Engineering Education: A Clear Decision
ERIC Educational Resources Information Center
Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.
2017-01-01
The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…
Characteristics of Knowledge Interconnectedness in Teaching
ERIC Educational Resources Information Center
Antonijevic, Radovan
2006-01-01
The subject of the paper presents establishing basic characteristics, forms and levels of knowledge interconnectedness in teaching, especially in mathematics and biology teaching. The analysis was realized by considering basic theoretical views in this field, as well as by establishing features and levels of knowledge interconnectedness in the…
ERIC Educational Resources Information Center
Keller, Dolores Elaine
1972-01-01
Summarizes evidence that mammals are basically female, with masculine characteristics being imposed by hormonal changes in embryos or post-natally. Advocates the removal of male-dominant terminology in biological research and teaching. (AL)
NASA Astrophysics Data System (ADS)
Dorfner, Tobias; Förtsch, Christian; Boone, William; Neuhaus, Birgit J.
2017-09-01
A number of studies on single instructional quality features have been reported for mathematics and science instruction. For summarizing single instructional quality features, researchers have created a model of three basic dimensions (classroom management, supportive climate, and cognitive activation) of instructional quality mainly through observing mathematics instruction. Considering this model as valid for all subjects and as usable for describing instruction, we used it in this study which aimed to analyze characteristics of instructional quality in biology lessons of high-achieving and low-achieving classes, independently of content. Therefore, we used the data of three different previous video studies of biology instruction conducted in Germany. From each video study, we selected three high-achieving and three low-achieving classes (N = 18 teachers; 35 videos) for our multiple-case study, in which conspicuous characteristics of instructional quality features were qualitatively identified and qualitatively analyzed. The amount of these characteristics was counted in a quantitative way in all the videos. The characteristics we found could be categorized using the model of three basic dimensions of instructional quality despite some subject-specific differences for biology instruction. Our results revealed that many more characteristics were observable in high-achieving classes than in low-achieving classes. Thus, we believe that this model could be used to describe biology instruction independently of the content. We also make the claims about the qualities for biology instruction—working with concentration in a content-structured environment, getting challenged in higher order thinking, and getting praised for performance—that could have positive influence on students' achievement.
Basic techniques in mammalian cell tissue culture.
Phelan, Katy; May, Kristin M
2015-03-02
Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. Copyright © 2015 John Wiley & Sons, Inc.
Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Zickefoose, Charles S.
This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…
Basic Techniques in Mammalian Cell Tissue Culture.
Phelan, Katy; May, Kristin M
2016-11-01
Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Concepts for the clinical use of stem cells in equine medicine
Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.
2008-01-01
Stem cells from various tissues hold great promise for their therapeutic use in horses, but so far efficacy or proof-of-principle has not been established. The basic characteristics and properties of various equine stem cells remain largely unknown, despite their increasingly widespread experimental and empirical commercial use. A better understanding of equine stem cell biology and concepts is needed in order to develop and evaluate rational clinical applications in the horse. Controlled, well-designed studies of the basic biologic characteristics and properties of these cells are needed to move this new equine research field forward. Stem cell research in the horse has exciting equine specific and comparative perspectives that will most likely benefit the health of horses and, potentially, humans. PMID:19119371
Delgado-Vargas, F; Jiménez, A R; Paredes-López, O
2000-05-01
Pigments are present in all living matter and provide attractive colors and play basic roles in the development of organisms. Human beings, like most animals, come in contact with their surroundings through color, and things can or cannot be acceptable based on their color characteristics. This review presents the basic information about pigments focusing attention on the natural ones; it emphasizes the principal plant pigments: carotenoids, anthocyanins, and betalains. Special considerations are given to their salient characteristics; to their biosynthesis, taking into account the biochemical and molecular biology information generated in their elucidation; and to the processing and stability properties of these compounds as food colorants.
Zika Virus: The Agent and Its Biology, With Relevance to Pathology.
Medin, Carey L; Rothman, Alan L
2017-01-01
Once obscure, Zika virus (ZIKV) has attracted significant medical and scientific attention in the past year because of large outbreaks associated with the recent introduction of this virus into the Western hemisphere. In particular, the occurrence of severe congenital infections and cases of Guillain-Barré syndrome has placed this virus squarely in the eyes of clinical and anatomic pathologists. This review article provides a basic introduction to ZIKV, its genetics, its structural characteristics, and its biology. A multidisciplinary effort will be essential to establish clinicopathologic correlations of the basic virology of ZIKV in order to advance development of diagnostics, therapeutics, and vaccines.
The Ecology of a Keystone Seed Disperser, the Ant Rhytidoponera violacea
Lubertazzi, Dave; Aliberti Lubertazzi, Maria A.; McCoy, Neil; Gove, Aaron D.; Majer, Jonathan D.; Dunn, Robert R.
2010-01-01
Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathl and habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species. PMID:21067420
[Seed geography: its concept and basic scientific issues].
Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu
2010-01-01
In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.
A CONTROLLED BIOASSAY SYSTEM FOR MEASURING TOXICITY OF HEAVY METALS
Biological availability of metal micronutrients and metal toxicity are believed to be dependent on metal oxidation state, complexation, and solubility as well as the physicochemical characteristics of the aqueous phase. Basic design criteria for fish bioassays which are capable o...
METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)
The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...
Protein Chemistry: A Graduate Course in Pharmaceutical Biotechnology at the University of Kansas.
ERIC Educational Resources Information Center
Manning, Mark C.; Mitchell, James W.
1991-01-01
The University of Kansas course in pharmaceutical biotechnology aims at providing students with an understanding of the basic chemical and structural characteristics making protein pharmaceuticals unique and distinct. In addition, stability and analysis of proteins are emphasized. Attention given to molecular biology, drug delivery, and…
NASA Astrophysics Data System (ADS)
Kind, Vanessa; Morten Kind, Per
2011-10-01
Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
NASA Technical Reports Server (NTRS)
Pelevin, V. N.; Kozlyaninov, M. V.
1981-01-01
The problem of light fields in the ocean is in basic ocean optics. Twenty-six separate studies discuss: (1) the field of solar radiation in the ocean; (2) stationary and nonstationary light fields created in the sea by artificial sources; and (3) the use of optical methods to study biological and hydrodynamic characteristics of the sea.
Characterization of soluble microbial products in a drinking water biological aerated filter.
Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng
2016-05-01
Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.
Dead wood all around us: think regionally to manage locally.
Sally Duncan
2002-01-01
Dead wood is a crucial component of healthy, biologically diverse forests. Yet basic information about the distribution and characteristics of snags and down trees in forest of the Pacific Northwest is lacking. Such information is needed to assess wildlife habitat, carbon stores, fuel conditions, and site productivity. Current guidelines for dead wood management are...
Interactions of platinum metals and their complexes in biological systems.
LeRoy, A F
1975-01-01
Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943
David M. Merritt; Mary E. Manning; Nate Hough-Snee
2017-01-01
Riparian areas are hotspots of biological diversity that may serve as high quality habitat for fish and wildlife. The National Riparian Core Protocol (NRCP) provides tools and methods to assist natural resource professionals in sampling riparian vegetation and physical characteristics along wadeable streams. Guidance is provided for collecting basic information on...
USDA-ARS?s Scientific Manuscript database
One of the basic concepts in biology is that an organism’s physical traits are controlled by its DNA. In other words, one’s genotype for a particular trait controls the phenotype that is expressed. Yet, this connection between DNA and physical characteristic is not always made. The ‘Inheritance o...
Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming
2013-10-01
Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.
Kubáň, Pavel; Boček, Petr
2014-04-11
This contribution describes properties and utilization of free liquid membranes (FLMs) in micro-electromembrane extraction (μ-EME) of analytes from samples with complex matrices. An FLM was formed as a plug of a selected organic solvent, 1-ethyl-2-nitrobenezene (ENB) or 2-nitrophenyloctyl ether, in a narrow bore polymeric tubing and was sandwiched between a plug of aqueous donor and aqueous acceptor solution. The FLM acted as a phase interface that enabled selective transfer of analytes from donor into acceptor solution. Acceptor solution after μ-EME was analysed by capillary electrophoresis (CE). Fundamental characteristics of FLMs were depicted and discussed by presenting experimental data on their performance for various basic operational parameters, such as composition and volume of donor/acceptor solution, applied extraction voltage, thickness of FLM and extraction time. Positively charged basic drugs (nortriptyline, haloperidol and loperamide) and their solutions in water, urine and blood serum served as model samples. It was shown that FLMs may offer fast, efficient and selective pretreatment of crude biological samples providing that basic operational parameters of μ-EME are set properly. At optimised conditions, basic drugs in 1.5μL of a biological sample were transferred across 1.5μL of FLM (ENB) into 1.5μL of acceptor solution in about 5min at an extraction voltage of 100V. Repeatability values of μ-EMEs and CE-UV analyses of the three basic drugs were better than 7.7% for peak areas, recoveries ranged between 19 and 52% and linear relationship was obtained for analytical signal vs. concentration in 1-50mgL(-1) range (r(2) better than 0.996). Limits of detection, defined as 3×S/N, were below 1mgL(-1) for all examined matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthetic biology: new engineering rules for an emerging discipline
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572
Synthetic biology: new engineering rules for an emerging discipline.
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.
Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.
Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika
2016-01-01
Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.
The impact of distinct culture media in Leishmania infantum biology and infectivity.
Santarém, Nuno; Cunha, Joana; Silvestre, Ricardo; Silva, Cátia; Moreira, Diana; Ouellette, Marc; Cordeiro-DA-Silva, Anabela
2014-02-01
An ideal culture medium for Leishmania promastigotes should retain the basic characteristics of promastigotes found in sandflies (morphology and infectivity). Furthermore, the media should not create a bias in experimental settings, thus enabling the proper extrapolation of results. To assess this we studied several established media for promastigote growth. We analysed morphology, viability, cell cycle progression, metacyclic profile, capacity to differentiate into axenic amastigotes and infectivity. Furthermore, using a rational approach from the evaluated media we developed a simple serum-free medium (cRPMI). We report that parasites growing in different media present different biological characteristics and distinct in vitro and in vivo infectivities. The developed medium, cRPMI, proved to be a less expensive substitute for traditional serum-supplemented media for the in vitro maintenance of promastigotes. In fact, cRPMI is ideal for the maintenance of parasites in the laboratory, diminishing the expected loss of virulence over time typical of the parasite cultivation. Ultimately this report is a clear warning that the normalization of culture media should be a real concern in the field as media-specific phenomena are sufficient to induce biological bias with consequences in infectivity and general parasite biology.
[Basics and clinical application of human mesenchymal stromal/stem cells].
Miura, Yasuo
2015-10-01
Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.
Connective tissue growth factor (CTGF) from basics to clinics.
Ramazani, Yasaman; Knops, Noël; Elmonem, Mohamed A; Nguyen, Tri Q; Arcolino, Fanny Oliveira; van den Heuvel, Lambert; Levtchenko, Elena; Kuypers, Dirk; Goldschmeding, Roel
2018-03-21
Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Synaptic electronics: materials, devices and applications.
Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip
2013-09-27
In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.
Translational bioinformatics: linking the molecular world to the clinical world.
Altman, R B
2012-06-01
Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.
Can marine protected areas enhance both economic and biological situations?
Ami, Dominique; Cartigny, Pierre; Rapaport, Alain
2005-04-01
This paper investigates impacts of the creation of Marine Protected Areas (MPAs), in both economic and biological perspectives. The economic indicator is defined as the sum of discounted benefits derived from exploitation of the resource in the fishery sector, assumed to be optimally managed. The biological indicator is taken as the stock density of the resource. The basic fishery model (C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, second ed., John Wiley and Sons, New York, 1990) will serve as a convenient benchmark in comparing results with those that are derived from a model of two patchy populations (cf. R. Hannesson, Marine reserves: what would they accomplish, Mar. Resour. Econ. 13 (1998) 159). In the latter, a crucial characteristic is the migration coefficient with describes biological linkages between protected and unprotected areas. A set of situations where both economic and biological criteria are enhanced, after introducing a MPA, is presented. These results are obtained with the help of numerical simulations.
Cell biology: at the center of modern biomedicine.
Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom
2012-10-01
How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.
Making evolutionary biology a basic science for medicine
Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David
2010-01-01
New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069
Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David
2010-01-26
New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.
A tutorial on ultrasonic physics and imaging techniques.
Halliwell, M
2010-01-01
Ultrasound is a widely used modality for both therapy and diagnosis in medicine and biology. Currently, in the field of medical diagnosis, ultrasound is responsible for about one in five of all diagnostic images. The physical characteristics of medical ultrasound, along with its behaviour as it interacts with biological tissues, are described in this tutorial. The role of ultrasound in therapeutic and diagnostic applications is briefly described. In view of the importance of ultrasound as a medical imaging modality, the basic technological building blocks utilized in diagnostic ultrasound scanners are also described. Many of these topics are the subjects of other papers in this special issue where they are dealt with in more detail.
Bacteriophage vehicles for phage display: biology, mechanism, and application.
Ebrahimizadeh, Walead; Rajabibazl, Masoumeh
2014-08-01
The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.
Advances in the Urinary Exosomes in Renal Diseases.
Chen, Pei-Pei; Qin, Yan; Li, Xue-Mei
2016-08-01
Cells secrete around 30- 100 nm membrane-enclosed vesicles that are released into the extracellular spaceis termed exosomes(EXs). EXs widely present in body fluids and incorporated proteins,nucleic acids that reflect the physiological state of their cells of origin and they may play an important role in cell-to-cell communication in various physiological and disease processes. In this article we review the recent basic and clinical studies in urinary EXs in renal diseases,focusing on their biological characteristics and potential roles as new biological markers,intervention treatment goals,and targeted therapy vectors in renal diseases.However,some issues still exist;in particular,the clinical application of EXs as a liquid biopsy technique warrants further investigations.
[Nutrition sciences in the treatment of eating disorders].
Haas, Verena; Boschmann, Michael
2015-01-01
Several studies provide evidence for the existence of a hypermetabolic state of biological origin in recently weight recovered patients with anorexia nervosa. It remains unclear if current nutritional rehabilitation strategies are consistent with the resulting high energy requirements. Further insight into specific pathophysiological characteristics of energetic efficiency in patients with anorexia nervosa will help us to provide evidence based nutritional guidance. Basic nutritional research in this field is urgently required. © Georg Thieme Verlag KG Stuttgart · New York.
Ottinger, M.A.; Rattner, B.A.
1999-01-01
Both the Japanese and Bobwhite quail are important species for biomedical, toxicological and basic biological research. In view of their rapid maturation, high reproductive rate in captivity, and other physiological characteristics, these species have been and will continue to be used successfully as model avian species. This short reviews describes caging, environmental, and feed requirements for Japanese and Bobwhite quail maintained in captivity. Information on egg collection, incubation, care of young, handling, blood collection and common diseases are discussed.
Application of microfluidic technologies to human assisted reproduction
Takayama, Shuichi
2017-01-01
Abstract Microfluidics can be considered both a science and a technology. It is defined as the study of fluid behavior at a sub-microliter level and the investigation into its application to cell biology, chemistry, genetics, molecular biology and medicine. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. The mechanical and biochemical characteristics of microfluidics may also have practical and/or technical application(s) to assisted reproductive technologies (ART) in rodents, domestic species, endangered species and humans. This review will consider data in mammals, and when available humans, addressing the potential application(s) of microfluidics to assisted reproduction. There are numerous sequential steps in the clinical assisted reproductive laboratory process that work, yet could be improved. Cause and effect relations of procedural inefficiencies can be difficult to identify and/or remedy. Data will be presented that consider microfluidic applications to sperm isolation, oocyte cumulus complex isolation, oocyte denuding, oocyte mechanical manipulation, conventional insemination, intracytoplasmic sperm injection, embryo culture, embryo analysis and oocyte and embryo cryopreservation. While these studies have progressed in animal models, data with human gametes and embryos are significantly lacking. These data from clinical trials are requisite for making future evidence-based decisions regarding the application of microfluidics in human ART. PMID:28130394
Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing
Miller, Benjamin L.
2015-01-01
Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402
[Precision medicine: new opportunities and challenges for molecular epidemiology].
Song, Jing; Hu, Yonghua
2016-04-01
Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.
Silva, Janmille Valdivino da; Oliveira, Angelo Giuseppe Roncalli da Costa
2018-04-09
To analyze how individual characteristics and the social context, together, are associated with self-perception of the oral health. A multilevel cross-sectional study with data from the Brazilian National Health Survey 2013, the United Nations Development Program, and the National Registry of Health Establishments. The explanatory variables for the "oral health perception" outcome were grouped, according to the study framework, into biological characteristics (sex, color, age), proximal social determinants (literacy, household crowding, and socioeconomic stratification), and distal (years of schooling expectancy at age 18, GINI, Human Development Index, and per capita income). The described analysis was performed, along with bivariate Poisson analysis and multilevel Poisson analysis for the construction of the explanatory model of oral health perception. All analyzes considered the sample weights. Both the biological characteristics and the proximal and distal social determinants were associated with the perception of oral health in the bivariate analysis. A higher prevalence of bad oral health was associated to lower years of schooling expectancy (PR = 1.31), lower per capita income (PR = 1.45), higher income concentration (PR = 1.41), and worse human development (PR = 1.45). Inversely, oral health services in both primary and secondary care were negatively associated with oral health perception. All the biological and individual social characteristics, except reading and writing, made up the final explanatory model along with the distal social determinants of the Human Development Index and coverage of basic care in the multilevel analysis. Biological factors, individual and contextual social determinants were associate synergistically with the population's perception of oral health. It is necessary to improve individual living conditions and the implementation of public social policies to improve the oral health of the population.
The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?
Luoma, Samuel N.
1996-01-01
Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.
Iwamoto, Noriko; Shimada, Takashi
2018-05-01
Since the turn of the century, mass spectrometry (MS) technologies have continued to improve dramatically, and advanced strategies that were impossible a decade ago are increasingly becoming available. The basic characteristics behind these advancements are MS resolution, quantitative accuracy, and information science for appropriate data processing. The spectral data from MS contain various types of information. The benefits of improving the resolution of MS data include accurate molecular structural-derived information, and as a result, we can obtain a refined biomolecular structure determination in a sequential and large-scale manner. Moreover, in MS data, not only accurate structural information but also the generated ion amount plays an important rule. This progress has greatly contributed a research field that captures biological events as a system by comprehensively tracing the various changes in biomolecular dynamics. The sequential changes of proteome expression in biological pathways are very essential, and the amounts of the changes often directly become the targets of drug discovery or indicators of clinical efficacy. To take this proteomic approach, it is necessary to separate the individual MS spectra derived from each biomolecule in the complexed biological samples. MS itself is not so infinite to perform the all peak separation, and we should consider improving the methods for sample processing and purification to make them suitable for injection into MS. The above-described characteristics can only be achieved using MS with any analytical instrument. Moreover, MS is expected to be applied and expand into many fields, not only basic life sciences but also forensic medicine, plant sciences, materials, and natural products. In this review, we focus on the technical fundamentals and future aspects of the strategies for accurate structural identification, structure-indicated quantitation, and on the challenges for pharmacokinetics of high-molecular-weight protein biopharmaceuticals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Recent advances in inkjet dispensing technologies: applications in drug discovery.
Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin
2012-09-01
Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.
Mammalian Cell Tissue Culture.
Phelan, Katy; May, Kristin M
2017-07-11
Cultured mammalian cells are used extensively in the field of human genetics. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Oxygen regulates molecular mechanisms of cancer progression and metastasis.
Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan
2014-03-01
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Flow cytogenetics and chromosome sorting.
Cram, L S
1990-06-01
This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.
Urine: Waste product or biologically active tissue?
2018-03-01
Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Fontanet, Pilar; Vicient, Carlos M
2008-01-01
Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.
From high dilutions to digital biology: the physical nature of the biological signal.
Thomas, Yolène
2015-10-01
The memory of water was a radical idea that arose in the laboratory of Jacques Benveniste in the late 1980s. Twenty-five years have passed and yet the often angry debate on its merits continues despite the increasing number of scientists who have reported confirmation of the basic results. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. A parallel can be drawn between this debate on the memory of water, which presumes that the action of molecules is mediated by an electromagnetic phenomenon, and the often acrimonious debate on the transmission of nerve influxes via synaptic transfer of specific molecules, neurotransmitters. The latter debate began in 1921 with the first experiments by Loewi and was still active in 1949, 28 years later. A strong reluctance to accept research that questions basic aspects of long-accepted biochemical paradigms is to be expected. In this paper we will provide a brief summary of experiments relating to the memory of water: the earlier work on high dilutions (HD) and then the experiments, which followed and continue today, on digital biology. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Application of microfluidic technologies to human assisted reproduction.
Smith, Gary D; Takayama, Shuichi
2017-04-01
Microfluidics can be considered both a science and a technology. It is defined as the study of fluid behavior at a sub-microliter level and the investigation into its application to cell biology, chemistry, genetics, molecular biology and medicine. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. The mechanical and biochemical characteristics of microfluidics may also have practical and/or technical application(s) to assisted reproductive technologies (ART) in rodents, domestic species, endangered species and humans. This review will consider data in mammals, and when available humans, addressing the potential application(s) of microfluidics to assisted reproduction. There are numerous sequential steps in the clinical assisted reproductive laboratory process that work, yet could be improved. Cause and effect relations of procedural inefficiencies can be difficult to identify and/or remedy. Data will be presented that consider microfluidic applications to sperm isolation, oocyte cumulus complex isolation, oocyte denuding, oocyte mechanical manipulation, conventional insemination, intracytoplasmic sperm injection, embryo culture, embryo analysis and oocyte and embryo cryopreservation. While these studies have progressed in animal models, data with human gametes and embryos are significantly lacking. These data from clinical trials are requisite for making future evidence-based decisions regarding the application of microfluidics in human ART. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Schidlowski, M.
1983-01-01
Preferential metabolization of isotopically light carbon and sulfur has resulted in a fractionation of the stable isotopes of these elements on a global scale, with the light species (C-12, S-32) markedly concentrated in biogenic materials. Since the biological effects are basically retained when carbon and sulfur are incorporated in sediments, the respective fractionations are propagated into the rock section of the geochemical cycle, this having consequently caused a characteristic bipartition of both elements between 'light' and 'heavy' crustal reservoirs. Preservation of the biological isotope effects in sedimentary rocks makes it possible to trace the underlying biochemical processes back over most of the geological record. According to the available evidence, biological (autotrophic) carbon fixation arose prior to 3.5(if not 3.8) billion years ago, while the emergence of dissimilatory sulfate reduction antedates the appearance of the oldest presumably bacteriogenic sulfur isotope patterns in rocks between 2.7 and 2.8 billion years old. Hence, biological control of the terrestrial carbon and sulfur cycles has been established very early in the earth's history.
Chen, Guilin; Huang, Bill X; Guo, Mingquan
2018-05-21
Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.
Studying cell biology in the skin.
Morrow, Angel; Lechler, Terry
2015-11-15
Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Opfer, John E.; Siegler, Robert S.
2004-01-01
Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…
Murine macrophages: a technical approach.
Martinez-Pomares, Luisa; Gordon, Siamon
2008-01-01
In this chapter, we describe current protocols used for the characterization of macrophages (MPhi) in mouse tissues and in cell suspensions from spleen and lymph nodes. Also, we include a brief description of a complementary approach: culture of primary MPhi. Although culture MPhi are extremely useful for analysing the basic biology of MPhi and their receptors, it should not be forgotten that the term MPhi encompasses a wide range of different types of cells with phenotypic characteristics dependent on their activation state and tissue of origin. In our view, there is no perfect MPhi marker and analysis of the expression profile of several markers, and functional studies are required to make an informed guess of the cellular characteristics and function of the MPhi population of interest.
1993-09-01
rates between blacks and whites. The basic profile , if you will, of the black offender is a young single male from a disadvantaged socioeconomic...homes where a parent was missing, while in some white homes the missing biological parent had been replaced wit’ a stepparent. Moreover, several black...hand, having a stepparent was not necessarily always beneficial as several white intmatcs claimed that their stepparents had abused them as children
Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".
Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio
2011-12-01
This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.
The molecular biology of soft-tissue sarcomas and current trends in therapy.
Quesada, Jorge; Amato, Robert
2012-01-01
Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tibayrenc, M.; Ward, P.; Moya, A.
1986-01-01
The authors have studied 15 gene loci coding for enzymes in 121 Trypanosoma cruzi stocks from a wide geographic range - from the US and Mexico to Chile and southern Brazil. T.cruzi is diploid but reproduction is basically clonal, with very little if any sexuality remaining at present. They have identified 43 different clones by their genetic composition; the same genetic clone is often found in very distant places and in diverse hosts. There is much genetic heterogeneity among the different clones, and they cannot be readily classified into a few discrete groups that might represent natural taxa. These findingsmore » imply that the biological and medical characteristics need to be ascertained separately for each natural clone. The evidence indicates that clonal evolution is very ancient in T.cruzi. The authors propose two alternative hypotheses concerning the relationship between the biochemical diversity and the heterogeneity in other biological and medical characteristics of T. cruzi. One hypothesis is that the degree of diversity between strains simply reflects the time elapsed since their last common ancestor. The second hypothesis is that biological and medical heterogeneity is recent and reflects adaptation to different transmission cycles. A decision between the two hypotheses can be reached with appropriate studies, with important medical consequences.« less
Trends in fluorescence imaging and related techniques to unravel biological information.
Haustein, Elke; Schwille, Petra
2007-09-01
Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics.
Trends in fluorescence imaging and related techniques to unravel biological information
Haustein, Elke; Schwille, Petra
2007-01-01
Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics. PMID:19404444
Paranemic Crossover DNA: There and Back Again.
Wang, Xing; Chandrasekaran, Arun Richard; Shen, Zhiyong; Ohayon, Yoel P; Wang, Tong; Kizer, Megan E; Sha, Ruojie; Mao, Chengde; Yan, Hao; Zhang, Xiaoping; Liao, Shiping; Ding, Baoquan; Chakraborty, Banani; Jonoska, Natasha; Niu, Dong; Gu, Hongzhou; Chao, Jie; Gao, Xiang; Li, Yuhang; Ciengshin, Tanashaya; Seeman, Nadrian C
2018-06-18
Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX 2 , has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.
Ultrasonic Characteristics and Cellular Properties of Anabaena Gas Vesicles.
Yang, Yaoheng; Qiu, Zhihai; Hou, Xuandi; Sun, Lei
2017-12-01
Ultrasound imaging is a common modality in clinical examination and biomedical research, but has not played a significant role in molecular imaging for lack of an appropriate contrast agent. Recently, biogenic gas vesicles (GVs), naturally formed by cyanobacteria and haloarchaea, have exhibited great potential as an ultrasound molecular imaging probe with a much smaller size (∼100 nm) and improved imaging contrast. However, the basic acoustic and biological properties of GVs remain unclear, which hinders future application. Here, we studied the fundamental acoustic properties of a rod-shaped gas vesicle from Anabaena, a kind of cyanobacterium, including attenuation, oscillation resonance, and scattering, as well as biological behaviors (cellular internalization and cytotoxicity). We found that GVs have two resonance peaks (85 and 120 MHz). We also observed a significant non-linear effect and its pressure dependence as well. Ultrasound B-mode imaging reveals sufficient echogenicity of GVs for ultrasound imaging enhancement at high frequencies. Biological characterization also reveals endocytosis and non-toxicity. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases
Leitão, Ana Lúcia; Costa, Marina C.; Enguita, Francisco J.
2015-01-01
The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes. PMID:25622248
JPRS Report, China, Handbook of Military Knowledge for Commanders
1988-03-07
Chemical and Biological Weapons Chapter I Nuclear Weapons (178) A. Summary Statement on Nuclear Weapons (178) 1. Basic Principles of Nuclear...199) 1. Basic Principles of Protection Against Nuclear, Chemical and Biological Weapons* (199) 2. Maior Actions For Protection Against Nuclear...people’s bodies through the digestive tract. Skin contact. Biological warfare agents may enter the body directly through the skin , mucous membranes or
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Kedrov, Alexej; Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J
2007-01-01
Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.
Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.
Model, Michael A; Blank, James L
2006-10-01
To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.
Edge Detection Based On the Characteristic of Primary Visual Cortex Cells
NASA Astrophysics Data System (ADS)
Zhu, M. M.; Xu, Y. L.; Ma, H. Q.
2018-01-01
Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness
Marine Polysaccharides in Microencapsulation and Application to Aquaculture: “From Sea to Sea”
Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio
2011-01-01
This review’s main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported. PMID:22363241
Watters, Dianne J; Watters, James J
2006-07-01
In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve problems associated with the behavior of biological acids to understand the source of student difficulties. The responses given by most students are characteristic of an atomistic approach in which they pay no attention to the structure of the problem and concentrate only on juggling the elements together until they get a solution. Many students reported difficulty in understanding what the question was asking and were unable to interpret a simple graph showing the pH activity profile of an enzyme. The most startling finding was the lack of basic understanding of logarithms and the inability of all except one student to perform a simple calculation on logs without a calculator. This deficiency in high school mathematical skills severely hampered their understanding of pH. This study has highlighted a widespread deficiency in basic mathematical skills among first year undergraduates and a fragmented understanding of acids and bases. Implications for the way in which the concepts of pH and buffers are taught are discussed. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Some Basic Techniques in Bioimpedance Research
NASA Astrophysics Data System (ADS)
Martinsen, Ørjan G.
2004-09-01
Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.
Bioinstrumentation: Tools for Understanding Life.
ERIC Educational Resources Information Center
Wandersee, James H., Ed.; And Others
This book was written to help introductory biology teachers gain a basic understanding of contemporary bioinstrumentation and the uses to which it is put in the laboratory. It includes topics that are most basic to understanding the nature of biology. The book is divided into five sections: (1) "Separation and Identification" that includes…
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides
[Biophysics of single molecules].
Serdiuk, I N; Deriusheva, E I
2011-01-01
The modern methods of research of biological molecules whose application led to the development of a new field of science, biophysics of single molecules, are reviewed. The measurement of the characteristics of single molecules enables one to reveal their individual features, and it is just for this reason that much more information can be obtained from one molecule than from the entire ensample of molecules. The high sensitivity of the methods considered in detail makes it possible to come close to the solution of the basic problem of practical importance, namely, the determination of the nucleotide sequence of a single DNA molecule.
Mammalian Cell Tissue Culture Techniques.
Phelan, Katy; May, Kristin M
2016-06-01
Cultured tissues and cells are used extensively in physiological and pharmacological studies. In vitro cultures provide a means of examining cells and tissues without the complex interactions that would be present if the whole organism were studied. A number of special skills are required in order to preserve the structure, function, behavior, and biology of cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Evolutionary Biology: Its Value to Society
ERIC Educational Resources Information Center
Carson, Hampton L.
1972-01-01
Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…
Mechanisms for cytoplasmic organization: an overview.
Pagliaro, L
2000-01-01
One of the basic characteristics of life is the intrinsic organization of cytoplasm, yet we know surprisingly little about the manner in which cytoplasmic macromolecules are arranged. It is clear that cytoplasm is not the homogeneous "soup" it was once envisioned to be, but a comprehensive model for cytoplasmic organization is not available in modern cell biology. The premise of this volume is that phase separation in cytoplasm may play a role in organization at the subcellular level. Other mechanisms for non-membrane-bounded intracellular organization have previously been proposed. Some of these will be reviewed in this chapter. Multiple mechanisms, involving phase separation, specific intracellular targeting, formation of macromolecular complexes, and channeling, all could well contribute to cytoplasmic organization. Temporal and spatial organization, as well as composition, are likely to be important in defining the characteristics of cytoplasm.
Kida, S; Kato, T
2015-01-01
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S
1997-10-01
The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.
Use of polyclonal/monoclonal antibody therapies in transplantation.
Yeung, Melissa Y; Gabardi, Steven; Sayegh, Mohamed H
2017-03-01
For over thirty years, antibody (mAb)-based therapies have been a standard component of transplant immunosuppression, and yet much remains to be learned in order for us to truly harness their therapeutic capabilities. Current mAbs used in transplant directly target and destroy graft-destructive immune cells, interrupt cytokine and costimulation-dependent T and B cell activation, and prevent down-stream complement activation. Areas covered: This review summarizes our current approaches to using antibody-based therapies to prevent and treat allograft rejection. It also provides examples of promising novel mAb therapies, and discusses the potential for future mAb development in transplantation. Expert opinion: The broad capability of antibodies, in parallel with our growing ability to synthetically modulate them, offers exciting opportunities to develop better biologic therapeutics. In order to do so, we must further our understanding about the basic biology underlying allograft rejection, and gain better appreciation of how characteristics of therapeutic antibodies affect their efficacy.
Kern, Robert S.
2013-01-01
The psychometric properties of 4 paradigms adapted from the social neuroscience literature were evaluated to determine their suitability for use in clinical trials of schizophrenia. This 2-site study (University of California, Los Angeles and University of North Carolina) included 173 clinically stable schizophrenia outpatients and 88 healthy controls. The social cognition battery was administered twice to the schizophrenia group (baseline, 4-week retest) and once to the control group. The 4 paradigms included 2 that assess perception of nonverbal social and action cues (basic biological motion and emotion in biological motion) and 2 that involve higher level inferences about self and others’ mental states (self-referential memory and empathic accuracy). Each paradigm was evaluated on (1) patient vs healthy control group differences, (2) test-retest reliability, (3) utility as a repeated measure, and (4) tolerability. Of the 4 paradigms, empathic accuracy demonstrated the strongest characteristics, including large between-group differences, adequate test-retest reliability (.72), negligible practice effects, and good tolerability ratings. The other paradigms showed weaker psychometric characteristics in their current forms. These findings highlight challenges in adapting social neuroscience paradigms for use in clinical trials. PMID:24072805
Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders
Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P.; Wenderoth, Nicole; Alaerts, Kaat
2012-01-01
One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in ‘reading’ body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of ‘biological motion’ and ‘emotions’ from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person’s ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance. PMID:22970227
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
Recognizing biological motion and emotions from point-light displays in autism spectrum disorders.
Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P; Wenderoth, Nicole; Alaerts, Kaat
2012-01-01
One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in 'reading' body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of 'biological motion' and 'emotions' from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person's ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance.
Role of basic biological sciences in clinical orthodontics: a case series.
Davidovitch, Ze'ev; Krishnan, Vinod
2009-02-01
Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.
10 CFR 431.401 - Petitions for waiver, and applications for interim waiver, of test procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... more design characteristics which prevent testing of the basic model according to the prescribed test... its true energy consumption characteristics as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...
10 CFR 431.401 - Petitions for waiver, and applications for interim waiver, of test procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... more design characteristics which prevent testing of the basic model according to the prescribed test... its true energy consumption characteristics as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...
Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy
Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.
2012-01-01
Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746
Tissue mechanics and fibrosis.
Wells, Rebecca G
2013-07-01
Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.
1974-01-01
The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.
Scanning Electron Microscopy and X-Ray Microanalysis
NASA Astrophysics Data System (ADS)
Albee, Arden L.
This outstanding volume has managed the nearly impossible task of combining the expertise of all six authors in a lucid and homogeneous style of writing. Subtitled ‘A Text for Biologists, Material Scientists and Geologists,’ the book has evolved from a short course taught each summer at Lehigh University.The book provides a basic knowledge of (1) the electron optics for these instruments a nd their controls, (2) the characteristics of the electron beam-sample interactions, (3) image formation and interpretation, (4) X ray spectrometry and quantitative X ray microanalysis with separate detailed sections on wavelength dispersive and energy dispersive techniques, and (5) specimen preparation, especially for biological materials.
Dentistry in the future--on the role and goal of basic research in oral biology.
Mäkinen, K K
1993-01-01
Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.
Thin film bioreactors in space
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Scheld, H. W.
1989-01-01
Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.
Commentary: Prerequisite Knowledge
ERIC Educational Resources Information Center
Taylor, Ann T. S.
2013-01-01
Most biochemistry, genetics, cell biology, and molecular biology classes have extensive prerequisite or co-requisite requirements, often including introductory chemistry, introductory biology, and organic chemistry coursework. But what is the function of these prerequisites? While it seems logical that a basic understanding of biological and…
The RCSB Protein Data Bank: views of structural biology for basic and applied research and education
Rose, Peter W.; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F.; Christie, Cole H.; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S.; Westbrook, John D.; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M.; Bourne, Philip E.; Burley, Stephen K.
2015-01-01
The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. PMID:25428375
Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.
Louridas, George E; Lourida, Katerina G
2017-02-21
Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.
Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem
Chizinski, C.J.; Higgins, C.L.; Shavlik, C.E.; Pope, K.L.
2006-01-01
Ecological and evolutionary theories have focused traditionally on natural processes with little attempt to incorporate anthropogenic influences despite the fact that humans are such an integral part of virtually all ecosystems. A series of alternate models that incorporated anthropogenic factors and traditional ecological mechanisms of invasion to account for fish incidence patterns in urban lakes was tested. The models were based on fish biology, human intervention, and habitat characteristics. However, the only models to account for empirical patterns were those that included fish invasiveness, which incorporated species-specific information about overall tolerance and fecundity. This suggests that species-specific characteristics are more important in general distributional patterns than human-mediated dispersal. Better information of illegal stocking activities is needed to improve human-mediated models, and more insight into basic life history of ubiquitous species is needed to truly understand underlying mechanisms of biotic homogenization. ?? Springer 2005.
Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang
2015-12-01
Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Paul E., E-mail: pwallner@theabr.org; Anscher, Mitchell S.; Barker, Christopher A.
In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less
Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael
2014-01-01
In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.
The Carnegie Department of Embryology at 100: Looking Forward.
Spradling, Allan C
2016-01-01
Biological research has a realistic chance within the next 50 years of discovering the basic mechanisms by which metazoan genomes encode the complex morphological structures and capabilities that characterize life as we know it. However, achieving those goals is now threatened by researchers who advocate an end to basic research on nonmammalian organisms. For the sake of society, medicine, and the science of biology, the focus of biomedical research should place more emphasis on basic studies guided by the underlying evolutionary commonality of all major animals, as manifested in their genes, pathways, cells, and organs. © 2016 Elsevier Inc. All rights reserved.
Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.
Basic Science Living Skills for Today's World. Teacher's Edition.
ERIC Educational Resources Information Center
Zellers (Robert W.) Educational Services, Johnstown, PA.
This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…
PET Imaging: Basics and New Trends
NASA Astrophysics Data System (ADS)
Dahlbom, Magnus
Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.
Biological Concepts. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Carnegie, John W.
This manual contains the textual material for a three-lesson unit which introduces students to the basic concepts applicable to all biological treatment systems. The general topic areas addressed in the lessons are: (1) the microorganisms found in biological systems; (2) the factors that affect the growth and health of biological systems; and (3)…
The Escherichia coli Peripheral Inner Membrane Proteome*
Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios
2013-01-01
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279
Modeling the peak of emergence in systems: Design and katachi.
Cardier, Beth; Goranson, H T; Casas, Niccolo; Lundberg, Patric; Erioli, Alessio; Takaki, Ryuji; Nagy, Dénes; Ciavarra, Richard; Sanford, Larry D
2017-12-01
It is difficult to model emergence in biological systems using reductionist paradigms. A requirement for computational modeling is that individual entities can be recorded parametrically and related logically, but their transformation into whole systems cannot be captured this way. The problem stems from an inability to formally represent the implicit influences that inform emergent organization, such as context, shifts in causal agency or scale, and self-reference. This lack hampers biological systems modeling and its computational counterpart, indicating a need for new fundamental abstraction frameworks that support system-level characteristics. We develop an approach that formally captures these characteristics, focusing on the way they come together to enable transformation at the 'peak' of the emergent process. An example from virology is presented, in which two seemingly antagonistic systems - the herpes cold sore virus and its host - are capable of altering their basic biological objectives to achieve a new equilibrium. The usual barriers to modeling this process are overcome by incorporating mechanisms from practices centered on its emergent peak: design and katachi. In the Japanese science of form, katachi refers to the emergence of intrinsic structure from real situations, where an optimal balance between implicit influences is achieved. Design indicates how such optimization is guided by principles of flow. These practices leverage qualities of situated abstraction, which we understand through the intuitive method of physicist Kôdi Husimi. Early results indicate that this approach can capture the functional transformations of biological emergence, whilst being reasonably computable. Due to its geometric foundations and narrative-based extension to logic, the method will also generate speculative predictions. This research forms the foundations of a new biomedical modeling platform, which is discussed. Copyright © 2017. Published by Elsevier Ltd.
Biological Sensors for Solar Ultraviolet Radiation
Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Menck, Carlos F.M.; Schuch, André P.
2011-01-01
Solar ultraviolet (UV) radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products. PMID:22163847
Ludwig von Bertalanffy's organismic view on the theory of evolution.
Drack, Manfred
2015-03-01
Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.
Bibliometric analysis of original molecular biology research in anaesthesia.
Schreiber, K; Girard, T; Kindler, C H
2004-10-01
Molecular biology has expanded the horizons of anaesthesia during the last 20 years and has led to an increase of basic science articles that are published in the specialised anaesthetic journals or originate in anaesthetic institutions. We searched for and analysed the specific features, such as year of publication, publishing journal, and country of origin, of all such molecular biology articles stored in the MEDLINE database during the period 1986-2002. We identified 1265 original articles that used molecular biology techniques; 223 (18%) of these articles were published in anaesthetic journals and 1042 (82%) articles in 556 other biomedical journals. While in the late 1980s only a few molecular biology articles were published each year by anaesthetic institutions, worldwide this number reached approximately 200 basic science articles by the end of 2002. The USA clearly dominates the field of anaesthesia with respect to molecular biology research with 839 (66%) such articles.
Munns, David P D
2015-04-01
This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 430.27 - Petitions for waiver and applications for interim waiver.
Code of Federal Regulations, 2010 CFR
2010-01-01
... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...
10 CFR 430.27 - Petitions for waiver and applications for interim waiver.
Code of Federal Regulations, 2011 CFR
2011-01-01
... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... particular basic model(s) for which a waiver is requested, the design characteristic(s) constituting the...
The Division of Cancer Biology (DCB) funds and supports extramural basic research that investigates the fundamental biology behind cancer. Find out more about DCB's grants process and funding opportunities.
Rim, Taiuk; Baek, Chang-Ki; Kim, Kihyun; Jeong, Yoon-Ha; Lee, Jeong-Soo; Meyyappan, M
2014-01-01
The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing power consumption and emerging applications such as the 3D cell probe. In this review, we describe the device physics and operation of the silicon nanowire BioFETs along with recent advances in the field. The silicon nanowire BioFETs are basically the same as the conventional field-effect transistors (FETs) with the exceptions of nanowire channel instead of thin film and a liquid gate instead of the conventional gate. Therefore, the silicon device physics is important to understand the operation of the BioFETs. Herein, physical characteristics of the silicon nanowire FETs are described and the operational principles of the BioFETs are classified according to the number of gates and the analysis domain of the measured signal. Even the bottom-up process has merits on low-cost fabrication; the top-down process technique is highlighted here due to its reliability and reproducibility. Finally, recent advances in the silicon nanowire BioFETs in the literature are described and key features for commercialization are discussed.
Novotny, L; Abdel-Hamid, M; Hamza, H
2000-12-01
The purines and among them inosine synthetic nucleoside derivatives and analogues belong to a group of compounds to which the attention is being paid because of their biological activities. Relationships of their various parameters are being investigated because of their effect on biological (antineoplastic, virostatic, immunosuppressive) properties. Hydrophobicity parameters expressed as the logarithm of the partition coefficient (log P) and the capacity factor k' for naturally occurring inosine, 2'-deoxyinosine, 2'-deoxyadenosine and 2'-deoxyguanosine and for inosine synthetic analogues 5'-deoxyinosine, 5'-chloro-5'-deoxyinosine and 2',3'-dideoxyinosine were measured. The effect of methanol percentage in the mobile phase and its pH on the retention of the studied compounds in a reversed-phase system was also examined. There was a good correlation between the lipophilicity expressed as log P and capacity factor k'. It was also determined that dissociation has a marginal effect on capacity factor k' in this group of nucleoside derivatives as the k' values were almost unchanged at various pH of the mobile phase used. The stability of the all investigated compounds was investigated in basic, neutral and acidic conditions. The values of the reaction constant k1 were calculated and effects of nucleoside structural characteristic on stability are discussed.
Dielectric Elastomer Actuators for Soft Wave-Handling Systems.
Wang, Tao; Zhang, Jinhua; Hong, Jun; Wang, Michael Yu
2017-03-01
This article presents a soft handling system inspired by the principle of the natural wave (named Wave-Handling system) aiming to offer a soft solution to delicately transport and sort fragile items such as fruits, vegetables, biological tissues in food, and biological industries. The system consists of an array of hydrostatically coupled dielectric elastomer actuators (HCDEAs). Due to the electrostriction property of dielectric elastomers, the handling system can be controlled by electric voltage rather than the cumbersome pneumatic system. To study the working performance of the Wave-Handling system and how the performance can be improved, the basic properties of HCDEA are investigated through experiments. We find that the HCDEA exhibits some delay and hysteretic characteristics when activated by periodic voltage and the characteristics are influenced by the frequency and external force also. All this will affect the performance of the Wave-Handling system. However, the electric control, simple structure, light weight, and low cost of the soft handling system show great potential to move from laboratory to practical application. As a proof of design concept, a simply made prototype of the handling system is controlled to generate a parallel moving wave to manipulate a ball. Based on the experimental results, the improvements and future work are discussed and we believe this work will provide inspiration for soft robotic engineering.
Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.
ERIC Educational Resources Information Center
Spellerberg, Ian F.; Pritchard, Alan J.
This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…
Teaching Cell Biology to Nonscience Majors through Forensics, or How to Design a Killer Course
ERIC Educational Resources Information Center
Arwood, Laura
2004-01-01
Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusufoglu, Yusuf
Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations andmore » material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.« less
Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment
NASA Astrophysics Data System (ADS)
Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.
2018-02-01
Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.
Flea control failure? Myths and realities.
Halos, Lénaïg; Beugnet, Frédéric; Cardoso, Luís; Farkas, Robert; Franc, Michel; Guillot, Jacques; Pfister, Kurt; Wall, Richard
2014-05-01
Why is it that, despite the proliferation of research on their biology and control, fleas remain such a burden for companion animals and their owners? This review highlights a range of reasons for persistence and apparent treatment failures. It argues that a sustainable approach will require integrated pest management based upon a detailed understanding of the flea life cycle, targeting not only adult fleas but also the immature stages in the environment, combining several modes of control and limiting the risk of chemoresistance. Individual characteristics of the pet and its environment need to be considered. Control of fleas can be achieved, over a timescale of several months, if basic rules are respected. Copyright © 2014 Elsevier Ltd. All rights reserved.
Developing microRNA therapeutics.
van Rooij, Eva; Purcell, Angela L; Levin, Arthur A
2012-02-03
Rarely a new research area has gotten such an overwhelming amount of attention as have microRNAs. Although several basic questions regarding their biological principles still remain to be answered, many specific characteristics of microRNAs in combination with compelling therapeutic efficacy data and a clear involvement in human disease have triggered the biotechnology community to start exploring the possibilities of viewing microRNAs as therapeutic entities. This review serves to provide some general insight into some of the current microRNAs targets, how one goes from the initial bench discovery to actually developing a therapeutically useful modality, and will briefly summarize the current patent landscape and the companies that have started to explore microRNAs as the next drug target.
Rose, Peter W; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F; Christie, Cole H; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S; Westbrook, John D; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M; Bourne, Philip E; Burley, Stephen K
2015-01-01
The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.
ERIC Educational Resources Information Center
Kabat, Hugh F.; And Others
1982-01-01
A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.; Kuhn, Richard E.; Goodson, Kenneth W.
1947-01-01
The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.
Related Factors of the Influence on Mental Symptoms of the Recruits in the Basic Military Training
ERIC Educational Resources Information Center
Hong-zheng, Li; Mei-ying, Lei; Dong-hai Zhao; Li-qiong, Zhao; Geng, Liu; Hong-kui, Zhou; Mei, Qin; Jie-feng, Li; Jian, Wen; Pin-de, Huang; Yi, Li; Chuang, Wang; Zhou-ran, Wang
2012-01-01
The objective of the study is to explore the psychosocial characteristics of recruits for mental health education during the basic military training. A total of 1,366 male recruits were assessed during the basic military training. The psychosocial characteristics, such as effects of LE (life events), mental symptoms, personality trait coping style…
NASA Astrophysics Data System (ADS)
Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao
2018-06-01
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.
[Manipulation of the human genome: ethics and law].
Goulart, Maria Carolina Vaz; Iano, Flávia Godoy; Silva, Paulo Maurício; Sales-Peres, Silvia Helena de Carvalho; Sales-Peres, Arsênio
2010-06-01
The molecular biology has provided the basic tool for geneticists deepening in the molecular mechanisms that influence different diseases. It should be noted the scientific and moral responsibility of the researchers, because the scientists should imagine the moral consequences of the commercial application of genetic tests, since this fact involves not only the individual and their families, but the entire population. Besides being also necessary to make a reflection on how this information from the human genome will be used, for good or bad. The objective of this review was to bring the light of knowledge, data on characteristics of the ethical application of molecular biology, linking it with the rights of human beings. After studying literature, it might be observed that the Human Genome Project has generated several possibilities, such as the identification of genes associated with diseases with synergistic properties, but sometimes modifying behavior to genetically intervene in humans, bringing benefits or social harm. The big challenge is to decide what humanity wants on this giant leap.
ROBUSTNESS OF SIGNALING GRADIENT IN DROSOPHILA WING IMAGINAL DISC
Lei, Jinzhi; Wan, Frederic Y. M.; Lander, Arthur D.; Nie, Qing
2012-01-01
Quasi-stable gradients of signaling protein molecules (known as morphogens or ligands) bound to cell receptors are known to be responsible for differential cell signaling and gene expressions. From these follow different stable cell fates and visually patterned tissues in biological development. Recent studies have shown that the relevant basic biological processes yield gradients that are sensitive to small changes in system characteristics (such as expression level of morphogens or receptors) or environmental conditions (such as temperature changes). Additional biological activities must play an important role in the high level of robustness observed in embryonic patterning for example. It is natural to attribute observed robustness to various type of feedback control mechanisms. However, our own simulation studies have shown that feedback control is neither necessary nor sufficient for robustness of the morphogen decapentaplegic (Dpp) gradient in wing imaginal disc of Drosophilas. Furthermore, robustness can be achieved by substantial binding of the signaling morphogen Dpp with nonsignaling cell surface bound molecules (such as heparan sulfate proteoglygans) and degrading the resulting complexes at a sufficiently rapid rate. The present work provides a theoretical basis for the results of our numerical simulation studies. PMID:24098092
Biomarkers: an overview for oncology nurses.
Richmond, Ellen S; Dunn, Debra
2012-05-01
To provide an overview of the basic principles of biomarker use in clinical oncology practice and discuss the range of biomarker forms (from genes to constitutional characteristics), biomarker functions (both disease- and drug-related), modalities (protein expression patterns to patient history), the criteria for biomarker validation, and the integral role of bioinformatics. Published nursing and medical literature. The premise of nursing assessment is the same as that of biomarker use - biological variables that appear at one level of biological organization (eg, molecule, organelle, cell, tissue, organ, and organism) correspond to processes or events occurring at other levels of biologic organization. The advent of genomic technologies has logarithmically increased the volume of biomarkers, which are expected to provide new insights that improve patient care. Nurses and patients will benefit greatly from the incorporation of molecular biomarkers into patient care. Nurses will be able to better assess (and anticipate) patient needs with the new insights that are available in the post-genomic, personalized medicine era of health care. Although the rapid rate of technological changes and new discoveries will require continuing concerted educational efforts, the improved quality of patient care will be rewarded by better outcomes. Published by Elsevier Inc.
On the concept of individual in ecology and evolution.
Metz, J A J
2013-03-01
Part of the art of theory building is to construct effective basic concepts, with a large reach and yet powerful as tools for getting at conclusions. The most basic concept of population biology is that of individual. An appropriately reengineered form of this concept has become the basis for the theories of structured populations and adaptive dynamics. By appropriately delimiting individuals, followed by defining their states as well as their environment, it become possible to construct the general population equations that were introduced and studied by Odo Diekmann and his collaborators. In this essay I argue for taking the properties that led to these successes as the defining characteristics of the concept of individual, delegating the properties classically invoked by philosophers to the secondary role of possible empirical indicators for the presence of those characteristics. The essay starts with putting in place as rule for effective concept engineering that one should go for relations that can be used as basis for deductive structure building rather than for perceived ontological essence. By analysing how we want to use it in the mathematical arguments I then build up a concept of individual, first for use in population dynamical considerations and then for use in evolutionary ones. These two concepts do not coincide, and neither do they on all occasions agree with common intuition-based usage.
Genetic and Genomic Toolbox of Zea mays
Nannas, Natalie J.; Dawe, R. Kelly
2015-01-01
Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912
Medical Microbiology: Deficits and Remedies
ERIC Educational Resources Information Center
Gabridge, Michael G.
1974-01-01
Microbiology is a typical medical science in which basic information can have direct application. Yet, surveys and questionnaires of recent medical school graduates indicate a serious lack of retentiion in regard to basic biological science. (Author)
Structural Biology and Molecular Applications Research
Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.
Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L
2016-02-01
Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.
Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli
Alibolandi, Mona; Mirzahoseini, Hasan
2011-01-01
This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279
NASA Technical Reports Server (NTRS)
Wong, Willy
2009-01-01
This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.
Waxman, Sandra R.; Herrmann, Patricia; Woodring, Jennie; Medin, Douglas L.
2014-01-01
What is the relation between humans and non-human animals? From a biological perspective, we view humans as one species among many, but in the fables and films we create for children, we often offer an anthropocentric perspective, imbuing non-human animals with human-like characteristics. What are the consequences of these distinctly different perspectives on children’s reasoning about the natural world? Some have argued that children universally begin with an anthropocentric perspective and that acquiring a biological perspective requires a basic conceptual change (cf. Carey, 1985). But recent work reveals that this anthropocentric perspective, evidenced in urban 5-year-olds, is not evident in 3-year-olds (Herrmann etal., 2010). This indicates that the anthropocentric perspective is not an obligatory first step in children’s reasoning about biological phenomena. In the current paper, we introduced a priming manipulation to assess whether 5-year-olds’ reasoning about a novel biological property is influenced by the perspectives they encounter in children’s books. Just before participating in a reasoning task, each child read a book about bears with an experimenter. What varied was whether bears were depicted from an anthropomorphic (Berenstain Bears) or biological perspective (Animal Encyclopedia). The priming had a dramatic effect. Children reading the Berenstain Bears showed the standard anthropocentric reasoning pattern, but those reading the Animal Encyclopedia adopted a biological pattern. This offers evidence that urban 5-year-olds can adopt either a biological or a human-centered stance, depending upon the context. Thus, children’s books and other media are double-edged swords. Media may (inadvertently) support human-centered reasoning in young children, but may also be instrumental in redirecting children’s attention to a biological model. PMID:24672493
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.; Goodson, Kenneth W.; Kuhn, Richard E.
1947-01-01
Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The basic lateral stability characteristics of the complete model with undeflected control surfaces are presented in the present report with a very limited analysis of the results.
Chemical Foundations of Hydrogen Sulfide Biology
Li, Qian; Lancaster, Jack R.
2013-01-01
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631
Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang
2014-04-01
Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.
Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji
2008-01-01
This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz.
Fort Ord’s Merit-Reward System: A Contingency Management Program in Basic Combat Training,
1979-01-01
medicine colleague, Dr. Llewellyn Legters , that the recommendation emerged to develop and test a contingency management system for basic training. One...1965, 16, 438. 9Datel, W. E., & Legters , L. J. Reinforcement measurement in a social system. Journal of Biological Psychology, 1971, 13 (1), 33-38 13...ODatel, W. E., & Legters , L. J. The psychology of the Army recruit. Journal of Biological Psychology, 1970-71, 12, 34-40. l1Datel, W. E. Technical
Ito, A
2015-02-01
Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history. © 2014 John Wiley & Sons Ltd.
Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.
ERIC Educational Resources Information Center
Owens, Ginny
1984-01-01
To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-01-01
Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-06-15
The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.
ERIC Educational Resources Information Center
Arasmith, E. E.
This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…
A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.
Xia, Tingting; Liu, Wanqian; Yang, Li
2017-06-01
Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.
Breast cancer: a neglected disease for the majority of affected women worldwide
Love, Richard R.
2011-01-01
Recent progress with declines in mortality in some high income countries has obscured the fact that for the majority of women worldwide who are newly diagnosed, breast cancer is a neglected disease in the context of other numerically more frequent health problems. For this growing majority, it is also an orphan disease, in that detailed knowledge about tumor characteristics and relevant host biology necessary to provide even basic care are absent. With the possible exception of nutritional recommendations, current international cancer policy and planning initiatives are irrelevant to breast cancer. The progress that has occurred in high income countries has come at extraordinary fiscal expense and patient toxicity, which of themselves suggest non-relevance to women and health care practitioners in middle and low income countries. The implications of these circumstances seem clear: if the promise of the now 60 year-old Declaration of Human Rights, that the fruits of medical science accrue to all mankind, is to be realized with respect to breast cancer, a basic and translational global research initiative should be launched. PMID:21410589
Learning Cycle: What Is the Biological Definition of Life?
ERIC Educational Resources Information Center
MacKenzie, Ann Haley
2006-01-01
For many biology classes, the year begins with the study of characteristics of life. Many biology teachers have their students read lists from biology books and then have examinations about those characteristics. However, it is doubtful if students really understand what those characteristics mean "in terms of the life of an organism." They may…
78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...
Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906
Secure encapsulation and publication of biological services in the cloud computing environment.
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.
Bao, Xuerui; Yang, Ling; Chen, Lequn; Li, Bing; Li, Lin; Li, Yanyan; Xu, Zhenbo
2017-08-01
Cronobacter sakazakii is an opportunistic pathogen responsible for necrotizing enterocolitis, meningitis and septicaemia especially to infant and neonate, with high lethality ranging in 40%-80%. This strain is able to survive in infant milk formula and possesses capability of pathogenicity and virulence, biofilm formation, and high resistance to elevated osmotic, low pH, heat, oxidation, and desiccasion. This study is aims to investigate the molecular characteristics of Cronobacter sakazakii BAA 894, including mechanisms of its invasion and adherence, biofilm formation, unusual resistance to environmental stress employing whole genome sequencing and comparative genomics. Results in this study suggest that numerous genes and pathways, such as LysM, Cyx system, luxS, vancomycin resistance pathway, insulin resistance pathway, and sod encoding superoxide dismutase for the survival of C. sakazakii in macrophages, contribute to pathogenicity and resistance to stressful environment of C. sakazakii BAA 894. Copyright © 2017. Published by Elsevier Ltd.
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
Structures, Not Strings: Linguistics as Part of the Cognitive Sciences.
Everaert, Martin B H; Huybregts, Marinus A C; Chomsky, Noam; Berwick, Robert C; Bolhuis, Johan J
2015-12-01
There are many questions one can ask about human language: its distinctive properties, neural representation, characteristic uses including use in communicative contexts, variation, growth in the individual, and origin. Every such inquiry is guided by some concept of what 'language' is. Sharpening the core question--what is language?--and paying close attention to the basic property of the language faculty and its biological foundations makes it clear how linguistics is firmly positioned within the cognitive sciences. Here we will show how recent developments in generative grammar, taking language as a computational cognitive mechanism seriously, allow us to address issues left unexplained in the increasingly popular surface-oriented approaches to language. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peeling the onion: the outer layers of Cryptococcus neoformans.
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.
Skylab experiments. Volume 1: Physical science, solar astronomy
NASA Technical Reports Server (NTRS)
1973-01-01
The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.
Peeling the onion: the outer layers of Cryptococcus neoformans
Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L
2018-01-01
Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health. PMID:29742198
[Progress in synthetic biology of "973 Funding Program" in China].
Chen, Guoqiang; Wang, Ying
2015-06-01
This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.
Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz
2016-01-01
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
A Diagnostic Assessment for Introductory Molecular and Cell Biology
ERIC Educational Resources Information Center
Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.
2010-01-01
We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…
Outdoor Biology Instructional Strategies Trial Edition. Set I.
ERIC Educational Resources Information Center
Fairwell, Kay, Ed.; And Others
The Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set I contains 24 varied activities which make use of crafts, simulations, and basic investigative techniques to provide introductory learning experiences in outdoor biology for children aged 10 to 15. The individual water-resistant folio for each activity includes biological…
A Study of Rubisco through Western Blotting and Tissue Printing Techniques
ERIC Educational Resources Information Center
Ma, Zhong; Cooper, Cynthia; Kim, Hyun-Joo; Janick-Buckner, Diane
2009-01-01
We describe a laboratory exercise developed for a cell biology course for second-year undergraduate biology majors. It was designed to introduce undergraduates to the basic molecular biology techniques of Western blotting and immunodetection coupled with the technique of tissue printing in detecting the presence, relative abundance, and…
BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…
Action Biology. Advanced Placement for the Second Year. First Edition.
ERIC Educational Resources Information Center
Davis, Mary Pitt
This document provides biology experiments designed for students who have completed a first year biology course. This self contained laboratory booklet contains four sections. In section 1, "Instrumentation in the Study of Cells," discussion sections and suggestions for teacher demonstrations are provided. It also includes some basic materials…
The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology
USDA-ARS?s Scientific Manuscript database
It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...
Population biology of the forest pathogen Heterbasidion annosum:implications for forest management
M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns
1998-01-01
Heterobasidion annosumranks as one of the most destructive pathogens in North American coniferous forests. Understanding the populaÂtion biology of this fungus may facilitate unÂderstanding not only the basic biology of the organism, but also the general patterns of disease development,...
78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...
The Use of Pre-Lectures in a University Biology Course--Eliminating the Need for Prerequisites
ERIC Educational Resources Information Center
da Silva, Karen Burke; Hunter, Narelle
2009-01-01
First year biology students at Flinders University with no prior biology background knowledge fail at almost twice the rate as those with a background. To remedy this discrepancy we enabled students to attend a weekly series of pre-lectures aimed at providing basic biological concepts, thereby removing the need for students to complete a…
ERIC Educational Resources Information Center
Alroud, Attalla; Qomoul, Mohammad
2017-01-01
The study aimed to investigate the Degree of Availability of Good Teacher Characteristics Among English Language (EL) Teachers of Basic Stage Schools from Their Principals' views in Tafila Governorate. This could be achieved through answering the following questions: 1-What is the degree of availability of good teacher characteristics among…
Receiver design and performance characteristics
NASA Technical Reports Server (NTRS)
Simon, M. K.; Yuen, J. H.
1982-01-01
The basic design, principles of operation, and characteristics of deep space communications receivers are examined. In particular, the basic fundamentals of phase-locked loop and Costas loop receivers used for synchronization, tracking, and demodulation of phase-coherent signals in residual carrier and suppressed carrier systems are addressed.
Development of Independent-type Optical CT
NASA Astrophysics Data System (ADS)
Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei
Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.
Adult Basic Education Teacher Trainers: Their Characteristics, Attitudes, and Values.
ERIC Educational Resources Information Center
Nave, Wallace King
This study examined relationships between adult basic education (ABE) teacher characteristics, major value orientations, and attitudes toward the ABE program. Subjects were participating in a three week national teacher trainer institute. Independent variables included age, sex, race, educational background, ABE experience, and residence. Data…
Hydrogenases: New Frontiers in Basic and Applied Studies for Biological and Synthetic H2 Production. Dalton Histone H3 in S-Phase. Journal of Biological Chemistry, 12, 1334-1340. English, C.M., Adkins, M.W
Molecular basis of angiosperm tree architecture
USDA-ARS?s Scientific Manuscript database
The shoot architecture of trees greatly impacts orchard and forest management methods. Amassing greater knowledge of the molecular genetics behind tree form can benefit these industries as well as contribute to basic knowledge of plant developmental biology. This review covers basic components of ...
ERIC Educational Resources Information Center
Daugs, Donald R.
1978-01-01
Suggests that survival consciousness has made it imperative that all people have a knowledge of basic biology and ecological relationships. Shows how the urban teacher can utilize the school grounds and buildings to help students gain such basic understanding of the natural environment. (Author/RK)
Wright, Nicholas J.D.; Alston, Gregory L.
2015-01-01
Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276
A Course in Biophysics: An Integration of Physics, Chemistry, and Biology
ERIC Educational Resources Information Center
Giancoli, Douglas C.
1971-01-01
Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)
BIOPS Interactive: An e-Learning Platform Focused on Protein Structure and DNA
ERIC Educational Resources Information Center
Pontelli, Enrico; Pinto, Jorge; Qin, Xiaoxiao; He, Jing; Bevan, David; MacCuish, Norah; MacCuish, John; Chapman, Mitch; Moreland, David
2009-01-01
One of the difficulties in teaching basic molecular biology concepts to the students with little biological background is the lack of hands-on exercises that combines the challenges of the concepts with visualization and immediate feedback. BIOPS Interactive is a web-based interactive learning environment for molecular biology that complements…
Postdoctoral Fellow | Center for Cancer Research
The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry. Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by
Ludwig von Bertalanffy's Organismic View on the Theory of Evolution
Drack, Manfred
2015-01-01
Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 77–90, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:25727202
ERIC Educational Resources Information Center
Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.
2017-01-01
The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…
Spooner, B S
1993-04-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
ERIC Educational Resources Information Center
Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui
2017-01-01
Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…
NASA Technical Reports Server (NTRS)
Spooner, B. S.
1993-01-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
Altered cell function in microgravity
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
1991-01-01
The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.
10 CFR 430.27 - Petitions for waiver and applications for interim waiver.
Code of Federal Regulations, 2013 CFR
2013-01-01
... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...
10 CFR 430.27 - Petitions for waiver and applications for interim waiver.
Code of Federal Regulations, 2012 CFR
2012-01-01
... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...
10 CFR 430.27 - Petitions for waiver and applications for interim waiver.
Code of Federal Regulations, 2014 CFR
2014-01-01
... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...
NASA Astrophysics Data System (ADS)
Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert
2018-04-01
Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.
Ecology of invasive mosquitoes: effects on resident species and on human health
Juliano, Steven A.; Lounibos, L. Philip
2007-01-01
Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849
Facial expressions of emotion are not culturally universal.
Jack, Rachael E; Garrod, Oliver G B; Yu, Hui; Caldara, Roberto; Schyns, Philippe G
2012-05-08
Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.
Tendon basic science: Development, repair, regeneration, and healing.
Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J
2015-06-01
Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Facial expressions of emotion are not culturally universal
Jack, Rachael E.; Garrod, Oliver G. B.; Yu, Hui; Caldara, Roberto; Schyns, Philippe G.
2012-01-01
Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843–850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature–nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011
Communication: Beyond the Basics: Other Communication Levels.
ERIC Educational Resources Information Center
Gratz, J. E.; Gratz, Elizabeth
1979-01-01
In addition to the basic communication skills of reading, writing, listening, and speaking, the authors suggest five other levels of communication to help teachers expand students' horizons: kinetic and symbolic; mental; extraterrestrial, biological, and technological; imagery; and perceptual. Each level is briefly discussed. (MF)
[Clinical, morphological and molecular biological characteristics of the aging eye].
Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P
2017-02-01
The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.
Computational power and generative capacity of genetic systems.
Igamberdiev, Abir U; Shklovskiy-Kordi, Nikita E
2016-01-01
Semiotic characteristics of genetic sequences are based on the general principles of linguistics formulated by Ferdinand de Saussure, such as the arbitrariness of sign and the linear nature of the signifier. Besides these semiotic features that are attributable to the basic structure of the genetic code, the principle of generativity of genetic language is important for understanding biological transformations. The problem of generativity in genetic systems arises to a possibility of different interpretations of genetic texts, and corresponds to what Alexander von Humboldt called "the infinite use of finite means". These interpretations appear in the individual development as the spatiotemporal sequences of realizations of different textual meanings, as well as the emergence of hyper-textual statements about the text itself, which underlies the process of biological evolution. These interpretations are accomplished at the level of the readout of genetic texts by the structures defined by Efim Liberman as "the molecular computer of cell", which includes DNA, RNA and the corresponding enzymes operating with molecular addresses. The molecular computer performs physically manifested mathematical operations and possesses both reading and writing capacities. Generativity paradoxically resides in the biological computational system as a possibility to incorporate meta-statements about the system, and thus establishes the internal capacity for its evolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin
2018-05-10
Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.
Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao
2018-06-15
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs. Copyright © 2018 Elsevier B.V. All rights reserved.
O'Malley, Lauren; Korniss, G; Caraco, Thomas
2009-07-01
Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.
Gençöz, Tülin; Öcül, Öznur
2012-01-01
The aim of the present study was to test the cross-cultural validity of the five-factor nature of personality. For this aim, an indigenous, psychometrically strong instrument measuring the basic personality dimensions within Turkish culture and language was developed through three consecutive studies. The first study aimed to reveal the adjectives that have been most frequently used to define people in the Turkish culture. In the second study, factor analysis of these personality characteristics revealed big five personality factors, along with the sixth factor, which had been called as the Negative Valence factor. The adjectives that most strongly represented and differentiated each factor constituted 45-item "Basic Personality Traits Inventory". Finally, in the third study, psychometric characteristics of the Basic Personality Traits Inventory were examined. Factor structure and psychometric properties of this instrument confirmed that five-factor nature of personality may not hold true in every culture.
Gene Chips: A New Tool for Biology
NASA Astrophysics Data System (ADS)
Botstein, David
2005-03-01
The knowledge of many complete genomic sequences has led to a ``grand unification of biology,'' consisting of direct evidence that most of the basic cellular functions of all organisms are carried out by genes and proteins whose primary sequences are directly related by descent (i.e. orthologs). Further, genome sequences have made it possible to study all the genes of a single organism simultaneously. We have been using DNA microarrays (sometime referred to as ``gene chips'') to study patterns of gene expression and genome rearrangement in yeast and human cells under a variety of conditions and in human tumors and normal tissues. These experiments produce huge volumes of data; new computational and statistical methods are required to analyze them properly. Examples from this work will be presented to illustrate how genome-scale experiments and analysis can result in new biological insights not obtainable by traditional analyses of genes and proteins one by one. For lymphomas, breast tumors, lung tumors, liver tumors, gastric tumors, brain tumors and soft tissue tumors we have been able, by the application of clustering algorithms, to subclassify tumors of similar anatomical origin on the basis of their gene expression patterns. These subclassifications appear to be reproducible and clinically as well as biologically meaningful. By studying synchronized cells growing in culture, we have identified many hundreds of yeast and human genes that are expressed periodically, at characteristically different points in the cell division cycle. In humans, it turns out that most of these genes are the same genes that comprise the ``proliferation cluster,'' i.e. the genes whose expression is specifically associated with the proliferativeness of tumors and tumor cell lines. Finally, we have been applying a variant of our DNA microarray technology (which we call ``array comparative hybridization'') to follow the DNA copy number of genes, both in tumors and in yeast cells undergoing adaptive evolution during hundreds of generations of growth in continuous culture. These studies suggest a basic similarity in mechanism between adaptive evolution in yeast and tumor progression in humans.
Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages
The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...
Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease
... NIGMS use research organisms to explore the basic biology and chemistry of life. Scientists decide which organism ... controls allow for more precise understanding of the biological factors being studied and provide greater certainty about ...
ERIC Educational Resources Information Center
Dominiecki, Mary E.
2004-01-01
University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.
Strategic alliance as a competitive tactics for biological-pharmacy industry.
Liu, Chuanming; Wang, Ling; Qi, Ershi
2005-01-01
Biological-pharmacy industry refers to biotechnology companies and pharmacy makers. Because of the uncertainty and time-lag in the field of biological-pharmacy, the former is confronted with lacking of capital and the later is faced with improving technique-innovation and product-exploitation. This paper analyzes basic operation principle of strategic alliance, and related strategies are also put forward for biological-pharmacy enterprise to carry out.
Genetic Screening: A Unique Game of Survival
ERIC Educational Resources Information Center
Kurvink, Karen; Bowser, Jessica
2004-01-01
A creative learning game that helps students reinforce basic genetic information and facilitate the identification and understanding of the more subtle issues is presented. The basic framework of the game was conceived by a business major taking non-biology major course 'heredity and society-intertwining legacy.
ERIC Educational Resources Information Center
Manzo, Anthony V.; And Others
The study described in the report identifies personality characteristics and learning styles of adult basic education (ABE) students on the basis of three instruments: the Luscher Color Test, the Manzo Bestiary Inventory, and the Learning Preference Inventory. The volunteer sample consisted of 83 ABE students. Subsample comparison groups consisted…
The history of the Memory of Water.
Thomas, Yolène
2007-07-01
'Homeopathic dilutions' and 'Memory of Water' are two expressions capable of turning a peaceful and intelligent person into a violently irrational one,' as Michel Schiff points out in the introduction of his book 'The Memory of Water'. The idea of the memory of water arose in the laboratory of Jacques Benveniste in the late 1980s and 20 years later the debate is still ongoing even though an increasing number of scientists report they have confirmed the basic results. This paper, first provides a brief historical overview of the context of the high dilution experiments then moves on to digital biology. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. Also, the far-reaching implications of these observations require numerous and repeated experimental tests to rule out overlooked artifacts. Perhaps more important is to have the experiments repeated by other groups and with other models to explore the generality of the effect. In conclusion, we will present some of this emerging independent experimental work.
Using a "Primer Unit" in an Introductory Biology Course: "A Soft Landing"
ERIC Educational Resources Information Center
Marbach-Ad, Gili; Ribke, Melina; Gershoni, Jonathan M.
2006-01-01
This study aimed to facilitate students' entrance to an introductory cell biology course for biology majors. The most prominent difficulty in this introductory course, is students' poor background-knowledge, such as a lack of understanding of very basic concepts and terms, and the huge differences in students' background knowledge. In order to…
ERIC Educational Resources Information Center
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael
2016-01-01
"Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…
Low Budget Biology 3: A Collection of Low Cost Labs and Activities.
ERIC Educational Resources Information Center
Wartski, Bert; Wartski, Lynn Marie
This document contains biology labs, demonstrations, and activities that use low budget materials. The goal is to get students involved in the learning process by experiencing biology. Each lab has a teacher preparation section which outlines the purpose of the lab, some basic information, a list of materials , and how to prepare the different…
ERIC Educational Resources Information Center
Chaplin, Susan B.; Manske, Jill M.
2005-01-01
This article describes the curriculum for a highly student-centered human biology course constructed around a series of themes that enables the integration of the same basic paradigms found in a traditional survey lecture course without sacrificing essential content. The theme-based model enhances student interest, ability to integrate knowledge,…
Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells
ERIC Educational Resources Information Center
Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.
2006-01-01
This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…
Walking tree heuristics for biological string alignment, gene location, and phylogenies
NASA Astrophysics Data System (ADS)
Cull, P.; Holloway, J. L.; Cavener, J. D.
1999-03-01
Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.
Binstock, Judith; Junsanto-Bahri, Tipsuda
2014-04-01
The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.
The Human Ageing Genomic Resources: online databases and tools for biogerontologists
de Magalhães, João Pedro; Budovsky, Arie; Lehmann, Gilad; Costa, Joana; Li, Yang; Fraifeld, Vadim; Church, George M.
2009-01-01
Summary Ageing is a complex, challenging phenomenon that will require multiple, interdisciplinary approaches to unravel its puzzles. To assist basic research on ageing, we developed the Human Ageing Genomic Resources (HAGR). This work provides an overview of the databases and tools in HAGR and describes how the gerontology research community can employ them. Several recent changes and improvements to HAGR are also presented. The two centrepieces in HAGR are GenAge and AnAge. GenAge is a gene database featuring genes associated with ageing and longevity in model organisms, a curated database of genes potentially associated with human ageing, and a list of genes tested for their association with human longevity. A myriad of biological data and information is included for hundreds of genes, making GenAge a reference for research that reflects our current understanding of the genetic basis of ageing. GenAge can also serve as a platform for the systems biology of ageing, and tools for the visualization of protein-protein interactions are also included. AnAge is a database of ageing in animals, featuring over 4,000 species, primarily assembled as a resource for comparative and evolutionary studies of ageing. Longevity records, developmental and reproductive traits, taxonomic information, basic metabolic characteristics, and key observations related to ageing are included in AnAge. Software is also available to aid researchers in the form of Perl modules to automate numerous tasks and as an SPSS script to analyse demographic mortality data. The Human Ageing Genomic Resources are available online at http://genomics.senescence.info. PMID:18986374
Measuring Networking as an Outcome Variable in Undergraduate Research Experiences.
Hanauer, David I; Hatfull, Graham
2015-01-01
The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach's alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. © 2015 D. I. Hanauer and G. Hatfull. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The Increasing Urgency for Standards in Basic Biological Research
Freedman, Leonard P.; Inglese, James
2016-01-01
Research advances build upon the validity and reproducibility of previously published data and findings. Yet irreproducibility in basic biological and preclinical research is pervasive in both academic and commercial settings. Lack of reproducibility has led to invalidated research breakthroughs, retracted papers, and aborted clinical trials. Concerns and requirements for transparent, reproducible, and translatable research are accelerated by the rapid growth of “post-publication peer review,” open access publishing, and data sharing that facilitate the identification of irreproducible data/studies; they are magnified by the explosion of high-throughput technologies, genomics, and other data-intensive disciplines. Collectively, these changes and challenges are decreasing the effectiveness of traditional research quality mechanisms and are contributing to unacceptable—and unsustainable—levels of irreproducibility. The global oncology and basic biological research communities can no longer tolerate or afford widespread irreproducible research. This article discusses (1) how irreproducibility in preclinical research can ultimately be traced to an absence of a unifying life science standards framework, and (2) makes an urgent case for the expanded development and use of consensus-based standards to both enhance reproducibility and drive innovations in cancer research. PMID:25035389
Problem areas in the use of the firefly luciferase assay for bacterial detection
NASA Technical Reports Server (NTRS)
Picciolo, G. L.; Chappelle, E. W.; Knust, E. A.; Tuttle, S. A.; Curtis, C. A.
1975-01-01
By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples.
Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
Yuan, Huipin; Fernandes, Hugo; Habibovic, Pamela; de Boer, Jan; Barradas, Ana M. C.; de Ruiter, Ad; Walsh, William R.; van Blitterswijk, Clemens A.; de Bruijn, Joost D.
2010-01-01
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell differentiation, which is essential for regenerating large bone defects. Here, we prepared calcium phosphate ceramics with varying physicochemical and structural characteristics. Microporosity correlated to their propensity to stimulate osteogenic differentiation of stem cells in vitro and bone induction in vivo. Implantation in a large bone defect in sheep unequivocally demonstrated that osteoinductive ceramics are equally efficient in bone repair as autologous bone grafts. Our results provide proof of concept for the clinical application of “smart” biomaterials. PMID:20643969
Making it stick: chasing the optimal stem cells for cardiac regeneration
Quijada, Pearl; Sussman, Mark A
2014-01-01
Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing. PMID:25340282
[Development of viral vectors and the application for viral entry mechanisms].
Tani, Hideki
2011-06-01
Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.
Dentistry--a show of hands, please!
Rucker, Lance M
2007-01-01
Dentists have historically derived a distinctive part of their identity from the role of hand skills in practice. Dentistry is a surgical discipline, requiring a basic competency to perform what has been diagnosed and planned as being in the patients' best interests. Dental education has introduced magnification and computer-assisted technique instruction as the proportion of clock-hours devoted to laboratory practice has decreased. The threats posed by traumatic hand injury to practitioners are unknown, but may be small. By contrast, the strain of repetitive motion and injuries caused by postural problems are reported to be widespread in the profession and is generally accepted as characteristic and unavoidable. Ergonomic approaches to alleviating work strain have not been broadly embraced. As dentistry incorporates more biological alternatives and automated technology, the role of hands in practice may change.
HPV in oropharyngeal cancer: the basics to know in clinical practice.
Elrefaey, S; Massaro, M A; Chiocca, S; Chiesa, F; Ansarin, M
2014-10-01
The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is rising in contrast to the decreasing incidence of carcinomas in other subsites of the head and neck, in spite of the reduced prevalence of smoking. Human papilloma virus (HPV) infection, and in particular type 16 (HPV-16), is now recognized as a significant player in the onset of HPV positive OPSCC, with different epidemiological, clinical, anatomical, radiological, behavioural, biological and prognostic characteristics from HPV negative OPSCC. Indeed, the only subsite in the head and neck with a demonstrated aetiological viral link is, at present, the oropharynx. These observations lead to questions regarding management choices for patients based on tumour HPV status with important consequences on treatment, and on the role of vaccines and targeted therapy over the upcoming years.
Microfluidic tools for cell biological research
Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.
2010-01-01
Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269
Kansas Students Enjoy Summertime "Mountain Ventures"
ERIC Educational Resources Information Center
Highfill, Kenneth M.
1974-01-01
Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)
Methods in molecular biology: plant cytogenetics
USDA-ARS?s Scientific Manuscript database
Cytogenetic studies have contributed greatly to our understanding of genetics, biology, reproduction, and evolution. From early studies in basic chromosome behavior the field has expanded enabling whole genome analysis to the manipulation of chromosomes and their organization. This book covers a ran...
Anaerobic Digestion and its Applications
Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...
Optometry Basic Science Curricula: Current Status.
ERIC Educational Resources Information Center
Berman, Morris S.
1991-01-01
A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)
A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.
Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J
2016-06-17
Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.
From bedside to blackboard: the benefits of teaching molecular biology within a medical context.
Sitaraman, Ramakrishnan
2012-01-01
Courses in molecular biology are part of practically every degree program in medicine and the life sciences. Historically, many basic discoveries in this field have resulted from investigations by doctors into the nature of diseases. This essay suggests that medical educators deliberately incorporate such material, whether historical or contemporaneous, into their molecular and cell biology courses. An example of such usage, an early report of the detection of bacteriophage activity on pathogenic bacteria, is discussed in detail. Such an approach can potentially narrow the perceived gap between "basic" and "applied" science. As medicine is so intimately and obviously linked with human welfare, this also provides an avenue for educators to discuss issues of scientific integrity and ethics within a "pure science" course.
Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.
Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina
2015-10-01
Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.
Basic life support knowledge of first-year university students from Brazil.
Santos, S V; Margarido, M R R A; Caires, I S; Santos, R A N; Souza, S G; Souza, J M A; Martimiano, R R; Dutra, C S K; Palha, P; Zanetti, A C G; Pazin-Filho, A
2015-12-01
We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU), recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04%) new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities), 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02), with an odds ratio (OR)=1.39 (95%CI=1.07-1.81) regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16) and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, P<0.01), with an OR=2.61 (95%CI=1.98-3.44) adjusted for the same confounders. Even though a high percentage of the students recognized emergency situations, a significant proportion did not know the MEAS/SAMU number and only a minority had sufficient basic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.
Causality, randomness, intelligibility, and the epistemology of the cell.
Dougherty, Edward R; Bittner, Michael L
2010-06-01
Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment.
Physical development and swimming performance during biological maturation in young female swimmers.
Lätt, Evelin; Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Purge, Priit; Jürimäe, Toivo
2009-03-01
The present study analyzed the development of physiological, biomechanical and anthropometrical parameters in young female swimmers and assessed the effect of these parameters on swimming performance during biological maturation. In total, 26 female swimmers participated in the study in which data were annually collected for two consecutive years. Body composition, basic anthropometrical parameters and biological age were measured. During the 400-m front-crawl swimming, the energy cost of swimming and stroking parameters were assessed. Peak oxygen consumption (VO2(peak)) was assessed by means of the backward-extrapolation technique recording VO2 during the first 20 sec of the recovery period after a maximal trial of 400-m distance. During the 2-year follow-up study period, age, height, body mass, body fat %, fat free mass, bone mineral mass, total bone mineral density, arm span and biological maturation values significantly increased during each year (p < 0.05). The tracking of the physical characteristics measured over the 2-year study period was relatively high (r > 0.694), except for the body fat% (r > 0.554). The tracking of the Tanner stages was also high (r = 0.759-0.780). Stepwise regression analyses showed that biomechanical factors (R2 > 0.322; p < 0.05) best characterized the 400-metre swimming performance in young female swimmers, followed by bioenergetical (R2 > 0.311; p < 0.05) and physical (R2 > 0.203; p < 0.05) factors during all three measurement times.
Basic Characteristics and Particularities of Nongovernment Education in China
ERIC Educational Resources Information Center
Daguang, Wu
2009-01-01
Running schools on the basis of nonpublic investment has been a basic characteristic of nongovernment or non-public-sector operated education in China since the advent of reform and opening up. This is not merely an unavoidable choice for school operators who have no other alternative; it is an inevitable option at a given period in the…
ERIC Educational Resources Information Center
Khakhlong, Chettha; Julsuwan, Suwat; Somprach, Kanokorn; Khangpheng, Samrit
2015-01-01
The objective of this research is to develop a program for enhancing ideal desirable characteristic of basic school administrators. An in-depth interview was done with experts. The opinions of school administrators, assistant school administrators, and teachers as the chiefs of academic work were found out. A total of 330 persons participated in…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... the petition for waiver was submitted contains one or more design characteristics that prevents....23, or of any appendix to this subpart, upon grounds that the basic model contains one or more design... contains one or more design characteristics which either prevent testing of the basic model according to...
Teaching microbiology to undergraduate students in the humanities and the social sciences.
Oren, Aharon
2015-10-01
This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Barabash, Yu. M.; Lyamets, A. K.
2016-12-01
The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.
Biological Weapons Attribution: A Primer
2007-06-01
attacks are very difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and...provides a basic epistemological framework for analysis for successful BW attribution, detailing the nature , methods, and limits of current BW...difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and (3) the
ERIC Educational Resources Information Center
Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen
2016-01-01
Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…
Biology: A Secondary School Syllabus with Major Emphasis on Fundamental Concepts. 1976 Reprint.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of General Education Curriculum Development.
This syllabus, which has evolved from the New York State Experimental Biology program, includes a basic core and six optional extended areas designed to be interesting and meaningful to the types of students currently taking the Regents Examination in Biology. The seven core unit topics are: (1) The Study of Life; (2) Maintenance in Animals; (3)…
Integrating pharmacology topics in high school biology and chemistry classes improves performance
NASA Astrophysics Data System (ADS)
Schwartz-Bloom, Rochelle D.; Halpin, Myra J.
2003-11-01
Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.
Integration of Basic Sciences in Health's Courses
ERIC Educational Resources Information Center
Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.
2012-01-01
Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…
Mechano-biological Coupling of Cellular Responses to Microgravity
NASA Astrophysics Data System (ADS)
Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan
2015-11-01
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.
[The 2010 curriculum of the faculty of medicine at the National University of Mexico].
Sánchez-Mendiola, Melchor; Durante-Montiel, Irene; Morales-López, Sara; Lozano-Sánchez, Rogelio; Martínez-González, Adrián; Graue Wiechers, Enrique
2011-01-01
The 2010 undergraduate medical degree curriculum at the faculty of medicine of the Universidad Nacional Autonoma de Mexico (UNAM) constitutes an important curricular reform of medical education in our country. It is the result of an institutional reflective process and academic dialog, which culminated in its approval by UNAM’s Academic Council for the Biology, Chemistry, and Health Sciences areas on February 2nd, 2010. Some distinguishing characteristics of the new academic curriculum are: organization by courses with a focus on outcome competencies; three curricular axes that link three knowledge areas; four educational phases with achievement profiles; new courses (biomedical informatics, basic-clinical and clinical-basic integration, among others); and core curriculum. The aforementioned curriculum was decided within a framework of effective teaching strategies, competency oriented learning assessment methods, restructuring of the training of teaching staff, and establishment of a curriculum committee follow-up and evaluation of the program. Curricular change in medical education is a complex process through which the institution can achieve its mission and vision. This change process faces challenges and opportunities, and requires strategic planning with long-term foresight to guarantee a successful dynamic transition for students, teachers, and for the institution itself.
Liu, Hui; Liu, Wei; Lin, Ying; Liu, Teng; Ma, Zhaowu; Li, Mo; Zhang, Hong-Mei; Kenneth Wang, Qing; Guo, An-Yuan
2015-05-27
Scoring the correlation between two genes by their shared properties is a common and basic work in biological study. A prospective way to score this correlation is to quantify the overlap between the two sets of homogeneous properties of the two genes. However the proper model has not been decided, here we focused on studying the quantification of overlap and proposed a more effective model after theoretically compared 7 existing models. We defined three characteristic parameters (d, R, r) of an overlap, which highlight essential differences among the 7 models and grouped them into two classes. Then the pros and cons of the two groups of model were fully examined by their solution space in the (d, R, r) coordinate system. Finally we proposed a new model called OScal (Overlap Score calculator), which was modified on Poisson distribution (one of 7 models) to avoid its disadvantages. Tested in assessing gene relation using different data, OScal performs better than existing models. In addition, OScal is a basic mathematic model, with very low computation cost and few restrictive conditions, so it can be used in a wide-range of research areas to measure the overlap or similarity of two entities.
Particle transport and deposition: basic physics of particle kinetics
Tsuda, Akira; Henry, Frank S.; Butler, James P.
2015-01-01
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235
Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek
2015-01-01
This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.
Can Basic Research on Children and Families Be Useful for the Policy Process?
ERIC Educational Resources Information Center
Moore, Kristin A.
Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…
Chai, Cheng-Zhi; Yu, Bo-Yang
2018-06-01
Many classical prescriptions still have superior clinical values nowadays, and their modern studies also have far-reaching scientific research demonstration values. Gegen decoction, a representative prescription for common cold due to wind-cold, can treat primary dysmenorrhea due to cold and dampness, characterized by continuous administration without recurrence. It is not only in accordance with the principle of homotherapy for heteropathy, but also demonstrates the unique feature of traditional Chinese medicine of relieving the primary and secondary symptoms simultaneously. This article aimed to discuss the method and strategy of Gegen decoction study based on the discovery of its novel application in treatment of primary dysmenorrhea and previous research progress of our group. It was assumed that modern medicine and biology studies, as well as chemical research based on biological activity should be used for reference. Principal active ingredients (groups) in Gegen decoction could be accurately and effectively identified, and its possible mechanism in treatment of primary dysmenorrhea could be eventually elucidated as well. Simultaneously, the theoretical and clinical advantages of traditional Chinese medicine were explored in this paper, focusing on the compatibility characteristics of Gegen decoction. The research hypothesis showed the necessity of following the characteristics and advantages of traditional Chinese medicine in the modern research and reflected the importance of basic research based on the clinical efficacy, expecting to provide some ideas and methods for reference for further modern studies of classical prescriptions. Copyright© by the Chinese Pharmaceutical Association.
Zhang, Bing; Jin, Rui; Huang, Jianmei; Liu, Xiaoqing; Xue, Chunmiao; Lin, Zhijian
2012-08-01
Traditional Chinese medicine (TCM) property theory is believed to be a key and difficult point of basic theory studies of TCM. Complex concepts, components and characteristics of TCM property have long puzzled researchers and urged them to develop new angles and approaches. In the view of cognitive science, TCM property theory is a cognitive process of storing, extracting, rebuilding and summarizing the sensory information about TCMs and their effects during the medical practice struggling against diseases under the guidance of traditional Chinese philosophical thinking. The cognitive process of TCM property has particular cognitive elements and strategies. Taking into account clinical application characteristics of TCMs, this study defines the particular cognitive elements. In the combination of research methods of modern chemistry, biology and mathematics, and on the basis early-stage work for five years, we have built a TCM property cognition model based on three elements and practiced with drugs with pungent and hot properties as example, in the hope of interpreting TCM properties with modern science and providing thoughts for the nature of medical properties and instruction for rational clinical prescription.
Plant Content in the National Science Education Standards
ERIC Educational Resources Information Center
Hershey, David R.
2005-01-01
The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…
Advances in molecular biological methods are continually being brought to bear on human health research, from a basic understanding of systems biology to identification of toxicity pathways for environmental stressors and to correlations of molecular indicators with physiological...
Theory of light transfer in food and biological materials
USDA-ARS?s Scientific Manuscript database
In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
Computation of repetitions and regularities of biologically weighted sequences.
Christodoulakis, M; Iliopoulos, C; Mouchard, L; Perdikuri, K; Tsakalidis, A; Tsichlas, K
2006-01-01
Biological weighted sequences are used extensively in molecular biology as profiles for protein families, in the representation of binding sites and often for the representation of sequences produced by a shotgun sequencing strategy. In this paper, we address three fundamental problems in the area of biologically weighted sequences: (i) computation of repetitions, (ii) pattern matching, and (iii) computation of regularities. Our algorithms can be used as basic building blocks for more sophisticated algorithms applied on weighted sequences.
ERIC Educational Resources Information Center
Dai, Zhongxin
2015-01-01
In the research on "New Characteristics of Future Basic Education in China," Dina Pei formulates a "three-powered" model to theorize about the characteristics of future basic education in China. The three powers refer to the "Policy-making Power" of the local educational administration, the "Leading Power"…
ERIC Educational Resources Information Center
Kind, Vanessa; Kind, Per Morten
2011-01-01
Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…
The 300 most cited articles published in periodontology.
Faggion, Clovis Mariano; Málaga, Lilian; Monje, Alberto; Trescher, Anna-Lena; Listl, Stefan; Alarcón, Marco Antonio
2017-07-01
It is important to evaluate the characteristics of the most cited articles in any specialty. The number of citations may be a proxy for clinical and research activity. The objectives of the present methodological study were (1) to report the characteristics of the 300 most cited articles in periodontology and (2) to explore the association of these characteristics with the number of citations. We searched in the Web of Science database for the 300 most cited articles published in periodontology on June 15, 2015. We described characteristics of the articles such as type of study, type of scientific journal, topic reported, year of publication, affiliation of the first author of the article, and impact factor. Linear regression analysis was used to investigate associations of these variables with the number of citations. The search retrieved approximately 155,356 publications; out of the studies that met the eligibility criteria, the 300 most cited were included for analysis. Comprising more than 50 % of the included articles, basic biology and the detection of bacteria were the most prevalent topics. Narrative reviews were the most frequent type of article (27 % of the sample). Regression analysis demonstrated that some characteristics, for example "narrative reviews," are more prone to be cited than others. We conclude that scientific evolution in periodontology has been based more on narrative reviews than on reproducible systematic reviews. Future research is encouraged to elucidate the extent to which scientific progress is improved through systematic compared with narrative reviews.
The excitability of plant cells: with a special emphasis on characean internodal cells
NASA Technical Reports Server (NTRS)
Wayne, R.
1994-01-01
This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.
Biological aerosol background characterization
NASA Astrophysics Data System (ADS)
Blatny, Janet; Fountain, Augustus W., III
2011-05-01
To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.
Parts plus pipes: synthetic biology approaches to metabolic engineering
Boyle, Patrick M.; Silver, Pamela A.
2011-01-01
Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345
NANOPARTICLES AND THEIR APPLICATIONS IN CELL AND MOLECULAR BIOLOGY
Wang, Edina C.; Wang, Andrew Z.
2013-01-01
Nanoparticles can be engineered with distinctive compositions, sizes, shapes, and surface chemistries to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes. PMID:24104563
1982-01-01
Overgarment-Dynamics .............. .19 TABLES 1. Basic Anthropometry .......... ...................... 3 2. Flame Resistant CB Overgarment Test...participants (TPs) during this evaluation. Basic anthropometry of these subjects is given in Table I. TABLE 1 Basic Anthropometry Mean SD Maximum...5 S H L XL 39 H L XL XXL 43 L XL XXL XXL The areas considered were ease of doffing and donning, compatibility with prescribed clothing and field
Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M
1996-03-01
Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.
Getting Back to Basics (& Acidics)
ERIC Educational Resources Information Center
Rhodes, Sam
2006-01-01
This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…
Standard First Aid Training Course. Naval Education and Training Command Rate Training Manual.
ERIC Educational Resources Information Center
Naval Education and Training Command, Washington, DC.
This first aid manual is designed to serve as basic first aid instructional materials for all nonmedical naval personnel. Chapters are included on the following topics: basic life support, hemorrhage, shock, wounds, injuries, drug abuse, poisoning, common medical emergencies, NBC (nuclear, biological, chemical) agent casualties, and rescue and…
The poverty-related neglected diseases: Why basic research matters.
Hotez, Peter J
2017-11-01
Together, malaria and the neglected tropical diseases (NTDs) kill more than 800,000 people annually, while creating long-term disability in millions more. International support for mass drug administration, bed nets, and other preventive measures has resulted in huge public health gains, while support for translational research is leading to the development of some new neglected disease drugs, diagnostics, and vaccines. However, funding for basic science research has not kept up, such that we are missing opportunities to create a more innovative pipeline of control tools for parasitic and related diseases. There is an urgent need to expand basic science approaches for neglected diseases, especially in the areas of systems biology and immunology; ecology, evolution, and mathematical biology; functional and comparative OMICs; gene editing; expanded use of model organisms; and a new single-cell combinatorial indexing RNA sequencing approach. The world's poor deserve access to innovation for neglected diseases. It should be considered a fundamental human right.
Biology Education in the United States: The Unfinished Century.
ERIC Educational Resources Information Center
Bybee, Rodger W.
2002-01-01
Adresses five themes basic to biology education: (1) increased recognition of advances in the science of learning; (2) implementation of scientific ideas and technological innovations; (3) incorporation of science- and technology-related issues; (4) elaboration of global perspectives; and (5) professional community and civil discourse. (MM)
Teaching Molecular Biology with Microcomputers.
ERIC Educational Resources Information Center
Reiss, Rebecca; Jameson, David
1984-01-01
Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)
ASPECTS OF BASIC REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS)
The fathead minnow has been proposed as a model species for assessing the adverse effects of endocrine-disrupting chemicals (EDCs) on reproduction and development. The purpose of these studies was to develop baseline reproductive biology and endocrinology data for this species to...
ERIC Educational Resources Information Center
Wright, Emmett L.; Perna, Jack A.
1992-01-01
Presents the four program goals for biology set forth in the National Science Teacher Association's "A Focus on Excellence: Biology Revisited" to (1) address biosphere, human society, and individual needs; (2) encourage students to experience, understand, and appreciate of natural systems; (3) apply the basic concept of the biosphere; and (4)…
Diversity and history as drivers of helminth systematics and biology
USDA-ARS?s Scientific Manuscript database
Systematics is the foundation for biology. It provides a basic evolutionary map to discover, characterize and interpret global diversity and our place in the biosphere. It also allows us to explore questions related to host associations, life history, genetics, and patterns of infection and disease,...
76 FR 372 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Oncology 1--Basic..., Bethesda, MD 20892, 301-495- 1718, [email protected] . Name of Committee: Biological Chemistry and Macromolecular Biophysics Integrated Review Group; Synthetic and Biological Chemistry B Study Section. Date...
Lessons from Interspecies Mammalian Chimeras.
Suchy, Fabian; Nakauchi, Hiromitsu
2017-10-06
As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.
Biophotonics: Optical Science and Engineering for the 21st Century
NASA Astrophysics Data System (ADS)
Shen, Xun; van Wijk, Roeland
It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book.
Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
Rammsayer, Thomas H; Borter, Natalie; Troche, Stefan J
2017-02-01
The present study was designed to systematically investigate the functional relationships among biological sex; masculine and feminine gender-role characteristics; and sociosexual behavior, attitude toward, and desire for uncommitted casual sex as three facets of sociosexual orientation. For this purpose, facets of sociosexuality were assessed by the Revised Sociosexual Orientation Inventory (SOI-R) and masculine and feminine gender-role characteristics were assessed by a revised German version of the Bem Sex-Role Inventory in 499 male and 958 female heterosexual young adults. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) revealed differential mediating effects of masculine and feminine gender-role characteristics on the relationship between biological sex and the three facets of sociosexual orientation. Sociosexual behavior was shown to be primarily controlled by an individual's level of masculine gender-role characteristics irrespective of biological sex. Sociosexual desire was identified as being a sole function of biological sex with no indication for any effect of masculine or feminine gender-role characteristics, while sociosexual attitude was influenced by biological sex as well as by masculine and feminine gender-role characteristics to about the same extent.
Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.
ERIC Educational Resources Information Center
Denoyer, Eric; And Others
1982-01-01
Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)
Kim, JinJoo; Kim, Chang-Hoon; Youn, Seok-Hyun; Choi, Tae-Jin
2015-06-01
Diatoms are a major component of the biological community, serving as the principal primary producers in the food web and sustaining oxygen levels in aquatic environments. Among marine planktonic diatoms, the cosmopolitan Skeletonema costatum is one of the most abundant and widespread species in the world's oceans. Here, we report the basic characteristics of a new diatom-infecting S. costatum virus (ScosV) isolated from Jaran Bay, Korea, in June 2008. ScosV is a polyhedral virus (45-50 nm in diameter) that propagates in the cytoplasm of host cells and causes lysis of S. costatum cultures. The infectivity of ScosV was determined to be strain- rather than species-specific, similar to other algal viruses. The burst size and latent period were roughly estimated at 90-250 infectious units/cell and <48 h, respectively.
Fundamentals of flow cytometry.
Jaroszeski, M J; Radcliff, G
1999-02-01
Flow cytometers are instruments that are used primarily to measure the physical and biochemical characteristics of biological particles. This technology is used to perform measurements on whole cells as well as prepared cellular constituents, such as nuclei and organelles. Flow cytometers are investigative tools for a broad range of scientific disciplines because they make measurements on thousands of individual cells/particles in a matter of seconds. This is a unique advantage relative to other detection instruments that provide bulk particle measurements. Flow cytometry is a complex and highly technical field; therefore, a basic understanding of the technology is essential for all users. The purpose of this article is to provide fundamental information about the instrumentation used for flow cytometry as well as the methods used to analyze and interpret data. This information will provide a foundation to use flow cytometry effectively as a research tool.
Electromagnetic fields in medicine - The state of art.
Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander
2016-01-01
Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.
González-Ramírez, Laura R.; Ahmed, Omar J.; Cash, Sydney S.; Wayne, C. Eugene; Kramer, Mark A.
2015-01-01
Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination. PMID:25689136
The change in aggressiveness of neoplasms with age.
Ershler, W B
1987-01-01
With aging, tumors occur more frequently. The "malignant" characteristics of tumors (ie, rapid growth and metastases), however, appear to be less prominent in the elderly. In experimental tumor models, similar observations have been recorded. The reason for this phenomenon could be that tumors (ie, malignant cells) are different in different-aged hosts. Alternatively, host features such as the fibrotic, angiogenic, or immune response may be altered by the aging process and may render the host "soil" less fertile for "malignant" tumor growth. Indeed, experimental evidence has supported the importance of each of these host features. The significance of the exploration and eventual understanding of the age-related change in tumor behavior extends beyond clinical geriatric medicine; it may, in fact, involve the very unraveling of some of the basic biology of both tumor control and the aging process itself.
Structured models of infectious disease: inference with discrete data
Metcalf, C.J.E.; Lessler, J.; Klepac, P.; Morice, A.; Grenfell, B.T.; Bjørnstad, O.N.
2014-01-01
The usage of structured population models can make substantial contributions to public health, particularly for infections where clinical outcomes vary over age. There are three theoretical challenges in implementing such analyses: i) developing an appropriate framework that models both demographic and epidemiological transitions; ii) parameterizing the framework, where parameters may be based on data ranging from the biological course of infection, basic patterns of human demography, specific characteristics of population growth, and details of vaccination regimes implemented; and iii) evaluating public health strategies in the face of changing human demography. We illustrate the general approach by developing a model of rubella in Costa Rica. The demographic profile of this infection is a crucial aspect of its public health impact, and we use a transient perturbation analysis to explore the impact of changing human demography on immunization strategies implemented. PMID:22178687
Using Restriction Mapping to Teach Basic Skills in the Molecular Biology Lab
ERIC Educational Resources Information Center
Walsh, Lauren; Shaker, Elizabeth; De Stasio, Elizabeth A.
2007-01-01
Digestion of DNA with restriction enzymes, calculation of volumes and concentrations of reagents for reactions, and the separation of DNA fragments by agarose gel electrophoresis are common molecular biology techniques that are best taught through repetition. The following open-ended, investigative laboratory exercise in plasmid restriction…
Teaching the Ethics of Biology.
ERIC Educational Resources Information Center
Johansen, Carol K.; Harris, David E.
2000-01-01
Points out the challenges of educating students about bioethics and the limited training of many biologists on ethics. Discusses the basic principles of ethics and ethical decision making as applied to biology. Explains the models of ethical decision making that are often difficult for students to determine where to begin analyzing. (Contains 28…
Quantifying Ecology: Constructing Life History Tables
ERIC Educational Resources Information Center
Balgopal, Meena M.; Ode, Paul J.
2009-01-01
In the biology community there has been a call for integrating lessons on population growth rate and the human population crisis into biology classrooms. Ecologists fear that students do not understand the relationship between the magnitude of the human population growth and Earth's carrying capacity, as well as some basic ecological concepts. The…
Education M.S., Biomedical Basic Science, Department of Biochemistry and Molecular Genetics, University of Interaction with Histones H3 and H4," Molecular and Cellular Biology (2013) "The Lysine 48 and Cerevisiae," Molecular and Cellular Biology (2007) View all NREL Publications for Seth M. Noone
Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons
ERIC Educational Resources Information Center
Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.
2011-01-01
Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…
Alternative Environments for Basic Skills Development.
ERIC Educational Resources Information Center
Crowe, Michael R.; And Others
This study focused on the identification and description of environmental characteristics and their relationship to basic skills exposure. The objectives of the study were to identify the major factors that characterize environments in which learning is intended to occur, and to delineate patterns of co-exposure to basic skills and environmental…
2017-10-01
pancreatic cancer cells. 3. Sequoyah Bennett Sequoyah worked in the lab of Dr. Surinder Batra, Department of Biochemistry and Molecular Biology , College...the lab of Dr. Kaustubh Datta, Department of Biochemistry and Molecular Biology at the University of Nebraska Medical Center. During that time, Ciera...following the therapeutic intervention or prostate cancer. Furthermore, she learned the basic cell culture and molecular biology techniques. (2016) 1
Symmetry compression method for discovering network motifs.
Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi
2012-01-01
Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.
An introduction to the molecular basics of aryl hydrocarbon receptor biology.
Abel, Josef; Haarmann-Stemmann, Thomas
2010-11-01
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
At the Edge of Translation – Materials to Program Cells for Directed Differentiation
Arany, Praveen R; Mooney, David J
2010-01-01
The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763
Comparative biology of zebra mussels in Europe and North America: an overview
Mackie, Gerald L.; Schloesser, Don W.
1996-01-01
SYNOPSIS. Since the discovery of the zebra mussel, Dreissena polymorpha, in the Great Lakes in 1988 comparisons have been made with mussel populations in Europe and the former Soviet Union. These comparisons include: Population dynamics, growth and mortality rates, ecological tolerances and requirements, dispersal rates and patterns, and ecological impacts. North American studies, mostly on the zebra mussel and a few on a second introduced species, the quagga mussel, Dreissena bugensis, have revealed some similarities and some differences. To date it appears that North American populations of zebra mussels are similar to European populations in their basic biological characteristics, population growth and mortality rates, and dispersal mechanisms and rates. Relative to European populations differences have been demonstrated for: (1) individual growth rates; (2) life spans; (3) calcium and pH tolerances and requirements; (4) potential distribution limits; and (5) population densities of veligers and adults. In addition, studies on the occurrence of the two dreissenid species in the Great Lakes are showing differences in their modes of life, depth distributions, and growth rates. As both species spread throughout North America, comparisons between species and waterbodies will enhance our ability to more effectively control these troublesome species.
Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kai-Jian; Qin, S.-J., E-mail: shuijie.qin@gmail.com; Bai, Zhong-Chen
2013-11-21
A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid andmore » a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.« less
The Emergence of Predators in Early Life: There was No Garden of Eden
de Nooijer, Silvester; Holland, Barbara R.; Penny, David
2009-01-01
Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features. PMID:19492046
Fluorescence from the maillard reaction and its potential applications in food science.
Matiacevich, Silvia B; Santagapita, Patricio R; Buera, M Pilar
2005-01-01
The chemistry of the Maillard reaction involves a complex set of steps, and its interpretation represents a challenge in basic and applied aspects of Food Science. Fluorescent compounds have been recognized as important early markers of the reaction in food products since 1942. However, the recent advances in the characterization of fluorophores' development were observed in biological and biomedical areas. The in vivo non-enzymatic glycosylation of proteins produces biological effects, promoting health deterioration. The characteristic fluorescence of advanced glycosylation end products (AGEs) is similar to that of Maillard food products and represents an indicator of the level of AGE-modified proteins, but the structure of the fluorescent groups is, typically, unknown. Application of fluorescence measurement is considered a potential tool for addressing key problems of food deterioration as an early marker or index of the damage of biomolecules. Fluorophores may be precursors of the brown pigments and/or end products. A general scheme of the Maillard reaction is proposed in this article, incorporating the pool concept. A correct interpretation of the effect of environmental and compositional conditions and their influences on the reaction kinetics may help to define the meaning of fluorescence development for each particular system.
ERIC Educational Resources Information Center
Pulver, Stefan R.; Cognigni, Paola; Denholm, Barry; Fabre, Caroline; Gu, Wendy X. W.; Linneweber, Gerit; Prieto-Godino, Lucia; Urbancic, Vasja; Zwart, Maarten; Miguel-Aliaga, Irene
2011-01-01
Invertebrate model organisms are powerful systems for uncovering conserved principles of animal biology. Despite widespread use in scientific communities, invertebrate research is often severely undervalued by laypeople. Here, we present a set of simple, inexpensive public outreach exercises aimed at explaining to the public why basic research on…
Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms.
Schmidt, Markus; Pei, Lei; Budisa, Nediljko
The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same "letters" or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate "new" version(s) of the genetic code derived from the "old" biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.
Causality, Randomness, Intelligibility, and the Epistemology of the Cell
Dougherty, Edward R; Bittner, Michael L
2010-01-01
Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment. PMID:21119887
Comparison of Basic Science Knowledge Between DO and MD Students.
Davis, Glenn E; Gayer, Gregory G
2017-02-01
With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is effective at predicting performance on COMLEX-USA Level 1. In addition, osteopathic medical students performed the same as allopathic medical students on the NBME-CBSE. The results imply that the same basic science knowledge is expected for DO and MD students.
Noise characteristics of passive components for phased array applications
NASA Technical Reports Server (NTRS)
Sonmez, M. Kemal; Trew, Robert J.
1991-01-01
The results of a comparative study on noise characteristics of basic power combining/dividing and phase shifting schemes are presented. The theoretical basics of thermal noise in a passive linear multiport are discussed. A new formalism is presented to describe the noise behavior of the passive circuits, and it is shown that the fundamental results are conveniently achieved using this description. The results of analyses concerning the noise behavior of basic power combining/dividing structures (the Wilkinson combiner, 90 deg hybrid coupler, hybrid ring coupler, and the Lange coupler) are presented. Three types of PIN-diode switch phase shifters are analyzed in terms of noise performance.
NASA Technical Reports Server (NTRS)
Grigoryey, N. V.; Fedorovich, M. A.
1973-01-01
The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.
WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G.
2015-06-15
The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Futuremore » directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB.« less
WE-A-304-02: Strategies and Technologies for Cranial Radiosurgery Planning: Gamma Knife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, D.
2015-06-15
The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Futuremore » directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB.« less
Evaluation of Sintering Behaviors of Saprolitic Nickeliferous Laterite Based on Quaternary Basicity
NASA Astrophysics Data System (ADS)
Luo, Jun; Li, Guanghui; Rao, Mingjun; Zhang, Yuanbo; Peng, Zhiwei; Zhi, Qian; Jiang, Tao
2015-09-01
The sintering behaviors of saprolitic nickeliferous laterite with various quaternary basicities [(CaO + MgO)/(SiO2 + Al2O3) mass ratio] in a reductive atmosphere are investigated by simulative sintering and validated by sintering pot tests. The simulative sintering results show that the generation of diopside (CaMgSi2O6) with low melting point is the key reason for the decrease in characteristic fusion temperatures when the quaternary basicity increases from 0.5 to 0.8-1.0. Continuous increase of basicity leads to transformation of diopside (CaMgSi2O6) into akermanite (Ca2MgSi2O7), which adversely increases the characteristic fusion temperatures. These findings are confirmed by the sinter pot tests, which demonstrate that the sintering indexes including vertical sintering velocity (VSV), yield ( Y), and productivity ( P), can be improved by optimizing quaternary basicity. At basicity of 1.0, the VSV, Y, P, and ISO tumbling index reach 49.2 mm/min, 80.5%, 1.0 t/(h m2), and 66.5%, respectively.
Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min
2009-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.
RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN
2010-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691
Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji
2012-09-01
The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.
High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.
Hayashi, Rikimaru
2002-03-25
A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.
Biological imaging with coherent Raman scattering microscopy: a tutorial
Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.
2014-01-01
Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671
Human papillomavirus molecular biology.
Harden, Mallory E; Munger, Karl
Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.
2010-01-01
A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…
Melody A. Keena; Paul M. Moore; Steve M. Ulanecki
2003-01-01
There is a critical need for information on the basic biology of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), to provide the biological basis for predicting developmental phenology in order to optimize the timing of exclusion and eradication treatments and to predict attack rates under different environmental conditions. In...
A personal account of the development of modern biological research in Portugal.
De Sousa, Maria
2009-01-01
Portugal celebrated in 2006 its first 20 years of the formal introduction of the practice of external evaluation of research proposals in the national funding system. Accounts of changes in numbers of publications, citations, numbers of research projects funded and budget figures can be found in Government Reports (www.oces.mctes.pt.). An offshoot of the decisive and firm implementation of that practice in what was to become the Health Sciences was that the area became an attractor for young researchers in the basic biological sciences, namely, molecular, cellular and developmental biology. Reciprocally, the entry of basic biological scientists into medically oriented groups totally changed the landscape, the soil, the seeding, the cross-fertilization and the flowering of biomedical research in the country. This paper is a personal account of the experience of a scientist who was asked by the then President of the National Research Council, Jose Mariano Gago to co-ordinate the introduction of external evaluation of research projects and research institutes in the Health Sciences in Portugal between 1986 and 1997.
Analysis of self-oscillating dc-to-dc converters
NASA Technical Reports Server (NTRS)
Burger, P.
1974-01-01
The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.
[Biological characteristics of calliphoridae and its application in forensic medicine].
Zhao, Boa; Wen, Charn; Qi, Li-Li; Wang, He; Wang, Ji
2013-12-01
Diptera Calliphoridae is the first major kind of flies that appears on the decomposed corpses. In forensic entomology, according to the living characteristics of Calliphoridae flies, we could accurately estimate postmortem interval (PMI) in a murder or unidentified case and could provide useful clues to solve the case. This paper introduces the characteristics of the biology and morphology of Diptera Calliphoridae, and reviews the combined application of forensic entomology, molecular biology, mathematical morphology and toxicology.
Elbakidze, T; Kokashvili, T; Janelidze, N; Porchkhidze, K; Koberidze, T; Tediashvili, M
2015-03-01
Vibrio cholerae, a widely spread bacterium in various marine, fresh, and brackish water environments, can cause a devastating diarrheal disease - cholera and also mild forms of gastroenteritis. Bacterial viruses are natural controllers of bacterial population density in water systems. The goal of this study was to isolate and characterize V. cholerae-specific bacteriophages occurring in the Georgian coastal zone of the Black Sea and inland water reservoirs in the eastern part of Georgia. During 2006-2009, 71 phages lytic to V. cholerae were collected from these aquatic environments. The phage isolation rate was varying from 8% to 15%, depending on the sampling season and site, and the abundance of host bacteria. The majority of phages specific to V. cholerae were collected from freshwater sources. The phage isolation showed seasonal character covering warm period -from April to September. Based on basic characteristics of primary phage isolates (lytic spectrum, virion morphology and DNA restriction profiles) 23 V. cholerae -specific phages were selected for series of consecutive screenings. Comparatively wide spectrum of lytic activity was revealed in case of 14 phages specific to V. cholerae O1, and one phage - VchBS3, active against non-O1 V. cholerae. Three phages active against V. cholerae non-O1 and six V. cholerae O1 -specific phages have been studied in detail for a number of biological features (stability in different solutions, temperature-, pH- and UV- sensitivity, influence of high ionic strength etc.), considered to be additional important characteristics for selection of phages with therapeutic potential.
Gold nanoparticle contrast agents in advanced X-ray imaging technologies.
Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon
2013-05-17
Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.
Adsorption characteristics of a cationic porphyrin on nanoclay at various pH.
Rice, Zachary; Bergkvist, Magnus
2009-07-15
Natural and synthetic porphyrin derivatives offer a range of applications including enzymatic catalysis, photosensitizers for light harvesting and chemical reactions, and molecular electronics. They exhibit unique optical spectra dominated by the presence of Soret and Q-band structures whose position and shape offer a straightforward method to characterize porphyrins in various surroundings. In many applications it is often beneficial to have porphyrins adsorbed onto a solid matrix. Applications of porphyrin-clay complexes extend to numerous biological applications including pharmaceutical drug delivery, cosmetics, and agricultural applications and thus a full understanding of porphyrin-clay surface interactions are essential. Here we investigated the adsorption behavior of meso-tetra(4-N,N,N-trimethylanilinium) porphine (TMAP) onto sodium containing, natural montmorillonite clay (Cloisite Na(+)) in characteristic biological buffers over a range of pHs (approximately 2-9). Spectroscopic analyses show a linear absorption response at acidic and basic pHs but a slight deviation at intermediate pHs. Absorption spectra for TMAP on clay showed distinct red shifts of the Soret and Q-bands compared to free TMAP for all buffer conditions indicating core pi-electron delocalization into the substituent rings. At intermediate pHs, a gradual transition between protonated/deprotonated states were seen, presumably due to higher H(+) concentration at the surface than in bulk. Results indicate TMAP adsorption to clay occurs in a monolayer fashion at low/high pH while slightly acidic/neutral pH possibly rearrange on the surface and/or form aggregates. AFM images of clay saturated with TMAP are reported and show single isolated clay sheets without aggregation, similar to clay without TMAP.
Centro de Biologia Molecular "Severo Ochoa": a center for basic research into Alzheimer's disease.
Avila, Jesus; Hernandez, Felix; Wandosell, Francisco; Lucas, Jose J; Esteban, Jose A; Ledesma, M Dolores; Bullido, Maria J
2010-01-01
One important aspect of studies carried out at the Center for Molecular Biology "Severo Ochoa" is focused on basic aspects of Alzheimer's disease, mainly the search for suitable therapeutic targets for this disorder. Several groups at the Center are involved in these studies, and, in this spotlight, the work they are carrying out will be described.
ERIC Educational Resources Information Center
Cunha, Leonardo Rodrigues; de Oliveria Cudischevitch, Cecília; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; da Silva-Neto, Mário Alberto Cardoso
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of "Trypanosoma cruzi," the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by…
USDA-ARS?s Scientific Manuscript database
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...
Memory of Gender and Gait Direction from Biological Motion: Gender Fades Away but Directions Stay
ERIC Educational Resources Information Center
Poom, Leo
2012-01-01
The delayed discrimination methodology has been used to demonstrate a high-fidelity nondecaying visual short-term memory (VSTM) for so-called preattentive basic features. In the current Study, I show that the nondecaying high VSTM precision is not restricted to basic features by using the same method to measure memory precision for gait direction…
Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva
2016-08-17
The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.
A plausible neural circuit for decision making and its formation based on reinforcement learning.
Wei, Hui; Dai, Dawei; Bu, Yijie
2017-06-01
A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.
Drosophila Genetic Resource and Stock Center; The National BioResource Project.
Yamamoto, Masa-Toshi
2010-01-01
The fruit fly, Drosophila melanogaster, is not categorized as a laboratory animal, but it is recognised as one of the most important model organisms for basic biology, life science, and biomedical research. This tiny fly continues to occupy a core place in genetics and genomic approaches to studies of biology and medicine. The basic principles of genetics, including the variations of phenotypes, mutations, genetic linkage, meiotic chromosome segregation, chromosome aberrations, recombination, and precise mapping of genes by genetic as well as cytological means, were all derived from studies of Drosophila. Recombinant DNA technology was developed in the 1970s and Drosophila DNA was the first among multicellular organisms to be cloned. It provided a detailed characterization of genes in combination of classical cytogenetic data. Drosophila thus became the pioneering model organism for various fields of life science research into multicellular organisms. Here, I briefly describe the history of Drosophila research and provide a few examples of the application of the abundant genetic resources of Drosophila to basic biology and medical investigations. A Japanese national project, the National BioResource Project (NBRP) for collection, maintainance, and provision of Drosophila resources, that is well known and admired by researchers in other countries as an important project, is also briefly described.
Del Piero, Larissa B; Saxbe, Darby E; Margolin, Gayla
2016-06-01
Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation) between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach) and cohort characteristics (e.g., age range) were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and non-linear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Particle transport and deposition: basic physics of particle kinetics.
Tsuda, Akira; Henry, Frank S; Butler, James P
2013-10-01
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.
Del Piero, Larissa B.; Saxbe, Darby E.; Margolin, Gayla
2016-01-01
Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation) between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach) and cohort characteristics (e.g., age range) were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and nonlinear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age. PMID:27038840
Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?
NASA Astrophysics Data System (ADS)
Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang
2017-10-01
All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.
Basic autonomy as a fundamental step in the synthesis of life.
Ruiz-Mirazo, Kepa; Moreno, Alvaro
2004-01-01
In the search for the primary roots of autonomy (a pivotal concept in Varela's comprehensive understanding of living beings), the theory of autopoiesis provided an explicit criterion to define minimal life in universal terms, and was taken as a guideline in the research program for the artificial synthesis of biological systems. Acknowledging the invaluable contribution of the autopoietic school to present biological thinking, we offer an alternative way of conceiving the most basic forms of autonomy. We give a bottom-up account of the origins of "self-production" (or self-construction, as we propose to call it), pointing out which are the minimal material and energetic requirements for the constitution of basic autonomous systems. This account is, indeed, committed to the project of developing a general theory of biology, but well grounded in the universal laws of physics and chemistry. We consider that the autopoietic theory was formulated in highly abstract terms and, in order to advance in the implementation of minimal autonomous systems (and, at the same time, make major progress in exploring the origins of life), a more specific characterization of minimal autonomous systems is required. Such a characterization will not be drawn from a review of the autopoietic criteria and terminology (à la Fleischaker) but demands a whole reformulation of the question: a proper naturalization of the concept of autonomy. Finally, we also discuss why basic autonomy, according to our account, is necessary but not sufficient for life, in contrast with Varela's idea that autopoiesis was a necessary and sufficient condition for it.
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration
2013-01-01
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673
Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar
2007-01-01
Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...
Fundamentals of microfluidic cell culture in controlled microenvironments†
Young, Edmond W. K.; Beebe, David J.
2010-01-01
Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823
Interactome Networks and Human Disease
Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László
2011-01-01
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488
Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry
Harris, D. Calvin; Jewett, Michael C.
2014-01-01
Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202
Prion 2005: Between Fundamentals and Society's Needs.
Treiber, Carina
2006-01-25
Prion diseases for the most part affect individuals older than 60 years of age and share features with other diseases characterized by protein deposits in the brain, such as Alzheimer's disease and Parkinson's disease. The international conference "Prion 2005: Between Fundamentals and Society's Needs," organized by the German Transmissible Spongiform Encephalopathies Research Platform, aimed to integrate and coordinate the research efforts of participants to better achieve prevention, treatment, control, and management of prion diseases, including Creutzfeldt-Jakob disease and fatal familial insomnia in humans. Several main topics were discussed, such as the molecular characteristics of prion strains, the cell biology of cellular and pathogenic forms of the prion proteins, the pathogenesis of the diseases they cause, emerging problems, and promising approaches for therapy and new diagnostic tools. The presentations at the Prion 2005 conference provided new insights in both basic and applied research, which will have broad implications for society's needs.
Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain
2014-01-01
The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461
A simple polymeric model describes cell nuclear mechanical response
NASA Astrophysics Data System (ADS)
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must continually resist inter- and intracellular mechanical forces, and proper mechanical response is essential to basic cell biological functions as diverse as migration, differentiation, and gene regulation. Experiments probing nuclear mechanics reveal that the nucleus stiffens under strain, leading to two characteristic regimes of force response. This behavior depends sensitively on the intermediate filament protein lamin A, which comprises the outer layer of the nucleus, and the properties of the chromatin interior. To understand these mechanics, we study a simulation model of a polymeric shell encapsulating a semiflexible polymer. This minimalistic model qualitatively captures the typical experimental nuclear force-extension relation and observed nuclear morphologies. Using a Flory-like theory, we explain the simulation results and mathematically estimate the force-extension relation. The model and experiments suggest that chromatin organization is a dominant contributor to nuclear mechanics, while the lamina protects cell nuclei from large deformations.
The command of biotechnology and merciful conquest in military opposition.
Guo, Ji-Wei
2009-01-01
Biotechnology has an increasingly extensive use for military purposes. With the upcoming age of biotechnology, military operations are depending more on biotechnical methods. Judging from the evolving law of the theory of command, the command of biotechnology is feasible and inevitable. The report discusses some basic characteristics of modern theories of command, as well as the mature possibility of the command theory of military biotechnology. The evolution of the command theory is closely associated with the development of military medicine. This theory is expected to achieve successes in wars in an ultramicro, nonlethal, reversible, and merciful way and will play an important role in biotechnological identification and orientation, defense and attack, and the maintenance of fighting powers and biological monitoring. The command of military biotechnology has not become a part of the virtual military power yet, but it is an exigent strategic task to construct and perfect this theory.
Up-to-date approach to manage keloids and hypertrophic scars: A useful guide
Arno, Anna I.; Gauglitz, Gerd G.; Barret, Juan P.; Jeschke, Marc G.
2014-01-01
Keloids and hypertrophic scars occur anywhere from 30 to 90% of patients, and are characterized by pathologically excessive dermal fibrosis and aberrant wound healing. Both entities have different clinical and histochemical characteristics, and unfortunately still represent a great challenge for clinicians due to lack of efficacious treatments. Current advances in molecular biology and genetics reveal new preventive and therapeutical options which represent a hope to manage this highly prevalent, chronic and disabling problem, with long-term beneficial outcomes and improvement of quality of life. While we wait for these translational clinical products to be marketed, however, it is imperative to know the basics of the currently existing wide array of strategies to deal with excessive scars: from the classical corticotherapy, to the most recent botulinum toxin and lasers. The main aim of this review paper is to offer a useful up-to-date guideline to prevent and treat keloids and hypertrophic scars. PMID:24767715
Yang, Huiping; Tiersch, Terrence R.
2009-01-01
Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species. PMID:18691673
[A NATURAL PLAGUE FOCUS. IN GORNYI ALTAI: FORMATION, DEVELOPMENT, AND FUNCTIONING].
Korzun, V M; Balakhoiov, S V; Chpanin, E V; Denisov, A V; Mikhailov, E P; Mischenko, A J; Yarygina, M B; Rozhdestvensky, E N; Fomina, L A
2016-01-01
The paper gives the results of analyzing the data of long-term studies of the natural focal pattern of plague in the Gornyi Altai natural focus. It describes a wide range of biological processes occurring in the focus and shows the most important patterns of its functioning as a complex multilevel ecological system. The key features of the formation of the focus have been revealed. The plague focus in South-Western Altai has formed relatively, recently, about half a century ago, then it has intensively developed and its enzootic area and the activity of epizootic manifestations have considerably increased. This process is due to the space-time transformations of the basic ecological and population characteristics of Pallas' pika (Ochotoma pallasi), the principal vector of the pathogen of plague and fleas parasitizing the mammal, which is in turn related to the aridization of mountain steppes in South-Western Altai.
Design of a proton microbeam of the PEFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kye Ryung; Kim, Yong Hwan; Chang, Ji Ho
2008-02-15
The PEFP has been developing a 100 MeV proton linear accelerator and user facilities for 20 and 100 MeV proton beams. At one end of the five 20 MeV proton beam lines, a proton microbeam construction was considered for an application in the fields of material, biological, and medical sciences. To develop the proton microbeam, realization of a few MeV proton beam with a few tens of microamperes in diameter of a beam spot was essentially required. In this report, the basic descriptions of the proton microbeam which is composed of an energy degrader, slits, magnetic lens, a target chamber,more » and detectors are presented including a consideration of unfavorable aspects concerning some specific characteristics of a linear accelerator, such as pulse mode operation and fixed energy. Some calculation results from a Monte Carlo simulation by using the SRIM2006 and the TURTLE codes are also included.« less
[Safety in the Microbiology laboratory].
Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L
2015-01-01
The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Xp 11.2 translocation renal carcinoma in young adults; recently classified distinct subtype
Kmetec, Andrej; Jeruc, Jera
2014-01-01
Background XP11.2 renal translocation carcinomas are often encountered in paediatric group of patients where they are believed to be rather indolent. They are rare but more aggressive in young adults. They are slow growing, sometimes without characteristic symptoms and their biologic behaviour is uncertain. Case report We report two cases of this type of tumour in Slovenian young adult males with long and unusual history. Tumours were confirmed imunohistologically by positive reaction for CD10, P504S and TFE3. Conclusions According to the indications in the literature prognosis of these tumours in young adults depends upon the stage. It seems that cysts, haematomas and necrosis around the kidney are often encountered in these tumours. In advanced stage with lymph nodes involvement or distant metastases, the prognosis is poor. Surgery seems to be basic mode of therapy. PMID:24991210
Frietze, Seth; Leatherman, Judith
2014-03-01
New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.
Post-genome integrative biology: so that's what they call clinical science.
Rees, J
2001-01-01
Medical science is increasingly dominated by slogans, a characteristic reflecting its growing bureaucratic and corporate structure. Chief amongst these slogans is the idea that genomics will transform the public health. I believe this view is mistaken. Using studies of the genetics of skin cancer and the genetics of skin pigmentation, I describe how recent discoveries have contributed to our understanding of these topics and of human evolution. I contrast these discoveries with insights gained from other approaches, particularly those based on clinical studies. The 'IKEA model of medical advance'--you just do the basic science in the laboratory and self-assemble in the clinic--is not only damaging to clinical advance, but reflects a widespread ignorance about the nature of disease and how clinical discovery arises. We need to think more about disease and less about genes; more in the clinic and less in the laboratory.
Effects of the physicochemical properties of gold nanostructures on cellular internalization
Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie
2015-01-01
Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673
Parasitic helminths of the pig: factors influencing transmission and infection levels.
Nansen, P; Roepstorff, A
1999-06-01
The occurrence of parasitic helminth species as well as infection intensities are markedly influenced by the type of swine production system used. The present review focusses mainly on the situation in temperate climate regions. Generally, over the past decades there has been a decrease in the number of worm species and worm loads in domestic pigs due to a gradual change from traditional to modern, intensive production systems. The reasons for some species being apparently more influenced by management changes than others are differences in the basic biological requirements of the pre-infective developmental stages, together with differences in transmission characteristics and immunogenicity of the different worm species. Control methods relevant for the different production systems are discussed. Outdoor rearing and organic pig production may in the future be confronted with serious problems because of particularly favourable conditions for helminth transmission. In addition, in organic farms preventive usage of anthelmintics is not permitted.
Mathiazhagan, S; Anup, S
2016-06-01
Superior mechanical properties of biocomposites such as nacre and bone are attributed to their basic building blocks. These basic building blocks have nanoscale features and play a major role in achieving combined stiffening, strengthening and toughening mechanisms. Bioinspired nanocomposites based on these basic building blocks, regularly and stairwise staggered arrangements of hard platelets in soft matrix, have huge potential for developing advanced materials. The study of applicability of mechanical principles of biological materials to engineered materials will guide designing advanced materials. To probe the generic mechanical characteristics of these bioinspired nanocomposites, the model material concept in molecular dynamics (MD) is used. In this paper, the effect of platelets aspect ratio (AR) on the mechanical behaviour of bioinspired nanocomposites is investigated. The obtained Young׳s moduli of both the models and the strengths of the regularly staggered models agree with the available theories. However, the strengths of the stairwise staggered models show significant difference. For the stairwise staggered model, we demonstrate the existence of two critical ARs, a smaller critical AR above which platelet fracture occurs and a higher critical AR above which composite strength remains constant. Our MD study also shows the existence of mechanisms of platelet pull-out and breakage for lower and higher ARs. Pullout mechanism acts as a major source of plasticity. Further, we find that the regularly staggered model can achieve an optimal combination of high Young׳s modulus, flow strength and toughness, and the stairwise staggered model is efficient in obtaining high Young׳s modulus and tensile strength. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plants do not count… or do they? New perspectives on the universality of senescence
Salguero-Gómez, Roberto; Shefferson, Richard P; Hutchings, Michael J
2013-01-01
1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4. Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question ‘why is senescence universal or why is it not?’ naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography, animal demography and plant population ecology. Plants are more amenable than animals to experiments investigating senescence, and there is a wealth of published plant demographic data that enable interpretation of experimental results in the context of their full life cycles. It is time to make plants count in the field of senescence. PMID:23853389
Sorokowska, Agnieszka; Pellegrino, Robert; Butovskaya, Marina; Marczak, Michalina; Niemczyk, Agnieszka; Huanca, Tomas; Sorokowski, Piotr
2017-09-01
Biological significance of food components suggests that preferences for basic tastes should be similar across cultures. On the other hand, cultural factors play an important role in diet and can consequently influence individual preference for food. To date, very few studies have compared basic tastes preferences among populations of very diverse environmental and cultural conditions, and research rather did not involve traditional populations for whom the biological significance of different food components might be the most pronounced. Hence, our study focused on basic taste preferences in three populations, covering a broad difference in diet due to environmental and cultural conditions, market availability, dietary habits and food acquirement: 1) a modern society (Poles, n = 200), 2) forager-horticulturalists from Amazon/Bolivia (Tsimane', n = 138), and 3) hunter-gatherers from Tanzania (Hadza, n = 85). The preferences for basic tastes were measured with sprays containing supra-threshold levels of sweet, sour, bitter, salty, and umami taste solutions. We observed several interesting differences between participating societies. We found that Tsimane' and Polish participants liked the sweet taste more than other tastes, while Hadza participants liked salty and sour tastes more than the remaining tastes. Further, Polish people found bitter taste particularly aversive, which was not observed in the traditional societies. Interestingly, no cross-cultural differences were observed for relative liking of umami taste - it was rated closely to neutral by members of all participating societies. Additionally, Hadza showed a pattern to like basic tastes that are more common to their current diet than societies with access to different food sources. These findings demonstrate the impact of diet and market availability on preference for basic tastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Roy, Nicole M.
2013-01-01
RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…
Order & Diversity in the Living World: Teaching Taxonomy & Systematics in Schools.
ERIC Educational Resources Information Center
Crisci, Jorge V.; And Others
The world faces two converging crises, a lack of biological literacy and a rapid increase in environmental degradation. In order to insure a secure and safe environment for future generations of organisms, all humans must be taught the basic biological and physical processes that sustain life. This project seeks to fill the chasm in the general…
Characterization of the "CCR5" Chemokine Receptor Gene
ERIC Educational Resources Information Center
Thomas, John C.
2004-01-01
The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…
Understanding a Basic Biological Process: Expert and Novice Models of Science.
ERIC Educational Resources Information Center
Kindfield, A. C. H.
1994-01-01
Reports on the meiosis models utilized by five individuals at each of three levels of expertise in genetics as each reasoned about this process in an individual interview setting. Results revealed a set of biologically correct features common to all individuals' models as well as a variety of model flaws (i.e., meiosis misunderstandings) which are…
Chapter 02: Basic wood biology—Anatomy for identification
Alex Wiedenhoeft
2011-01-01
Before the topics of using a hand lens, preparing wood for observation, and understanding the characters used in wood identification can be tackled, a general introduction to the biology of wood must be undertaken. The woods in commercial trade in Central America come almost exclusively from trees, so the discussion of wood biology is restricted to trees here, though...
Nesting biology of Lesser Canada Geese, Branta canadensis parvipes, along the Tanana River, Alaska
Craig R. Ely; John M. Pearce; Roger W. Ruess
2008-01-01
Lesser Canada Geese (Brania canadensis parvipes) are widespread throughout interior regions of Alaska and Canada, yet there have been no published studies documenting basic aspects of their nesting biology. We conducted a study to determine reproductive parameters of Lesser Canada Geese nesting along the Tanana River near the city of Fairbanks, in...
Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students
ERIC Educational Resources Information Center
Brill, Gilat; Yarden, Anat
2003-01-01
Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…
A Model System for the Study of Gene Expression in the Undergraduate Laboratory
ERIC Educational Resources Information Center
Hargadon, Kristian M.
2016-01-01
The flow of genetic information from DNA to RNA to protein, otherwise known as the "central dogma" of biology, is one of the most basic and overarching concepts in the biological sciences. Nevertheless, numerous studies have reported student misconceptions at the undergraduate level of this fundamental process of gene expression. This…
ERIC Educational Resources Information Center
Kohlhauf, Lucia; Rutke, Ulrike; Neuhaus, Birgit
2011-01-01
Many epoch-making biological discoveries (e.g. Darwinian Theory) were based upon observations. Nevertheless, observation is often regarded as "just looking" rather than a basic scientific skill. As observation is one of the main research methods in biological sciences, it must be considered as an independent research method and systematic practice…
ERIC Educational Resources Information Center
Yeong, Foong May
2015-01-01
Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
ERIC Educational Resources Information Center
Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena
2003-01-01
Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…
The biology of human immunodeficiency virus infection.
Kotler, Donald P
2004-08-01
The aim of this article is to review the basic biology of infection with HIV-1 and the development of the acquired immunodeficiency syndrome. The discussion will include epidemiology, general description of the retroviruses, pathogenesis of the immune deficiency, clinical consequences, treatment, and treatment outcomes. Aspects of the infection that affect protein and energy balance will be identified.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
ERIC Educational Resources Information Center
Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…
Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji
2006-01-01
This paper reports on the specific absorption rate (SAR) and the current density analysis of biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue surrounding the transformer was analyzed by the transmission-line modeling method, and the SAR and current density as a function of frequency (200k-1 MHz) for a transcutaneous transmission of 20 W were calculated. The model's biological tissue has three layers including the skin, fat and muscle. As a result, the SAR in the vicinity of the transformer is sufficiently small and the normalized SAR value, which is divided by the ICNIRP's basic restriction, is 7 x 10(-3) or less. On the contrary, the current density is slightly in excess of the ICNIRP's basic restrictions as the frequency falls and the output voltage rises. Normalized current density is from 0.2 to 1.2. In addition, the layer in which the current's density is maximized depends on the frequency, the muscle in the low frequency (<700 kHz) and the skin in the high frequency (>700 kHz). The result shows that precision analysis taking into account the biological properties is very important for developing the transcutaneous transformer for TAH.
Seibel, Nita L.; Blair, Donald G.; Albritton, Karen; Hayes-Lattin, Brandon
2011-01-01
Each year in the United States, nearly 70 000 individuals between the ages of 15 and 40 years are diagnosed with cancer. Although overall cancer survival rates among pediatric and older adult patients have increased in recent decades, there has been little improvement in survival of adolescent and young adult (AYA) cancer patients since 1975 when collected data became adequate to evaluate this issue. In 2006, the AYA Oncology Progress Review Group made recommendations for addressing the needs of this population that were later implemented by the LIVESTRONG Young Adult Alliance. One of their overriding questions was whether the cancers seen in AYA patients were biologically different than the same cancers in adult and/or pediatric patients. On June 9–10, 2009, the National Cancer Institute (NCI) and the Lance Armstrong Foundation (LAF) convened a workshop in Bethesda, MD, entitled “Unique Characteristics of AYA Cancers: Focus on Acute Lymphocytic Leukemia (ALL), Breast Cancer and Colon Cancer” that aimed to examine the current state of basic and translational research on these cancers and to discuss the next steps to improve their prognosis and treatment. PMID:21436065
NASA Technical Reports Server (NTRS)
Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.
1982-01-01
The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.
10 CFR 431.401 - Petitions for waiver, and applications for interim waiver, of test procedure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... more design characteristics which prevent testing of the basic model according to the prescribed test... its true energy consumption characteristics as to provide materially inaccurate comparative data. (2... design characteristic(s) constituting the grounds for the petition, and the specific requirements sought...
10 CFR 431.401 - Petitions for waiver, and applications for interim waiver, of test procedure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... more design characteristics which prevent testing of the basic model according to the prescribed test... its true energy consumption characteristics as to provide materially inaccurate comparative data. (2... design characteristic(s) constituting the grounds for the petition, and the specific requirements sought...
10 CFR 431.401 - Petitions for waiver, and applications for interim waiver, of test procedure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... more design characteristics which prevent testing of the basic model according to the prescribed test... its true energy consumption characteristics as to provide materially inaccurate comparative data. (2... design characteristic(s) constituting the grounds for the petition, and the specific requirements sought...
Agapakis, Christina M; Silver, Pamela A
2009-07-01
Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.
Basic Science Research and the Protection of Human Research Participants
NASA Astrophysics Data System (ADS)
Eiseman, Elisa
2001-03-01
Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.
Biosimilars: Primer for the Health-System Pharmacist
Lucio, Steven D.; Stevenson, James G.; Hoffman, James M.
2014-01-01
Purpose Basic information pharmacists and other clinicians must know to successfully manage the introduction of biosimilars into health systems is summarized, including manufacturing, regulatory, and medication use policy concepts. Summary Under development for more than a decade, the biosimilar market in the United States is now closer to becoming a reality than ever before. Legislation granting the Food and Drug Administration (FDA) authority to approve lower cost, follow-on versions of previously approved biologics was signed into law in March 2010. Additional draft guidance further clarifying the requirements of the biosimilars approval pathway was published in February 2012, and FDA is currently conducting multiple preparatory meetings with potential biosimilar applicants. While intended to occupy a position similar to that of small molecule generics, biosimilars will present new challenges given that biologic medications are manufactured, regulated, and marketed differently from small molecules. As a result, it is critically important for pharmacists to be knowledgeable on the unique characteristics of biologics and prepare their organizations for the introduction of biosimilars, including use of the formulary system.. Biosimilars will pose questions of medication use policy around therapeutic interchange, pharmacovigilance, and in the transitions of care for health system patients. Conclusion As stewards of appropriate medication use, pharmacists must take the initiative to educate themselves, physicians, other clinicians and patients on these products to ensure an accurate understanding of this new category of drugs and to assure the safe and optimal use of biosimilars. PMID:24173009
Biology and biotechnology of Trichoderma.
Schuster, André; Schmoll, Monika
2010-07-01
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Biology and biotechnology of Trichoderma
Schuster, André
2010-01-01
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications. PMID:20461510
[Relevance of big data for molecular diagnostics].
Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T
2018-04-01
Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.
Population Disparities in Mental Health: Insights From Cultural Neuroscience
Blizinsky, Katherine D.
2013-01-01
By 2050, nearly 1 in 5 Americans (19%) will be an immigrant, including Hispanics, Blacks, and Asians, compared to the 1 in 8 (12%) in 2005. They will vary in the extent to which they are at risk for mental health disorders. Given this increase in cultural diversity within the United States and costly population health disparities across cultural groups, it is essential to develop a more comprehensive understanding of how culture affects basic psychological and biological mechanisms. We examine these basic mechanisms that underlie population disparities in mental health through cultural neuroscience. We discuss the challenges to and opportunities for cultural neuroscience research to determine sociocultural and biological factors that confer risk for and resilience to mental health disorders across the globe. PMID:23927543
Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N
2011-03-01
Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.
Population disparities in mental health: insights from cultural neuroscience.
Chiao, Joan Y; Blizinsky, Katherine D
2013-10-01
By 2050, nearly 1 in 5 Americans (19%) will be an immigrant, including Hispanics, Blacks, and Asians, compared to the 1 in 8 (12%) in 2005. They will vary in the extent to which they are at risk for mental health disorders. Given this increase in cultural diversity within the United States and costly population health disparities across cultural groups, it is essential to develop a more comprehensive understanding of how culture affects basic psychological and biological mechanisms. We examine these basic mechanisms that underlie population disparities in mental health through cultural neuroscience. We discuss the challenges to and opportunities for cultural neuroscience research to determine sociocultural and biological factors that confer risk for and resilience to mental health disorders across the globe.
Bone grafts, bone substitutes and orthobiologics
Roberts, Timothy T.; Rosenbaum, Andrew J.
2012-01-01
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591
[The discussion of the infiltrative model of mathematical knowledge to genetics teaching].
Liu, Jun; Luo, Pei-Gao
2011-11-01
Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.
Machine learning for Big Data analytics in plants.
Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng
2014-12-01
Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantum dots in bio-imaging: Revolution by the small
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, Harinder; Kaul, Zeenia; Wadhwa, Renu
2005-04-22
Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research onmore » QDs has evolved from being a pure science subject to the one with high-end commercial applications.« less
Vasin, A L
2003-01-01
Appropriateness of representation of a biological object surface as an equipotential surface has been proved for conditions of a quasistatic exposure to EMF of frequencies lower than 1 MHz. The conditions, at which a self capacitance of a biological object is its basic electrical parameter, have been considered. A factor of animal-to-human approximation of low-frequency EMF exposure conditions was estimated on the basis of equal dose loading in biological objects of different geometric sizes.
Gravitational biology on the space station
NASA Technical Reports Server (NTRS)
Keefe, J. R.; Krikorian, A. D.
1983-01-01
The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.
ERIC Educational Resources Information Center
McWethy, Patricia J., Ed.
Science is not a phenomenon restricted to one group of people. Instead it is something that is experienced by all, though often its form is unrecognized. Because science is experienced by many, one would expect that different groups of people would share common experiences in science. In an effort to determine whether there are similarities in…
The social model of disability: dichotomy between impairment and disability.
Anastasiou, Dimitris; Kauffman, James M
2013-08-01
The rhetoric of the social model of disability is presented, and its basic claims are critiqued. Proponents of the social model use the distinction between impairment and disability to reduce disabilities to a single social dimension-social oppression. They downplay the role of biological and mental conditions in the lives of disabled people. Consequences of denying biological and mental realities involving disabilities are discussed. People will benefit most by recognizing both the biological and the social dimensions of disabilities.
Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena
2015-01-01
To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.
scientific understanding-of molecular, nanoscale, semiconductor, and biological materials, systems, and molecular, nanoscale, and semiconductor systems to capture, control, and convert solar radiation with high
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
Peatland and water in the northern Lake States.
Don H. Boelter; Elon S. Verry
1977-01-01
The North Central Forest Experiment Station expanded its watershed research program in 1960 to include basic peatland studies. This paper reviews and summarizes basic principles developed from these studies of peatland hydrology, organic soil characteristics, and streamflow chemistry.
NASA Astrophysics Data System (ADS)
Cheng, Kai-Xuan; Wu, Rong-Rong; Liu, Xiao-Zhou; Liu, Jie-Hui; Gong, Xiu-Fen; Wu, Jun-Ru
2015-04-01
In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (> 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1113020403 and 1101020402), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), the China Postdoctoral Science Foundation (Grant No. 2013M531313), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Project of Interdisciplinary Center of Nanjing University, China (Grant No. NJUDC2012004).
A comparison of the role of beamwidth in biological and engineered sonar.
Todd, Bryan D; Müller, Rolf
2017-12-28
Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In nature, biosonar is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and ears) representing bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large, if not wider, than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches.
Gap analysis on the biology of Mediterranean marine fishes
Dimarchopoulou, Donna; Stergiou, Konstantinos I.
2017-01-01
We estimated the current level of knowledge concerning several biological characteristics of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, there is no information on any biological characteristic for 43% (n = 310) of the Mediterranean fish species, whereas for an additional 15% (n = 109) of them there is information about just one characteristic. The gap between current and desired knowledge (defined here as having information on most biological characteristics for at least half of the Mediterranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which information is very scarce (8%). European hake (Merluccius merluccius), red mullet (Mullus barbatus), annular seabream (Diplodus annularis), common pandora (Pagellus erythrinus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus) and bogue (Boops boops) were the most studied species, while sharks and rays were among the least studied ones. Only 25 species were fully studied, i.e. there was available information on all their biological characteristics. The knowledge gaps per characteristic varied among the western, central and eastern Mediterranean subregions. The number of available records per species was positively related to total landings, while no relationship emerged with its maximum reported length, trophic level and commercial value. Future research priorities that should be focused on less studied species (e.g. sharks and rays) and mortality/fecundity instead of length-weight relationships, as well as the economy of scientific sampling (using the entire catch to acquire data on as many biological characteristics as possible) are discussed. PMID:28407022
Gap analysis on the biology of Mediterranean marine fishes.
Dimarchopoulou, Donna; Stergiou, Konstantinos I; Tsikliras, Athanassios C
2017-01-01
We estimated the current level of knowledge concerning several biological characteristics of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, there is no information on any biological characteristic for 43% (n = 310) of the Mediterranean fish species, whereas for an additional 15% (n = 109) of them there is information about just one characteristic. The gap between current and desired knowledge (defined here as having information on most biological characteristics for at least half of the Mediterranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which information is very scarce (8%). European hake (Merluccius merluccius), red mullet (Mullus barbatus), annular seabream (Diplodus annularis), common pandora (Pagellus erythrinus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus) and bogue (Boops boops) were the most studied species, while sharks and rays were among the least studied ones. Only 25 species were fully studied, i.e. there was available information on all their biological characteristics. The knowledge gaps per characteristic varied among the western, central and eastern Mediterranean subregions. The number of available records per species was positively related to total landings, while no relationship emerged with its maximum reported length, trophic level and commercial value. Future research priorities that should be focused on less studied species (e.g. sharks and rays) and mortality/fecundity instead of length-weight relationships, as well as the economy of scientific sampling (using the entire catch to acquire data on as many biological characteristics as possible) are discussed.
Engineering scalable biological systems
2010-01-01
Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204
ERIC Educational Resources Information Center
Selli, Cigdem; Yildirim, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation,…
ERIC Educational Resources Information Center
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.
2006-01-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…
The Importance of Pupils' Interests and Out-of-School Experiences in Planning Biology Lessons
ERIC Educational Resources Information Center
Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Meisalo, Veijo
2008-01-01
How to make learning more interesting is a basic challenge for school education. In this Finnish study, the international ROSE questionnaire was used to survey, during spring of 2003, the relationship between interest in biology and out-of-school experiences for 3626 ninth-grade pupils. Interest and experience factors were extracted by using the…
Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype
ERIC Educational Resources Information Center
Briju, Betsy J.; Wyatt, Sarah E.
2015-01-01
Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…
ERIC Educational Resources Information Center
Ellsbury, Susan H.; And Others
A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…
ERIC Educational Resources Information Center
Meyer, Annika; Klingenberg, Konstantin; Wilde, Matthias
2016-01-01
Contact with living animals is an exceptional possibility within biology education to facilitate an intense immersion into the study topic and even allow for a flow experience (Csikszentmihalyi 2000). Further, it might affect the perceptions of the students' basic needs for autonomy and competence and thereby their quality of motivation (Deci and…
ERIC Educational Resources Information Center
Hooley, Paul; Cooper, Phillippa; Skidmore, Nick
2008-01-01
A one day practical course in molecular biology skills suitable for year 12/13 students is described. Colleagues from partner schools and colleges were trained by university staff in basic techniques and then collaborated in the design of a course suitable for their own students. Participants carried out a transformation of "E.coli"…
Genome annotation in a community college cell biology lab.
Beagley, C Timothy
2013-01-01
The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
The Basic Principles of FDG-PET/CT Imaging.
Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming
2014-10-01
Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hafner, Mathias
2008-01-01
Cell biology and molecular imaging technologies have made enormous progress in basic research. However, the transfer of this knowledge to the pharmaceutical drug discovery process, or even therapeutic improvements for disorders such as neuronal diseases, is still in its infancy. This transfer needs scientists who can integrate basic research with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.
1992-01-01
This book covers issues ranging from global climate changes to biocontrol of plant diseases. Many of its contributions stress how new technologies in areas such as molecular biology and environmental engineering expand understanding and applications of basic concepts in environmental microbiology. Articles in the book are in three basic subject areas: effects of environmental contamination on the role of microbes in geochemical cycling of the major elements, pathogens in the environment, and microbial activities in environmental management.
NASA Astrophysics Data System (ADS)
Hidayati, A.; Rahmi, A.; Yohandri; Ratnawulan
2018-04-01
The importance of teaching materials in accordance with the characteristics of students became the main reason for the development of basic electronics I module integrated character values based on conceptual change teaching model. The module development in this research follows the development procedure of Plomp which includes preliminary research, prototyping phase and assessment phase. In the first year of this research, the module is validated. Content validity is seen from the conformity of the module with the development theory in accordance with the demands of learning model characteristics. The validity of the construct is seen from the linkage and consistency of each module component developed with the characteristic of the integrated learning model of character values obtained through validator assessment. The average validation value assessed by the validator belongs to a very valid category. Based on the validator assessment then revised the basic electronics I module integrated character values based on conceptual change teaching model.
Discrete virus infection model of hepatitis B virus.
Zhang, Pengfei; Min, Lequan; Pian, Jianwei
2015-01-01
In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.
Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L
2014-05-01
To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.
... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...
Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.
Weinstein, Scott A
2015-09-01
The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
[Dose rate-dependent cellular and molecular effects of ionizing radiation].
Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew
2008-09-11
The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.
Intracarotid Cancer Cell Injection to Produce Mouse Models of Brain Metastasis.
Zhang, Chenyu; Lowery, Frank J; Yu, Dihua
2017-02-08
Metastasis, the spread and growth of malignant cells at secondary sites within a patient's body, accounts for > 90% of cancer-related mortality. Recently, impressive advances in novel therapies have dramatically prolonged survival and improved quality of life for many cancer patients. Sadly, incidence of brain metastatic recurrences is fast rising, and all current therapies are merely palliative. Hence, good experimental animal models are urgently needed to facilitate in-depth studies of the disease biology and to assess novel therapeutic regimens for preclinical evaluation. However, the standard in vivo metastasis assay via tail vein injection of cancer cells produces predominantly lung metastatic lesions; animals usually succumb to the lung tumor burden before any meaningful outgrowth of brain metastasis. Intracardiac injection of tumor cells produces metastatic lesions to multiple organ sites including the brain; however, the variability of tumor growth produced with this model is large, dampening its utility in evaluating therapeutic efficacy. To generate reliable and consistent animal models for brain metastasis study, here we describe a procedure for producing experimental brain metastasis in the house mouse (Mus musculus) via intracarotid injection of tumor cells. This approach allows one to produce large number of brain metastasis-bearing mice with similar growth and mortality characteristics, thus facilitating research efforts to study basic biological mechanisms and to assess novel therapeutic agents.
Information resources at the National Center for Biotechnology Information.
Woodsmall, R M; Benson, D A
1993-01-01
The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, was established in 1988 to perform basic research in the field of computational molecular biology as well as build and distribute molecular biology databases. The basic research has led to new algorithms and analysis tools for interpreting genomic data and has been instrumental in the discovery of human disease genes for neurofibromatosis and Kallmann syndrome. The principal database responsibility is the National Institutes of Health (NIH) genetic sequence database, GenBank. NCBI, in collaboration with international partners, builds, distributes, and provides online and CD-ROM access to over 112,000 DNA sequences. Another major program is the integration of multiple sequences databases and related bibliographic information and the development of network-based retrieval systems for Internet access. PMID:8374583
Killer whale ecotypes: is there a global model?
de Bruyn, P J N; Tosh, Cheryl A; Terauds, Aleks
2013-02-01
Killer whales, Orcinus orca, are top predators occupying key ecological roles in a variety of ecosystems and are one of the most widely distributed mammals on the planet. In consequence, there has been significant interest in understanding their basic biology and ecology. Long-term studies of Northern Hemisphere killer whales, particularly in the eastern North Pacific (ENP), have identified three ecologically distinct communities or ecotypes in that region. The success of these prominent ENP studies has led to similar efforts at clarifying the role of killer whale ecology in other regions, including Antarctica. In the Southern Hemisphere, killer whales present a range of behavioural, social and morphological characteristics to biologists, who often interpret this as evidence to categorize individuals or groups, and draw general ecological conclusions about these super-predators. Morphologically distinct forms (Type A, B, C, and D) occur in the Southern Ocean and studies of these different forms are often presented in conjunction with evidence for specialised ecology and behaviours. Here we review current knowledge of killer whale ecology and ecotyping globally and present a synthesis of existing knowledge. In particular, we highlight the complexity of killer whale ecology in the Southern Hemisphere and examine this in the context of comparatively well-studied Northern Hemisphere populations. We suggest that assigning erroneous or prefatory ecotypic status in the Southern Hemisphere could be detrimental to subsequent killer whale studies, because unsubstantiated characteristics may be assumed as a result of such classification. On this basis, we also recommend that ecotypic status classification for Southern Ocean killer whale morphotypes be reserved until more evidence-based ecological and taxonomic data are obtained. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.
2015-01-01
Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing.
Park, Doori; Jung, Je Won; Choi, Beom-Soon; Jayakodi, Murukarthick; Lee, Jeongsoo; Lim, Jongsung; Yu, Yeisoo; Choi, Yong-Soo; Lee, Myeong-Lyeol; Park, Yoonseong; Choi, Ik-Young; Yang, Tae-Jin; Edwards, Owain R; Nah, Gyoungju; Kwon, Hyung Wook
2015-01-02
The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana. Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes. This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.
Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine
2012-01-01
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082
2017-01-01
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277
NASA Astrophysics Data System (ADS)
Müller, A.
1994-09-01
One of the basic problems in science is the understanding of the potentialities of material systems, a topic which is of relevance for disciplines ranging from natural philosophy over topology and/or structural chemistry, and biology ( morphogenesis) to materials science. Information on this problem can be obtained by studying the different types of linking of basic fragments in self-assembly processes, a type of reaction which has proved to be one of the most important in the biological and material world. The outlined problem can be nicely studied in the case of polyoxometalates with reference to basic organizing principles of material systems like conservative self-organization ( self-assembly), host—guest interactions, complementarity, molecular recognition, emergence vs. reduction ( as a dialectic unit), template-direction, exchange-interactions and, in general, the mesoscopic material world with its unusual properties as well as its topological and/or structural diversity. Science will lose in significance as an interdisciplinary unit — as outlined or maybe predicted here — should not more importance be attached to general aspects in the future.
Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph
Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced inmore » TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in combination with other ion modalities.« less
Kanin, Maralee R; Pontrello, Jason K
2016-01-01
Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 The International Union of Biochemistry and Molecular Biology.
Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J
2005-01-01
We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.
Controlling complexity: the clinical relevance of mouse complex genetics
Schughart, Klaus; Libert, Claude; Kas, Martien J
2013-01-01
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches. PMID:23632795
An Undergraduate Course to Bridge the Gap between Textbooks and Scientific Research
ERIC Educational Resources Information Center
Wiegant, Fred; Scager, Karin; Boonstra, Johannes
2011-01-01
This article reports on a one-semester Advanced Cell Biology course that endeavors to bridge the gap between gaining basic textbook knowledge about cell biology and learning to think and work as a researcher. The key elements of this course are 1) learning to work with primary articles in order to get acquainted with the field of choice, to learn…
E. Peterson; E. Hansen; J. Hulbert
2014-01-01
Management of invasive species requires confidence in the detection methods used to assess expanding distributions, as well as an understanding of the dominant modes of spread. Lacking this basic biological information, during early stages of invasion management choices are often driven by available resources and the biology of closely related species. Such has been...
ERIC Educational Resources Information Center
Albayrak, Cem; Jones, K. C.; Swartz, James R.
2013-01-01
Cell-free protein synthesis (CFPS) has emerged as a practical method for producing a broad variety of proteins. In addition, the direct accessibility to the reaction environment makes CFPS particularly suitable as a learning vehicle for fundamental biological concepts. Here, we describe its implementation as a teaching tool for a high school…
Ramoni, Marco F.
2010-01-01
The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms. PMID:19906839
Robots Make Intelligent Teachers
ERIC Educational Resources Information Center
Trotter, Robert J.
1973-01-01
Discussion of the use of teaching machines to help a child learn the basics of geometry. Fully developed educational modules for such subjects as physics, biology, physiology and linguistics are forth-coming. (EB)
Undergraduate basic science preparation for dental school.
Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S
2002-11-01
In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.
Field Markup Language: biological field representation in XML.
Chang, David; Lovell, Nigel H; Dokos, Socrates
2007-01-01
With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.
Thermodynamic and Kinetic Properties of the Electrochemical Cell.
ERIC Educational Resources Information Center
Smith, Donald E.
1983-01-01
Describes basic characteristics of the electrochemical cell. Also describes basic principles of electrochemical procedures and use of these concepts to explain use of the term "primarily" in discussions of methods primarily responsive to equilibrium cell potential, bulk ohmic resistance, and the Faradaic impedance. (JN)
Introduction to Oxidative Stress in Biomedical and Biological Research
Breitenbach, Michael; Eckl, Peter
2015-01-01
Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854
Remote sensing in the mixing zone. [water pollution in Wisconsin
NASA Technical Reports Server (NTRS)
Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.
1973-01-01
Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.
Crystallography of biological fluid as a method for evaluating its physicochemical characteristics.
Martusevich, A K; Kamakin, N F
2007-03-01
Using an integral qualitative and quantitative approach to the studies of initiation of the biological material crystallogenesis, we showed in experiments with normal human saliva that the external characteristics of biological fluid (pH, osmolality, and environmental temperature) determine the results of crystallization (tesigraphic facies). The main external (macroenvironment) and inner (microenvironment) factors of biological fluid crystal formation, determining specific features of the tesigraphic facies, were distinguished and classified. The informative value of differential analysis of biomaterial properties by means of modulating the environmental conditions is established.
Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W
2016-04-18
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
NASA Astrophysics Data System (ADS)
Finchenko, V. S.; Ivankov, A. A.; Shmatov, S. I.; Mordvinkin, A. S.
2015-12-01
The article presents the initial data for the ExoMars landing module aerothermodynamic calculations, used calculation methods, the calculation results of aerodynamic characteristics of the landing module shape and structural parameters of thermal protection selected during the conceptual design phase. Also, the test results of the destruction of the thermal protection material and comparison of the basic characteristics of the landing module with a front shield in the form of a cone and a spherical segment are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, E.E.; Molchanov, E.D.; Pekhterev, Yu.G.
1975-01-01
The complex of scientific apparatus installed on board the artifical earth satellite Kosmos 605 for the creation of electric fields near the satellite with intensities up to 1.4 x 10/sup 7/ V/m and for direct measurements of conduction currents of a high voltage vacuum interval for the purpose of determining the basic characteristics of electrostatic shielding from cosmic radiations is described.
Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin
2007-12-01
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.
[Biological research and security institutes].
Darsie, G; Falczuk, A J; Bergmann, I E
2006-04-01
The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.
Genome-Wide Analysis of bZIP-Encoding Genes in Maize
Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin
2012-01-01
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
Freshwater Ecosystem Research in Water Quality Management
ERIC Educational Resources Information Center
Ferris, James J.; And Others
1974-01-01
Describes the use of modeling techniques to contribute to the basic knowledge of ecologic science, and in solving problems of biological production, resource-use planning and management, and environmental quality. (JR)
Characteristics of the USA dairy herd as related to management and demographic elements
USDA-ARS?s Scientific Manuscript database
The data characteristics of the United States dairy herd related to animals enrolled in milk recording (dairy herd improvement) are the basic foundation and important influencers for the management and genetic progress achieved in a population or animal production unit. The amount, characteristics ...
Molecular aspects of magnetic resonance imaging and spectroscopy.
Boesch, C
1999-01-01
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.
Visual saliency detection based on modeling the spatial Gaussianity
NASA Astrophysics Data System (ADS)
Ju, Hongbin
2015-04-01
In this paper, a novel salient object detection method based on modeling the spatial anomalies is presented. The proposed framework is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous objects among complex background. It is supposed that a natural image can be seen as a combination of some similar or dissimilar basic patches, and there is a direct relationship between its saliency and anomaly. Some patches share high degree of similarity and have a vast number of quantity. They usually make up the background of an image. On the other hand, some patches present strong rarity and specificity. We name these patches "anomalies". Generally, anomalous patch is a reflection of the edge or some special colors and textures in an image, and these pattern cannot be well "explained" by their surroundings. Human eyes show great interests in these anomalous patterns, and will automatically pick out the anomalous parts of an image as the salient regions. To better evaluate the anomaly degree of the basic patches and exploit their nonlinear statistical characteristics, a multivariate Gaussian distribution saliency evaluation model is proposed. In this way, objects with anomalous patterns usually appear as the outliers in the Gaussian distribution, and we identify these anomalous objects as salient ones. Experiments are conducted on the well-known MSRA saliency detection dataset. Compared with other recent developed visual saliency detection methods, our method suggests significant advantages.
Lee, Kathy E.; Blazer, Vicki; Denslow, Nancy D.; Goldstein, Robert M.; Talmage, Philip J.
2000-01-01
The presence of HAAs in selected Minnesota streams was indicated by biological characteristics in common carp. Biological characteristics used in this study identified WWTP effluent as a potential source of HAAs. Additionally, fish located at sites upstream of WWTP effluent primarily draining agricultural land show indications of HAAs, which may be the result of agricultural runoff or other sources of HAAs. There was variability among all sites and among sites within each site group. Differences among sites may be due to differences in water chemistry or fish exposure time. Natural variation in the biological characteristics may account for some of the differences observed in this study. This study and others indicate the presence of HAAs in surface water and the potential signs of endocrine disruption in resident fish populations. Detailed controlled studies could confirm the effects of particular chemicals such as pesticides or components of WWTPs on fish reproduction and population structure.
[Study on chemical diversity of volatile oils in Houttuynia cordata and their genetic basis].
Wu, Lingshang; Si, Jinping; Zhou, Hui; Zhu, Yan; Lan, Yunlong
2009-01-01
To reveal chemical diversify of volatile oils in Houttuynia cordata from major producing areas in China and their genetic basis, lay a foundation for breeding a quality H. cordata variety. The volatile oils in H. cordata from 22 provenances were determined by GC. And the relationship among the peak areas of volatile oils, biological characteristics and RAPD makers were analyzed. There were common and special volatile oils in H. cordata from different provenances. The peak areas of common volatile oils in samples were significantly different. The clustering figure based on the peak areas or the relative peak areas of common volatile oils was almost agreed with the one based on RAPD makers analysis. And the differences in chromatograms could be distinguished according to the biological characteristics. The diversity of volatile oils exists in H. cordata from different provenances which relate with biological characteristics and has genetic basis. H. cordata can be divided into 2 types according to volatile oils, biological characteristics or RAPD marker.
Risk factors for wasting and stunting among children in Metro Cebu, Philippines.
Ricci, J A; Becker, S
1996-06-01
Risk factors for wasting and stunting were examined in a longitudinal study of 18 544 children younger than 30 mo in Metro Cebu, Philippines. Measures of household demographic and socioeconomic characteristics, maternal characteristics and behavior, and child biological variables were analyzed cross-sectionally in six child age-residence strata by using logistic regression. Our results support biological and epidemiologic evidence that wasting and stunting represent different processes of malnutrition. They also indicate that the principal risk factors for stunting and wasting in infants < 6 mo of age were either maternal behaviors or child biological characteristics under maternal control, eg, breast-feeding status and birth weight. After 6 mo of age, household socioeconomic characteristics emerged with behavioral and biological variables as important determinants of malnutrition, eg, father's education and presence of a television and/or radio. Household socioeconomic status influenced the risk of stunting earlier in rural than in urban barangays. Implications of the results for interventions are discussed.
An engineering design approach to systems biology.
Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A
2017-07-17
Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.
Modularization of biochemical networks based on classification of Petri net t-invariants.
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-02-08
Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
Modularization of biochemical networks based on classification of Petri net t-invariants
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-01-01
Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938
Environmental Awareness: Just a Pane of Glass Away.
ERIC Educational Resources Information Center
Kopchynski, Kevin
1982-01-01
Highlights several basic ecological principles and suggests corresponding classroom activities for grades five to eight that revolve around a freshwater aquarium. Basic ecological concepts, adaptations, characteristics of aquatic habitats, and pollution problems are outlined in separate tables. A short list of resource materials is included.…
College Financial Management: Basics for Administrators.
ERIC Educational Resources Information Center
Carter, E. Eugene
Basic economic concepts applicable for college financial management are considered, along with the characteristics of financial instruments available to universities that have money to invest for short-term or long-term purposes. A discussion of various financial securities provides information for the endowment manager who has to select among…
Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François
2005-09-01
An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account for the sensitivity range within a community.
Research, the lifeline of medicine.
Kornberg, A
1976-05-27
Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.
77 FR 29672 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... of Committee: Oncology 1--Basic Translational Integrated Review Group; Tumor Cell Biology Study... 20892, 301-435- 1146, [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated...
New Policy Options Through Technology.
ERIC Educational Resources Information Center
Schmitt, Harrison
1981-01-01
The author discusses past contributions technology has made to society and ways it will contribute to society's future. Included in these areas are basic biological research, laser technology, information systems, and space technologies. (CT)
Negasheva, Marina; Lapshina, Natalia; Okushko, Rostislav; Godina, Elena
2014-05-19
The study of aging processes and the changes in morphological, physiological, and functional characteristics that are associated with aging is of great interest not only for researchers, but also for the general public. The aim of the present paper is to study the biological age and tempos of aging in women older than 60 years, including long-lived females (over 90-years-old), and their associations with morphofunctional characteristics. Somatic traits, body mass components, and functional characteristics were investigated in 119 elderly (between 60 and 74-years-old) and long-lived (over 90-years-old) women in Tiraspol. With the special PC software 'Diagnostics of Aging: BioAge' (National Gerontological Center, Moscow, Russia) the biological age and tempos of aging were evaluated in the study participants. The results show close connections between morphofunctional changes, particularly in body mass components, and biological age. The software demonstrated its validity in the estimation of biological age in the group of elderly women. In the homogenous (according to their chronological age) group of women, three subgroups were separated with different tempos of aging: those with lower rates of aging (biological age less than chronological age by two years or more); those consistent with their chronological age, and those with accelerated tempos of aging (biological age higher than chronological age by two years or more). Morphofunctional characteristics in the studied groups of women demonstrate the trends of age-involutive changes which can be traced through all groups, from those with slow rates of aging, to those with average rates, to those with accelerated tempos of aging, and finally in long-lived women. The results of comparative analysis show that women with accelerated aging are characterized with such traits as lower skeletal muscle mass, lower hand grip strength, and higher metabolic rate. Canonical discriminant analysis revealed a number of morphofunctional characteristics which differentiate the early-aging women from women with average rates of aging: higher BMI values, excessive fat mass, lower skeletal muscle mass and low values of hand grip strength. Thus the presence of such characteristics in elderly women can be considered as additional risk factor towards the early onset of the aging process.
Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly
NASA Technical Reports Server (NTRS)
Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.
1971-01-01
A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.
Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee
2016-11-01
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.
[Important issues of biological safety].
Onishchenko, G G
2007-01-01
The problem of biological security raises alarm due to the real growth of biological threats. Biological security includes a wide scope of problems, the solution of which becomes a part of national security as a necessary condition for the constant development of the country. A number of pathogens, such as human immunodeficiency virus, exotic Ebola and Lassa viruses causing hemorrhagic fever,rotaviruses causing acute intestinal diseases, etc. were first discovered in the last century. Terrorist actions committed in the USA in 2001 using the anthrax pathogen made the problem of biological danger even more important. In Russian Federation, biological threats are counteracted through the united state policy being a part of general state security policy. The biological Security legislation of Russian Federation is chiefly based on the 1992 Federal Law on Security. On the basis of cumulated experience, the President of Russia ratified Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond on 4 December, 2003. The document determines the main directions and stages of the state development in the area of chemical and biological security. The Federal target program Russian Federation's National Program for Chemical and Biological Security is being developed, and its development is to be completed soon in order to perfect the national system for biological security and fulfill Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond, ratified by the President. The new global strategy for control over infectious diseases, presented in the materials of Saint Petersburg summit of the Group of Eight, as well as the substantive part of its elements in Sanitary International Standards, are to a large degree an acknowledgement of the Russian Federation's experience and the algorithm for fighting extremely dangerous infections. This Russia's experience has resulted in the following global achievements: smallpox elimination in the USSR (1936); the USSR's suggestions on the program of smallpox elimination in the world and 2 billion doses of the vaccine transferred to the possession of the WHO (since 1958); the global elimination of the disease (1980); effective control over avian influenza at the epizootic stage, recognized internationally at Beijing International Congress, 17-18 January, 2006.
Disorganization at the stage of schizophrenia clinical outcome: Clinical-biological study.
Nestsiarovich, A; Obyedkov, V; Kandratsenka, H; Siniauskaya, M; Goloenko, I; Waszkiewicz, N
2017-05-01
According to the multidimensional model of schizophrenia, three basic psychopathological dimensions constitute its clinical structure: positive symptoms, negative symptoms and disorganization. The latter one is the newest and the least studied. Our aim was to discriminate disorganization in schizophrenia clinical picture and to identify its distinctive biological and socio-psychological particularities and associated genetic and environmental factors. We used SAPS/SANS psychometrical scales, scales for the assessment of patient's compliance, insight, social functioning, life quality. Neuropsychological tests included Wisconsin Card Sorting Test (WCST), Stroop Color-Word test. Neurophysiological examination included registration of P300 wave of the evoked cognitive auditory potentials. Environmental factors related to patient's education, family, surrounding and nicotine use, as well as subjectively significant traumatic events in childhood and adolescence were assessed. Using PCR we detected SNP of genes related to the systems of neurotransmission (COMT, SLC6A4 and DRD2), inflammatory response (IL6, TNF), cellular detoxification (GSTM1, GSTT1), DNA methylation (MTHFR, DNMT3b, DNMT1). Disorganization is associated with early schizophrenia onset and history of psychosis in family, low level of insight and compliance, high risk of committing delicts, distraction errors in WCST, lengthened P300 latency of evoked cognitive auditory potentials, low-functional alleles of genes MTHFR (rs1801133) and DNMT3b (rs2424913), high level of urbanicity and psychotraumatic events at early age. Severe disorganization at the stage of schizophrenia clinical outcome is associated with the set of specific biological and social-psychological characteristics that indicate its epigenetic nature and maladaptive social significance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Skeletal muscle is a biological example of a linear electroactive actuator
NASA Astrophysics Data System (ADS)
Lieber, Richard L.
1999-05-01
Skeletal muscle represents a classic biological example of a structure-function relationship. This paper reviews basic muscle anatomy and demonstrates how molecular motion on the order of nm distances is converted into the macroscopic movements that are possible with skeletal muscle. Muscle anatomy provides a structural basis for understanding the basic mechanical properties of skeletal muscle -- namely, the length-tension relationship and the force-velocity relationships. The length-tension relationship illustrates that muscle force generation is extremely length dependent due to the interdigitation of the contractile filaments. The force-velocity relationship is characterized by a rapid force drop in muscle with increasing shortening velocity and a rapid rise in force when muscles are forced to lengthen. Finally, muscle architecture -- the number and arrangement of muscle fibers -- has a profound effect on the magnitude of muscle force generated and the magnitude of muscle excursion. These concepts demonstrate the elegant manner in which muscle acts as a biologically regenerating linear motor. These concepts can be used in developing artificial muscles as well as in performing surgical reconstructive procedures with various donor muscles.
The speciation of the proteome
Jungblut, Peter R; Holzhütter, Hermann G; Apweiler, Rolf; Schlüter, Hartmut
2008-01-01
Introduction In proteomics a paradox situation developed in the last years. At one side it is basic knowledge that proteins are post-translationally modified and occur in different isoforms. At the other side the protein expression concept disclaims post-translational modifications by connecting protein names directly with function. Discussion Optimal proteome coverage is today reached by bottom-up liquid chromatography/mass spectrometry. But quantification at the peptide level in shotgun or bottom-up approaches by liquid chromatography and mass spectrometry is completely ignoring that a special peptide may exist in an unmodified form and in several-fold modified forms. The acceptance of the protein species concept is a basic prerequisite for meaningful quantitative analyses in functional proteomics. In discovery approaches only top-down analyses, separating the protein species before digestion, identification and quantification by two-dimensional gel electrophoresis or protein liquid chromatography, allow the correlation between changes of a biological situation and function. Conclusion To obtain biological relevant information kinetics and systems biology have to be performed at the protein species level, which is the major challenge in proteomics today. PMID:18638390
Molecular and Cellular Biophysics
NASA Astrophysics Data System (ADS)
Jackson, Meyer B.
2006-01-01
Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems. Offers a unique synthesis of concepts across a wide range of biophysical topics Provides a rigorous theoretical treatment, alongside applications in biological systems Author has been teaching biophysics for nearly 25 years
Establishing Research and Management Priorities for Invasive Water Primroses (Ludwigia spp.)
2016-02-01
among the most aggressive aquatic invasive plant invaders in the world. These aquatic Ludwigia species can impart severe ecological , economic, and...global trade and projected climate change. This technical report presents an overview of the biology and ecology of these invasive plant species, along...primrose species, like other invasive plants , must be grounded in basic knowledge of the biology and ecology of the species and their responses to
ERIC Educational Resources Information Center
Edmondson, Katherine M.
A new problem-based course in molecular biology, genetics, and cancer for first-year veterinary students was developed at the College of Veterinary Medicine at Cornell University (New York). The course was developed out of a desire to foster student-centered and lifelong learning and to integrate basic and clinical science knowledge despite a lack…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
All five units, developed for the Dade County Florida Quinmester Program, included in this collection concern some aspect of marine studies. Except for "Recreation and the Sea," intended to give students basic seamanship skills and experience of other marine recreation, all units are designed for students with a background in biology or…
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Midway, S.R.; Wagner, Tyler
2016-01-01
Despite being a large, conspicuous teleost with a worldwide tropical and temperate distribution, the giant oarfish Regalecus spp. remain very rare fish species in terms of scientific sampling. Subsequently, very little biological information is known about Regalecus spp. and almost nothing has been concluded in the field of age and growth (Roberts, 2012). No studies of otoliths or temporal (annual) markings on any hard structures have been reported, and to our knowledge otoliths have never been recovered from any specimens (Tyson Roberts, personal communication),although a few texts do provide illustrations of Regalecus sp. otoliths (Lin and Chang, 2012; Nolf, 2013). Further inferential difficulty comes from the fact that age and growth studies of any Lampridiforme species are rare. Lampris guttatus is perhaps the only Lampridiforme species for which any biological information has been reported(Francis et al., 2004), which stems from the species commercial value. In order to begin understanding any species (for later purposes of management, conservation, etc.), basic biological information is needed. In the present study, we examine not only the first Regalecus russellii otolith, but provide suggestions toward future work that should direct data collection that can be used to generate basic biological information for this species.
Sandalwood: basic biology, tissue culture, and genetic transformation.
Teixeira da Silva, Jaime A; Kher, Mafatlal M; Soner, Deepak; Page, Tony; Zhang, Xinhua; Nataraj, M; Ma, Guohua
2016-04-01
Sustainable resource preservation of Santalum species that yield commercially important forest products is needed. This review provides an understanding of their basic biology, propagation, hemi-parasitic nature, reproductive biology, and biotechnology. Many species of the genus Santalum (Santalaceae) have been exploited unremittingly for centuries, resulting in the extinction of one and the threatened status of three other species. This reduction in biodiversity of sandalwood has resulted from the commercial exploitation of its oil-rich fragrant heartwood. In a bid to conserve the remaining germplasm, biotechnology provides a feasible, and effective, means of propagating members of this genus. This review provides a detailed understanding of the biological mechanisms underlying the success or failure of traditional propagation, including a synopsis of the process of hemi-parasitism in S. album, and of the suitability of host plants to sustain the growth of seedlings and plants under forestry production. For the mass production of economically important metabolites, and to improve uniformity of essential oils, the use of clonal material of similar genetic background for cultivation is important. This review summarizes traditional methods of sandalwood production with complementary and more advanced in vitro technologies to provide a basis for researchers, conservationists and industry to implement sustainable programs of research and development for this revered genus.
A Transparent Window into Biology: A Primer on Caenorhabditis elegans.
Corsi, Ann K; Wightman, Bruce; Chalfie, Martin
2015-06-01
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.
Centers of Excellence on Environmental Health Disparities Research
collaborative effort that encourages basic, biological, clinical, epidemiological, behavioral, and/or social scientific investigations of disease conditions that are known to be a significant burden in low socioeconomic and health disparate populations
Brain-Based Research & Language Teaching.
ERIC Educational Resources Information Center
Christison, MaryAnn
2002-01-01
Introduces brain-based teaching and learning. Reviews basic biological facts about the human brain and discusses seven principles based on recent research that have practical benefits for English-as-a-Foreign-Language teachers. (Author/VWL)
Laminopathies and the long strange trip from basic cell biology to therapy
Worman, Howard J.; Fong, Loren G.; Muchir, Antoine; Young, Stephen G.
2009-01-01
The main function of the nuclear lamina, an intermediate filament meshwork lying primarily beneath the inner nuclear membrane, is to provide structural scaffolding for the cell nucleus. However, the lamina also serves other functions, such as having a role in chromatin organization, connecting the nucleus to the cytoplasm, gene transcription, and mitosis. In somatic cells, the main protein constituents of the nuclear lamina are lamins A, C, B1, and B2. Interest in the nuclear lamins increased dramatically in recent years with the realization that mutations in LMNA, the gene encoding lamins A and C, cause a panoply of human diseases (“laminopathies”), including muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. Here, we review the laminopathies and the long strange trip from basic cell biology to therapeutic approaches for these diseases. PMID:19587457
Freemont, Anthony J; Hoyland, Judith
2006-01-01
Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.