and basic spectroscopic studies. An outside observing pad with permanent piers allows smaller instruments to be set up for sessions. In addition to supporting introductory and basic observational astronomy classes, the observatory provides regular outreach programs to serve a variety of constituencies. Public viewings are held once a week; school and community groups schedule visits throughout the year; special lectures bring the latest astronomical topics to the public; and annual conferences are hosted for regional amateur astronomers and for faculty/students from NC academic/research institutions. Volunteer support staff for such programs has been developed through partnership with the local astronomy club and through training via the observational astronomy course. Our courses and outreach programs have been very popular and successful, and the observatory now serves as a focal point of GTCC's public image.

  3. Space Infrared Telescope Facility (SIRTF) science instruments

    NASA Technical Reports Server (NTRS)

    Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.

  4. Reducing the Requirements and Cost of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  5. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an expanding set of loops similar to the loops seen at visible wavelengths. The radio loops, astronomers believe, indicate regions where electrons are being accelerated to nearly the speed of light at about the time the ejection process is getting started. The same ejection observed by the radio telescope also was observed by orbiting solar telescopes. Depending on what later radio observations show, the solar studies may reveal new insights into the physics of other astronomical phenomena. For example, shocks in the corona and the interplanetary medium accelerate electrons and ions, a process believed to occur in supernova remnants - the expanding debris from stellar explosions. The electrons also may be accelerated by processes associated with magnetic reconnection, a process that occurs in the Earth's magnetosphere. "The Sun is an excellent physics laboratory, and what it teaches us can then help us understand other astrophysical phenomena in the universe," Bastian said. The radio detection of a coronal mass ejection also means that warning of the potentially dangerous effects of these events could come from ground-based radio telescopes, rather than more-expensive orbiting observatories. "With solar radio telescopes strategically placed at three or four locations around the world, coronal mass ejections could be detected 24 hours a day to provide advance warning," Bastian said. The Nancay station for radio astronomy is a facility of the Paris Observatory. The Nancay Radioheliograph is funded by the French Ministry of Education, the Centre National de la Recherche Scientifique, and by the Region Centre. This research has also been supported by the Centre National d'Etudes Spatiales. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  7. Explanation of the anomalous secular increase of the moon orbit eccentricity by the new theory of gravitation (NTG)

    NASA Astrophysics Data System (ADS)

    Ziefle, Reiner Georg

    2013-03-01

    Present day gravitational physics experiences a huge success in obtaining better and better experimental results. In some cases, the observations do not fit with the present knowledge of established physics. Phenomena, like the increase of the Astronomical Unit by 7 m per century or the so-called anomalous secular increase of the eccentricity of the lunar orbit by about 9 × 10^-12 per year, which can neither be explained by Einstein's Theory of General Relativity, nor by the Newtonian Theory of Gravitation, can be explained by the New Theory of Gravitation

  8. The eleven observations of comets between 687 AD and 1114 AD recorded in the Anglo Saxon Chronicle

    NASA Astrophysics Data System (ADS)

    Mardon, E. G.; Mardon, A. A.; Williams, J.

    1992-12-01

    This research paper is an examination of the eleven cometary references (679AD, 729AD, 892AD, 950AD, 975AD, 995AD, 1066AD, 1097AD, 1106AD, 1110AD and 1114AD) found in the various manuscripts of The Anglo Saxon Chronicle between 678 AD and 1114 AD. The manuscripts contain more than 35 celestial observations. This is an examination of astronomical phenomena and other climatic or natural events, that are described in The Anglo Saxon Chronicle, which is also referred to as The Old English Annals.

  9. On Frequency Combs in Monolithic Resonators

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  10. The eleven observations of comets between 687 AD and 1114 AD recorded in the Anglo Saxon Chronicle

    NASA Technical Reports Server (NTRS)

    Mardon, E. G.; Williams, J.; Mardon, A. A.

    1992-01-01

    This research paper is an examination of the eleven cometary references (679AD, 729AD, 892AD, 950AD, 975AD, 995AD, 1066AD, 1097AD, 1106AD, 1110AD and 1114AD) found in the various manuscripts of The Anglo Saxon Chronicle between 678 AD and 1114 AD. The manuscripts contain more than 35 celestial observations. This is an examination of astronomical phenomena and other climatic or natural events, that are described in The Anglo Saxon Chronicle, which is also referred to as The Old English Annals.

  11. Nature and Analysis of Material Evidence Relevant to Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Since it emerged as a "subdiscipline" in its own right in the 1960s and 1970s, archaeoastronomy has advanced from seeking to explain cultural phenomena in exclusively astronomical terms to one where putative astronomical connections play a small part - albeit in some cases a critical one - in broader interpretations properly embedded in the wider cultural context. Broadly speaking, the archaeological evidence available to the archaeoastronomer consists of material expressions of perceived relationships with objects and events in the sky. The main types of material evidence considered by the majority of archaeoastronomers are structural orientations, light-and-shadow effects, and symbol counts. Advances in both theory and method have rendered obsolete the "green vs brown" categorization of the 1980s, and few would now disagree that the credibility of any interpretation needs to be assessed in terms of social theory, the strength of the material evidence in its support, and the quality of the corroborating evidence from history and/or ethnography, as available. The debate continues as to how best to balance these different components in different instances.

  12. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  13. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  14. It’s about time: How do sky surveys manage uncertainty about scientific needs many years into the future

    NASA Astrophysics Data System (ADS)

    Darch, Peter T.; Sands, Ashley E.

    2016-06-01

    Sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Large Synoptic Survey Telescope (LSST), generate data on an unprecedented scale. While many scientific projects span a few years from conception to completion, sky surveys are typically on the scale of decades. This paper focuses on critical challenges arising from long timescales, and how sky surveys address these challenges.We present findings from a study of LSST, comprising interviews (n=58) and observation. Conceived in the 1990s, the LSST Corporation was formed in 2003, and construction began in 2014. LSST will commence data collection operations in 2022 for ten years.One challenge arising from this long timescale is uncertainty about future needs of the astronomers who will use these data many years hence. Sources of uncertainty include scientific questions to be posed, astronomical phenomena to be studied, and tools and practices these astronomers will have at their disposal. These uncertainties are magnified by the rapid technological and scientific developments anticipated between now and the start of LSST operations.LSST is implementing a range of strategies to address these challenges. Some strategies involve delaying resolution of uncertainty, placing this resolution in the hands of future data users. Other strategies aim to reduce uncertainty by shaping astronomers’ data analysis practices so that these practices will integrate well with LSST once operations begin.One approach that exemplifies both types of strategy is the decision to make LSST data management software open source, even now as it is being developed. This policy will enable future data users to adapt this software to evolving needs. In addition, LSST intends for astronomers to start using this software well in advance of 2022, thereby embedding LSST software and data analysis approaches in the practices of astronomers.These findings strengthen arguments for making the software supporting sky surveys available as open source. Such arguments usually focus on reuse potential of software, and enhancing replicability of analyses. In this case, however, open source software also promises to mitigate the critical challenge of anticipating the needs of future data users.

  15. Evaluating virtual hosted desktops for graphics-intensive astronomy

    NASA Astrophysics Data System (ADS)

    Meade, B. F.; Fluke, C. J.

    2018-04-01

    Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.

  16. An Innovative Approach to Science Instruction

    NASA Astrophysics Data System (ADS)

    McNamara, Bernard; Burnham, Chris; Bridges, Bill

    1994-12-01

    This paper reports on the results of a multi-year NSF project aimed at undergraduate instruction in astronomy. Its goal is to help incoming university students, particularly from minority groups, develop critical thinking skills and a better understanding of basic scientific principles. The project employs the techniques of ``Writing Across the Curriculum" to counter student math and science anxiety. It employs a workbook consisting of four sections: (1) basic skills exercises, (2) an evolving cosmology, (3) chapter reading responses, and (4) an astronomical scrapbook. Experience with this workbook in introductory astronomy classes at NMSU is discussed, along with suggestions on how the exercises can be incorporated into beginning astronomy classes at other universities.

  17. Annual Conference on Nuclear and Space Radiation Effects, 17th, Cornell University, Ithaca, N.Y., July 15-18, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Mcgarrity, J. M.

    1980-01-01

    The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.

  18. Modeling of Economy Considering Crisis

    NASA Astrophysics Data System (ADS)

    Petrov, Lev F.

    2009-09-01

    We discuss main modeling's problems of economy dynamic processes and the reason forecast's absence of economic crisis. We present a structure of complexity level of system and models and discuss expected results concerning crisis phenomena. We formulate the basic perspective directions of the mathematical modeling of economy, including possibility of the analysis of the pre crisis, crisis and post crisis phenomena in economic systems.

  19. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  20. Establishment of the New Ecuadorian Solar Physics Phenomena Division

    NASA Astrophysics Data System (ADS)

    Lopez, E. D.

    2014-02-01

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center

  1. Astronomy and Atmospheric Optics

    NASA Astrophysics Data System (ADS)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  2. Nikolay N. Donitch - the astronomer

    NASA Astrophysics Data System (ADS)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet in 1927. In 1933 he was cartying out observations of Saturn and determined the rotational period of the planet. Eight scientific papers on the zodiacal light investigations were published by N.D.. Due to a H. Shapley's recommmendation he obtained in his observatory a number of stelar sky photos. N.N. Donitch was a brillant personality in the astronomical community of his time. He was a member of many scientific societies. Hard and sad times came to Donitch during the last years of his life. At first he leaved Bessarabia for Bucharest (1940), then Romania for Germany (1944), then Germany for France (1945), where he worked at the Meudon Observatory. At last he found himself under tryiung financial situation. According to some findings he spent the last days in an old men house near Nice and died in 1956.

  3. International heliophysical year and basic space science in West Asia

    NASA Astrophysics Data System (ADS)

    Al-Naimiy, Hamid M. K.

    2007-12-01

    This paper summarizes the IHY and BSS activities in West Asia and their importance in many Arab countries, such as Algeria, Egypt, Iraq, Jordan, Kuwait, Qatar, Saudi Arabia, UAE, etc. BSS future plans for some of these countries are as follows: It is proposed by the astronomers from the Arabian Gulf Region to build the Gulf Observatory on top of Jabal Shams (2980 msl) which will have a 2-3 m optical telescope. Libya signed a contract with a French company for building an observatory which will have a 2-m optical robotic telescope. It is also proposed to rebuild the Iraqi National Astronomical Observatory (INAO) which was destroyed during the two wars. It is planned to build a 5-6 m optical telescope and a small solar telescope on the top of Korek mountain, which has excellent observing conditions.

  4. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  5. Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  6. Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro

    2013-07-01

    There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.

  7. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  8. Education for All: Status and Trends, 1994. Basic Education Population and Development.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Education for All Forum Secretariat.

    This second issue of "Education for All: Status and Trends" focuses on the interactions between basic education and certain demographic and socioeconomic phenomena. It examines significant correlations between selected indicators and the trends in those indicators over a decade or more. It also presents projections of certain indicators to the…

  9. Optics education in an optometric setting

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan; Raghuram, Aparna

    2003-10-01

    We discuss optics education within the context of an Optometric professional program leading to a degree of Doctor of Optometry (O.D.). Basic course work in Geometric, Physical, Ophthalmic and Visual Optics will be described and we will discuss how basic optical phenomena can be made relevant to the Optometric student with different academic backgrounds.

  10. Changing Sea Levels

    NASA Astrophysics Data System (ADS)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  11. FGK stars and T Tauri stars: Monograph series on nonthermal phenomena in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Cram, Lawrence E. (Editor); Kuhi, Leonard V. (Editor)

    1989-01-01

    The purpose of this book, FGK Stars and T Tauri Stars, like all other volumes of this series, is to exhibit and describe the best space data and ground based data currently available, and also to describe and critically evaluate the status of current theoretical models and physical mechanisms that have been proposed to interpret these data. The method for obtaining this book was to collect manuscripts from competent volunteer authors, and then to collate and edit these contributions to form a well structured book, which will be distributed to an international community of research astronomers by NASA and by the French CNRS.

  12. Aurorae in Australian Aboriginal Traditions

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2013-07-01

    Transient celestial phenomena feature prominently in the astronomical knowledge and traditions of Aboriginal Australians. In this paper, I collect accounts of the Aurora Australis from the literature regarding Aboriginal culture. Using previous studies of meteors, eclipses, and comets in Aboriginal traditions, I anticipate that the physical properties of aurora, such as their generally red colour as seen from southern Australia, will be associated with fire, death, blood, and evil spirits. The survey reveals this to be the case and also explores historical auroral events in Aboriginal cultures, aurorae in rock art, and briefly compares Aboriginal auroral traditions with other global indigenous groups, including the Maori of New Zealand.

  13. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  14. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-04-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. Grouping and Emergent Features in Vision: Toward a Theory of Basic Gestalts

    ERIC Educational Resources Information Center

    Pomerantz, James R.; Portillo, Mary C.

    2011-01-01

    Gestalt phenomena are often so powerful that mere demonstrations can confirm their existence, but Gestalts have proven hard to define and measure. Here we outline a theory of basic Gestalts (TBG) that defines Gestalts as emergent features (EFs). The logic relies on discovering wholes that are more discriminable than are the parts from which they…

  19. It's Not Your Grandmother's Genetics Anymore!

    ERIC Educational Resources Information Center

    Smith, Mike U.

    2014-01-01

    Genetics is perhaps the most rapidly growing field of science today. Recent findings such as those of the Human Genome Project have led to new understandings of basic genetic phenomena and even to increased confusion about some basic genetic ideas, such as the nature of the gene. These developments directly influence how we should teach genetics.…

  20. Our current knowledge of the Antikythera Mechanism

    NASA Astrophysics Data System (ADS)

    Seiradakis, J. H.; Edmunds, M. G.

    2018-01-01

    The Antikythera Mechanism is the oldest known mechanical calculator. It was constructed around the second century bce and lost in a shipwreck very close to the small Greek island of Antikythera. The shipwreck was discovered 2,000 years later, in 1900. The Mechanism was recognized in the spring of 1902 as a geared mechanical device displaying calendars and astronomical information. Application of modern imaging methods to the surviving fragments has led to general agreement on the basic structure of the device and its solar and lunar astronomical functions. The reading of the remains of its extensive inscriptions has shown that it was also intended to display the shifting position of the planets in the zodiac. In this review, we set out our view on what is known about the device, what can reasonably be conjectured and what major uncertainties still remain regarding its origin, context and purpose.

  1. The Antikythera Mechanism IIQ is it Posidonius' Orrery?

    NASA Astrophysics Data System (ADS)

    Freeth, T.

    The structure functions of the ancient Greek astronomical calculator known as the Antikythera mechanism, are still hotly debated. A remarkable quote from Civero, exactly contemporary with the mechanism, describes an orrery made by Posidonius, which shows the "...motions of the sun, the moon and the five planets...". In Edmunds and Morgan 2000, it is persuasively argued that the device might have been primarily astrological and therefore likely to a Theory of Planetary mechanisms - possible designs are also described. Building on this work, a Theory of Planetary Mechanisms is developed which links their gear ratios with the "period relations" in the Babylonian Astronomical Diaries. Several possible designs for these mechanisms are also explored. It is often argued that there is insufficient space for all five planets in the Antikythera Mechanism, but it is shown here that they can fit in the case, using the same basic design - it could in fact be Posidonius' Orrery.

  2. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection of papers contains essays on a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; cosmology; philosophical problems; astronomy and society; publications and memoirs. Among the most interesting problems considered in the present issue: the life and achievements of the famous French astronomer C. Flammarion; theories of spiral structures of galaxies of the 1960s; a history of alternative trends in planetary cosmogony; Kant's philosophy and the anthropic principle; the development of star mapping in 16th century Europe; database preparation from the results of Russian space programs; the troublesome fates of Russian astronomers in memoirs and researches; and many others. The book is addressed to professional scientists, astronomy amateurs, teachers, and everybody interested in the history of science.

  3. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  4. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  5. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  6. The Second National Chinese Conference on Permafrost, Lanzhou, China, 12-18 October 1981.

    DTIC Science & Technology

    1982-03-01

    discuss questions of Quaternary glaciers and periglacial phenomena. It is our understanding that Professor Cui Zhijul of Peking University is...frost heaving (4) Remote sensing (a) snow distribution and water yield over frozen terrain (b) indicators of frozen ground (c) glacier sedimentation ...Li Shude and Zhang TingJun, Basic features of periglacial 41 phenomena, Altai Shan, China (missed presentation) 15 OCTOBER 1981, MORNING Wang Chunhe

  7. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  8. Astronomical Activities for students-Motivating students interest in Physical Science through Astronomy

    NASA Astrophysics Data System (ADS)

    Matthaiou, Alexis

    2010-05-01

    Astronomical Activities for students Motivating students interest in Physical Science through Astronomy Alexis Matthaiou Philekpaideftiki Etaireia, Arsakeio Lyceum Patron, Patras, Greece,(alexiosmat@yahoo.gr) School education aims not only to providing the necessary knowledge to the students but also to inspire and motivate them to realize their special abilities and inclinations and use their potential for making a joyful future for their lives. In this direction we present some activities held in the Arsakeio School of Patras during the years 2005-2008 in the field of Astronomy and Astrophysics, in order to share our experience with the teachers' community. Students from all grades of primary and secondary education participated with enthusiasm. In particular, they observed the Partial Solar Eclipse of October 3rd, 2005,and the Total Solar Eclipse of March 29th, 2006. They took part in observing and registering Solar Spots, using Astronomical equipments like different types of telescopes with filters and solar scopes. Students studied further the nature of Solar Phenomena and their effects on life, participating in the Environmental Program "Sun and Life"(2006-2007). Moreover, students took part in the International Program for measuring the Light Pollution "Globe at Night" (2006-2007) with observing and registering the luminosity of the Orion constellation in the night sky above their residence. Finally, the students participated in the European program "Hands on Universe" (HOU) (2005-2008) working on a project, which was the Greek contribution to HOU, developed from "Philekpaideftiki Etaireia". In particular, they studied the stars' spectrum and acquired information about the stars' life and age of stellar systems, using interactive multimedia technology.

  9. Operational challenges for astronomical instrumentation in Antarctica: results from five years of environmental monitoring of AMICA at Dome C

    NASA Astrophysics Data System (ADS)

    Dolci, Mauro; Valentini, Angelo; Tavagnacco, Daniele; Di Cianno, Amico; Straniero, Oscar

    2016-08-01

    The Antarctic Plateau is one of the best observing sites on Earth, especially for infrared astronomy. The extremely low temperatures (down to -80°C), the low pressure (around 650 mbar) and the very dry atmosphere (PWV less than 1 mm) allow for a very clear and dark sky, as well as for a very low instrumental background. These unique properties, however, make it also very difficult to install and operate astronomical instrumentation. AMICA (Antarctic Multiband Infrared CAmera) is an instrument especially designed for Antarctic operation, whose installation at Dome C has been completed in 2013. Since then it has been continuously working over the last five years, monitoring and controlling in particular the environmental and operating conditions through a dedicated application, its Environmental Control System (ECS). The recorded behavior of AMICA highlighted a set of peculiar aspects of the site that are hard to consider a priori. Although mechanical and electronic COTS components can reliably work in thermally insulated and controlled boxes, simple insulation causes their overheating because of the air dryness and rarefaction which make the heat transfer extremely inefficient. Heat removal is also a real problem when managing heavy-duty devices like cryocoolers, whose excess power removal needs to be fast and efficient. Finally, the lack of an electrical ground generates a wide variety of transient electrical and electromagnetic phenomena which often make electronic instrumentation very unstable. A list of new recommendations is therefore presented, as a guideline for future astronomical instruments operating in Antarctica.

  10. Massartu: The Observation of Astronomical Phenomena in Assyria (7th Century BC)

    NASA Astrophysics Data System (ADS)

    Fales, F. M.

    2011-06-01

    The term massartu is well attested in letters in cuneiform to and from the Neo-Assyrian court, written in the main in the 7th century BC. In itself, massartu is a general Akkadian term, meaning "watch, guard", but in the early 1st millennium BC it takes on two interesting semantic specializations, both of which are tied to the practical and political needs of the Assyrian empire. In astrological-astronomical terms, massartu denotes the wake, vigil, or watch for astronomical observations on the part of the court specialists: such a wake was required by the Assyrian king on a nightly basis, for the subsequent consultation of the vast compilation of omens called Enūma Anu Enlil, and the drawing of conclusions relating to the state of the empire and of the royal dynasty. Many interesting texts show us the workings of the massartu in the capital city Nineveh or in other cities of Mesopotamia. But massartu had also a wider meaning, "vigilance", which denoted the requirement, on the part of all the subjects of the king of Assyria, to keep their eyes and ears open, so as to be able to report to the king if anything untoward was taking place, whether in the capital city or in the most remote military outpost of the empire. Thus, in a way, the astrologers were expected to perform no more and no less than the collective duty of "vigilance" on behalf of the king-but with their eyes trained on the heavens, and in await for signs ultimately sent from the gods.

  11. A Guided Tour of Saada

    NASA Astrophysics Data System (ADS)

    Michel, L.; Motch, C.; Nguyen Ngoc, H.; Pineau, F. X.

    2009-09-01

    Saada (http://amwdb.u-strasbg.fr/saada) is a tool for helping astronomers build local archives without writing any code (Michel et al. 2004). Databases created by Saada can host collections of heterogeneous data files. These data collections can also be published in the VO. An overview of the main Saada features is presented in this demo: creation of a basic database, creation of relationships, data searches using SaadaQL, metadata tagging, and use of VO services.

  12. Chance Discovery with Data Crystallization: A Basic Research for Discovering Unobservable Events

    DTIC Science & Technology

    2006-05-10

    matter in cosmology. The dark matter refers to hypothetical particles which do not emit or reflect radiation to be detected directly. But its presence...can be inferred from gravitational effects on visible matter such as stars and galaxies. The dark matter hypothesis aims to explain several anomalous...astronomical observations in the stellar dynamics. Estimates of the amount of the dark matter suggest that there is far more matter than is directly

  13. Astronomy. Inspiration. Art

    NASA Astrophysics Data System (ADS)

    Stanic, N.

    2008-10-01

    This paper speculates how poetry and other kind of arts are tightly related to astronomy. Hence the connection between art and natural sciences in general will be discussed in the frame of ongoing multidisciplinary project `Astronomy. Inspiration. Art' at Public Observatory in Belgrade (started in 2004). This project tends to inspire (better to say `infect') artist with a cosmic themes and fantastic sceneries of the Universe. At the very beginning of the project, Serbian poet and philosopher Laza Lazić (who published 49 books of poetry, stories and novels), as well as writer Gordana Maletić (with 25 published novels for children) were interested to work on The Inspiration by Astronomical Phenomena in Serbian Literature. Five young artists and scientists include their new ideas and new approach to multidisciplinary studies too (Srdjan Djukić, Nenad Jeremić, Olivera Obradović, Romana Vujasinović, Elena Dimoski). Two books that will be presented in details in the frame of this Project, "STARRY CITIES" (http://zavod.co.yu) and "ASTROLIES", don't offer only interesting illustrations, images from the latest astronomical observations and currently accepted cosmological theories -- those books induces, provoking curiosity in a specific and witty way, an adventure and challenge to explore and create.

  14. Teaching-materials study of the elementary science using an extraterrestrial material

    NASA Astrophysics Data System (ADS)

    Shida, N.; Matsumoto, I.

    2013-12-01

    The schoolchild of a Japan likes the universe primarily and an inquisitive mind is also considered to be a high. It appears also in children having raised interest concern to astronomical phenomena, such as the space probe "Hayabusa", solar eclipse, and solar Face passage of Venus, in recent Japan. However, generally aside from a child's interest concern, a time and a space concept are difficult for the astronomical phenomenon requested by school education. It is a big problem not only for student but also for teacher. In this presentation, we propose the teaching-materials development which used a meteorite and cosmic dust. Since these teaching materials can touch thing, a student actually taking in his hand, or observing under a microscope, leading to the study understanding accompanied by realization is expected. It looks up at and observes a Star Burst and a constellation. However, acquisition of recognition that it is possible to take in its hand simultaneously and to observe is important. About the meteorite to observe, we can purchase from a special contractor. About cosmic dust, the sample extraction from the concrete floor of the roof of a school building is possible.

  15. The Sky on Earth project: a synergy between formal and informal astronomy education

    NASA Astrophysics Data System (ADS)

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2016-09-01

    In this paper we present the Sky on Earth project funded in 2008 by the Italian Ministry of Instruction, Research and University, inside its annual public outreach education program. The project’s goal was to realise a stable and open-access astronomical garden, where children, teachers and citizens could be engaged in investigations about day and night sky phenomena. The project was designed taking into account our prior researches in formal and informal astronomy education. It was realised in the garden of GiocheriaLaboratori, an out-of-school K-6 educational structure of Sesto San Giovanni municipality (near Milan, Italy). Setting and tools were designed with the help of some students of the ‘Altiero Spinelli’ vocational school and their science and technology teachers. Since its installation, the astronomical garden has been used in workshops and open-days, teachers’ preparation courses and research experiences. We might conclude that the Sky on Earth project represents an example of a positive and constructive collaboration between researchers, educators, high school students and teachers. It may also be considered as a potential attempt to face on the well-known gap between research in science education and school practices.

  16. Astronomy in Indian Schools

    NASA Astrophysics Data System (ADS)

    Bhatia, V. B.

    Tradition of astronomy in India goes back to ancient times. Many festivals and rituals are associated with astronomical phenomena. Indian children start learning rudiments of astronomy from primary classes. But primary teachers are not equipped to handle this subject so not much learning actually takes place. The first serious interface with astronomy occurs when children reach class X when they are 15 years old. Till last year astronomy was there in class XII also but it has now been dropped. This is a serious setback for the study of astronomy. In class X astronomy forms part of general science. Since children at this stage are not proficient in physics and mathematics the subject remains descriptive though there are useful activities for children to do. However the teachers are not equipped to handle this subject and there is no help in the form of visual material. So the subject remains neglected. The Indian astronomical community can help by training teachers and providing visual material. It must also urge authorities to reintroduce astronomy in class XII if astronomy is to flourish in India. Moreover India needs to network with developing countries share experiences with them and evolve a strategy that promotes astronomy.

  17. King Charles' Star: A Multidisciplinary Approach to Dating the Supernova Known as Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Lunn, M.

    2012-06-01

    (Abstract only) Few astronomical phenomena have been as studied as the supernova known as Cassiopeia A. Widely believed to have occurred in the latter half of the seventeenth century, it is also thought to have gone unrecorded. This paper will argue that Cas A did not go unobserved, but in fact was seen in Britain on May 29, 1630, and coincided with the birth of the future King Charles II of Great Britain. This "noon-day star" is an important feature of Stuart/Restoration propaganda, the significance of which has been widely acknowledged by historians and literary experts. The argument here, however, is that in addition the historical accounts provide credible evidence for a genuine astronomical event, the nature of which must be explained. Combining documentary analysis with an overview of the current scientific thinking on dating supernovae, the authors put forward their case for why Charles' star should be recognized as a sighting of Cas A. Finally, it will be argued that a collaborative approach between the humanities and the sciences can be a valuable tool, not just in furthering our understanding of Cas A, but in the dating of supernovae in general.

  18. King Charles` Star: A Multidisciplinary Approach To Dating The Supernova Known As Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Lunn, Martin; Rakoczy, L.

    2011-01-01

    Few astronomical phenomena have been as studied as the supernova known as Cassiopeia A. Widely believed to have occurred in the latter half of the seventeenth century, it is also thought to have gone unrecorded. This paper will argue that Cas A did not go unobserved, but in fact was seen in Britain on May 29, 1630, and coincided with the birth of the future King Charles II of Great Britain. This `noon-day star’ is an important feature of Stuart/Restoration propaganda, the significance of which has been widely acknowledged by historians and literary experts. The argument here, however, is that in addition the historical accounts provide credible evidence for a genuine astronomical event, the nature of which must be explained. Combining documentary analysis with an overview of the current scientific thinking on dating supernova, the authors put forward their case for why Charles’ star should be recognized as a sighting of Cas A. Finally, it will be argued that a collaborative approach between the humanities and the sciences can be a valuable tool, not just in furthering our understanding of Cas A, but in the dating of supernovae in general.

  19. King Charles` Star: A Multidisciplinary Approach to Dating the Supernova Known as Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Lunn, Martin

    2011-05-01

    Few astronomical phenomena have been as studied as the supernova known as Cassiopeia A. Widely believed to have occurred in the latter half of the seventeenth century, it is also thought to have gone unrecorded. This paper will argue that Cas A did not go unobserved, but in fact was seen in Britain on May 29, 1630, and coincided with the birth of the future King Charles II of Great Britain. This 'noon-day star' is an important feature of Stuart/Restoration propaganda, the significance of which has been widely acknowledged by historians and literary experts. The argument here, however, is that in addition the historical accounts provide credible evidence for a genuine astronomical event, the nature of which must be explained. Combining documentary analysis with an overview of the current scientific thinking on dating supernova, the authors put forward their case for why Charles' star should be recognized as a sighting of Cas A. Finally, it will be argued that a collaborative approach between the humanities and the sciences can be a valuable tool, not just in furthering our understanding of Cas A, but in the dating of supernovae in general.

  20. Guide star catalogue data retrieval software 2

    NASA Technical Reports Server (NTRS)

    Smirnov, O. M.; Malkov, O. YU.

    1992-01-01

    The Guide Star Catalog (GSC), being the largest astronomical catalog to date, is widely used by the astronomical community for all sorts of applications, such as statistical studies of certain sky regions, searches for counterparts to observational phenomena, and generation of finder charts. It's format (2 CD-ROM's) requires minimum hardware and is ideally suited for all sorts of conditions, especially observations. Unfortunately, the actual GSC data is not easily accessible. It takes the form of FITS tables, and the coordinates of the objects are given in one coordinate system (equinox 2000). The included reading software is rudimentary at best. Thus, even generation of a simple finder chart is not a trivial undertaking. To solve this problem, at least for PC users, GUIDARES was created. GUIDARES is a user-friendly program that lets you look directly at the data in the GSC, either as a graphical sky map or as a text table. GUIDARES can read a sampling of GSC data from a given sky region, store this sampling in a text file, and display a graphical map of the sampled region in projected celestial coordinates (perfect for finder charts). GUIDARES supports rectangular and circular regions defined by coordinates in the equatorial, ecliptic (any equinox) or galactic systems.

  1. Dynamic analysis of the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  2. A communication efficient and scalable distributed data mining for the astronomical data

    NASA Astrophysics Data System (ADS)

    Govada, A.; Sahay, S. K.

    2016-07-01

    In 2020, ∼60PB of archived data will be accessible to the astronomers. But to analyze such a paramount data will be a challenging task. This is basically due to the computational model used to download the data from complex geographically distributed archives to a central site and then analyzing it in the local systems. Because the data has to be downloaded to the central site, the network BW limitation will be a hindrance for the scientific discoveries. Also analyzing this PB-scale on local machines in a centralized manner is challenging. In this, virtual observatory is a step towards this problem, however, it does not provide the data mining model (Zhang et al., 2004). Adding the distributed data mining layer to the VO can be the solution in which the knowledge can be downloaded by the astronomers instead the raw data and thereafter astronomers can either reconstruct the data back from the downloaded knowledge or use the knowledge directly for further analysis. Therefore, in this paper, we present Distributed Load Balancing Principal Component Analysis for optimally distributing the computation among the available nodes to minimize the transmission cost and downloading cost for the end user. The experimental analysis is done with Fundamental Plane (FP) data, Gadotti data and complex Mfeat data. In terms of transmission cost, our approach performs better than Qi et al. and Yue et al. The analysis shows that with the complex Mfeat data ∼90% downloading cost can be reduced for the end user with the negligible loss in accuracy.

  3. Discovery and the Search for the Design of the Universe

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2012-09-01

    Astronomers tend to think of their discoveries as part of a larger set of astronomical endeavors engaging their community at a particular time. That the complexion of discoveries is dependent on societal or economic factors, if recognized at all, is often considered a regrettable distraction from a logical path forward. Actually, the opposite is true: In the second half of the 20th century, astronomical discoveries were dominated by societal priorities. As World War II was ending, the United States embarked on a national program of post-war research that would seamlessly coordinate basic research in academic institutions with efforts to strengthen the nation's economy and military security. As part of this thrust, astronomy became driven by radio, infrared, X-ray, and gamma-ray discoveries, many initially made as part of military programs, before academic astronomers and astrophysicists adopted the new tools. Similarly coordinated national research programs also began to shape research in other nations. I will describe these arrangements before turning to two questions: 1) Can such coordinated national research programs survive into the 21st century, when most military institutions are loath to release classified information on sophisticated detection systems to the large international consortia required to share progressively mounting costs? 2) Has our vision of the Cosmos, today, been selectively shaped by the instrumentation made available to astronomy, through society's military and economic priorities? We need only think of how our concepts of the Universe have changed since the days when ground-based optical techniques were the sole means for probing the Universe.

  4. Bringing Astronomy to the Classroom: A Model for Planting Seeds of Interest

    NASA Astrophysics Data System (ADS)

    Stassun, K. G.; Lattis, J.

    1999-05-01

    We present a low-cost, field-tested model for astronomy and space-related outreach aimed at minority and under-serviced populations at the middle-school and high-school levels. The model centers around the creation of an extracurricular astronomy ``club" at a middle school or high school, and an in-service training activity for teachers who will serve as club leaders. Students in the club engage in two hands-on activities: telescope-building and model rocketry. Implementation of the model requires a time investment of 1--2 hours per week over the course of one school year. The primary end products are (1) an ongoing extracurricular school club with trained teacher-leaders, (2) a set of portable Dobsonian telescopes for night-time sky-viewing sessions performed by the club as a service to the community, and (3) basic materials for continued model-rocketry activities. In its ideal implementation, the model brings together teachers and amateur astronomers in a lasting partnership. A specific example for funding an outreach program based on this model is presented. This outreach development was funded by a Special Initiatives outreach grant from the Wisconsin Space Grant Consortium, and by the UW-Madison College Access Program. Additional support was provided by Madison's organization of amateur astronomers, the Madison Astronomical Society.

  5. Amateur observations of solar eclipses and derivation of scientific data

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2008-12-01

    This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs "Total solar eclipse 1999 and 2006" (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 - Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133-137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR-Terrestrial Influences, Sofia, November 24-25, pp. 69-72, 2005). Results from teaching and training the students in the procedures, methods and equipment necessary for the observation of a total solar eclipse (TSE) at the Yuri Gagarin Public Astronomical Observatory (PAO) in Stara Zagora, Bulgaria, as well as the selection process used in determining participation in the different observational teams are discussed. The final stages reveal the special methodology used to investigate the level of "pretensions", the levels of ambition displayed by the students in achieving each independent goal, and the setting of goals in context with their problem solving capabilities and information gathering abilities in the scientific observation process. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse and Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that the students benefit from the activities of processing data, observational results and their interpretation, and preparation of summary reports. This exercise is intended to provide the basic training necessary to develop the creativity of the students and amateur astronomers involved. This will enable the students from the Astronomy schools at Public Astronomical Observatories and Planetaria (PAOP) to further develop their creative skills, emotional-volitional personal qualities with an orientation towards scientific analysis, using observations and experiments, to build an effective scientific style of thinking. Students of the Yuri Gagarin Public Astronomical Observatory, whom are already being nurtured in this manner, should be able to participate with great success in Scientific Research Programs devoted to the International Heliophysical Year.

  6. Interacting Dark Resonances with Plasmonic Meta-Molecules

    DTIC Science & Technology

    2014-09-17

    different K-subsystems, as seen in Fig. 1(b). Within the transparency window, of the K-configuration atomic electromagnetic induced transparency ( EIT ...exhibits EIT -type phenomena as seen by a reduction in absorbance at x 264 THz. The basic physical mechanism behind this EIT -type phenomena can be...radiative plasmonic atom.5 However, in the presence of a second dark plasmonic atom, the EIT -type transparency at FIG. 1. (a) Atomic four-level system

  7. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Arcia, Edgar

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  8. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  9. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  10. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  11. Benford's law gives better scaling exponents in phase transitions of quantum XY models.

    PubMed

    Rane, Ameya Deepak; Mishra, Utkarsh; Biswas, Anindya; Sen De, Aditi; Sen, Ujjwal

    2014-08-01

    Benford's law is an empirical law predicting the distribution of the first significant digits of numbers obtained from natural phenomena and mathematical tables. It has been found to be applicable for numbers coming from a plethora of sources, varying from seismographic, biological, financial, to astronomical. We apply this law to analyze the data obtained from physical many-body systems described by the one-dimensional anisotropic quantum XY models in a transverse magnetic field. We detect the zero-temperature quantum phase transition and find that our method gives better finite-size scaling exponents for the critical point than many other known scaling exponents using measurable quantities like magnetization, entanglement, and quantum discord. We extend our analysis to the same system but at finite temperature and find that it also detects the finite-temperature phase transition in the model. Moreover, we compare the Benford distribution analysis with the same obtained from the uniform and Poisson distributions. The analysis is furthermore important in that the high-precision detection of the cooperative physical phenomena is possible even from low-precision experimental data.

  12. Seeing the LITE

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2000-12-01

    We are developing a number of eyes-on experiments, lecture demonstrations and Web based JAVA applets about light, optics, color and visual perception as part of `Project LITE - Light Inquiry Through Experiments'. These are intended for incorporation into introductory level university science courses in astronomy, physics and other disciplines. In this presentation, several of the new LITE demonstrations applicable to large astronomy and physics classes will be shown. One demonstration involves novel materials to display Rayleigh scattering (blue skies, red sunsets and interstellar reddening - NOT redshift!) - including polarization effects. Others employ incandescent bulbs, LED's and laser pointers to illustrate fluorescence, diffraction and other physical and quantum optics phenomena. Still other demonstrations utilize transparent plastic moire overlays as well as computer animated moire patterns to show a variety of astronomical and physical phenomena. We will also display some of our applets posted at the Project LITE Web site (http://www.bu.edu/smec/lite) as well as the associated kit of optical materials we have developed for use by individual students in their own homes or dormitory rooms. This work was supported in part by NSF grant # DUE-9950551.

  13. M.I.T. studies of transient X-ray phenomena. [astronomical observations

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1976-01-01

    A variety of transient X-ray phenomena have been studied. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and GX339-4(MX 1658-48) which may represent a very different type of transient source. A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent balloon flight the Crab pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535 + 26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.

  14. The planets of the Solar System

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.

    1986-01-01

    This book is intended both for the lay person and the would-be scientist. The planets are discussed with a comparision of their basic natural features: mechanical characteristics and parameters of movement, surfaces, inner structure, physical properties of the atmosphere and meteorology. Also general problems of planetary cosmogony, thermal history and climatic evolution are considered briefly. The book is based on Soviet and foreign material, data from spacecraft, Earth optical and radio astronomical measurements and also data obtained from theoretical models.

  15. Papers presented to the Conference on Chondrules and the Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) producing chondrules; (2) carbons, CAI's, and chondrules; (3) large scale processes in the solar nebula; (4) chondrule-matrix relationships in chondritic meteorites; (5) overview of nebula models; (6) constraints placed on the nature of chondrule precursors; (7) turbulent diffusion and concentration of chondrules in the protoplanetary nebula; (8) heating and cooling in the solar nebula; (9) crystallization trends of precursor pyroxene in ordinary chondrites; (10) precipitation induced vertical lightning in the protoplanetary nebula; (11) the role of chondrules in nebular fractionations of volatiles and other elements; (12) astronomical observations of phenomena in disks; (13) experimental constraints on models for origins of chondrules, and various other topics.

  16. Sagnac effect and Ritz ballistic hypothesis (Review)

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.

    2010-12-01

    It is shown that the Ritz ballistic hypothesis, which is based on the vector summation of the speed of light with the velocity of the radiation source, contradicts the fact of existence of the Sagnac effect. Based on a particular example of a three-mirror ring interferometer, it is shown that the application of the Ritz ballistic hypothesis leads to an obvious calculation error, namely, to the appearance of a difference in the propagation times of counterpropagating waves in the absence of rotation. A review is given of experiments and of results of processing of astronomical observations and discussions devoted to testing the Ritz ballistic hypothesis. A number of other physical phenomena that refute the Ritz ballistic hypothesis are considered.

  17. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of machine learning in astronomy. The goal of this chapter is to show a number of successful applications of state-of-the-art machine learning methodology to time-resolved astronomical data, illustrate what is possible today, and help identify areas for further research and development. After a brief comparison of the utility of various machine learning classifiers, the discussion focuses on support vector machines (SVM), neural nets, and self-organizing maps. Traditionally, to detect and classify transient variability astronomers used ad hoc scan statistics. These methods will remain important as feature extractors for input into generic machine learning algorithms. Experience shows that the performance of machine learning tools on astronomical data critically depends on the definition and quality of the input features, and that a considerable amount of preprocessing is required before standard algorithms can be applied. However, with continued investments of effort by a growing number of astro-informatics savvy computer scientists and astronomers the much-needed expertise and infrastructure are growing faster than ever.

  18. Hubble Space Telescope: Faint object camera instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    Paresce, Francesco (Editor)

    1990-01-01

    The Faint Object Camera (FOC) is a long focal ratio, photon counting device designed to take high resolution two dimensional images of areas of the sky up to 44 by 44 arcseconds squared in size, with pixel dimensions as small as 0.0007 by 0.0007 arcseconds squared in the 1150 to 6500 A wavelength range. The basic aim of the handbook is to make relevant information about the FOC available to a wide range of astronomers, many of whom may wish to apply for HST observing time. The FOC, as presently configured, is briefly described, and some basic performance parameters are summarized. Also included are detailed performance parameters and instructions on how to derive approximate FOC exposure times for the proposed targets.

  19. A Nearby Galactic Exemplar

    NASA Astrophysics Data System (ADS)

    2010-09-01

    ESO has released a spectacular new image of NGC 300, a spiral galaxy similar to the Milky Way, and located in the nearby Sculptor Group of galaxies. Taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, this 50-hour exposure reveals the structure of the galaxy in exquisite detail. NGC 300 lies about six million light-years away and appears to be about two thirds the size of the full Moon on the sky. Originally discovered from Australia by the Scottish astronomer James Dunlop early in the nineteenth century, NGC 300 is one of the closest and most prominent spiral galaxies in the southern skies and is bright enough to be seen easily in binoculars. It lies in the inconspicuous constellation of Sculptor, which has few bright stars, but is home to a collection of nearby galaxies that form the Sculptor Group [1]. Other members that have been imaged by ESO telescopes include NGC 55 (eso0914), NGC 253 (eso1025, eso0902) and NGC 7793 (eso0914). Many galaxies have at least some slight peculiarity, but NGC 300 seems to be remarkably normal. This makes it an ideal specimen for astronomers studying the structure and content of spiral galaxies such as our own. This picture from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile was assembled from many individual images taken through a large set of different filters with a total exposure time close to 50 hours. The data was acquired over many observing nights, spanning several years. The main purpose of this extensive observational campaign was to take an unusually thorough census of the stars in the galaxy, counting both the number and varieties of the stars, and marking regions, or even individual stars, that warrant deeper and more focussed investigation. But such a rich data collection will also have many other uses for years to come. By observing the galaxy with filters that isolate the light coming specifically from hydrogen and oxygen, the many star-forming regions along NGC 300's spiral arms are shown with particular clarity in this image as red and pink clouds. With its huge field of view, 34 x 34 arcminutes, similar to the apparent size of the full Moon in the sky, the WFI is an ideal tool for astronomers to study large objects such as NGC 300. NGC 300 is also the home of many interesting astronomical phenomena that have been studied with ESO telescopes. ESO astronomers recently discovered the most distant and one of the most massive stellar-mass black holes yet found (eso1004) in this galaxy, as the partner of a hot and luminous Wolf-Rayet star in a binary system. NGC 300 and another galaxy, NGC 55, are slowly spinning around and towards each other, in the early stages of a lengthy merging process (eso0914). The current best estimate of the distance to the NCG 300 was also determined by astronomers using ESO's Very Large Telescope at the Paranal Observatory (eso0524), among others. Notes [1] Although it is normally considered as member of the Sculptor Group, the most recent distance measurements show that NGC 300 lies significantly closer to us than many of the other galaxies in the group and may be only loosely associated with them. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  1. Some historical crossroads between astronomy and visual neuroscience

    NASA Astrophysics Data System (ADS)

    Berlucchi, G.

    The histories of astronomy and visual neuroscience share some important events. Observation of the sky provided early basic information about visual acuity and sensitivity to light and their variations at different retinal locations. Some of the early tests of visual functions were inspired by astronomical knowledge existing since antiquity and possibly since human prehistory. After science became a hallmark of human civilization, astronomy played a crucial part in the discovery of the laws of nature. At the turn of the 19th century, astronomers discovered interindividual variability in detecting the time of stellar transit and tried to measure the so-called personal equation, a supposedly inherent individual bias in making observations, judgements and measurements. Convinced that the reliability of scientific observations depended on the reliability of the observer, they were the first scientists to realize that studying man and human psychophysiology was essential for achieving accuracy and objectivity in astronomy and other sciences alike. There is general consensus that the science of experimental psychology grew out of astronomy and physiology in connection with the development of the reaction time method and the so-called mental chronometry. The crucial role of the observer in astronomical observations appears to have been neglected by astronomers in the second half of the 19th century after Giovanni Schiaparelli described ``canals" on the surface of the planet Mars. Percival Lowell and others thought that these canals had been constructed by a Martian intelligent population in order to distribute water from the polar regions to the equatorial deserts on the planet. Since it has been ascertained that the Mars canals seen by Schiaparelli do not exist, some speculations are offered from a neuroscientific viewpoint as to why he and others were mistaken in their observations of Mars.

  2. On-line Machine Learning and Event Detection in Petascale Data Streams

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Wagstaff, K. L.

    2012-01-01

    Traditional statistical data mining involves off-line analysis in which all data are available and equally accessible. However, petascale datasets have challenged this premise since it is often impossible to store, let alone analyze, the relevant observations. This has led the machine learning community to investigate adaptive processing chains where data mining is a continuous process. Here pattern recognition permits triage and followup decisions at multiple stages of a processing pipeline. Such techniques can also benefit new astronomical instruments such as the Large Synoptic Survey Telescope (LSST) and Square Kilometre Array (SKA) that will generate petascale data volumes. We summarize some machine learning perspectives on real time data mining, with representative cases of astronomical applications and event detection in high volume datastreams. The first is a "supervised classification" approach currently used for transient event detection at the Very Long Baseline Array (VLBA). It injects known signals of interest - faint single-pulse anomalies - and tunes system parameters to recover these events. This permits meaningful event detection for diverse instrument configurations and observing conditions whose noise cannot be well-characterized in advance. Second, "semi-supervised novelty detection" finds novel events based on statistical deviations from previous patterns. It detects outlier signals of interest while considering known examples of false alarm interference. Applied to data from the Parkes pulsar survey, the approach identifies anomalous "peryton" phenomena that do not match previous event models. Finally, we consider online light curve classification that can trigger adaptive followup measurements of candidate events. Classifier performance analyses suggest optimal survey strategies, and permit principled followup decisions from incomplete data. These examples trace a broad range of algorithm possibilities available for online astronomical data mining. This talk describes research performed at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012, All Rights Reserved. U.S. Government support acknowledged.

  3. Ancient Greek Heliocentric Views Hidden from Prevailing Beliefs?

    NASA Astrophysics Data System (ADS)

    Liritzis, Ioannis; Coucouzeli, Alexandra

    2008-03-01

    We put forward the working hypothesis that the heliocentric, rather than the geocentric view, of the Solar System was the essential belief of the early Greek philosophers and astronomers. Although most of them referred to the geocentric view, it is plausible that the prevalent religious beliefs about the sacred character of the Earth as well as the fear of prosecution for impiety (asebeia) prevented them from expressing the heliocentric view, even though they were fully aware of it. Moreover, putting the geocentric view forward, instead, would have facilitated the reception of the surrounding world and the understanding of everyday celestial phenomena, much like the modern presentation of the celestial sphere and the zodiac, where the Earth is at the centre and the Sun makes an apparent orbit on the ecliptic. Such an ingenious stance would have set these early astronomers in harmony with the dominant religious beliefs and, at the same time, would have helped them to 'save the appearances', without sacrificing the essence of their ideas. In Hellenistic and Roman times, the prevailing view was still the geocentric one. The brilliant heliocentric theory advanced by Aristarchos in the early third century B.C. was never established, because it met with hostility in Athens - Aristarchos was accused of impiety and faced the death penalty. The textual evidence suggests that the tight connection which existed between religion and the city-state (polis) in ancient Greece, and which led to a series of impiety trials against philosophers in Athens during the fifth and fourth centuries B.C., would have made any contrary opinion expressed by the astronomers seem almost a high treason against the state.

  4. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  5. The NSF ITR Project: Framework for the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Szalay, A. S.; Williams, R. D.; NVO Collaboration

    2002-05-01

    Technological advances in telescope and instrument design during the last ten years, coupled with the exponential increase in computer and communications capability, have caused a dramatic and irreversible change in the character of astronomical research. Large-scale surveys of the sky from space and ground are being initiated at wavelengths from radio to x-ray, thereby generating vast amounts of high quality irreplaceable data. The potential for scientific discovery afforded by these new surveys is enormous. Entirely new and unexpected scientific results of major significance will emerge from the combined use of the resulting datasets, science that would not be possible from such sets used singly. However, their large size and complexity require tools and structures to discover the complex phenomena encoded within them. We plan to build the NVO framework both through coordinating diverse efforts already in existence and providing a focus for the development of capabilities that do not yet exist. The NVO we envisage will act as an enabling and coordinating entity to foster the development of further tools, protocols, and collaborations necessary to realize the full scientific potential of large astronomical datasets in the coming decade. The NVO must be able to change and respond to the rapidly evolving world of IT technology. In spite of its underlying complex software, the NVO should be no harder to use for the average astronomer, than today's brick-and-mortar observatories and telescopes. Development of these capabilities will require close interaction and collaboration with the information technology community and other disciplines facing similar challenges. We need to ensure that the tools that we need exist or are built, but we do not duplicate efforts, and rely on relevant experience of others.

  6. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  7. New nova candidate in M81

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.

    2016-06-01

    We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).

  8. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  9. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  10. Loops of Jupiter

    NASA Astrophysics Data System (ADS)

    Opolski, Antoni

    2014-12-01

    Professor Antoni Opolski was actively interested in astronomy after his retirement in 1983. He especially liked to study the works of the famous astronomer Copernicus getting inspiration for his own work. Opolski started his work on planetary loops in 2011 continuing it to the end of 2012 . During this period calculations, drawings, tables, and basic descriptions of all the planets of the Solar System were created with the use of a piece of paper and a pencil only. In 2011 Antoni Opolski asked us to help him in editing the manuscript and preparing it for publication. We have been honored having the opportunity to work on articles on planetary loops with Antoni Opolski in his house for several months. In the middle of 2012 the detailed material on Jupiter was ready. However, professor Opolski improved the article by smoothing the text and preparing new, better drawings. Finally the article ''Loops of Jupiter'', written by the 99- year old astronomer, was published in the year of his 100th birthday.

  11. Astronomy in the Curriculum Proposals of Southern Region of Brazil

    NASA Astrophysics Data System (ADS)

    Albrecht, Evonir; Voelzke, Marcos Rincon

    2013-08-01

    Astronomy is a science that has attracted attention and fascination of different people. Because it is a subject that arouses curiosity, Astronomy has been the subject of several studies related to the area of education. In this respect, this article presents partial results of an ongoing Doctoral research. The objective is to analyze and compare the contents related to Astronomy present in curricular proposals that guide the Basic Education in Southern Brazil. The methodological approach followed the assumptions of qualitative research. We used content analysis to make the comparison between the astronomical content present in the curriculum proposals from the states of Parana, Rio Grande do Sul and Santa Catarina. The reading of the proposals has possible to reorganize the content into categories. As a result the category is displayed Earth and its analysis, which shows the lack of clarity and specificity in the presentation of the contents of the curriculum proposals. This finding may be an indicator that affect the integration of astronomical content in the curriculum of schools.

  12. Observational astrophysics.

    NASA Astrophysics Data System (ADS)

    Léna, P.; Lebrun, F.; Mignard, F.

    This book is the 2nd edition of an English translation published in 1988 (45.003.105) of the French original "Astrophysique: Méthodes physiques de l'observation" published in 1986 (42.003.048). Written specifically for physicists and graduate students in astronomy, this textbook focuses on astronomical observation and on the basic physical principles that astronomers use to conceive, build and exploit their instruments at their ultimate limits in sensitivity or resolution. This second edition has been entirely restructured and almost doubled in size, in order to improve its clarity and to account for the great progress achieved in the last 15 years. It deals with ground-based and space-based astronomy and their respective fields. It presents the new generation of giant ground-based telescopes, with the new methods of optical interferometry and adaptive optics, and also the ambitious concepts behind planned space missions for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spectrum and touches upon the "new astronomies" becoming possible with gravitational waves and neutrinos.

  13. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  14. If You Understand Leaky Buckets, You Understand a Lot of Physics.

    ERIC Educational Resources Information Center

    Ruby, Lawrence

    1991-01-01

    Applications of this model to problems associated with basic phenomena in radioactivity, heat transfer, neutron chain reactions, RC circuits and vacuum pumping are presented. Example computations for each situation are included. (CW)

  15. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports, publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.

  16. Charge and Exchange

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Even though comets are basically giant dirty snowballs, a few years ago they surprised astronomers by emitting X-radiation. These X-rays are not produced by multi-million degree gas (as is often the case) but rather by a process called 'charge exchange'. In this process, ionized atoms (which have lost one or more electrons) which are carried within the solar wind collide with neutral atoms in the comet's coma. The solar wind ion can collide with and capture an electron from the neutral comet atom, and in doing so some of the energy of the collision is observed in the form of X-rays. This produces a glow of X-rays on the sunward side of the comet's atmosphere. Charge exchange can occur in a variety of astrophysical settings, and cometary charge exchange provides astronomers a means to study this process up close. The image above is a pretty picture of comet 73P/Schwassmann-Wachmann 3 passing by the Ring Nebula. This image was obtained by the ultraviolet and optical telescope (UVOT) on the Swift gamma-ray burst hunter. The UVOT observations help astronomers to study the structure and chemistry of the comet, while Swift's X-ray Telescope (XRT) simultaneously monitors the charge exchange process. Comet 73P/Schwassmann-Wachmann 3 is currently in the process of breaking up, and the UVOT observations show important details of how this breakup is occurring.

  17. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  18. Young Astronomers and Astronomy teaching in Moldavia

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1998-09-01

    Curricular Astronomy is taught in Moldavia , except Transnistria and Gagauzia, in the final (11th class) of the secondary schools and gymnasiums, and in the 12th class of the lyceums. The program takes 35 academic hours. The basic book is by Vorontsov-Veliaminov, used in the former USSR, but the Romanian one is also used, in spite of many criticisms addressed to both by our astronomy teachers. In Transinstria (on the left of the Dniester river)astronomy is taught 17 hours. Extracurricular activities develop at the Real Lyceum, where students and amateur astronomers carry out regular observations. Particularly, photographs of the comet Hale-Bopp have been realized using a Cassegrain 450 mm telescope by young astronomers under supervision of S. Luca and D. Gorodetzky (Gorodetchi). Except the telescope from the Real Lyceum other few telescopes are in construction. Unfortunately, no planetarium exists now in Chisinau, since the old one was returned to church. Astronomy courses are taught at the physical and mathematical departments of the Pedagogical University, Transnistrian Moldavian University in Tiraspol and the State University of |Moldavia. Many efforts were made by the State University lecturers and scientists to popularize Astronomy and Astrophysics in the books and in the press, at the radio and TV. No astronomy is taught at the Gagauzian National University in Comrat. No astronomiucal departments exist in Universities of |Moldavia.

  19. Astronomy Education in Greece

    NASA Astrophysics Data System (ADS)

    Metaxa, M.

    Basic education is fundamental to higher education and scientific and technological literacy. We can confront the widespread adult ignorance and apathy about science and technology. Astronomy, an interdisciplinary science, enhances students' interest and overcomes educational problems. Three years ago, we developed astronomy education in these ways: 1. Summer School for School Students. (50 students from Athens came to the first Summer School in Astrophysics at the National Observatory, September 2-5, 1996, for lectures by professional astronomers and to be familiarized with observatory instruments. 2. Introducing Students to Research. (This teaches students more about science so they are more confident about it. Our students have won top prizes in European research contests for their studies of objects on Schmidt plates and computations on PCs.) 3. Hands-on Activities. (Very important because they bring students close to their natural environment. Activities are: variable-star observations (AAVSO), Eratosthenes project, solar-eclipse, sunspot and comet studies. 4. Contact with Professional Astronomers and Institutes. (These help students reach their social environment and motivate them as "science carriers". We try to make contacts at astronomical events, and through visits to appropriate institutions.) 5. Internet Programs. (Students learn about and familiarize themselves with their technological environment.) 6. Laboratory exercises. (Students should do science, not just learn about it We introduced the following lab. exercises: supernova remnants, galaxy classification, both from Schmidt plates, celestial sphere.

  20. Historical halo displays as past weather indicator

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar; Neuhäuser, Ralph

    2017-04-01

    Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.

  1. Five Years of the Fermi LAT Flare Advocate

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, R.; Gasparrini, D.; Ciprini, S.; Fermi LAT Collaboration; Fermi LAT Flare Advocates

    2014-01-01

    Since the launch of the Fermi satellite, the Fermi Large Area Telescope (LAT) team has run a program that provides a daily review of the the gamma-ray sky as soon as Fermi LAT data becomes available. The Flare Advocate/Gamma-ray Sky Watcher (FA-GSW) program allows a rapid analysis of the Automatic Science Processing (ASP) products and triggers dedicated followup analyses by several LAT science groups such as those studying Galactic transients, extragalactic sources and new gamma-ray sources. Significant gamma-ray detections also trigger rapid communications to the entire astrophysical community via astronomical telegrams and gamma-ray coordination network notices. The FA-GSW program plays a key role in maximizing the science return from Fermi by increasing the rate of multi-frequency observations of sources in an active gamma-ray state. In the past ~5 years blazar flaring activity of varying strength and duty cycles, gravitationally lensed blazars, flares from Galactic sources (like Nova Delphini and the Crab Nebula), unidentified transients near and off the Galactic plane, and emission from the quiet and flaring Sun, represent the range of detections made. Flare Advocates have published about 250 Astronomical Telegrams and they publish a weekly blog. Timely, extensive multi-frequency campaigns have been organized to follow-up on these phenomena leading to some of Fermi’s most interesting results.

  2. First Images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Malbet, Fabien; Berger, Jean-Philippe; Benisty, Myriam; Lazareff, Bernard; Le Bouquin, Jean-Baptiste; Baron, Fabien; Dominik, Carsten; Isella, Andrea; Juhasz, Attila; Kraus, Stefan; Lachaume, Régis; Ménard, François; Millan-Gabet, Rafael; Monnier, John; Pinte, Christophe; Thi, Wing-Fai; Thiébaut, Eric; Zins, Gérard

    2013-07-01

    The morphology of the close environment of herbig stars is being revealed step by step and appears to be quite complex. Many physical phenomena could interplay : the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, getting images at the first Astronomical Unit scale is crucial. This has become possible with near infrared instruments on the VLTi. We are carrying out the first Large Program survey of HAeBe stars with statistics on the geometry of these objects at the first astronomical unit scale and the first images of the very close environment of some of them. We have developed a new numerical method specific to young stellar objects which removes the stellar component reconstructing an image of the environment only. To do so we are using the differences in the spectral behaviour between the star and its environment. The images reveal the environement which is not polluted by the star and allow us to derive the best fit for the flux ratio and the spectral slope between the two components (stellar and environmental). We present the results of the survey with some statistics and the frist images of Herbig stars made by PIONIER on the VLTi.

  3. Howard Russell Butler's Oil Paintings of Solar Eclipses and Prominences

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Olson, Roberta J. M.

    2014-06-01

    Howard Russell Butler (1856-1934) was invited to join the US Naval Observatory expedition to the total solar eclipse of 1918 because of his ability to paint astronomical phenomena based on quickly-made notes about spatial and color details. His giant triptych of the total eclipses of 1918, 1923, and 1925 was proposed for a never-built astronomical center at the American Museum of Natural History and wound up at their Hayden Planetarium when it was constructed in the mid-1930s. Half-size versions are installed at the Fels Planetarium at the Franklin Institute in Philadelphia and at the Firestone Library of Princeton University, whose newly conserved canvases were recently hung; the Buffalo Museum of Science has another half-size version in storage. We discuss not only the eclipse triptychs but also the series of large oil paintings he made of solar prominences (in storage at the American Museum of Natural History) and of his 1932-eclipse and other relevant works.JMP was supported for this work in part by Division III Discretionary Funds and the Brandi Fund of Williams College. His current eclipse research is supported by grants AGS-1047726 from the Solar Research Program of the Atmospheric and Geospace Sciences Division of NSF and 9327-13 from the Committee for Research and Exploration of the National Geographic Society.

  4. Creation of a Mock Universe: Photometric Astronomy on Simulation

    NASA Astrophysics Data System (ADS)

    Nene, Ajinkya; Rodriguez, Aldo; Primack, Joel R.

    2016-01-01

    A major focus in astronomy is to understand how galaxies form and evolve in the Universe. The current model known as ΛCDM explains that galaxies form and evolve in halos composed of cold dark matter. In an effort to understand galactic processes in relation to halos, researchers have developed statistical methods to connect galaxies to their halos. One of these approaches is abundance matching: a technique in which the galaxy number density of a property is connected to a theoretical halo number density. In this study, we exploit the abundance matching technique and create a massive photometric mock catalog. We populate millions of dark matter halos in the Bolshoi-Planck Simulation with highly defined galaxies that each has: luminosities, magnitudes, fluxes, masses, and Sérsic profiles. Our catalog acts as an interface between cold dark matter theory and observations: astronomers can use this mock galaxy catalog to compare ΛCDM predictions to observations as well as constrain galaxy formation models. Using our catalog, we can make powerful predictions about both theoretical data and about future astronomical surveys. We demonstrate the usability of our catalog through angular power spectra. Specifically, we shed light on the controversial intrahalo light phenomena. We emphasize that this is the first catalog of this accuracy and size and has incredible potential for application.

  5. On the Formation of a Study Group to the Realization of Workshops for Teachers: Astronomy in Basic Education in Umuarama-Pr (Spanish Title: De la Formación de un Grupo de Estudios a la Realización de los Talleres Para los Profesores: la Astronomía en la Educación Básica en Umuarama-Pr ) Da Formação de um Grupo de Estudos À Realização de Oficinas Para Professores: a Astronomia na Educação Básica em Umuarama-Pr

    NASA Astrophysics Data System (ADS)

    Belusso, Diane; Akira Sakai, Otávio

    2013-12-01

    In this article, we aimed to present the activities developed by the Astronomy Study Group (ASG) to contribute to the dissemination and improvement of the astronomy teaching-learning. The results of a research carried out in schools of Umuarama-PR are shown, with the intention of checking the students' knowledge and interest in relation to Astronomy. It is reported the realization of workshops for Science teachers linked to the Education Regional Nucleus. The research and the workshop execution promoted the direct contact of the study group with the community; the results were used to diagnose the state of astronomy teaching-learning, in the basic education in Umuarama-PR. En este artículo se intenta presentar las actividades desarrolladas por el Grupo de Estudios de Astronomía (GEA) y contribuir para la divulgación y mejoría de la enseñanza-aprendizaje de la Astronomía. Se presentan los resultados de una investigación realizada en las escuelas de Umuarama-PR, con la intención de determinar el grado de conocimiento y el interés de los estudiantes en relación a la astronomía. Se relata la realización de talleres de capacitación para los profesores de ciencias vinculados al Núcleo Regional del Educación. La ejecución de la investigación y de los talleres promovió el contacto directo del grupo de estudios con la comunidad; los resultados sirvieron de diagnóstico de la enseñanza aprendizaje de la astronomía en la educación básica en Umuarama-PR. Neste artigo, objetiva-se apresentar as atividades desenvolvidas pelo Grupo de Estudos de Astronomia (GEA) e contribuir para a divulgação e melhoria do ensino-aprendizagem de astronomia. São apresentados os resultados de uma pesquisa realizada nas escolas de Umuarama-PR, com o intuito de averiguar o conhecimento e o interesse dos estudantes em relação à astronomia. Relata-se a realização de oficinas de capacitação para professores de ciências vinculados ao Núcleo Regional de Educação. A execução da pesquisa e das oficinas promoveu o contato direto do grupo de estudos com a comunidade; os resultados serviram de diagnóstico do ensino-aprendizagem de astronomia, na educação básica, em Umuarama-PR.

  6. A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator

    NASA Astrophysics Data System (ADS)

    Braverman, William; Cousins, Bryce; Jia, Hewei

    2018-01-01

    Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.

  7. Progress and Challenges in Astronomical Research in Developing Countries of Sub-Saharan African: Nigeria as a Case Study by Prof. F.E. Opara

    NASA Astrophysics Data System (ADS)

    Opara, Fidelix

    ABSTRCT: The Centre for Basic Space Science and Astronomy (CBSS) is an activity Centre for Space Research and development in Nigeria mandated to pursue capacity building (manpower and infrastructural development) that can sufficiently address the developmental needs of the country in several areas through studies, research and development in Basic Space Science such as Astronomy and Astrophysics, Solar Terrestrial Physics, Cosmology and origin of life, Atmospheric Science, Geomagnetism, Rocketry and Satellite Science and Technology. In this study, we highlight the progress made by the centre in the area of capacity and infrastructural building. The challenges faced by the Centre were also highlighted while successful researches on Near Earth Objects that fell in Nigeria and their impact craters have been simulated.

  8. Observations of Twilight Fireballs over Kiev in 2013-2015

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Steklov, Aleksey; Vidmachenko, Anatoliy; Dashkiev, Grigoriy

    2016-07-01

    The phenomenon of "Chelyabinsk bolide" 15.02.2013, resulted in damage to more than 1000 buildings and injure more than 500 people, after the explosion of fireball's body in the atmosphere over Chelyabinsk. The question about the dangers of such astronomical phenomena for life and health of citizens and for the existence of entire countries, arose with renewed vigor. Normally, bolides leave bright trace from ionized gas and dust. Traces of ionization can be seen particularly well at night. If a meteorite invades at the daytime at the cloudless sky and bright sunshine, the phenomenon of the fireball may not be visible. But if the fireball's track has noticeable angular size, it can be seen even in the daytime. After the flight, bolide remains a noticeable trace of a dust, dark against the light sky. If such a dust trail illuminated by the rays of the Sun, which had just hid behind the horizon (or even in the moonlight), it is visible as bright lanes in the night sky or in twilight. That's why we call it the twilight bolides. Typically, astronomical observations using of meteor patrols, carried out at night after the evening astronomical twilight. But from March 2013 to October 2015, the authors have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs. We register the traces of invading to atmosphere of meteoroids of natural and artificial origin. At the same time, observe the traces of fireballs at the day-time are also possible. But they are less effective than in the twilight. Night observations of bright meteoric tracks can usually observe some seconds. While traces of the twilight bolides we observed from some minutes up to two hours, before they be scattered by atmospheric currents. It opens the great prospects for low-cost direct experiments probing of these tracks by using, for example, the astronomical aviation. We propose the twilight tracks are classified into the following types: AMT - aero-meteorological tracks, AST - aero-space, ATT - aero-technical, and NST - not yet classified tracks of an unknown nature. In recent years, geostationary satellites often registered flashes in the atmosphere brighter than -17m. The typical initial sizes of the stone bodies have 1-3 meters. If these meteoroids are consist of ice and snow (fragments of cometary nuclei), their size can be increased up to tens of meters. It was a set of fine dust particles with lower average density interconnected by ice of frozen water, carbon dioxide and others. Thus, such a body is actively destroying during the flight through the atmosphere. The mass of Tunguska initial body is estimated at about 2x10^{6} tons. At the speed of entry into the atmosphere 31 km/s, in the way of an explosion, it has passed about 200 km and a lost hundreds of thousands of tons of fine dust. The height of the explosion and flash light, is at a height of maximum braking at altitudes significantly less than the height of the homogeneous atmosphere ( 7.5 km). According to the theory of point explosion in a medium with variable density exponentially if a thermal explosion of the meteoroid will happen at the height of 15 km, the shock wave does not reach the Earth's surface. 06.25.2014 we observed evening twilight bolide in the sky over Kiev. Images were synchronously obtained by Dashkiev G. N. and Steklov A. F. The basic distance between the points of photographing according to GPS data was 8.55 km. A fragment in the atmosphere has moved from the southwest to the northeast. The disintegration of fragment began at a height more of 25 km (it is the highest point of the visible trace, not closed by building and clouds). Traces of disintegration visible at altitudes from 18 to 8.2 km. Therefore, the body is not reached the Earth's surface and disintegrated into finely dispersed particles. Trace was visible for about 20 minutes. Preliminary estimates of the initial mass of this fragment before the atmospheric entry indicates on the mass from 1 to 10 tons. Fragments with a little more mass, formed three bolide phenomena in the sky above the Kyiv 29.03.2013 at 16 hours 22 minutes local time. They arose for about some seconds and been accompanied by flashes, explosions and multiple cascade decays of three fragments, apparently, of the cometary nature, at heights of 35 to 15 km. Thus, we believe that the astronomical studies should be based on a detailed study of the interaction of the planet with the space environment, especially with hazardous meteoroids. During the short period of our observations (from March 2013), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.

  9. Teaching Cultural Astronomy: On the Development and Evolution of the Syllabus at Bath Spa University and the University of Wales, Lampeter

    NASA Astrophysics Data System (ADS)

    Campion, Nick

    TheMaster of Arts in CulturalAstronomy andAstrology at the University of Wales, Lampeter, formerly taught at Bath Spa University in England, is the first degree of its kind in the world. (I shall refer to the discipline as Cultural Astronomy, with initial letters as upper case, and the phenomena which it studies as cultural astronomy, all lower case). My definition combines both the discipline and the phenomenon; 'Cultural astronomy: the use of astronomical knowledge, beliefs or theories to inspire, inform or influence social forms and ideologies, or any aspect of human behaviour. Cultural astronomy also includes the modern disciplines of ethnoastronomy and archaeoastronomy' (Campion 1997: 2).

  10. Monsters in the sky. I mostri del cielo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, P.

    1980-01-01

    The book treats astronomical objects and phenomena which remain unexplained or unproven by current investigators. Specific objects discussed include comets, satellite clouds surrounding the earth, tektites, the planet Vulcan (within the orbit of Mercury), Planet X (beyond Pluto), the Gum Nebula, planetary nebulae, supernovae, supernova remnants, transient X-ray sources, the possible extinction of the dinosaurs by an X-ray explosion and super-supernovae. Attention is also given to the star Eta Carinae, black holes, BL Lacertae objects, active galaxies, Markarian galaxies, N and compact galaxies, Seyfert galaxies, quasars, redshift anomalies, Stephan's quintet of galaxies, and intergalactic black holes or black dwarfs whichmore » may account for the mass necessary to bind together clusters of galaxies.« less

  11. Plutonian Moon confirmed

    NASA Astrophysics Data System (ADS)

    In late February, two separate observations confirmed the 1978 discovery by U.S. Naval Observatory scientist James W. Christy of a moon orbiting the planet Pluto. According to the U.S. Naval Observatory, these two observations were needed before the International Astronomical Society (IAS) would officially recognize the discovery.Two types of observations of the moon, which was named Charon after the ferryman in Greek mythology who carried the dead to Pluto's realm, were needed for confirmation: a transit, in which the moon passes in front of Pluto, and an occultation, in which the moon passes behind the planet. These two phenomena occur only during an 8-year period every 124 years that had been calculated to take place during 1984-1985. Both events were observed in late February.

  12. Bayesian learning

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    In 1983 and 1984, the Infrared Astronomical Satellite (IRAS) detected 5,425 stellar objects and measured their infrared spectra. In 1987 a program called AUTOCLASS used Bayesian inference methods to discover the classes present in these data and determine the most probable class of each object, revealing unknown phenomena in astronomy. AUTOCLASS has rekindled the old debate on the suitability of Bayesian methods, which are computationally intensive, interpret probabilities as plausibility measures rather than frequencies, and appear to depend on a subjective assessment of the probability of a hypothesis before the data were collected. Modern statistical methods have, however, recently been shown to also depend on subjective elements. These debates bring into question the whole tradition of scientific objectivity and offer scientists a new way to take responsibility for their findings and conclusions.

  13. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  14. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  15. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  16. NASA's Hubble Captures the Beating Heart of the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields. The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating. The NASA Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core. The neutron star is a showcase for extreme physical processes and unimaginable cosmic violence. Bright wisps are moving outward from the neutron star at half the speed of light to form an expanding ring. It is thought that these wisps originate from a shock wave that turns the high-speed wind from the neutron star into extremely energetic particles. When this "heartbeat" radiation signature was first discovered in 1968, astronomers realized they had discovered a new type of astronomical object. Now astronomers know it's the archetype of a class of supernova remnants called pulsars - or rapidly spinning neutron stars. These interstellar "lighthouse beacons" are invaluable for doing observational experiments on a variety of astronomical phenomena, including measuring gravity waves. Observations of the Crab supernova were recorded by Chinese astronomers in 1054 A.D. The nebula, bright enough to be visible in amateur telescopes, is located 6,500 light-years away in the constellation Taurus. Credits: NASA and ESA, Acknowledgment: J. Hester (ASU) and M. Weisskopf (NASA/MSFC) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Study of Some Dynamical Phenomena in the Solar System

    NASA Astrophysics Data System (ADS)

    Vaduvescu, O.

    1997-08-01

    The number of minor bodies in the Solar System is continuing to increase. More than 30,000 asteroids have been discovered by 1996, and about 7,000 have been catalogued. About 855 comets had known orbits by 1994. The number of known planetary satellites reached 60 (1996). All these minor bodies require improved astrometry, also more accurate physical parameters (sizes, masses, albedo, etc) to ensure accurate determination of their orbits. Some rapid dynamical phenomena could bring valuable information in this sense. Occultations and appulses (close approaches) of stars by asteroids represent the most accurate phenomena to determine or constraint sizes and shape of the asteroids. Given a fixed place, such events are very rare. Moreover, their prediction could be quite inaccurate, due to the reduced accuracy in both stellar and asteroid positions. Coordinated international campaigns, such as those lead by EAON (European Asteroidal Occultation Network) and IOTA (International Occultation Timing Association) could determine sizes and shapes of the asteroids. Some events could also lead to the discovery of double or triple asteroids systems. Four appulses involving PPM catalog stars and the minor planets (7) Iris, (297) Caecilia, (382) Dodona, and (824) Anastasia were observed by the author using the F=6m/D=0.38m refractor of the Astronomical Institute of the Romanian Academy (AIRA) in Bucharest. None were recorded as occultations, but their reduced astrometry (~0.01 arcsec) brought valuable information about the time of minimum approach and the minimum distance between the start and the asteroid, leading to some constraints about their sizes. Mutual phenomena in the systems of satellites of Jupiter and Saturn could bring valuable information about planetary and satellite masses, also about their moons orbits. Such phenomena are eclipses, occultations and passages between a satellite and the planet, and mutual eclipses and occultations between two satellites. Such events took place in 1995-1996 in the system of Saturn, when Earth passed through the plane of the ring of Saturn, allowing increased accuracy in timing and astrometry of the events, via photometry. Some contributions have been made by AIRA part of the international campaign PHESAT95 lead by Bureau des Longitudes in Paris, in which the author was involved part of a small team (3 people). Astrometry of a small CCD field (<5 arcmin) from a light polluted place (such as Bucharest) can be challenging, due to the few number of stars in the field, also to the low density of the astrometric catalogs (e.g., PPM). Most of the times only one or two stars in the field can be used for astrometry. The orientation of the CCD camera on the sky has to be determined for every observation, due to the flexure of the F=6m refractor which was determined to be different given various positions of the telescope during the night. A catalog of double, triple and multiple PPM stars in a small field (5x5 arcmin) was built in order to allow the observation of an orientation field close to every science field observed during the night. Some contributions to the astronomical software library of AIRA and its Astronomical Yearbook were made by the author in conjunction with this thesis. Other software were written to assist the observing runs and data reduction. We note here the following: CELESTIAL MAPS 5.0, MAPSAT, APRPPM, TOP, INTTOP, ORIENT, RELCCD, ABSCCD, PARGEO, SEPAD, EPHEMERID, LAPLACE, etc. Some contributions to the correlation of the orbital elements of the asteroids (semimajor axis, eccentricity, inclination, longitude of the ascending node and longitude of the perihelium) were made using the ASTEROIDS II database using the principal component analysis. A curious distribution of perihelion longitudes of the asteroids showing symmetry of the number of asteroids around perihelion longitude 180 deg was found using the IRAS database. This could be attributed to perturbations from Jupiter. Scanned thesis in pdf format available online at http://ovidiuvh.tripod.com/Teza-Romania/ (200 pags, 9 MB)

  18. REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology

    NASA Astrophysics Data System (ADS)

    Zhmakin, A. I.

    2008-03-01

    Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.

  19. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    NASA Astrophysics Data System (ADS)

    Ahn, Young Sook; Lee, Yong Sam

    2004-12-01

    The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  20. Mass action at the single-molecule level.

    PubMed

    Shon, Min Ju; Cohen, Adam E

    2012-09-05

    We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.

  1. 1988 IEEE Annual Conference on Nuclear and Space Radiation Effects, 25th, Portland, OR, July 12-15, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Coakley, Peter G. (Editor)

    1988-01-01

    The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.

  2. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    NASA Astrophysics Data System (ADS)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  3. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    DTIC Science & Technology

    1991-04-01

    week and two years (subchronic GMRL studies versus chronic ITRI and Fh-ITA studies ); exposure concentrations were changed by a factor of 40 (Fh-ITA...a forum for the publication of studies involving inhalation of particles and gases in the respiratory tract, covering the use of aerosols as tools to... study basic physiologic phenomena, their use as selective delivery systems for medication, and the toxic effects of inhaled agents. JOURNAL OF AEROSOL

  4. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  5. Astrometry: Beyond Microarcseconds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivas

    2009-05-01

    The next decade will witness the flowering of astrometry. On the ground we are already reaping the benefits of adaptive optics, interferometry and digital sky surveys. The precision of GAIA and SIM-Lite will usher in an age of tens to microarcsecond astrometry. In this talk (meant to provoke and whet the appetite of the audience) the speaker will explore astromery in the post-GAIA era. At the sub-microarcsecond the Universe is measurably not static. The speaker will address the basic technical and astronomical challenges and of course the scientific rewards of sub-microarcsecond astromery.

  6. Introduction to SQL. Ch. 1

    NASA Technical Reports Server (NTRS)

    McGlynn, T.; Santisteban, M.

    2007-01-01

    This chapter provides a very brief introduction to the Structured Query Language (SQL) for getting information from relational databases. We make no pretense that this is a complete or comprehensive discussion of SQL. There are many aspects of the language the will be completely ignored in the presentation. The goal here is to provide enough background so that users understand the basic concepts involved in building and using relational databases. We also go through the steps involved in building a particular astronomical database used in some of the other presentations in this volume.

  7. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  8. Pushing Glass: Engaging Young People in Astronomy Through Amateur Mirror Making Classes

    NASA Astrophysics Data System (ADS)

    Larsen, K.; Slater, K. H.; Drew, B. J. V.

    2008-11-01

    One of the activities utilized by amateur astronomers to excite the general public about astronomy is mirror making. This activity requires few basic skills other than patience and perseverance, and the proper instruction. This poster reports on the results of a study of mirror making classes conducted by nine amateur astronomy groups in the Northeast and Mid-Atlantic U.S., including class organizers' reflections on their successes and challenges in recruiting and retaining young men and women through the completion of a workable telescope mirror.

  9. Back to basics: naked-eye astronomical observation

    NASA Astrophysics Data System (ADS)

    Barclay, Charles

    2003-09-01

    For pupils of both sexes and all ages from about six upwards, the subject of Astronomy holds many fascinations - the rapid changes in knowledge, the large resource of available IT packages and above all the beautiful pictures from Hubble and the large Earth-based telescopes. This article, however, stresses the excitement and importance of naked-eye (unaided) first-hand observation, where light pollution allows, and suggests some techniques that may be used to enthuse and introduce youngsters to the glory of the night sky without recourse to computer screens.

  10. The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac

    NASA Astrophysics Data System (ADS)

    Standish, E. M., Jr.

    1990-07-01

    This paper documents the planetary observational data used in a series of ephemerides produced at JPL over six years preceding the creation of DE118/LE62, the set which transformed directly into the JD2000-based set, DE200/LE200. Details of the data reduction procedures are presented, and techniques to overcome the uncertainties due to planetary topography are described. For the spacecraft data, the basic reductions are augmented by formulations for locating the transponder, whether in orbit or landed on the surface of a planet.

  11. New optical nova candidate in the M 31 disk

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.; Pietsch, W.,

    2014-07-01

    We report the discovery of a possible nova in the disk of M 31 on two 4x200s stacked R filter CCD images, obtained with the the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq.

  12. Resolution experiments using the white light speckle method.

    PubMed

    Conley, E; Cloud, G

    1991-03-01

    Noncoherent light speckle methods have been successfully applied to gauge the motion of glaciers and buildings. Resolution of the optical method was limited by the aberrating turbulent atmosphere through which the images were collected. Sensitivity limitations regarding this particular application of speckle interferometry are discussed and analyzed. Resolution limit experiments that were incidental to glacier flow studies are related to the basic theory of astronomical imaging. Optical resolution of the ice flow measurement technique is shown to be in substantial agreement with the sensitivity predictions of astronomy theory.

  13. Attaining the Photometric Precision Required by Future Dark Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  14. Chlamydomonas: A Model Green Plant.

    ERIC Educational Resources Information Center

    Sheffield, E.

    1985-01-01

    Discusses the instructional potential of Chlamydomonas in providing a basis for a range of experimental investigations to illustrate basic biological phenomena. Describes the use of this algae genus in studies of population growth, photosynthesis, and mating behavior. Procedures for laboratory exercises are included. (ML)

  15. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  16. Derivation of Heliophysical Scientific Data from Amateur Observations of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2006-03-01

    The basic scientific aims and observational experiments included in the complex observational program - Total Solar Eclipse '99 - are described in the work. Results from teaching and training students of total solar eclipse (TSE) observation in the Public Astronomical Observatory (PAO) in Stara Zagora and their selection for participation in different observational teams are also discussed. During the final stage, a special system of methods for investigation of the level of pretensions (the level of ambition as to what he/she feels capable of achieving in the context of problem solving/observation) of the students is applied. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse; Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that data processing, observational results and their interpretation, presentation and publishing in specialized and amateur editions is a peak in the independent creative activity of students and amateur astronomers. This enables students from the Astronomy schools at Public Astronomical Observatories and Planetariums (PAOP) to develop creative skills, emotional - volitional personal qualities, orientation towards scientific work, observations and experiments, and build an effective scientific style of thinking.

  17. Magnetic susceptibility variations in Loess sequences and their relationship to astronomical forcing

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Singer, Michael J.

    1992-01-01

    The long, well-exposed and often continuous sequences of loess found throughout the world are generally thought to provide an excellent opportunity for studying long-term, large-scale environmental change during the last few million years. In recent years, the most fruitful loess studies have been those involving the deposits of the loess in China. One of the most intriguing results of that work has been the discovery of an apparent correlation between variations in the magnetic susceptibility of the loess sequence and the oxygen isotope record of the deep sea. This correlation implies that magnetic susceptibility variations are being driven by astronomical parameters. However, the basic data have been interpreted in various ways by different authors, most of whom assumed that the magnetic minerals in the loess have not been affected by post-depositional processes. Using a chemical extraction procedure that allows us to separate the contribution of secondary pedogenic magnetic minerals from primary inherited magnetic minerals, we have found that the magnetic susceptibility of the Chinese paleosols is largely due to a pedogenic component which is present to a lesser degree in the loess. We have also found that the smaller inherited component of the magnetic susceptibility is about the same in the paleosols and the loess. These results demonstrate the need for additional study of the processes that create magnetic susceptibility variations in order to interpret properly the role of astronomical forcing in producing these variations.

  18. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the layering in Holocene peat bogs. He specifically linked the exceptionally wet Atlantic period to the prolonged precession minimum at 33,300 yr ago and further related basic stratigraphic alternations to precession induced climate change in general. Such a linkage was also proposed by Grove Karl Gilbert for cyclic alternations in the marine Cretaceous of North America. Extrapolating sedimentation rates, he arrived at an astronomical duration for part of the Cretaceous that was roughly as long as the final estimate of William Thomson for the age of the Earth. Assuming that orbital parameters directly affect sea level, Karl Mayer-Eymar and Blytt correlated the well known succession of Tertiary stages to precession and eccentricity, respectively. Remarkably, Blytt, like Croll before him, used very long-period cycles in eccentricity to establish and validate his tuning. Understandably these studies in the second half of the 19th century were largely deductive in nature and proved partly incorrect later. Nevertheless, this fascinating period marks a crucial phase in the development of the astronomical theory of the ice ages and climate, and in astronomical dating. It preceded the final inductive phase, which started with the recovery of deep-sea cores in 1947 and led to a spectacular revival of the astronomical theory, by a century. The first half of the 20th century can best be regarded as an intermediate phase, despite the significant progress made in both theoretical aspects and tuning.

  19. The Formalization of Cultural Psychology. Reasons and Functions.

    PubMed

    Salvatore, Sergio

    2017-03-01

    In this paper I discuss two basic theses about the formalization of cultural psychology. First, I claim that formalization is a relevant, even necessary stage of development of this domain of science. This is so because formalization allows the scientific language to achieve a much needed autonomy from the commonsensical language of the phenomena that this science deals with. Second, I envisage the two main functions that formalization has to perform in the field of cultural psychology: on the one hand, it has to provide formal rules grounding and constraining the deductive construction of the general theory; on the other hand, it has to provide the devices for supporting the interpretation of local phenomena, in terms of the abductive reconstruction of the network of linkages among empirical occurrences comprising the local phenomena.

  20. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble in one place a treatment of gamma rays emitted from bodies in the solar i system, from objects in our galaxy, as well as from interactions between cosmic rays and the interstellar medium, and from beyond our galaxy. Thus, this book is intended for those in astrophysics who wish to have the opportunity to learn more about the evolving field of gamma-ray astronomy and its relationship to the high-energy, evolutionary processes occurring in the universe. The last three chapters of the book provide a general discussion of the experimental aspects of the field that seemed best treated together, separately from the astrophysical aspects of gamma-ray astronomy that are discussed in the first ten chapters.

  1. Conceiving "personality": Psychologist's challenges and basic fundamentals of the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals.

    PubMed

    Uher, Jana

    2015-09-01

    Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals' bodies, temporal extension, and physicality versus "non-physicality") that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena's accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals' "personality", which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals.

  2. Interactive Physics and Characteristics of Photons and Photoelectrons in Hyperbranched Zinc Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Torix, Garrett

    As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc oxide (ZnO) nanomaterials were investigated and subjected to various, systematical tests, with the aim of discovering new and useful properties. The various nanostructures were grown on a quartz substrate, between a pair of gold electrodes, and subjected to an electrical bias which produced a measurable photocurrent under sufficient lighting conditions. This design formed a novel photodetector device, which, when combined with a simple solar cell and a methodical set of experimental trials, allowed several unique phenomena to be studied. Under various conditions, the device photocurrent as a function of applied voltage, as well as transmitted light, were measured and compared between devices of different ZnO morphologies. Zinc oxide is an absorber of ultraviolet (UV) light. UV absorbing materials and devices have uses in solar cells, long range communications, and astronomical observational equipment, hence, a better understanding of zinc oxide nanostructures and their properties can lead to more efficient utilization of UV light, improved solar cell technology, and a better understanding of the basic science in photon-to-electricity conversion.

  3. Science at Schools: Observation and Analysis of a Partial Solar Eclipse

    NASA Astrophysics Data System (ADS)

    dos Santos, Leonardo Barbosa Torres; dos Santos, Everaldo Faustino; das Neves, Leonardo Oliveira

    2015-07-01

    Natural phenomena, such as eclipses, prompt interest and curiosity of humans since antiquity. For this reason the systematic monitoring of these events could be used to raise people’s interest from the simple contemplation, to didactic interest or to scientific research. The objective of this paper is therefore to stimulate the application and development of scientific research in the school environment. For this aim we propose to monitor solar eclipses. Students should obtain photographic registers using appropriated equipment for the observation of the Sun. Throughout analyses of photographs it should be possible to determine representative parameters of the characteristics and evolution of these interesting astronomical events. The results could be compared to highly accurate predictions. A detailed description of the methodology and features to be applied to observations is also provided.

  4. Planetary geology: Impact processes on asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Greenberg, R.; Weidenschilling, S. J.

    1982-01-01

    The fundamental geological and geophysical properties of asteroids were studied by theoretical and simulation studies of their collisional evolution. Numerical simulations incorporating realistic physical models were developed to study the collisional evolution of hypothetical asteroid populations over the age of the solar system. Ideas and models are constrained by the observed distributions of sizes, shapes, and spin rates in the asteroid belt, by properties of Hirayama families, and by experimental studies of cratering and collisional phenomena. It is suggested that many asteroids are gravitationally-bound "rubble piles.' Those that rotate rapidly may have nonspherical quasi-equilibrium shapes, such as ellipsoids or binaries. Through comparison of models with astronomical data, physical properties of these asteroids (including bulk density) are determined, and physical processes that have operated in the solar system in primordial and subsequent epochs are studied.

  5. A history of chaos theory.

    PubMed

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms.

  6. A history of chaos theory

    PubMed Central

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  7. The historical tension between astronomical theory and observation

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    A review of instances in the history of astronomy wherein conflicts between the results of theory and observation occurred, to be later ameliorated or exaggerated by further evidence, is presented. Among the examples are Aristotle's arguments that the form of a celestial body will always be spherical to evenly distribute the mass, and the currently held concept that all celestial objects greater than a few kilometers in radius will be spherical due to gravitational forces. Ptolemy's observations of planetary orbits, however, are noted to have accurately resulted in a numerical model which did not factually represent planetary orbits. It is noted that observation is usually performed with a theory in mind, and interpretation is therefore hindered from clear analysis of phenomena which do not conform to previously held mental models.

  8. The Problem of Extraterrestrial Civilizations and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.

  9. [The celestial phenomena in A. Dürer's engraving Melancholia I].

    PubMed

    Weitzel, Hans

    2009-01-01

    The celestial body of Dürer's engraving Melencolia I is connected with his painting of a meteor, the Raveningham-painting; it is shown that the origin of this painting owns to the impact of the meteor of Ensisheim in 1492. Until now the celestial body, the balance, and the magic square are nearly consistently interpreted as the planet Saturn, the zodiac sign Libra, and the planet Jupiter, and the melancholy woman is subject to these heavenly bodies. Consequently, neoplatonic astrology has been the main focus of the engraving; including the rainbow, the engraving has also been interpreted biblically. The present paper, however, places emphasis on problems of the geometry as the reason of melancholy. Any astronomical meaning of the configuration of the numbers of the magic square is discarded.

  10. Astronomy in Syria

    NASA Astrophysics Data System (ADS)

    Al-Mousli, A. T.

    2006-11-01

    Syria has been involved in the field of astronomy since 1997, when Prof. F.R. QUERCI, France, visited Syria and made a presentation on the International NORT project; (NORT: the Network of Oriental Robotic Telescope), which was a selected project of the sixth United Nations/ European Space Agency Workshop on Basic Space Science (document no. A/AC.105/657 dated 13/12/1996). NORT aims to establish a robotic telescope network on high mountain peaks around the Tropic of Cancer, from Morocco in the west to the desert of China in the east. The purposes for establishing this network are technical and educational. The General Organization of Remote Sensing (GORS) has carried out a pilot study using remote sensing techniques and has selected four sites in order to determine the best location for the astronomical observatory the within NORT programme. Following this project, GORS decided to establish an office for astronomical studies, one of the earliest works of GORS in astronomy was an initiative to establish a planetarium within the GORS campus, to accommodate approximately 120 observers. A contest to choose the best planetarium design, for the Arab World, took place at GORS.

  11. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; ancient and medieval astronomy; history of observatories and others. Among the most interesting problems considered in the present issue: the origin of the Earth and the geospheres: a bit of history and the current state of the problem; the Near-Earth Astronomy as an independent astronomical discipline; the problem of visual registration of observations in optical astronomy in the 17th - 18th centuries; evidence of lunar and solar calendars in Russian chronicles; the history of the first observatory of the Moscow University; the history of Pulkovo observatory for the last 50 years; the life and activity of the outstanding Russian astronomer A. A. Belopolsky (for his 150th anniversary); a reconstruction of Philolaus' solar system model; and many others. The book is addressed to professional scientists, astronomy amateurs, pedagogues, and everybody interested in the history of science.

  12. Pre-College Astronomy Education in the United States in the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Bishop, J. E.

    2003-03-01

    The nature of pre-college astronomy education in the United States can be divided into several periods: 1900 to about 1955, 1955 to about 1980, and about 1980 to 2000. Until the Space Age, astronomy in elementary and secondary schools was minimal, a situation influenced in great part of the work of the National Education Association Committee of Ten in 1892. With the launch of the Russian Sputnik in November 1957, a rapid response of concern and action took place to improve science and math education, including astronomy. Efforts by small planetariums and the National Aeronautics and Space Administration (NASA) played large roles in re-introducing astronomy back into schools in the 1960s and 1970s. During the last decades, educational-research-based astronomy programs and a nationwide effort to improve astronomy and other science education were important at all pre-college levels. Although the basic astronomical literacy of students leaving secondary school at the close of the century needed improvement, awareness of astronomical discoveries had increased since the opening of the Space Age.

  13. The Zagora cryptograph

    NASA Astrophysics Data System (ADS)

    Coucouzeli, A.

    A unique lead seal from the well-known eighth century B.C. settlement of Zagora on the island of Andros dramatically confirms and expands our knowledge of the town planning identified at the site and constituting the earliest example of an orthogonal grid plan in the Greek world. The seal in question is decorated with a symbolic design that constitutes a rare representation of the Dioskouroi as part of the constellation Gemini. This design appears to have acted as a cryptograph enciphering the basic mathematical and astronomical principles behind the planning of Zagora. Besides offering us new insights into early Greek settlement planning, the cryptograph seems to reveal an advanced practical competence in mathematics and celestial observation, which was hitherto unsuspected for such an early period. The Zagora cryptograph also suggests that astronomy and mathematics played a crucial role in the strengthening of the ruling elite's power at Zagora in the framework of the rising city-state or polis. The tight interweaving of astronomical, mathematical, architectural and social considerations in the planning of Zagora is an entirely new discovery for Greece, whose implications are far-reaching.

  14. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.

  15. Size does Matter

    NASA Astrophysics Data System (ADS)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  16. Knut Lundmark, meteors and an early Swedish crowdsourcing experiment.

    PubMed

    Kärnfelt, Johan

    2014-10-01

    Mid twentieth century meteor astronomy demanded the long-term compilation of observations made by numerous individuals over an extensive geographical area. Such a massive undertaking obviously required the participation of more than just professional astronomers, who often sought to expand their ranks through the use of amateurs that had a basic grasp of astronomy as well as the night sky, and were thus capable of generating first-rate astronomical reports. When, in the 1920s, renowned Swedish astronomer Knut Lundmark turned his attention to meteor astronomy, he was unable to rely even upon this solution. In contrast to many other countries at the time, Sweden lacked an organized amateur astronomy and thus contained only a handful of competent amateurs. Given this situation, Lundmark had to develop ways of engaging the general public in assisting his efforts. To his advantage, he was already a well-established public figure who had published numerous popular science articles and held talks from time to time on the radio. During the 1930s, this prominence greatly facilitated his launching of a crowdsourcing initiative for the gathering of meteor observations. This paper consists of a detailed discussion concerning the means by which Lundmark's initiative disseminated astronomical knowledge to the general public and encouraged a response that might directly contribute to the advancement of science. More precisely, the article explores the manner in which he approached the Swedish public, the degree to which that public responded and the extent to which his efforts were successful. The primary aim of this exercise is to show that the apparently recent Internet phenomenon of 'crowdsourcing', especially as it relates to scientific research, actually has a pre-Internet history that is worth studying. Apart from the fact that this history is interesting in its own right, knowing it can provide us with a fresh vantage point from which to better comprehend and appreciate the success of present-day crowdsourcing projects.

  17. Conception et evaluation d'une intervention didactique a propos des phases de la lune dans un planetarium numerique

    NASA Astrophysics Data System (ADS)

    Chastenay, Pierre

    Since the Quebec Education Program came into effect in 2001, Quebec classrooms have again been teaching astronomy. Unfortunately, schools are ill-equipped to teach complex astronomical concepts, most of which occur outside school hours and over long periods of time. Furthermore, many astronomical phenomena involve celestial objects travelling through three-dimensional space, which we cannot access from our geocentric point of view. The lunar phases, a concept prescribed in secondary cycle one, fall into that category. Fortunately, schools can count on support from the planetarium, a science museum dedicated to presenting ultra-realistic simulations of astronomical phenomena in fast time and at any hour of the day. But what type of planetarium will support schools? Recently, planetariums also underwent their own revolution: they switched from analogue to digital, replacing geocentric opto-mechanical projectors with video projectors that offer the possibility of travelling virtually through a completely immersive simulation of the three-dimensional Universe. Although research into planetarium education has focused little on this new paradigm, certain of its conclusions, based on the study of analogue planetariums, can help us develop a rewarding teaching intervention in these new digital simulators. But other sources of inspiration will be cited, primarily the teaching of science, which views learning no longer as the transfer of knowledge, but rather as the construction of knowledge by the learners themselves, with and against their initial conceptions. The conception and use of constructivist learning environments, of which the digital planetarium is a fine example, and the use of simulations in astronomy will complete our theoretical framework and lead to the conception of a teaching intervention focusing on the lunar phases in a digital planetarium and targeting students aged 12 to 14. This teaching intervention was initially tested as part of development research (didactic engineering) aimed at improving it, both theoretically and practically, through multiple iterations in its "natural" environment, in this case an inflatable digital planetarium six metres in diameter. We are presenting the results of our first iteration, completed with help from six children aged 12 to 14 (four boys and two girls) whose conceptions about the lunar phases were noted before, during and after the intervention through group interviews, questionnaires, group exercises and recordings of the interventions throughout the activity. The evaluation was essentially qualitative, based on the traces obtained throughout the session, in particular within the planetarium itself. This material was then analyzed to validate the theoretical concepts that led to the conception of the teaching intervention and also to reveal possible ways to improve the intervention. We noted that the intervention indeed changed most participants' conceptions about the lunar phases, but also identified ways to boost its effectiveness in the future.

  18. Relative contributions of scattering, diffraction and modal diffusion to focal ratio degradation in optical fibres

    NASA Astrophysics Data System (ADS)

    Haynes, D. M.; Withford, M. J.; Dawes, J. M.; Lawrence, J. S.; Haynes, R.

    2011-06-01

    Focal ratio degradation (FRD) is a major contributor to light loss in astronomical instruments employing multimode optical fibres. We present a powerful diagnostic model that uniquely quantifies the various sources of FRD in multimode fibres. There are three main phenomena that can contribute to FRD: scattering, diffraction and modal diffusion. We propose a Voigt FRD model where the diffraction and modal diffusion are modelled by the Gaussian component and the end-face scattering is modelled by the Lorentzian component. The Voigt FRD model can be deconvolved into its Gaussian and Lorentzian components and used to analyse the contribution of each of the three major components. We used the Voigt FRD model to analyse the FRD of modern astronomical grade fibre for variations in (i) end-face surface roughness, (ii) wavelength, (iii) fibre length and (iv) external fibre stress. The elevated FRD we observed was mostly due to external factors, i.e. fibre end effects such as surface roughness, subsurface damage and environmentally induced microbending caused by the epoxy, ferrules and fibre cable design. The Voigt FRD model has numerous applications such as a diagnostic tool for current fibre instrumentation that show elevated FRD, as a quality control method for fibre manufacture and fibre cable assembly and as a research and development tool for the characterization of new fibre technologies.

  19. ATLAS: Big Data in a Small Package

    NASA Astrophysics Data System (ADS)

    Denneau, Larry; Tonry, John

    2015-08-01

    For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.

  20. The sun, moon and stars of the southern Levant at Gezer and Megiddo: Cultural astronomy in Chalcolithic/Early and Middle Bronze Ages

    NASA Astrophysics Data System (ADS)

    Gardner, Sara Lee

    Astronomical images are found on monumental structures and decorative art, and metaphorically in seasonal myths, and are documented by calendars. In Israel and the southern Levant, images of the sun, the moon, and the stars were common decorating motifs. They were found on walls, pottery, and seals and date to as early as the Chalcolithic period; for example, the wall painting of a star at Teleilat Ghassul (North 1961). This dissertation establishes that the people of the Levant were aware of the apparent movement of the sun, and this will be discussed in Chapter 4. They began recording through representation drawings, astronomical phenomena no later than the Chalcolithic/Early Bronze Age and continued to do so late into the Middle Bronze Age. The argument moves beyond the simple use of symbols to the use of images to represent constellations, with the focus on the constellation Leo in Chapter 5. Furthermore, the use of astronomy as a power and political tool is also suggested in Chapter 6. Nonetheless, the primary purpose that is addressed here is the tendency in Syro-Palestinian archaeology has been to attribute technological evidence found in the northern and southern Levant as diffused from Egypt or Assyria, particularly astronomy. This dissertation firmly establishes that astronomy was used in the southern Levant before any significant contact with the civilizations of Egypt or Assyria.

  1. An observational program to search for radio signals from extraterrestrial intelligence through the use of existing facilities

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.

    1976-01-01

    It is argued that a substantial portion of the capability for detecting microwave signals from extraterrestrial civilizations lies not in the application of ever larger antenna collecting areas but rather in the application of millions or billions of simultaneous frequency-channel observations combined with rapid and powerful data processing techniques. The application of these methods to existing facilities is discussed in terms of a program of modest expense and duration which will seek to discover certain classes of extraterrestrial signals of intelligent origin while defining boundaries to the search problem throughout the range of interest. This program will investigate radio-astronomical phenomena of interest and simultaneously define the background of environmental radiation in order to determine physical limitations on both the search strategies and the potential for deep-space communications. Signal parameters that must be determined are examined along with the potential of existing radio-astronomical facilities for detecting narrow-band signals. A seven-year program is described which will carry out a search for extraterrestrial intelligence over 80% of the sky and over the entire frequency range from 1 to 25 GHz with a sensitivity limit varying from 10 to the -21st power W/sq cm at the lowest frequencies to 10 to the -19th power W/sq cm at the higher frequencies.

  2. Bilingualism: Beyond Basic Principles. Multilingual Matters.

    ERIC Educational Resources Information Center

    Dewaele, Jean-Marc, Ed.; Housen, Alex, Ed.; Wei, Li, Ed.

    This collection of papers focuses on individual bilingualism and societal and educational phenomena. After "Introduction and Overview" (Jean-Marc Dewaele, Alex Housen, and Li Wei), 12 papers include: (1) "Who is Afraid of Bilingualism?" (Hugo Baetens Beardsmore); (2) "The Importance of being Bilingual" (John Edwards);…

  3. A quest for antipsychotic drug actions in the brain: personal experiences from 50 years of neuropsychiatric research at Karolinska Institutet.

    PubMed

    Sedvall, Göran

    2007-09-10

    The exploration of physiological and molecular actions of psychoactive drugs in the brain represents a fundamental approach to the understanding of emerging psychological phenomena. The author gives a personal account of his medical training and research career at Karolinska Institutet over the past 50 years. The paper aims at illustrating how a broad medical education and the integration of basic and clinical neuroscience research is a fruitful ground for the development of new methods and knowledge in this complicated field. Important aspects for an optimal research environment are recruitment of well-educated students, a high intellectual identity of teachers and active researchers, international input and collaboration in addition to good physical resources. In depth exploration of specific signaling pathways as well as an integrative analysis of genes, molecules and systems using multivariate modeling, and bioinformatics, brain mechanisms behind mental phenomena may be understood at a basic level and will ultimately be used for the alleviation and treatment of mental disorders.

  4. CAWSES Related Projects in Japan : Grant-in-Aid for Creative Scientific Research ügBasic Study of Space Weather Predictionüh and CHAIN (Continuous H Alpha Imaging Network)

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kurokawa, H.

    The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction

  5. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  6. Estimation of the temporary service life of DC arc plasmatron cathode

    NASA Astrophysics Data System (ADS)

    Kulygin, V. M.; Pereslavtsev, A. V.; Tresvyatskii, S. S.

    2017-09-01

    The service life of the cathode of a DC arc plasmatron continuously working with tubular electrodes that operate in the air has been considered using the semi-phenomenological approach. The thermal emission, that ensures the necessary flow of electrons, and the evaporation of the cathode material, which determines its erosion, have been taken as the basic physical phenomena that constitute the workflow. The relationships that enable the estimation of the cathode's operating time have been obtained using the known regularities of these phenomena and experimental data available in the literature. The resulting evaluations coincide satisfactorily with the endurance test results.

  7. ΔT and tidal acceleration values from three european medieval eclipses

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Marco, F. J.

    2011-10-01

    There are many possible reasons for the fact that the rate of rotation of the Earth is slowly decreasing in time, being the most important the tidal friction. Since Universal Time (UT) is a time scale based on the rotation of the Earth and ΔT defined as the difference between the uniform time-scale (Dynamical Time), and the Universal Time, clearly that ΔT will vary with time. The problem is that this variation is not uniform, existing irregular fluctuations. In addition, it is not possible to predict exact values for ΔT, being the only possibility its deduction a posteriori from observations. ΔT is strongly related with occultations and eclipses, because it is used for the calculation of exact times of the event, and for determining the position of the central line or the zone of visibility. In this sense, a value ΔT =3600s is roughly equivalent to a shift of 15. in longitude. Past values of ΔT can be deduced from historical astronomical observations such as ancient eclipses which have been widely studied by F.R. Stephenson [3] and [4] who has even obtained an approximation fitted with cubic splines for ΔT from -500 to +1950. This approximation is nowadays widely used in astronomical calculations. The derived relative error from ΔT obtained from ancient eclipsed is quite large, mainly because of the large width of the totality zone and the inaccuracy in the definition of the observational place. A possibility to partially solve these former problems is the analysis of total eclipse records from multiple sites, which could provide a narrow parameter range. In addition, The conjunct analysis of these astronomical phenomena is useful for determining a range of ΔT in function of the tidal acceleration of the Moon. Further discussion about these eclipses in under review.

  8. Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans

    PubMed Central

    YOSHIDA, MANABU

    2005-01-01

    Activation of the sperm motility and chemotactic behavior of sperm toward eggs are the first communication between spermatozoa and eggs at fertilization, and understanding of the phenomena is a prerequisite for progress of not only basic biology, but also clinical aspects. The nature of molecules derived from eggs by which sperm are activated and attracted towards the eggs and the molecular mechanisms underlying the sperm activation and chemotaxis have been investigated in only a few invertebrate species, sea urchins, ascidians and herring fish. However, knowledge on this phenomena has been ignored in mammalian species including humans. The current review first introduces the studies on the activation and chemotaxis of sperm in marine invertebrates, and the same phenomena in mammals including humans, are described. (Reprod Med Biol 2005; 4: 101–115) PMID:29699215

  9. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  10. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  11. Teaching nuclear science: A cosmological approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viola, V.E.

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, asmore » well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.« less

  12. The parallel globe: a powerful instrument to perform investigations of Earth’s illumination

    NASA Astrophysics Data System (ADS)

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2015-01-01

    Many researchers have documented the difficulties for learners of different ages and preparations in understanding basic astronomical concepts. Traditional instructional strategies and communication media do not seem to be effective in producing meaningful understanding, or even induce misconceptions and misinterpretations. In line with recent proposals for pedagogical sequences and learning progressions about core concepts and basic procedures in physics and astronomy education, in this paper we suggest an intermediate, essential step in the teaching path from the local geocentric view of the Earth-Sun system to a heliocentric one. With this aim we present data collected over a day and a year from an instrument we call the ‘parallel globe’, a globe positioned locally homothetic to the Earth. Some analyses are suggested, in particular of the phenomenon of illumination of the Earth and its variations, that are consistent with the proposed instructional objectives.

  13. What Undergraduates Think about Clouds and Fog

    ERIC Educational Resources Information Center

    Rappaport, Elliot D.

    2009-01-01

    Weather events are part of every student's experience, and are controlled by basic principles involving the behavior of matter and energy. Despite this, many students have difficulty explaining simple atmospheric phenomena, even after exposure to primary and secondary science curricula. This study investigated the level to which undergraduates…

  14. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  15. Professional Ethics in Astronomy: The AAS Ethics Statement

    NASA Astrophysics Data System (ADS)

    Marvel, Kevin B.

    2013-01-01

    It is fundamental to the advancement of science that practicing scientists adhere to a consistent set of professional ethical principles. Recent violations of these principles have led a decreased trust in the process of science and scientific results. Although astronomy is less in the spotlight on these issues than medical science or climate change research, it is still incumbent on the field to follow sound scientific process guided by basic ethical guidelines. The American Astronomical Society, developed a set of such guidelines in 2010. This contribution summarizes the motivation and process by which the AAS Ethics Statement was produced.

  16. Six indications of radical new physics in supernovae Ia

    NASA Astrophysics Data System (ADS)

    Clavelli, L.

    2017-11-01

    After more than 40 years since the basic standard model for supernovae Ia (SN Ia) was proposed, many astronomers are still hopeful that this phenomenon will ultimately be understood in terms of Newtonian gravity plus nuclear and particle physics as they existed in the 1930s. In spite of this fact, there are at least six nagging puzzles in supernovae physics that suggest some radical new physics input may be necessary. “Radical” in this context means a physics idea that did not exist in the 1930s and that is still not experimentally confirmed in 2017.

  17. Astrophysical Computation in Research, the Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2009-03-01

    In this talk I review progress in the use of simulations as a tool for astronomical research, for education and public outreach. The talk will include the basic elements of numerical simulations as well as advances in algorithms which have led to recent dramatic progress such as the use of Adaptive Mesh Refinement methods. The scientific focus of the talk will be star formation jets and outflows while the educational emphasis will be on the use of advanced platforms for simulation based learning in lecture and integrated homework. Learning modules for science outreach websites such as DISCOVER magazine will also be highlighted.

  18. Gutenberg's Gift

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2007-10-01

    Printing with movable type provided a great impetus for astronomy, both for preserving observations and for disseminating ideas. For example, Copernicus relied almost entirely on printed sources for the data needed in his De revolutionibus. Cheap textbooks helped bring knowledge of basic astronomy to a widening literate audience, in the university and beyond. Printed ephemerides were a major output from astronomers, and an examination of the accuracy of their positions shows us the gradual improvement in planetary theory. This ``show-and-tell talk" was illustrated with books from Prof. Gingerich's personal collection of early astronomy books, including his particularly extensive group of early ephemerides.

  19. U.S. data processing for the IRAS project. [by Jet Propulsion Laboratory Scientific Data Analysis System

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1983-01-01

    The JPL's Scientific Data Analysis System (SDAS), which will process IRAS data and produce a catalogue of perhaps a million infrared sources in the sky, as well as other information for astronomical records, is described. The purposes of SDAS are discussed, and the major SDAS processors are shown in block diagram. The catalogue processing is addressed, mentioning the basic processing steps which will be applied to raw detector data. Signal reconstruction and conversion to astrophysical units, source detection, source confirmation, data management, and survey data products are considered in detail.

  20. Basic Space Science; United Nations/European Space Agency Workshops for Developing Countries, 2nd, Bogota, Colombia, November 9-13, 1992

    NASA Technical Reports Server (NTRS)

    Haubold, Hans J. (Editor); Torres, Sergio (Editor)

    1994-01-01

    The conference primarily covered astrophysical and astronomical topics on stellar and solar modeling and processes, high magnetic field influence on stellar spectra, cosmological topics utilizing Cosmic Background Explorer (COBE) data and radioastronomic mapping as well as cosmic gravitational instability calculations, astrometry of open clusters amd solar gravitational focusing, extremely energetic gamma rays, interacting binaries, and balloon-borne instrumentation. Other papers proposed an active Search for Extraterrestrial Intelligence (SETI) communication scheme to neighboring solar-like systems and more direct involvement of and with the public in astronomy and space exploration projects.

  1. Highly Adjustable Systems: An Architecture for Future Space Observatories

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto; Redding, David; Lawrence, Charles R.; Hachkowski, Roman; Laskin, Robert; Steeves, John

    2017-06-01

    Mission costs for ground breaking space astronomical observatories are increasing to the point of unsustainability. We are investigating the use of adjustable or correctable systems as a means to reduce development and therefore mission costs. The poster introduces the promise and possibility of realizing a “net zero CTE” system for the general problem of observatory design and introduces the basic systems architecture we are considering. This poster concludes with an overview of our planned study and demonstrations for proving the value and worth of highly adjustable telescopes and systems ahead of the upcoming decadal survey.

  2. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  3. An approach to the analysis of SDSS spectroscopic outliers based on self-organizing maps. Designing the outlier analysis software package for the next Gaia survey

    NASA Astrophysics Data System (ADS)

    Fustes, D.; Manteiga, M.; Dafonte, C.; Arcay, B.; Ulla, A.; Smith, K.; Borrachero, R.; Sordo, R.

    2013-11-01

    Aims: A new method applied to the segmentation and further analysis of the outliers resulting from the classification of astronomical objects in large databases is discussed. The method is being used in the framework of the Gaia satellite Data Processing and Analysis Consortium (DPAC) activities to prepare automated software tools that will be used to derive basic astrophysical information that is to be included in final Gaia archive. Methods: Our algorithm has been tested by means of simulated Gaia spectrophotometry, which is based on SDSS observations and theoretical spectral libraries covering a wide sample of astronomical objects. Self-organizing maps networks are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Results: We demonstrate the usefulness of the method by analyzing the spectra that were rejected by the SDSS spectroscopic classification pipeline and thus classified as "UNKNOWN". First, our method can help distinguish between astrophysical objects and instrumental artifacts. Additionally, the application of our algorithm to SDSS objects of unknown nature has allowed us to identify classes of objects with similar astrophysical natures. In addition, the method allows for the potential discovery of hundreds of new objects, such as white dwarfs and quasars. Therefore, the proposed method is shown to be very promising for data exploration and knowledge discovery in very large astronomical databases, such as the archive from the upcoming Gaia mission.

  4. Kinesthetic Astronomy: Significant Upgrades to the Sky Time Lesson that Support Student Learning

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Zawaski, M.

    2004-12-01

    This paper will report on a significant upgrade to the first in a series of innovative, experiential lessons we call Kinesthetic Astronomy. The Sky Time lesson reconnects students with the astronomical meaning of the day, year, and seasons. Like all Kinesthetic Astronomy lessons, it teaches basic astronomical concepts through choreographed bodily movements and positions that provide educational sensory experiences. They are intended for sixth graders up through adult learners in both formal and informal educational settings. They emphasize astronomical concepts and phenomenon that people can readily encounter in their "everyday" lives such as time, seasons, and sky motions of the Sun, Moon, stars, and planets. Kinesthetic Astronomy lesson plans are fully aligned with national science education standards, both in content and instructional practice. Our lessons offer a complete learning cycle with written assessment opportunities now embedded throughout the lesson. We have substantially strengthened the written assessment options for the Sky Time lesson to help students translate their kinesthetic and visual learning into the verbal-linguistic and mathematical-logical realms of expression. Field testing with non-science undergraduates, middle school science teachers and students, Junior Girl Scouts, museum education staff, and outdoor educators has been providing evidence that Kinesthetic Astronomy techniques allow learners to achieve a good grasp of concepts that are much more difficult to learn in more conventional ways such as via textbooks or even computer animation. Field testing of the Sky Time lesson has also led us to significant changes from the previous version to support student learning. We will report on the nature of these changes.

  5. Investigation of Rotating Stall Phenomena in Axial Flow Compressors. Volume I. Basic Studies of Rotating Stall

    DTIC Science & Technology

    1976-06-01

    rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers

  6. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    NASA Astrophysics Data System (ADS)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  7. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility instruments or user-provided instruments. Rapid turnaround will depend only on flight frequency. Data are stored on-board for retrieval when the spacecraft lands. We provide robust instrumentation that can survive suborbital spaceflight, assessment of the feasibility of the requested observations, rigorous scripting of the telescope operation, integration of the telescope plus instrument in a provider spacecraft, and periodic preventive maintenance for the telescope and instrument suite. XCOR Aerospace's Lynx III spacecraft is the best candidate vehicle to host a suborbital astronomical observatory. Unlike other similar vehicles, the Lynx will operate with only 1 or 2 people onboard (the pilot and an operator), allowing for each mission to be totally dedicated to the observation (no tourists will be bumping about; no other experiments will affect spacecraft pointing). A stable platform, the Lynx can point to an accuracy of ± 0.5o. Fine pointing is done by the telescope system. Best of all, the Lynx has a dorsal pod that opens directly to space. For astronomical observations, the best window is NO window. Currently, we plan to deploy a 20" diameter telescope in the Lynx III dorsal pod. XCOR Aerospace has the goal of eventually maintaining a Lynx flight frequency capability of 4 times/day. As with any observatory, Atsa will be available for observations by the community at large.

  8. Effects of energy-related activities on the Atlantic Continental Shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manowitz, B

    1975-01-01

    Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)

  9. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  10. Handbook of Communication.

    ERIC Educational Resources Information Center

    Pool, Ithiel de Sola, Ed.; And Others

    Each of the 31 chapters which comprise this volume reviews the state of the art in a specific area of communications research. The chapters are grouped into three sections, the first of which focuses upon the basic communication process. An introduction to the concept of a communication system and to the phenomena of language and nonverbal…

  11. Marine Resources

    NASA Technical Reports Server (NTRS)

    Sherman, J. W., III

    1975-01-01

    The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.

  12. The Structure of Language. The Bobbs-Merrill Series in Composition and Rhetoric.

    ERIC Educational Resources Information Center

    Thomas, Owen, Ed.

    Articles represent four schools of thought in the field of linguistics: structural, behavioral, transformational, and tagmemic. Summarizing structural linguistics before 1956, John Lotz emphasizes the importance of spoken language and the "internal order" imposed upon "physical and behavioral phenomena," and indicates some of the basic beliefs of…

  13. Comparison of Two Analysis Approaches for Measuring Externalized Mental Models

    ERIC Educational Resources Information Center

    Al-Diban, Sabine; Ifenthaler, Dirk

    2011-01-01

    Mental models are basic cognitive constructs that are central for understanding phenomena of the world and predicting future events. Our comparison of two analysis approaches, SMD and QFCA, for measuring externalized mental models reveals different levels of abstraction and different perspectives. The advantages of the SMD include possibilities…

  14. The Basics of Cyberbullying

    ERIC Educational Resources Information Center

    Roberts-Pittman, Bridget; Slavens, Julie; Balch, Bradley V.

    2012-01-01

    Bullying is not simply the same act of misbehavior taking place electronically. While the two phenomena share common characteristics (use of power, harmful intent), distinct and important differences exist. The first is the concept of power. Power in cyberspace is not measured by physical size or family income. Instead, power lies in the anonymity…

  15. Rain rate measurement capabilities using a Seasat type radar altimeter

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.; Walsh, E. J.

    1981-01-01

    The combined use of a space-based radar and a radiometer for measurement of precipitation is discussed. Phenomena to exploit or overcome is surveyed. Basic measurement problems are discussed. Several active systems are proposed, including three ocean systems and two land-sea systems. Recommendations for future research are given.

  16. Bridging Some Intercultural Gaps: Methodological Reflections from Afar

    ERIC Educational Resources Information Center

    Kama, Amit

    2006-01-01

    Identity formation and self construction are inherently cultural phenomena. Although it may seem that human psychology--e.g., basic traits, tendencies, "characteristics," or even the definition of self--are universal and ahistorical, this essentialist view is quite erroneous and needs to be recognized and avoided. The task of studying one's…

  17. Information Architecture without Internal Theory: An Inductive Design Process.

    ERIC Educational Resources Information Center

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  18. On complex adaptive systems and terrorism [rapid communication

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; Elgazzar, A. S.; Hegazi, A. S.

    2005-03-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly “wise” decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed.

  19. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    PubMed

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  20. Archaeoastronomical Information in the Study of Cremation Necropolis: Preliminary Study

    NASA Astrophysics Data System (ADS)

    Mejuto, J.; Cerde, M. L.; Rodríguez, C.

    2009-08-01

    This work remarks the significance that archaeoastronomical studies have for archaeological research. These studies provide us data about the perception that ancient societies had about astronomical events and how these facts were added to their religious and ideological world. Thus, archaeoastronomy become a valuable source of information when aimed to solve any question involving the ancient societies. We take as reference in this work some of the Late Bronze Age{'}s cremation necropolis, representatives of usually called Urnfields, to check if their design can be related to some celestial phenomena: Can Bech de Baix (Gerona), Can Pitieu-Can Roqueta(Barcelona), Molá (Tarragona), Can Missert (Tarragona), Les Obagues (Tarragona), La Colomina (Lleida) and La Torraza (Navarra). Likewise a new standard in archaeological excavations maps is proposed. This will allow getting the information more available and improving further studies.

  1. Stargazing

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    2000-10-01

    On a clear night, the vastness and beauty of the star-filled sky is awe inspiring. In Stargazing: Astronomy without a Telescope Patrick Moore, Britain's best known astronomer, tells you all you need to know about the universe visible to the naked eye. With the aid of charts and illustrations, he explains how to "read" the stars, to know which constellations lie overhead, their trajectory throughout the seasons, and the legends ascribed to them. In a month-by-month guide he describes using detailed star maps of the night skies of both the northern and southern hemispheres. He also takes a look at the planets, the Sun and the Moon and their eclipses, comets, meteors, as well as aurorae and other celestial phenomena--all in accessible scientific detail. This captivating book shows how, even with just the naked eye, astronomy can be a fascinating and rewarding hobby--for life.

  2. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  3. Astronomical Data Center Bulletin, volume 1, no. 1

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr. (Editor); Nagy, T. A. (Editor); Mead, J. M. (Editor)

    1980-01-01

    Information about work in progress on astronomical catalogs is presented. In addition to progress reports, an upadated status list for astronomical catalogs available at the Astronomical Data Center is included. Papers from observatories and individuals involved with astronomical data are also presented.

  4. Survey of literature on convective heat transfer coefficients and recovery factors for high atmosphere thermometry

    NASA Technical Reports Server (NTRS)

    Chung, S.

    1973-01-01

    Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.

  5. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  6. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    PubMed

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  7. Dissociative Experience and Cultural Neuroscience: Narrative, Metaphor and Mechanism

    PubMed Central

    Kirmayer, Laurence J.

    2016-01-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical “either/or” arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context. PMID:18213511

  8. Dissociative experience and cultural neuroscience: narrative, metaphor and mechanism.

    PubMed

    Seligman, Rebecca; Kirmayer, Laurence J

    2008-03-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical "either/or" arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context.

  9. The Development of Bimodal Bilingualism: Implications for Linguistic Theory

    PubMed Central

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2017-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and ‘transfer’ as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair. PMID:28603576

  10. Emulating weak localization using a solid-state quantum circuit.

    PubMed

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  11. Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry

    PubMed Central

    Jaworska, Katarzyna; Lages, Martin

    2014-01-01

    Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063

  12. Running an Elementary School Astronomy Club: Engaging Children in the Wonders of Space

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Odenwald, S.; Lundberg, C.; Dimarco, A.

    2000-10-01

    ``At the elementary school level, children are motivated by two things, dinosaurs and space" (Dr. Harold Williams, Montgomery College Planetarium Director). Yet, many elementary school science objectives include only the most basic astronomical concepts. Some ignore the subject all together in favor of more traditional courses (e.g. math and reading) or Earth science based curricula such as weather and local ecosystems. In addition, most elementary school teachers are unfamiliar with astronomical concepts and are poorly equipped to teach the subject. With teacher requirements increasing due to increasing class sizes, state competency exams, and a back to basics political climate, there is often little room to capitalize on the natural sense of curiosity children have about the universe during the normal school day. An after school astronomy club can provide a solution. In this paper, we present a model for setting up and running an after school astronomy club for students in grades 3-6. Our model was developed at two Maryland schools, Sligo Creek Elementary and Holy Redeemer Elementary/Middle School and incorporates national education standards as well as NASA OSS guidelines for effective education outreach programs. We propose here, a Community Based Learning (CBL) approach with the goal of engaging multiple elements of the community in the learning process including local amateur astronomy clubs, industry, community colleges, parents, and teachers. Methods for using astronomy as a basis for teaching reading, writing, math, and presentation skills are introduced. Resources, teaching methods, preparation guidelines, discipline, and safety are discussed and a list of grade appropriate, hands-on astronomy activities is presented along with procedures and expected outcomes.

  13. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  14. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  15. Time-calibrated Milankovitch cycles for the late Permian.

    PubMed

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition.

  16. Chrysanthos Notaras as an Astronomer

    NASA Astrophysics Data System (ADS)

    Rovithis, P.

    The aim of the present work is to emphasize the contribution of Chrysanthos Notaras (16??-1731) in the dispersion of Astronomy in the begining of the eighteenth century. Chysanthos Notaras, Partiarch of Jerusalem (1707-1731), is included among the most educated Greeks of his epoch. Although his first studies were suitable for ecclesiastic offices and religion, (since he studied ecclesiastic low, at Patavio, Italy), he continued at Paris for additional studies in Astronomy and Geography (1700). He became student of G.D. Cassini, who was the Director of Paris Observatory at that time, and he served as observer and astronomical instruments constructor, under Cassini's supervision. Chrysanthos Notaras included the teaching of "Astronomy" as a lesson in the schools of the Holy Sepulchre, in order to disperse the new ideas and knowledge about the earth and the universe among the young students. He published the first International Map (of the known world) in the Greek language in 1700 and in 1716 his book "Intoduction in Geography and Sphericals" was published in Paris. This book, written before 1707, was mainly an introduction to Astronomy and was used by the afterwards authors as an essential and basic manual and offered a lot to the enlightenment of the enslavement Greeks.

  17. Unsupervised learning of structure in spectroscopic cubes

    NASA Astrophysics Data System (ADS)

    Araya, M.; Mendoza, M.; Solar, M.; Mardones, D.; Bayo, A.

    2018-07-01

    We consider the problem of analyzing the structure of spectroscopic cubes using unsupervised machine learning techniques. We propose representing the target's signal as a homogeneous set of volumes through an iterative algorithm that separates the structured emission from the background while not overestimating the flux. Besides verifying some basic theoretical properties, the algorithm is designed to be tuned by domain experts, because its parameters have meaningful values in the astronomical context. Nevertheless, we propose a heuristic to automatically estimate the signal-to-noise ratio parameter of the algorithm directly from data. The resulting light-weighted set of samples (≤ 1% compared to the original data) offer several advantages. For instance, it is statistically correct and computationally inexpensive to apply well-established techniques of the pattern recognition and machine learning domains; such as clustering and dimensionality reduction algorithms. We use ALMA science verification data to validate our method, and present examples of the operations that can be performed by using the proposed representation. Even though this approach is focused on providing faster and better analysis tools for the end-user astronomer, it also opens the possibility of content-aware data discovery by applying our algorithm to big data.

  18. Fleet Astronomy

    NASA Astrophysics Data System (ADS)

    Klebe, D. I.; Colorado College Student Astronomy Instrument Team; Pikes Peak Observatory Team

    1999-12-01

    The Colorado College Student Astronomy Instrument Team (CCSAIT) and the Pikes Peak Observatory (PPO) present preliminary optical and mechanical designs as well as discussion on a fleet of small research-class 0.4-0.5-meter telescopes. Each telescope is being designed to accommodate a variety of visible and near-infrared instrumentation, ranging from wide-field imaging cameras to moderate resolution spectrometers. The design of these telescopes is predicated on the use of lightweight primary mirrors, which will enable the entire optical telescope assembly (OTA) including instrumentation to come in under 50 kilograms. The lightweight OTA’s will further allow the use of inexpensive high-quality off-the-shelf robotic telescope mounts for future access and computer control of these telescopes over the Internet. The basic idea is to provide astronomers with a comprehensive arsenal of modest instrumentation at their fingertips in order to conduct a wide variety of interesting scientific research programs. Some of these research programs are discussed and input from the astronomical community is strongly encouraged. Connectivity and Internet control issues are also briefly discussed as development in this area is already underway through a collaborative effort between the PPO and the Cowan-Fouts Foundation of Woodland Park, Colorado.

  19. Astronomy, Visual Literacy, and Liberal Arts Education

    NASA Astrophysics Data System (ADS)

    Crider, Anthony

    2016-01-01

    With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.

  20. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F., E-mail: borra@phy.ulaval.ca

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less

  1. Gnuastro: GNU Astronomy Utilities

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Mohammad

    2018-01-01

    Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

  2. Hubble Space Telescope, Faint Object Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  3. "Astronomica" in the Correspondence between Leonhard Euler and Daniel Bernoull (German Title: "Astronomica" im Briefwechsel zwischen Leonhard Euler und Daniel Bernoulli)

    NASA Astrophysics Data System (ADS)

    Verdun, Andreas

    2010-12-01

    The Euler Commission of the Swiss Academy of Sciences intends to terminate the edition of Leonhard Euler's works in the next year 2011 after nearly one hundred years since the beginning of the editorial works. These works include, e.g., Volume 3 of the Series quarta A which will contain the correspondence between Leonhard Euler (1707-1783) and Daniel Bernoulli (1700-1783) and which is currently being edited by Dr. Emil A. Fellmann (Basel) and Prof. Dr. Gleb K. Mikhailov (Moscow). This correspondence contains more than hundred letters, principally from Daniel Bernoulli to Euler. Parts of this correspondence were published uncommented already in 1843. It is astonishing that, apart from mathematics and physics (mainly mechanics and hydrodynamics), many topics addressed concern astronomy. The major part of the preserved correspondence between Euler and Daniel Bernoulli, in which astronomical themes are discussed, concerns celestial mechanics as the dominant discipline of theoretical astronomy of the eighteenth century. It was triggered and coined mainly by the prize questions of the Paris Academy of Science. In more than two thirds of the letters current problems and questions concerning celestial mechanics of that time are treated, focusing on the lunar theory and the great inequality in the motions of Jupiter and Saturn as special applications of the three body problem. In the remaining letters, problems concerning spherical astronomy are solved and attempts are made to explain certain phenomena in the field of "cosmic physics" concerning astronomical observations.

  4. The Celestial Basis of Civilization

    NASA Astrophysics Data System (ADS)

    Masse, W. B.

    Scholars have long puzzled over the reasons for the ubiquity of celestial images in the residue of the world's earliest civilizations: in art, myth, religious cosmology, iconography, cosmogony, eschatological beliefs, and as portents for the conduct of royal and chiefly power. The general consensus is that these images represented a need by early societies to use the fixed celestial heavens in order to regulate ritual and agricultural cycles, and to satisfy a psychological need by people to relate themselves to their surrounding Universe. Such explanations are facile and miss an important aspect of the celestial heavens. The fixed celestial heavens served as the back-drop for a large number of often spectacular temporary naked-eye visible celestial events which animated the night and sometimes the daytime sky, and which created an 'otherworld' for virtually all cultural groups. In this paper I present a model derived from the detailed analysis of Hawaiian oral traditions and culture history in relation to historic astronomical records of temporary celestial events, and then apply this model to cultural traditions from Mesoamerica and other geographic regions in order to demonstrate that novae, supernovae, variable stars, comets, great meteor showers, aurorae, solar and lunar eclipses, and impacting Solar System debris, together played a critical role in the artistic, intellectual, and political development of early civilizations. These data not only provide important insights into the development of civilization, but also provide important details and longitudinal records of astronomical events and phenomena which are otherwise not readily available for scientific scrutiny.

  5. ATLAS: Big Data in a Small Package?

    NASA Astrophysics Data System (ADS)

    Denneau, Larry

    2016-01-01

    For even small astronomy projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (Tonry 2011) will survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards - two 0.5 m F/2.0 telescopes - each night the ATLAS system will measure nearly 109 astronomical sources to a photometric accuracy of <5%, totaling 1012 individual observations over its initial 3-year mission. This ever-growing dataset must be searched in real-time for moving objects and transients then archived for further analysis, and alerts for newly discovered near-Earth asteroids (NEAs) disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many `rifle shot' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of low-Earth orbit (LEO) and geosynchronous orbit (GEO) satellites ATLAS will see each night. Additional interrogation will identify interesting phenomena from millions of transient sources per night beyond the solar system. The data processing and storage requirements for ATLAS demand a `big data' approach typical of commercial internet enterprises. We describe our experience in deploying a nimble, scalable and reliable data processing infrastructure, and suggest ATLAS as steppingstone to data processing capability needed as we enter the era of LSST.

  6. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  7. The physics of polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14). Finally, the third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15), the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17, a parallelism is established, within the framework of the theory of stellar atmospheres, between the usual formalism, which neglects polarization phenomena, and the more involved formalism needed for the interpretation of spectro-polarimetric observations. Some consequences of the radiative transfer equations for polarized radiation, pointing to the importance of dichroism phenomena in establishing the amplification condition via stimulated emission, are discussed in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-consistent solution of the radiative transfer equations for polarized radiation and of the statistical equilibrium equations for the density matrix (non-LTE of the 2nd kind).

  8. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  9. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  10. Construction Morphology and the Parallel Architecture of Grammar

    ERIC Educational Resources Information Center

    Booij, Geert; Audring, Jenny

    2017-01-01

    This article presents a systematic exposition of how the basic ideas of Construction Grammar (CxG) (Goldberg, 2006) and the Parallel Architecture (PA) of grammar (Jackendoff, 2002]) provide the framework for a proper account of morphological phenomena, in particular word formation. This framework is referred to as Construction Morphology (CxM). As…

  11. A New Computerized Approach for Teaching the Nature of Membrane Potentials.

    ERIC Educational Resources Information Center

    Vazquez, Jesus

    1991-01-01

    Presents a BASIC program that can be useful in explaining physicochemical phenomena underlying the generation of membrane potential in excitable cells. Its simplicity allows students to understand the nature of these processes through a direct, hands-on approach. Also, the simulated voltage and concentration kinetics agree well with those…

  12. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  13. Commentary: How Readily Can Findings from Basic Cognitive Psychology Research Be Applied in the Classroom?

    ERIC Educational Resources Information Center

    Efklides, Anastasia

    2012-01-01

    The commentary discusses phenomena highlighted in the studies of the special issue such as the hypercorrection effect, overconfidence, and the efficiency of interventions designed to increase monitoring accuracy. The discussion is based on a broader theoretical framework of self-regulation of learning that stresses the inferential character of…

  14. Learning the Psychology of the Tip-of-the-Tongue Phenomenon through On-Line Practice

    ERIC Educational Resources Information Center

    Ruiz, Marcos; Contreras, María José

    2017-01-01

    Psychology undergraduates can benefit from direct experiences with laboratory procedures of psychological phenomena. However, they are not always available for students within a distance education program. The present study included students from the Spanish National Distance Education University (UNED) that were to take part in a Basic Psychology…

  15. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  16. Atoms and Molecules: Do They Have a Place in Primary Science?

    ERIC Educational Resources Information Center

    Lee, Kam-Wah Lucille; Tan, Swee-Ngin

    2004-01-01

    In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…

  17. Video-Taping Dialogs, with Commentary to Teach Cultural Elements.

    ERIC Educational Resources Information Center

    Taylor, Harvey M.

    Description of a project involving the use of the video-tape recorder in a beginning course in Japanese focuses on cultural implications of basic unit dialogues. Instant replay, close-up, and other camera techniques allow students to concentrate on cross-cultural phenomena which are normally not perceived without the use of media. General…

  18. Violent Florida Weather, Science (Experimental): 5343.05.

    ERIC Educational Resources Information Center

    Espy, J. A., Jr.

    This is a basic weather course describing Florida's weather and is designed to give the student the opportunity to study the phenomena which cause the more destructive disturbances in the atmosphere. The study includes the detection, growth, effects and possible alternation of storms. It is suggested that a student enrolled in this course would…

  19. How Can We Improve School Safety Research?

    ERIC Educational Resources Information Center

    Astor, Ron Avi; Guerra, Nancy; Van Acker, Richard

    2010-01-01

    The authors of this article consider how education researchers can improve school violence and school safety research by (a) examining gaps in theoretical, conceptual, and basic research on the phenomena of school violence; (b) reviewing key issues in the design and evaluation of evidence-based practices to prevent school violence; and (c)…

  20. Ciencias 2 (Science 2). [Student's Workbook].

    ERIC Educational Resources Information Center

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

Top