Sample records for basic biological questions

  1. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  2. Microfluidic tools for cell biological research

    PubMed Central

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  3. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  4. Diversity and history as drivers of helminth systematics and biology

    USDA-ARS?s Scientific Manuscript database

    Systematics is the foundation for biology. It provides a basic evolutionary map to discover, characterize and interpret global diversity and our place in the biosphere. It also allows us to explore questions related to host associations, life history, genetics, and patterns of infection and disease,...

  5. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  6. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  7. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    NASA Astrophysics Data System (ADS)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  8. Genetic and Genomic Toolbox of Zea mays

    PubMed Central

    Nannas, Natalie J.; Dawe, R. Kelly

    2015-01-01

    Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912

  9. Quorum sensing: a quantum perspective.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  10. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  11. Ludwig von Bertalanffy's organismic view on the theory of evolution.

    PubMed

    Drack, Manfred

    2015-03-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.

  12. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277

  13. NANOPARTICLES AND THEIR APPLICATIONS IN CELL AND MOLECULAR BIOLOGY

    PubMed Central

    Wang, Edina C.; Wang, Andrew Z.

    2013-01-01

    Nanoparticles can be engineered with distinctive compositions, sizes, shapes, and surface chemistries to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes. PMID:24104563

  14. Integrating the dimensions of sex and gender into basic life sciences research: methodologic and ethical issues.

    PubMed

    Holdcroft, Anita

    2007-01-01

    The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present-day laboratory models to design methods to best represent the age-related changes, comorbidity, and variations experienced by each sex in clinical medicine.

  15. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    NASA Astrophysics Data System (ADS)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  16. Serving epigenetics before its time.

    PubMed

    Juengst, Eric T; Fishman, Jennifer R; McGowan, Michelle L; Settersten, Richard A

    2014-10-01

    Society prizes the rapid translation of basic biological science into ways to prevent human illness. However, the premature rush to take murine epigenetic findings in these directions makes impossible demands on prospective parents and triggers serious social and ethical questions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Role of basic biological sciences in clinical orthodontics: a case series.

    PubMed

    Davidovitch, Ze'ev; Krishnan, Vinod

    2009-02-01

    Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.

  19. Self-assessment of current knowledge in nuclear medicine (second edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, J.B.; Frey, G.D.; Cooper, J.F.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first editionmore » but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.« less

  20. Ludwig von Bertalanffy's Organismic View on the Theory of Evolution

    PubMed Central

    Drack, Manfred

    2015-01-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 77–90, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:25727202

  1. Regenerative endodontics and tissue engineering: what the future holds?

    PubMed

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Feeding Behaviors in Cellular Slime Molds: A Microbial System To Study Competition.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes a laboratory project for first-year biology students that examines competition among various cellular slime molds. After a brief introduction to the topic of competition and basic life history information about cellular slime molds, students choose a question and design original experiments to seek an answer. (Author/AIM)

  3. Research, the lifeline of medicine.

    PubMed

    Kornberg, A

    1976-05-27

    Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.

  4. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  5. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  6. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    PubMed Central

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers suitable for high-school students. Since a scientific paper poses a research question, demonstrates the events that led to the answer, and poses new questions, we attempted to examine the effect of studying through research papers on students' ability to pose questions. Students were asked before, during, and after instruction what they found interesting to know about embryonic development. In addition, we monitored students' questions, which were asked orally during the lessons. Questions were scored according to three categories: properties, comparisons, and causal relationships. We found that before learning through research papers, students tend to ask only questions of the properties category. In contrast, students tend to pose questions that reveal a higher level of thinking and uniqueness during or following instruction with research papers. This change was not observed during or following instruction with a textbook. We suggest that learning through research papers may be one way to provide a stimulus for question-asking by high-school students and results in higher thinking levels and uniqueness. PMID:14673492

  7. Tendon basic science: Development, repair, regeneration, and healing.

    PubMed

    Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J

    2015-06-01

    Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    PubMed

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  9. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    PubMed Central

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed. PMID:22383617

  10. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  11. Isozyme studies of forest insect populations

    Treesearch

    Molly W. Stock

    1981-01-01

    Data from isozyme analyses are being used to help answer many basic biological questions about forest insect pests and to provide information for a variety of other purposes as well. This paper summarizes the uses of isozymes in quality control of laboratory insect colonies, in studies of insecticide response, as markers of insect parasitoids, and in investigations of...

  12. Update on the genomics and basic biology of Brachypodium: International Brachypodium Initiative (IBI).

    PubMed

    Catalan, Pilar; Chalhoub, Boulos; Chochois, Vincent; Garvin, David F; Hasterok, Robert; Manzaneda, Antonio J; Mur, Luis A J; Pecchioni, Nicola; Rasmussen, Søren K; Vogel, John P; Voxeur, Aline

    2014-07-01

    The scientific presentations at the First International Brachypodium Conference (abstracts available at http://www.brachy2013.unimore.it) are evidence of the widespread adoption of Brachypodium distachyon as a model system. Furthermore, the wide range of topics presented (genome evolution, roots, abiotic and biotic stress, comparative genomics, natural diversity, and cell walls) demonstrates that the Brachypodium research community has achieved a critical mass of tools and has transitioned from resource development to addressing biological questions, particularly those unique to grasses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  14. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    PubMed Central

    Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed for use as a pre- and posttest to measure student learning gains. To develop the assessment, we first worked with faculty to create a set of learning goals that targeted important concepts in the field and seemed likely to be emphasized by most instructors teaching these subjects. We interviewed students using open-ended questions to identify commonly held misconceptions, formulated multiple-choice questions that included these ideas as distracters, and reinterviewed students to establish validity of the instrument. The assessment was then evaluated by 25 biology experts and modified based on their suggestions. The complete revised assessment was administered to more than 1300 students at three institutions. Analysis of statistical parameters including item difficulty, item discrimination, and reliability provides evidence that the IMCA is a valid and reliable instrument with several potential uses in gauging student learning of key concepts in molecular and cell biology. PMID:21123692

  15. Structural marsh management research priorities

    USGS Publications Warehouse

    Cahoon, Donald R.; Groat, Charles G.

    1989-01-01

    The paper presents a prioritized list of research issues related to structural marsh management developed by a multidisciplinary panel of regulatory agency representatives, landowners, and scientists. More than 75 issues were identified concerning landscape changes, influence on ecological processes (i.e., hydrologic, biologic, and edaphic factors), habitat quality, cumulative impacts, and management approach. These issues were prioritized and organized around six basic questions regulatory personnel must try to answer for each marsh management plan application. The six questions deal with the influence of marsh management on, in order of most immediate need, marsh loss and health, fisheries, wildlife, habitat change, water quality, and cumulative effects.

  16. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    PubMed

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  17. Palatal Seam Disintegration: To Die or Not to Die? That Is No Longer the Question

    PubMed Central

    Nawshad, Ali

    2008-01-01

    Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial step of palate development. Complete disintegration of the MES is the final essential phase of palatal confluency with surrounding mesenchymal cells. In general, the mechanisms of palatal seam disintegration are not overwhelmingly complex, but given the large number of interacting constituents; their complicated circuitry involving feedforward, feedback, and crosstalk; and the fact that the kinetics of interaction matter, this otherwise simple mechanism can be quite difficult to interpret. As a result of this complexity, apparently simple but highly important questions remain unanswered. One such question pertains to the fate of the palatal seam. Such questions may be answered by detailed and extensive quantitative experimentation of basic biological studies (cellular, structural) and the newest molecular biological determinants (genetic/dye cell lineage, gene activity, kinase/enzyme activity), as well as animal model (knockouts, transgenic) approaches. System biology and cellular kinetics play a crucial role in cellular MES function; omissions of such critical contributors may lead to inaccurate understanding of the fate of MES. Excellent progress has been made relevant to elucidation of the mechanism(s) of palatal seam disintegration. Current understanding of palatal seam disintegration suggests epithelial–mesenchymal transition and/or programmed cell death as two most common mechanisms of MES disintegration. In this review, I discuss those two mechanisms and the differences between them. PMID:18629865

  18. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    PubMed Central

    Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine

    2012-01-01

    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082

  19. The weapon potential of a microbe.

    PubMed

    Casadevall, Arturo; Pirofski, Liise-anne

    2004-06-01

    The designation of a microbe as a potential biological weapon poses the vexing question of how such a decision is made given the many pathogenic microbes that cause disease. Analysis of the properties of microbes that are currently considered biological weapons against humans revealed no obvious relationship to virulence, except that all are pathogenic for humans. Notably, the weapon potential of a microbe rather than its pathogenic properties or virulence appeared to be the major consideration when categorizing certain agents as biological weapons. In an effort to standardize the assessment of the risk that is posed by microbes as biological warfare agents using the basic principles of microbial communicability (defined here as a parameter of transmission) and virulence, a simple formula is proposed for estimating the weapon potential of a microbe.

  20. An emerging synthesis between community ecology and evolutionary biology.

    PubMed

    Johnson, Marc T J; Stinchcombe, John R

    2007-05-01

    A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.

  1. Historical Contingency in Controlled Evolution

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2014-12-01

    A basic question in evolution is dealing with the nature of an evolutionary memory. At thermodynamic equilibrium, at stable stationary states or other stable attractors the memory on the path leading to the long-time solution is erased, at least in part. Similar arguments hold for unique optima. Optimality in biology is discussed on the basis of microbial metabolism. Biology, on the other hand, is characterized by historical contingency, which has recently become accessible to experimental test in bacterial populations evolving under controlled conditions. Computer simulations give additional insight into the nature of the evolutionary memory, which is ultimately caused by the enormous space of possibilities that is so large that it escapes all attempts of visualization. In essence, this contribution is dealing with two questions of current evolutionary theory: (i) Are organisms operating at optimal performance? and (ii) How is the evolutionary memory built up in populations?

  2. Thirty-sixth Lauriston S. Taylor Lecture on radiation protection and measurements--from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology.

    PubMed

    Brooks, Antone L

    2013-11-01

    My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions by holding meetings with individuals involved in basic low-dose research, regulators, and the news media. As the scientists presented their "exciting data" that suggested that risk was overestimated, many of the regulators simply said, "We cannot use such data." The newspaper people said, "It is not possible to get such information by my editors." In spite of these difficulties, research results from basic science must be made available and considered by members of the public as well as by those that make regulatory recommendations. Public outreach of the data is critical and must continue to be a future focus to address properly the question of, "Who cares?" My journey in science, like many of yours, has been a mixture of chasing money, beatings, and the joys of unique and interesting research results. Perhaps through our experiences, we can improve research environments, funding, and use of the valuable information that is generated. Scientists that study at all levels of biological organization, from the environment to the laboratory and human epidemiology, must share expertise and data to address the What Ifs, Wows, and Who Cares of radiation biology.

  3. Analytical electron microscopy in the study of biological systems.

    PubMed

    Johnson, D E

    1986-01-01

    The AEM is a powerful tool in biological research, capable of providing information simply not available by other means. The use of a field emission STEM for this application can lead to a significant improvement in spatial resolution in most cases now allowed by the quality of the specimen preparation but perhaps ultimately limited by the effects of radiation damage. Increased elemental sensitivity is at least possible in selected cases with electron energy-loss spectrometry, but fundamental aspects of ELS will probably confine its role to that of a limited complement to EDS. The considerable margin for improvement in sensitivity of the basic analytical technique means that the search for technological improvement will continue. Fortunately, however, current technology can also continue to answer important biological questions.

  4. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  5. The use of self-determination theory to foster environmental motivation in an environmental biology course

    NASA Astrophysics Data System (ADS)

    Darner, Rebekka

    A scientifically literate person is one who understands the nature of science, its processes, products, and their appropriate application to decision-making contexts. The impetus to make informed decisions about environmental issues is environmental motivation. I examined students' environmental motivation, its relationship to scientific knowledge, and how environmental motivation can be fostered in a science classroom. This study took place in a college-level environmental biology course in which the instructor attempted to support students' basic psychological needs, as defined by self-determination theory (SDT). The first question was to what extent does an SDT-guided environmental biology course differ from a non-SDT-guided course in the degree to which it fostered self-determined motivation toward the environment. The administration of a well-validated scale to two sections before, after, and six months following the end of the course indicated that SDT-guided instruction is a plausible way to foster environmental motivation in the classroom. The second question was what are the multiple influences on fostering self-determined motivation toward the environment in an SDT-guided course. Path analysis indicated that environmental motivation can be partially accomplished in an environmental biology course by conveying to students that they are cared for, are connected to others, and can trust others while solving environmental problems. The third question sought to characterize students' scientific conceptualizations as they solve environmental problems and the extent to which their conceptualizations relate to the satisfaction of their need for competence. Students were videotaped during in-class problem-solving, after which stimulated-recall interviews were conducted. Grounded theory and an established coding scheme were combined to analyze these data, which resulted in three grounded hypotheses about what characterizes students' scientific knowledge when they feel highly competent about solving environmental problems. The final research question sought to identify which classroom features students cite when they indicate that their basic psychological needs are being fulfilled or undermined. Grounded analysis resulted in seven features of the instructional environment. This dissertation marks the first application of SDT to a formal environmental education setting in which a goal was to foster environmental motivation. Several research prospects and a learning cycle based on findings are proposed.

  6. Can Simple Biophysical Principles Yield Complicated Biological Functions?

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2011-03-01

    About once a year, a new regulatory paradigm is discovered in cell biology. As of last count, eukaryotic cells have more than 40 distinct ways of regulating protein concentration and function. Regulatory possibilities include site-specific phosphorylation, epigenetics, alternative splicing, mRNA (re)localization, and modulation of nucleo-cytoplasmic transport. This raises a simple question. Do all the remarkable things cells do, require an intricately choreographed supporting cast of hundreds of molecular machines and associated signaling networks? Alternatively, are there a few simple biophysical principles that can generate apparently very complicated cellular behaviors and functions? I'll discuss two problems, spatial organization of the bacterial chemotaxis system and nucleo-cytoplasmic transport, where the latter might be true. In both cases, the ability to precisely quantify biological organization and function, at the single-molecule level, helped to find signatures of basic biological organizing principles.

  7. Basic autonomy as a fundamental step in the synthesis of life.

    PubMed

    Ruiz-Mirazo, Kepa; Moreno, Alvaro

    2004-01-01

    In the search for the primary roots of autonomy (a pivotal concept in Varela's comprehensive understanding of living beings), the theory of autopoiesis provided an explicit criterion to define minimal life in universal terms, and was taken as a guideline in the research program for the artificial synthesis of biological systems. Acknowledging the invaluable contribution of the autopoietic school to present biological thinking, we offer an alternative way of conceiving the most basic forms of autonomy. We give a bottom-up account of the origins of "self-production" (or self-construction, as we propose to call it), pointing out which are the minimal material and energetic requirements for the constitution of basic autonomous systems. This account is, indeed, committed to the project of developing a general theory of biology, but well grounded in the universal laws of physics and chemistry. We consider that the autopoietic theory was formulated in highly abstract terms and, in order to advance in the implementation of minimal autonomous systems (and, at the same time, make major progress in exploring the origins of life), a more specific characterization of minimal autonomous systems is required. Such a characterization will not be drawn from a review of the autopoietic criteria and terminology (à la Fleischaker) but demands a whole reformulation of the question: a proper naturalization of the concept of autonomy. Finally, we also discuss why basic autonomy, according to our account, is necessary but not sufficient for life, in contrast with Varela's idea that autopoiesis was a necessary and sufficient condition for it.

  8. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.

  9. Translating human biology (introduction to special issue).

    PubMed

    Brewis, Alexandra A; Mckenna, James J

    2015-01-01

    Introducing a special issue on "Translating Human Biology," we pose two basic questions: Is human biology addressing the most critical challenges facing our species? How can the processes of translating our science be improved and innovated? We analyze articles published in American Journal of Human Biology from 2004-2013, and find there is very little human biological consideration of issues related to most of the core human challenges such as water, energy, environmental degradation, or conflict. There is some focus on disease, and considerable focus on food/nutrition. We then introduce this special volume with reference to the following articles that provide exemplars for the process of how translation and concern for broader context and impacts can be integrated into research. Human biology has significant unmet potential to engage more fully in translation for the public good, through consideration of the topics we focus on, the processes of doing our science, and the way we present our domain expertise. © 2014 Wiley Periodicals, Inc.

  10. Random amplified polymorphic DNA PCR in the teaching of molecular epidemiology.

    PubMed

    Reinoso, Elina B; Bettera, Susana G

    2016-07-08

    In this article, we describe a basic practical laboratory designed for fifth-year undergraduate students of Microbiology as part of the Epidemiology course. This practice provides the students with the tools for molecular epidemiological analysis of pathogenic microorganisms using a rapid and simple PCR technique. The aim of this work was to assay RAPD-PCR technique in order to infer possible epidemiological relationships. The activity gives students an appreciation of the value of applying a simple molecular biological method as RAPD-PCR to a discipline-specific question. It comprises a three-session laboratory module to genetically assay DNAs from strains isolated from a food outbreak. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):391-396, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  11. Virtual immunology: software for teaching basic immunology.

    PubMed

    Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio

    2013-01-01

    As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.

  12. Problem-based learning: Using students' questions to drive knowledge construction

    NASA Astrophysics Data System (ADS)

    Chin, Christine; Chia, Li-Gek

    2004-09-01

    This study employed problem-based learning for project work in a year 9 biology class. The purpose of the study was to investigate (a) students' inspirations for their self-generated problems and questions, (b) the kinds of questions that students asked individually and collaboratively, and (c) how students' questions guided them in knowledge construction. Data sources included observation and field notes, students' written documents, audiotapes and videotapes of students working in groups, and student interviews. Sources of inspiration for students' problems and questions included cultural beliefs and folklore; wonderment about information propagated by advertisements and the media; curiosity arising from personal encounters, family members' concerns, or observations of others; and issues arising from previous lessons in the school curriculum. Questions asked individually pertained to validation of common beliefs and misconceptions, basic information, explanations, and imagined scenarios. The findings regarding questions asked collaboratively are presented as two assertions. Assertion 1 maintained that students' course of learning were driven by their questions. Assertion 2 was that the ability to ask the right'' questions and the extent to which these could be answered, were important in sustaining students' interest in the project. Implications of the findings for instructional practice are discussed.

  13. Laws, causation, and explanation in the special sciences.

    PubMed

    Kim, Jaegwon

    2005-01-01

    There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.

  14. Pneumocystis

    PubMed Central

    Gigliotti, Francis; Limper, Andrew H.; Wright, Terry

    2014-01-01

    Since its initial misidentification as a trypanosome some 100 years ago, Pneumocystis has remained recalcitrant to study. Although we have learned much, we still do not have definitive answers to such basic questions as, where is the reservoir of infection, how does Pneumocystis reproduce, what is the mechanism of infection, and are there true species of Pneumocystis? The goal of this review is to provide the reader the most up to date information available about the biology of Pneumocystis and the disease it produces. PMID:25367973

  15. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Initiatives in biological research in Indian psychiatry

    PubMed Central

    Shrivatava, Amresh

    2010-01-01

    Biological psychiatry is an exploratory science for mental health. These biological changes provide some explicit insight into the complex area of ‘brain-mind and behavior’. One major achievement of research in biological field is the finding to explain how biological factors cause changes in behavior. In India, we have a clear history of initiatives in research from a biological perspective, which goes back to 1958. In the last 61 years, this field has seen significant evolution, precision and effective utilization of contemporary technological advances. It is a matter of great pride to see that in spite of difficult times in terms of challenges of practice and services, administration, resource, funding and manpower the zest for research was very forthcoming. There was neither dedicated time nor any funding for conducting research. It came from the intellectual insight of our fore fathers in the field of mental health to gradually grow to the state of strategic education in research, training in research, international research collaborations and setting up of internationally accredited centers. During difficult economic conditions in the past, the hypothesis tested and conclusions derived have not been so important. It is more important how it was done, how it was made possible and how robust traditions were established. Almost an entire spectrum of biological research has been touched upon by Indian researchers. Some of these are electroconvulsive therapy, biological markers, neurocognition, neuroimaging, neuroendocrine, neurochemistry, electrophysiology and genetics. A lot has been published given the limited space in the Indian Journal of Psychiatry and other medical journals published in India. A large body of biological research conducted on Indian patients has also been published in International literature (which I prefer to call non-Indian journals). Newer research questions in biological psychiatry, keeping with trend of international standards are currently being investigated by the younger generation with great enthusiasm. What we have achieved so far is the foundation work in last 60 years. Our main challenge in development of biological psychiatry research in India remains resources in terms of manpower, funding and dedicated time for research psychiatrists. Developing basic sciences laboratories, discrete research questions, high quality methodology, and logistical support are some of the essentials. In the present time the culture of research has changed. It is specific and evidence-based. We have time-tested examples of International collaborative research. We need to get more resources, develop education, collaboration and effective leadership. In times to come, India will provide international leadership in basic and clinical biological psychiatry. There is hope. PMID:21836666

  17. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time.

    PubMed

    Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G

    2014-01-20

    Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of "biologically basic to socially specific" information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Using graph-based assessments within socratic tutorials to reveal and refine students' analytical thinking about molecular networks.

    PubMed

    Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W

    2012-01-01

    Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.

  19. Light, time, and the physiology of biotic response to rapid climate change in animals.

    PubMed

    Bradshaw, William E; Holzapfel, Christina M

    2010-01-01

    Examination of temperate and polar regions of Earth shows that the nonbiological world is exquisitely sensitive to the direct effects of temperature, whereas the biological world is largely organized by light. Herein, we discuss the use of day length by animals at physiological and genetic levels, beginning with a comparative experimental study that shows the preeminent role of light in determining fitness in seasonal environments. Typically, at seasonally appropriate times, light initiates a cascade of physiological events mediating the input and interpretation of day length to the output of specific hormones that ultimately determine whether animals prepare to develop, reproduce, hibernate, enter dormancy, or migrate. The mechanisms that form the basis of seasonal time keeping and their adjustment during climate change are reviewed at the physiological and genetic levels. Future avenues for research are proposed that span basic questions from how animals transition from dependency on tropical cues to temperate cues during range expansions, to more applied questions of species survival and conservation biology during periods of climatic stress.

  20. Unsolved problems in biology--The state of current thinking.

    PubMed

    Dev, Sukhendu B

    2015-03-01

    Many outstanding problems have been solved in biology and medicine for which scientists have been awarded prestigious prizes including the Nobel Prize, Lasker Award and Breakthrough Prizes in life sciences. These have been the fruits of years of basic research. From time to time, publications have appeared listing "unsolved" problems in biology. In this article, I ask the question whether it is possible to have such a list, if not a unique one, at least one that is analogous to the Millennium Prize in mathematics. My approach to finding an answer to this question was to gather views of leading biologists. I have also included my own views. Analysis of all the responses received over several years has convinced me that it is difficult, but not impossible, to have such a prize. Biology is complex and very interdisciplinary these days at times involving large numbers of teams, unlike mathematics, where Andrew Wiles spent seven years in complete isolation and secrecy solving Fermat's last theorem. Such an approach is simply not possible in biology. Still I would like to suggest that a similar prize can be established by a panel of distinguished scientists. It would be awarded to those who solved one of the listed problems in biology that warrant a verifiable solution. Despite many different opinions, I found that there is some commonality in the responses I received - I go on to discuss what these are and how they may impact future thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Emerging concepts and future challenges in innate lymphoid cell biology

    PubMed Central

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  2. Systemic lupus erythematosus: Clinical and experimental aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolen, J.S.

    1987-01-01

    This text covers questions related to the history, etiology, pathogenesis, clinical aspects and therapy of systematic lupus erythematosus (SLE). Both animal models and human SLE are considered. With regard to basic science, concise information on cellular immunology, autoantibodies, viral aspects and molecular biology in SLE is provided. Clinical topics then deal with medical, dermatologic, neurologic, radiologic, pathologic, and therapeutic aspects. The book not only presents the most recent information on clinical and experimental insights, but also looks at future aspects related to the diagnosis and therapy of SLE.

  3. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  4. Structures, Not Strings: Linguistics as Part of the Cognitive Sciences.

    PubMed

    Everaert, Martin B H; Huybregts, Marinus A C; Chomsky, Noam; Berwick, Robert C; Bolhuis, Johan J

    2015-12-01

    There are many questions one can ask about human language: its distinctive properties, neural representation, characteristic uses including use in communicative contexts, variation, growth in the individual, and origin. Every such inquiry is guided by some concept of what 'language' is. Sharpening the core question--what is language?--and paying close attention to the basic property of the language faculty and its biological foundations makes it clear how linguistics is firmly positioned within the cognitive sciences. Here we will show how recent developments in generative grammar, taking language as a computational cognitive mechanism seriously, allow us to address issues left unexplained in the increasingly popular surface-oriented approaches to language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Principle directions for the creation and organization of the system of sanitary-epidemiological safety during the preparations for the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi].

    PubMed

    Onishchenko, G G; Bragina, I V; Ezhlova, E B; Demina, V P; Gorskiĭ, A A; Gus'kov, A S; Aksenova, O I; Ivanov, G E; Klindukhov, V P; Nikolaevich, P N; Grechanaia, T B; Kulichenko, A N; Maletskaia, O V; Manin, E A; Parkhomenko, V V; Kulichenko, O A

    2015-01-01

    The paper generalizes the experience of formation of protection system against biological threats and ensuring sanitary and epidemiological welfare during preparation for the XXII Olympic Winter Games and XI Paralympic Winter Games of 2014 in Sochi. The basic steps for creating this system, since 2007, participation and role of Rospotrebnadzor in this process are shown. The paper deals with such questions as the governmental and administrative structures with federal agencies interaction, development of a regulatory framework governing the safety system of the Olympic Games, development of algorithms of information exchange and management decisions, biological safety in developing infrastructure in Sochi.

  6. Tilting at Quixotic Trait Loci (QTL): An Evolutionary Perspective on Genetic Causation

    PubMed Central

    Weiss, Kenneth M.

    2008-01-01

    Recent years have seen great advances in generating and analyzing data to identify the genetic architecture of biological traits. Human disease has understandably received intense research focus, and the genes responsible for most Mendelian diseases have successfully been identified. However, the same advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in basically all species, and is consistent with evolutionary expectations, raising challenging questions about the best way to approach and understand biological complexity. PMID:18711218

  7. Physical Biology of the Materials-Microorganism Interface.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Cestellos-Blanco, Stefano; Lim, Jongwoo; Liu, Chong; Yang, Peidong

    2018-02-14

    Future solar-to-chemical production will rely upon a deep understanding of the material-microorganism interface. Hybrid technologies, which combine inorganic semiconductor light harvesters with biological catalysis to transform light, air, and water into chemicals, already demonstrate a wide product scope and energy efficiencies surpassing that of natural photosynthesis. But optimization to economic competitiveness and fundamental curiosity beg for answers to two basic questions: (1) how do materials transfer energy and charge to microorganisms, and (2) how do we design for bio- and chemocompatibility between these seemingly unnatural partners? This Perspective highlights the state-of-the-art and outlines future research paths to inform the cadre of spectroscopists, electrochemists, bioinorganic chemists, material scientists, and biologists who will ultimately solve these mysteries.

  8. Moonshot Science-Risks and Benefits.

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2016-08-30

    Ever since the successful Apollo 11 Moon landing in 1969, a "moonshot" has come to signify a bold effort to achieve a seemingly impossible task. The Obama administration recently called for a moonshot to cure cancer, an initiative that has elicited mixed responses from researchers who welcome additional funding but worry about raising expectations. We suggest that a successful moonshot requires a sufficient understanding of the basic science underlying a problem in question so that efforts can be focused on engineering a solution. Current gaps in our basic knowledge of cancer biology make the cancer moonshot a uniquely challenging endeavor. Nevertheless, history has shown that intensive research efforts have frequently yielded conceptual and technological breakthroughs with unanticipated benefits for society. We expect that this effort will be no different. Copyright © 2016 Casadevall and Fang.

  9. An Introductory "How-to" Guide for Incorporating Microbiome Research into Integrative and Comparative Biology.

    PubMed

    Kohl, Kevin D

    2017-10-01

    Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Fluorescent nucleobases as tools for studying DNA and RNA

    NASA Astrophysics Data System (ADS)

    Xu, Wang; Chan, Ke Min; Kool, Eric T.

    2017-11-01

    Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.

  11. The Synthesis and Biological Characterization of Acetal-Free Mimics of the Tumor-Associated Carbohydrate Antigens.

    PubMed

    Sadraei, Seyed I; Reynolds, Michael R; Trant, John F

    2017-01-01

    Carcinomas express unique carbohydrates, known as tumor-associated carbohydrate antigens (TACAs), on their surface. These are potential targets for anticancer vaccines; however, to date, no such vaccine has reached the clinic. One factor that may complicate the success of this effort is the lability of the glycosidic bond. Acetal-free carbohydrates are analogues that lack the glycosidic linkage by replacing either the endo or exo oxygen with a methylene. This chapter summarizes the seminal syntheses of the mucin TACAs, provides an overview of common techniques for the synthesis of carbasugars and C-glycosides, reviews the syntheses published to date of acetal-free TACA analogues, and provides an overview of their observed biological activity. We conclude by offering a summation of the challenges remaining to the field biologically and the potential that acetal-free TACAs have of answering several basic questions in carbohydrate immunology. © 2017 Elsevier Inc. All rights reserved.

  12. Present and future breast cancer management--bench to bedside and back: a positioning paper of academia, regulatory authorities and pharmaceutical industry.

    PubMed

    Bartsch, R; Frings, S; Marty, M; Awada, A; Berghoff, A S; Conte, P; Dickin, S; Enzmann, H; Gnant, M; Hasmann, M; Hendriks, H R; Llombart, A; Massacesi, C; von Minckwitz, G; Penault-Llorca, F; Scaltriti, M; Yarden, Y; Zwierzina, H; Zielinski, C C

    2014-04-01

    Insights into tumour biology of breast cancer have led the path towards the introduction of targeted treatment approaches; still, breast cancer-related mortality remains relatively high. Efforts in the field of basic research revealed new druggable targets which now await validation within the context of clinical trials. Therefore, questions concerning the optimal design of future studies are becoming even more pertinent. Aspects such as the ideal end point, availability of predictive markers to identify the optimal cohort for drug testing, or potential mechanisms of resistance need to be resolved. An expert panel representing the academic community, the pharmaceutical industry, as well as European Regulatory Authorities met in Vienna, Austria, in November 2012, in order to discuss breast cancer biology, identification of novel biological targets and optimal drug development with the aim of treatment individualization. This article summarizes statements and perspectives provided by the meeting participants.

  13. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  14. Before the long journey: Development of Soviet space biology and medicine

    NASA Technical Reports Server (NTRS)

    Gazenko, O. G.

    1978-01-01

    Academician O. Gazenko, Chief of the Institute of Biomedical Problems, USSR Ministry of Public Health, reviewed the short but intense history of Soviet research in space biology and medicine. The solid academic approach of the Soviet Academy of Sciences in giving a good start at the very beginning of the space age is stressed and key people and institutions who initiated these studies are named. The basic feature of the first period of space biology is seen as the search for answers to a few fundamental questions of survival in space. It is pointed out that the initiated investigations were replaced by refined, in-depth studies of the biological, biophysical, and biochemical processes in human organism in the space environment and the search for methods which should enable cosmonaut crews to live in space for several years during interplanetary journeys. Discussing the typical problems of this effort, Gazenko each time showed how they benefit medical science and practice in general.

  15. What Questions Should I Ask My Doctor?

    MedlinePlus

    ... Trials Database Supporting Research Raising Awareness Our Blog Patient Education Pancreas News Basics of Pancreatic Cancer FAQs The ... Detection- Goggins Lab Sol Goldman Center Discussion Board Patient Education / Basics of Pancreatic Cancer Questions What questions should ...

  16. Evolutionary cell biology: two origins, one objective.

    PubMed

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  17. Evolutionary cell biology: Two origins, one objective

    PubMed Central

    Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley

    2014-01-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  18. Computer literacy for life sciences: helping the digital-era biology undergraduates face today's research.

    PubMed

    Smolinski, Tomasz G

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of computers in their lives, seem to be largely unfamiliar with how computers are being used to pursue and answer such questions. This article describes an innovative undergraduate-level course, titled Computer Literacy for Life Sciences, that aims to teach students the basics of a computerized scientific research pursuit. The purpose of the course is for students to develop a hands-on working experience in using standard computer software tools as well as computer techniques and methodologies used in life sciences research. This paper provides a detailed description of the didactical tools and assessment methods used in and outside of the classroom as well as a discussion of the lessons learned during the first installment of the course taught at Emory University in fall semester 2009.

  19. Biophysical EPR Studies Applied to Membrane Proteins

    PubMed Central

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  20. Interpretation of Genomic Data Questions and Answers

    PubMed Central

    Simon, Richard

    2008-01-01

    Using a question and answer format we describe important aspects of using genomic technologies in cancer research. The main challenges are not managing the mass of data, but rather the design, analysis and accurate reporting of studies that result in increased biological knowledge and medical utility. Many analysis issues address the use of expression microarrays but are also applicable to other whole genome assays. Microarray based clinical investigations have generated both unrealistic hyperbole and excessive skepticism. Genomic technologies are tremendously powerful and will play instrumental roles in elucidating the mechanisms of oncogenesis and in devlopingan era of predictive medicine in which treatments are tailored to individual tumors. Achieving these goals involves challenges in re-thinking many paradigms for the conduct of basic and clinical cancer research and for the organization of interdisciplinary collaboration. PMID:18582627

  1. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics

    PubMed Central

    Bourgard, Catarina; Albrecht, Letusa; Kayano, Ana C. A. V.; Sunnerhagen, Per; Costa, Fabio T. M.

    2018-01-01

    During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research. PMID:29473024

  2. Information Fluxes as Concept for Categorizations of Life

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Georg; Hausmann, M.

    2012-05-01

    Definitions of life are controversially discussed; however, they are mostly depending on bio- evolutionary driven arguments. Here, we propose a systematic, theoretical approach to the question what life is, by categorization and classification of different levels of life. This approach is mainly based on the analysis of information flux occurring in systems being suspicious to be alive, and on the analysis of their power of environmental control. In a first step, we show that all biological definitions of life can be derived from basic physical principles of entropy (number of possible states of a thermodynamic system) and of the energy needed for controlling entropic development. In a next step we discuss how any process where information flux is generated, regardless of its materialization is defined and related to classical definitions of life. In a third step we resume the proposed classification scheme in its most basic way, looking only for existence of data storage, its processing, and its environmental control. We join inhere a short discussion how the materialization of information fluxes can take place depending on the special properties of the four basic physical forces. Having done all this we are able to give everybody a classification catalogue at hand that one can categorize the kind of life one is talking about, thus overcoming the obstacles deriving from the simple appearing question whether something is alive or not. On its most basic level as presented here, our scheme offers a categorization for fire, crystals, prions, viruses, spores, up to cells and even tardigrada and cryostases.

  3. An age of enlightenment for cilia: The FASEB Summer Research Conference on the “Biology of Cilia and Flagella”

    PubMed Central

    Tran, Pamela V.; Lechtreck, Karl F.

    2015-01-01

    From July 19–24, 2015, 169 clinicians and basic scientists gathered in the vertiginous heights of Snowmass, Colorado (2,502 m) for the fourth FASEB summer research conference on the ‘Biology of Cilia and Flagella’. Organizers Maureen Barr (Rutgers University), Iain Drummond (Massachusetts General Hospital/Harvard Medical School), and Jagesh Shah (Brigham and Women’s Hospital/Harvard Medical School) assembled a program filled with new data and forward-thinking ideas documenting the ongoing growth of the field. Sixty oral presentations and 77 posters covered novel aspects of cilia structure, ciliogenesis, cilia motility, cilia-mediated signaling, and cilia-related disease. In this report, we summarize the meeting, highlight exciting developments and discuss open questions. PMID:26597000

  4. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    PubMed

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Creation and implementation of a flipped jigsaw activity to stimulate interest in biochemistry among medical students.

    PubMed

    Williams, Charlene; Perlis, Susan; Gaughan, John; Phadtare, Sangita

    2018-05-06

    Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention. Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve these concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students' reception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, helped to gage their learning by applying this information and work with peers. Students' improved performance especially for answering the comprehension-based questions correctly in the postquiz as well as the depth of information included in the postquiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways. Although this activity was created for medical students, the format of this activity can also be useful for other health-professional students as well as undergraduate and graduate students. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  6. Life-centered ethics, and the human future in space.

    PubMed

    Mautner, Michael N

    2009-10-01

    In the future, human destiny may depend on our ethics. In particular, biotechnology and expansion in space can transform life, raising profound questions. Guidance may be found in Life-centered ethics, as biotic ethics that value the basic patterns of organic gene/protein life, and as panbiotic ethics that always seek to expand life. These life-centered principles can be based on scientific insights into the unique place of life in nature, and the biological unity of all life. Belonging to life then implies a human purpose: to safeguard and propagate life. Expansion in space will advance this purpose but will also raise basic questions. Should we expand all life or only intelligent life? Should we aim to create populations of trillions? Should we seed other solar systems? How far can we change but still preserve the human species, and life itself? The future of all life may be in our hands, and it can depend on our guiding ethics whether life will fulfil its full potentials. Given such profound powers, life-centered ethics can best secure future generations. Our descendants may then understand nature more deeply, and seek to extend life indefinitely. In that future, our human existence can find a cosmic purpose.

  7. Properties of Life: Toward a Coherent Understanding of the Organism.

    PubMed

    Rosslenbroich, Bernd

    2016-09-01

    The question of specific properties of life compared to nonliving things accompanied biology throughout its history. At times this question generated major controversies with largely diverging opinions. Basically, mechanistic thinkers, who tried to understand organismic functions in terms of nonliving machines, were opposed by those who tried to describe specific properties or even special forces being active within living entities. As this question included the human body, these controversies always have been of special relevance to our self-image and also touched practical issues of medicine. During the second half of the twentieth century, it seemed to be resolved that organisms are explainable basically as physicochemical machines. Especially from the perspective of molecular biology, it seemed to be clear that organisms need to be explained solely by the chemical functions of their component parts, although some resistance to this view never ceased. This research program has been working quite successfully, so that science today knows a lot about the physiological and chemical processes within organisms. However, again new doubts arise questioning whether the mere continuation of this analytical approach will finally generate a fundamental understanding of living entities. At the beginning of the twenty-first century the quest for a new synthesis actually comes from analytical empiricists themselves. The hypothesis of the present paper is that empirical research has been developed far enough today, that it reveals by itself the materials and the prerequisites to understand more of the specific properties of life. Without recourse to mysterious forces, it is possible to generate answers to this age-old question, just using recent, empirically generated knowledge. This view does not contradict the results of reductionistic research, but rather grants them meaning within the context of organismic systems and also may increase their practical usefulness. Although several of these properties have been discussed before, different authors usually concentrated on a single one or some of them. The paper describes ten specific properties of living entities as they can be deduced from contemporary science. The aim is to demonstrate that the results of empirical research show both the necessity as well as the possibility of the development of a new conception of life to build a coherent understanding of organismic functions.

  8. Fundamental Challenges in Mechanistic Enzymology: Progress toward Understanding the Rate Enhancements of Enzymes

    PubMed Central

    Herschlag, Daniel; Natarajan, Aditya

    2013-01-01

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multi-faceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis. PMID:23488725

  9. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes.

    PubMed

    Herschlag, Daniel; Natarajan, Aditya

    2013-03-26

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.

  10. From high dilutions to digital biology: the physical nature of the biological signal.

    PubMed

    Thomas, Yolène

    2015-10-01

    The memory of water was a radical idea that arose in the laboratory of Jacques Benveniste in the late 1980s. Twenty-five years have passed and yet the often angry debate on its merits continues despite the increasing number of scientists who have reported confirmation of the basic results. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. A parallel can be drawn between this debate on the memory of water, which presumes that the action of molecules is mediated by an electromagnetic phenomenon, and the often acrimonious debate on the transmission of nerve influxes via synaptic transfer of specific molecules, neurotransmitters. The latter debate began in 1921 with the first experiments by Loewi and was still active in 1949, 28 years later. A strong reluctance to accept research that questions basic aspects of long-accepted biochemical paradigms is to be expected. In this paper we will provide a brief summary of experiments relating to the memory of water: the earlier work on high dilutions (HD) and then the experiments, which followed and continue today, on digital biology. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  11. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    PubMed

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  12. The great opportunity: Evolutionary applications to medicine and public health.

    PubMed

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.

  13. Lunar interferometric astronomy: Some basic questions

    NASA Technical Reports Server (NTRS)

    Woolf, Neville

    1992-01-01

    The author examines some basic questions as to why there should be astronomical facilities on the far side of the moon. The questions are ones of appropriateness, i.e., is this a proper use for human resources, what the real goals are, and are the present concepts the best match for the goals.

  14. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    NASA Astrophysics Data System (ADS)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  15. Chrondrogenesis in micromass cultures of embryonic mouse limb mesenchymal cells exposed to microgravity (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Duke, Jackie

    1992-01-01

    A basic question of space biology is whether changes in gravity are perceived at the cellular level. Previous studies with a variety of cells have shown that this is the case, but to date the response of skeletal cells has not been examined, even though the skeleton is sensitive to gravitational changes. The objective of the CELLS Experiment is to examine the effect of microgravity in vitro on a skeletal cell known to be sensitive to gravitational changes both in vivo and in vitro - the mammalian chondrocyte. Various aspects of the experiment are discussed.

  16. Systems Biology Approaches for Understanding Genome Architecture.

    PubMed

    Sewitz, Sven; Lipkow, Karen

    2016-01-01

    The linear and three-dimensional arrangement and composition of chromatin in eukaryotic genomes underlies the mechanisms directing gene regulation. Understanding this organization requires the integration of many data types and experimental results. Here we describe the approach of integrating genome-wide protein-DNA binding data to determine chromatin states. To investigate spatial aspects of genome organization, we present a detailed description of how to run stochastic simulations of protein movements within a simulated nucleus in 3D. This systems level approach enables the development of novel questions aimed at understanding the basic mechanisms that regulate genome dynamics.

  17. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum.

    PubMed

    Alabouvette, Claude; Olivain, Chantal; Migheli, Quirico; Steinberg, Christian

    2009-11-01

    Plant diseases induced by soil-borne plant pathogens are among the most difficult to control. In the absence of effective chemical control methods, there is renewed interest in biological control based on application of populations of antagonistic micro-organisms. In addition to Pseudomonas spp. and Trichoderma spp., which are the two most widely studied groups of biological control agents, the protective strains of Fusarium oxysporum represent an original model. These protective strains of F. oxysporum can be used to control wilt induced by pathogenic strains of the same species. Exploring the mechanisms involved in the protective capability of these strains is not only necessary for their development as commercial biocontrol agents but raises many basic questions related to the determinism of pathogenicity versus biocontrol capacity in the F. oxysporum species complex. In this paper, current knowledge regarding the interaction between the plant and the protective strains is reviewed in comparison with interactions between the plant and pathogenic strains. The success of biological control depends not only on plant-microbial interactions but also on the ecological fitness of the biological control agents.

  18. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    PubMed

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studer, Anthony

    Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C 4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C 4 photosynthesis, the hydration of CO 2 into bicarbonate, and is potentially rate limiting in C 4more » grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C 4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C 4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.« less

  20. Biodiversities and habitabilities : a biologist view

    NASA Astrophysics Data System (ADS)

    Maurel, Marie-Christine

    2015-07-01

    If life were to again take the path it followed billion years ago, nobody can certify that it would take the same path, leading to the same species, the same types of cells, the same organisation. This implies that if life exists - or existed - elsewhere, benefiting from the same initial planetary conditions, it most likely does would not have the same history, or would not have followed the same itinerary. Thus, how can we possibly recognize and/or identify something new, probably completely new that we are unable to conceive and/or to conceptualize? From a materialistic point of view, there is no frontier between what is alive and what is not; this is a basic question for the biology community, mainly via the question of viruses and viroids. It is thus very ambiguous to define the meaning of biomarkers, and even more to search for life elsewhere based strictly on the observations of what we know occurs on Earth. Just as what is 'pathological' in biology provides us with an insight on what is 'normal', the space that lies at the border between the living and the non-living will maybe allow us to envisage other forms of life (that we cannot imagine to-day).

  1. Basics of PD-1 in self-tolerance, infection, and cancer immunity.

    PubMed

    Chikuma, Shunsuke

    2016-06-01

    Successful cancer treatment requires understanding host immune response against tumor cells. PD-1 belongs to the CD28 superfamily of receptors that work as "checkpoints" of immune activation. PD-1 maintains immune self-tolerance to prevent autoimmunity and controls T-cell reaction during infection to prevent excessive tissue damage. Tumor cells that arise from normal tissue acquire mutations that can be targeted by lymphocytes. Accumulating lines of evidence suggest that tumor cells evade host immune attack by expressing physiological PD-1 ligands and stimulating PD-1 on the lymphocytes. Based on this idea, researchers have successfully demonstrated that systemic administration of monoclonal antibodies that inhibit the binding of PD-1 to the ligands reactivated T cells and augmented the anti-cancer immune response. In this review, I summarize the basics of T-cell biology and its regulation by PD-1 and discuss the current understanding and questions about this multifaceted molecule.

  2. Teaching Cell Biology to Nonscience Majors Through Forensics, or How to Design a Killer Course

    PubMed Central

    Arwood, Laura

    2004-01-01

    Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose. Another goal was to maximize the hands-on experience of the nonscience major students. This objective was fulfilled by specific activities such as fingerprinting and DNA typing. One particularly effective teaching tool was a mock murder mystery complete with a Grand Jury trial. Another objective was to improve students' attitudes toward science. This was successful in that students felt more confident in their own scientific abilities after taking the course. In pre/post tests, students answered four questions about their ability to conduct science. All four statements showed a positive shift after the course (p values ranging from .001 to .036, df = 23; n = 24). The emphasis on experiential pedagogy was also shown to increase critical thinking skills. In pre/post testing, students in this course significantly increased their performance on critical thinking assessment tests from 33.3% correct to 45.3% (p = .008, df = 4; n = 24). PMID:15257341

  3. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior.

    PubMed

    Spear, Timothy T; Nishimura, Michael I; Simms, Patricia E

    2017-08-01

    Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets. © Society for Leukocyte Biology.

  4. [Modeling the academic performance of medical students in basic sciences and pre-clinical courses: a longitudinal study].

    PubMed

    Zúñiga, Denisse; Mena, Beltrán; Oliva, Rose; Pedrals, Nuria; Padilla, Oslando; Bitran, Marcela

    2009-10-01

    The study of predictors of academic performance is relevant for medical education. Most studies of academic performance use global ratings as outcome measure, and do not evaluate the influence of the assessment methods. To model by multivariate analysis, the academic performance of medical considering, besides academic and demographic variables, the methods used to assess students' learning and their preferred modes of information processing. Two hundred seventy two students admitted to the medical school of the Pontificia Universidad Católica de Chile from 2000 to 2003. Six groups of variables were studied to model the students' performance in five basic science courses (Anatomy, Biology, Calculus, Chemistry and Physics) and two pre-clinical courses (Integrated Medical Clinic I and IT). The assessment methods examined were multiple choice question tests, Objective Structured Clinical Examination and tutor appraisal. The results of the university admission tests (high school grades, mathematics and biology tests), the assessment methods used, the curricular year and previous application to medical school, were predictors of academic performance. The information processing modes influenced academic performance, but only in interaction with other variables. Perception (abstract or concrete) interacted with the assessment methods, and information use (active or reflexive), with sex. The correlation between the real and predicted grades was 0.7. In addition to the academic results obtained prior to university entrance, the methods of assessment used in the university and the information processing modes influence the academic performance of medical students in basic and preclinical courses.

  5. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  6. Basic-education mexican teachers' knowledge of biotechnology and attitudes about the consumption of genetically modified foods.

    PubMed

    Jiménez-Salas, Zacarías; Campos-Góngora, Eduardo; González-Martínez, Blanca E; Tijerina-Sáenz, Alexandra; Escamilla-Méndez, Angélica D; Ramírez-López, Erik

    2017-09-01

    Over the past few years, a new research field has emerged, focusing on the social-scientific criteria for the study of opinions toward genetically modified foods (GMFs), since these may be limiting factors for the success or failure of these products. Basic education is the first step in the Mexican education system, and teachers may wield an outsized influence on the attitudes and preferences of children, prospective future consumers of these products. To better understand the current state of knowledge of biotechnology issues and opinions toward the consumption of GMF of Mexican teachers, a questionnaire was distributed, and 362 Mexican teachers of basic education responded. The survey included questions about the benefits and risks of consuming GMF. The mean percentage of teachers expressing knowledge of a given topic in biotechnology was 50%. More than 60% of teachers believed that GMFs would be useful in preventing world hunger, while 39.2% considered GMF to be hazards for future generations. Although 47.0% reported not having enough knowledge about these topics, almost all (90.3%) respondents expressed an interest and willingness to learn about biotechnology. In light of the fact that teachers of basic education represent the first and potentially most lasting stage in the education of young children, this survey establishes the urgent need to develop strategies to improve the scientific knowledge of teachers and to facilitate decision making and the promotion of scientific and technological advances for their students. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):396-402, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. [The gender debate from the pedagogic perspective].

    PubMed

    Forster, Johanna

    2004-09-01

    The question of form and extent of biological and/or cultural influences on female and male behaviour and performance is marking a major focus in present scientific research. Accordingly, a broad spectrum of approaches in research and interpretations of results is available. The recent debate on sex and gender is offering two basic objectives for research in education science: First, the critical review of the data and results on sex specifics presented in respect to the articulation of educational aims, topics and methods. Second, the intensified research focus on the developmental consequences of gender and gender roles for boys and girls, women and men. The pedagogical focus is discussed regarding the following three objectives: 1. developmental conditions in early ontogeny, 2. the question of sex specific differences in cognitive abilities in respect to school performance of adolescents, and 3. teaching knowledge on "sex" and "gender" in schools.

  8. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    PubMed Central

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  9. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    PubMed

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  10. Gradient models in molecular biophysics: progress, challenges, opportunities

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  11. Translational bioinformatics: linking the molecular world to the clinical world.

    PubMed

    Altman, R B

    2012-06-01

    Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.

  12. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  13. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    PubMed

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p < 0.0001). The five-day molecular biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Cell biology: at the center of modern biomedicine.

    PubMed

    Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom

    2012-10-01

    How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.

  15. The modern theory of biological evolution: an expanded synthesis.

    PubMed

    Kutschera, Ulrich; Niklas, Karl J

    2004-06-01

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

  16. Student understanding of pH: "i don't know what the log actually is, i only know where the button is on my calculator".

    PubMed

    Watters, Dianne J; Watters, James J

    2006-07-01

    In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve problems associated with the behavior of biological acids to understand the source of student difficulties. The responses given by most students are characteristic of an atomistic approach in which they pay no attention to the structure of the problem and concentrate only on juggling the elements together until they get a solution. Many students reported difficulty in understanding what the question was asking and were unable to interpret a simple graph showing the pH activity profile of an enzyme. The most startling finding was the lack of basic understanding of logarithms and the inability of all except one student to perform a simple calculation on logs without a calculator. This deficiency in high school mathematical skills severely hampered their understanding of pH. This study has highlighted a widespread deficiency in basic mathematical skills among first year undergraduates and a fragmented understanding of acids and bases. Implications for the way in which the concepts of pH and buffers are taught are discussed. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  17. The modern theory of biological evolution: an expanded synthesis

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich; Niklas, Karl J.

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

  18. Development and validation of climate change system thinking instrument (CCSTI) for measuring system thinking on climate change content

    NASA Astrophysics Data System (ADS)

    Meilinda; Rustaman, N. Y.; Firman, H.; Tjasyono, B.

    2018-05-01

    The Climate Change System Thinking Instrument (CCSTI) is developed to measure a system thinking ability in the concept of climate change. CCSTI is developed in four phase’s development including instrument draft development, validation and evaluation including readable material test, expert validation, and field test. The result of field test is analyzed by looking at the readability score in Cronbach’s alpha test. Draft instrument is tested on college students majoring in Biology Education, Physics Education, and Chemistry Education randomly with a total number of 80 college students. Score of Content Validation Index at 0.86, which means that the CCSTI developed are categorized as very appropriate with question indicators and Cronbach’s alpha about 0.605 which mean categorized undesirable to minimal acceptable. From 45 questions of system thinking, there are 37 valid questions spread in four indicators of system thinking, which are system thinking phase I (pre-requirement), system thinking phase II (basic), system thinking phase III (intermediate), and system thinking phase IV (coherent expert).

  19. The evolutionary theory of asymmetry by V. Geodakyan

    NASA Astrophysics Data System (ADS)

    Geodakyan, Sergey V.

    2015-08-01

    For more than 150 years, all biological theories, including those of C. Darwin and Mendel, were based on the idea of synchronous evolution. They fit for unitary monomodal systems (asexual, symmetrical) but do not work for binary (dioecious, asymmetrical) ones. Examples of such binary conjugated differentiations are two sexes, DNA-proteins, autosomes-sex chromosomes, right and left brain hemispheres, and hands. For their understanding, "asynchronous" theories are needed. Such theories were proposed by Russian theoretical biologist Vigen A. Geodakyan for sexual, brain and body, and chromosomal differentiations. All theories are interconnected and are based on the principle of conjugated subsystems. This article covers the basic tenets of the evolutionary theory of asymmetry and answers the following questions: What benefits does lateralization provide? What logic, what principle is it based on? Why do brain hemispheres control the opposite sides of the body? Why laterality is closely related to sex? What are the biological prerequisites of terrorism?

  20. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences†

    PubMed Central

    Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.

    2016-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603

  1. A study of the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained in year 1 and 2.

    PubMed

    Gowda, Veena Bhaskar S; Nagaiah, Bhaskar Hebbani; Sengodan, Bharathi

    2016-01-01

    Medical students build clinical knowledge on the grounds of previously obtained basic knowledge. The study aimed to evaluate the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained during year 1 and 2 of undergraduate medical training. Study was conducted on year 3 MBBS students at AIMST University, Malaysia. Clinical scenarios (25) were constructed and administered to student volunteers, making sure at least one question from each system of year 2 was represented. Feedback was obtained on a five-point Likert scale regarding perception of learning biochemistry in MBBS year 1 versus 2. Mean score of test was 18 (72.11%). Performance was comparatively better in questions related to topics learnt in year 1 and reinforced in year 2 compared to those learnt for first time in year 2. In the feedback obtained, 31% strongly agreed and 56% agreed understanding the subject was helped more by learning biochemistry in year 2 than in year 1. Likewise, 36% strongly agreed and 56% agreed appreciating the importance of biochemistry in patient diagnosis was helped more by learning biochemistry in year 2 than year 1. Thirty one percent strongly agreed and 54% agreed that year 1 biochemistry would have been more relevant if case discussions were done simultaneously. Students retain basic science subjects better and appreciate the importance of basic sciences in patient diagnosis if they are reinforced in the context of clinical situations. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. The new biology: beyond the Modern Synthesis

    PubMed Central

    Rose, Michael R; Oakley, Todd H

    2007-01-01

    Background The last third of the 20th Century featured an accumulation of research findings that severely challenged the assumptions of the "Modern Synthesis" which provided the foundations for most biological research during that century. The foundations of that "Modernist" biology had thus largely crumbled by the start of the 21st Century. This in turn raises the question of foundations for biology in the 21st Century. Conclusion Like the physical sciences in the first half of the 20th Century, biology at the start of the 21st Century is achieving a substantive maturity of theory, experimental tools, and fundamental findings thanks to relatively secure foundations in genomics. Genomics has also forced biologists to connect evolutionary and molecular biology, because these formerly Balkanized disciplines have been brought together as actors on the genomic stage. Biologists are now addressing the evolution of genetic systems using more than the concepts of population biology alone, and the problems of cell biology using more than the tools of biochemistry and molecular biology alone. It is becoming increasingly clear that solutions to such basic problems as aging, sex, development, and genome size potentially involve elements of biological science at every level of organization, from molecule to population. The new biology knits together genomics, bioinformatics, evolutionary genetics, and other such general-purpose tools to supply novel explanations for the paradoxes that undermined Modernist biology. Open Peer Reviewers This article was reviewed by W.F. Doolittle, E.V. Koonin, and J.M. Logsdon. For the full reviews, please go to the Reviewers' Comments section. PMID:18036242

  3. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  4. Collaboratively charting the gene-to-phenotype network of human congenital heart defects

    PubMed Central

    2010-01-01

    Background How to efficiently integrate the daily practice of molecular biologists, geneticists, and clinicians with the emerging computational strategies from systems biology is still much of an open question. Description We built on the recent advances in Wiki-based technologies to develop a collaborative knowledge base and gene prioritization portal aimed at mapping genes and genomic regions, and untangling their relations with corresponding human phenotypes, congenital heart defects (CHDs). This portal is not only an evolving community repository of current knowledge on the genetic basis of CHDs, but also a collaborative environment for the study of candidate genes potentially implicated in CHDs - in particular by integrating recent strategies for the statistical prioritization of candidate genes. It thus serves and connects the broad community that is facing CHDs, ranging from the pediatric cardiologist and clinical geneticist to the basic investigator of cardiogenesis. Conclusions This study describes the first specialized portal to collaboratively annotate and analyze gene-phenotype networks. Of broad interest to the biological community, we argue that such portals will play a significant role in systems biology studies of numerous complex biological processes. CHDWiki is accessible at http://www.esat.kuleuven.be/~bioiuser/chdwiki PMID:20193066

  5. Measurement Frontiers in Molecular Biology

    NASA Astrophysics Data System (ADS)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  6. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  7. Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.

    PubMed

    Conzelmann, Holger; Gilles, Ernst-Dieter

    2008-01-01

    Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.

  8. Synergy among Microbiota and Their Hosts: Leveraging the Hawaiian Archipelago and Local Collaborative Networks To Address Pressing Questions in Microbiome Research

    PubMed Central

    Frank, Kiana L.; Alegado, Rosanna A.; Amend, Anthony S.; Arif, Mohammad; Bennett, Gordon M.; Jani, Andrea J.; Medeiros, Matthew C. I.; Mileyko, Yuriy; Nguyen, Nhu H.; Nigro, Olivia D.; Prisic, Sladjana; Shin, Sangwoo; Takagi, Daisuke; Wilson, Samuel T.; Yew, Joanne Y.

    2018-01-01

    ABSTRACT Despite increasing acknowledgment that microorganisms underpin the healthy functioning of basically all multicellular life, few cross-disciplinary teams address the diversity and function of microbiota across organisms and ecosystems. Our newly formed consortium of junior faculty spanning fields such as ecology and geoscience to mathematics and molecular biology from the University of Hawai‘i at Mānoa aims to fill this gap. We are united in our mutual interest in advancing a new paradigm for biology that incorporates our modern understanding of the importance of microorganisms. As our first concerted research effort, we will assess the diversity and function of microbes across an entire watershed on the island of Oahu, Hawai‘i. Due to its high ecological diversity across tractable areas of land and sea, Hawai‘i provides a model system for the study of complex microbial communities and the processes they mediate. Owing to our diverse expertise, we will leverage this study system to advance the field of biology. PMID:29556540

  9. Oxygen regulates molecular mechanisms of cancer progression and metastasis.

    PubMed

    Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan

    2014-03-01

    Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

  10. Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement

    NASA Astrophysics Data System (ADS)

    Suwono, Hadi; Wibowo, Agung

    2018-01-01

    Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.

  11. Plants do not count… or do they? New perspectives on the universality of senescence

    PubMed Central

    Salguero-Gómez, Roberto; Shefferson, Richard P; Hutchings, Michael J

    2013-01-01

    1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4. Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question ‘why is senescence universal or why is it not?’ naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography, animal demography and plant population ecology. Plants are more amenable than animals to experiments investigating senescence, and there is a wealth of published plant demographic data that enable interpretation of experimental results in the context of their full life cycles. It is time to make plants count in the field of senescence. PMID:23853389

  12. Imaging and the new biology: What's wrong with this picture?

    NASA Astrophysics Data System (ADS)

    Vannier, Michael W.

    2004-05-01

    The Human Genome has been defined, giving us one part of the equation that stems from the central dogma of molecular biology. Despite this awesome scientific achievement, the correspondence between genomics and imaging is weak, since we cannot predict an organism's phenotype from even perfect knowledge of its genetic complement. Biological knowledge comes in several forms, and the genome is perhaps the best known and most completely understood type. Imaging creates another form of biological information, providing the ability to study morphology, growth and development, metabolic processes, and diseases in vitro and in vivo at many levels of scale. The principal challenge in biomedical imaging for the future lies in the need to reconcile the data provided by one or multiple modalities with other forms of biological knowledge, most importantly the genome, proteome, physiome, and other "-ome's." To date, the imaging science community has not set a high priority on the unification of their results with genomics, proteomics, and physiological functions in most published work. Images are relatively isolated from other forms of biological data, impairing our ability to conceive and address many fundamental questions in research and clinical practice. This presentation will explain the challenge of biological knowledge integration in basic research and clinical applications from the standpoint of imaging and image processing. The impediments to progress, isolation of the imaging community, and mainstream of new and future biological science will be identified, so the critical and immediate need for change can be highlighted.

  13. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.

  14. Macro- and microscale fluid flow systems for endothelial cell biology.

    PubMed

    Young, Edmond W K; Simmons, Craig A

    2010-01-21

    Recent advances in microfluidics have brought forth new tools for studying flow-induced effects on mammalian cells, with important applications in cardiovascular, bone and cancer biology. The plethora of microscale systems developed to date demonstrate the flexibility of microfluidic designs, and showcase advantages of the microscale that are simply not available at the macroscale. However, the majority of these systems will likely not achieve widespread use in the biological laboratory due to their complexity and lack of user-friendliness. To gain widespread acceptance in the biological research community, microfluidics engineers must understand the needs of cell biologists, while biologists must be made aware of available technology. This review provides a critical evaluation of cell culture flow (CCF) systems used to study the effects of mechanical forces on endothelial cells (ECs) in vitro. To help understand the need for various designs of CCF systems, we first briefly summarize main properties of ECs and their native environments. Basic principles of various macro- and microscale systems are described and evaluated. New opportunities are uncovered for developing technologies that have potential to both improve efficiency of experimentation as well as answer important biological questions that otherwise cannot be tackled with existing systems. Finally, we discuss some of the unresolved issues related to microfluidic cell culture, suggest possible avenues of investigation that could resolve these issues, and provide an outlook for the future of microfluidics in biological research.

  15. The American Indian Digest.

    ERIC Educational Resources Information Center

    Russell, George

    This guide provides a basic source of historical and contemporary Indian information from an American Indian perspective and includes study questions at the end of each section. The primary function of this guide is to be a quick-study reference handbook. Basic questions essential to understanding current problems and issues of American Indians…

  16. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics.

    PubMed

    Puré, Ellen; Blomberg, Rachel

    2018-05-03

    Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.

  17. Key Questions Related To Building Collaborative and Inclusive Schools.

    ERIC Educational Resources Information Center

    Idol, Lorna

    1997-01-01

    Provides 15 key questions that educators should consider in developing collaborative and inclusive schools. The questions are organized into three categories: general and philosophical questions pertaining to inclusion, questions about the basic mechanics of developing inclusion programs, and questions about the practical implementation of…

  18. The nuclear envelope from basic biology to therapy.

    PubMed

    Worman, Howard J; Foisner, Roland

    2010-02-01

    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  19. Developing microRNA therapeutics.

    PubMed

    van Rooij, Eva; Purcell, Angela L; Levin, Arthur A

    2012-02-03

    Rarely a new research area has gotten such an overwhelming amount of attention as have microRNAs. Although several basic questions regarding their biological principles still remain to be answered, many specific characteristics of microRNAs in combination with compelling therapeutic efficacy data and a clear involvement in human disease have triggered the biotechnology community to start exploring the possibilities of viewing microRNAs as therapeutic entities. This review serves to provide some general insight into some of the current microRNAs targets, how one goes from the initial bench discovery to actually developing a therapeutically useful modality, and will briefly summarize the current patent landscape and the companies that have started to explore microRNAs as the next drug target.

  20. Plasma RNA integrity analysis: methodology and validation.

    PubMed

    Wong, Blenda C K; Lo, Y M Dennis

    2006-09-01

    The detection of cell-free RNA in plasma and serum of human subjects has found increasing applications in the field of medical diagnostics. However, many questions regarding the biology of circulating RNA remain to be addressed. One issue concerns the molecular nature of these circulating RNA species. We have recently developed a simple and quantitative method to investigate the integrity of plasma RNA. Our results have suggested that cell-free RNA in plasma is generally present as fragmented molecules instead of intact transcripts, with a predominance of 5' fragments. In this article, we summarize the basic principles in the experimental design for plasma RNA integrity analysis and highlight some of the important technical considerations for this type of investigation.

  1. The Achilles tendon: fundamental properties and mechanisms governing healing

    PubMed Central

    Freedman, Benjamin R.; Gordon, Joshua A.; Soslowsky, Louis J.

    2014-01-01

    Summary This review highlights recent research on Achilles tendon healing, and comments on the current clinical controversy surrounding the diagnosis and treatment of injury. The processes of Achilles tendon healing, as demonstrated through changes in its structure, composition, and biomechanics, are reviewed. Finally, a review of tendon developmental biology and mechano transductive pathways is completed to recognize recent efforts to augment injured Achilles tendons, and to suggest potential future strategies for therapeutic intervention and functional tissue engineering. Despite an abundance of clinical evidence suggesting that current treatments and rehabilitation strategies for Achilles tendon ruptures are equivocal, significant questions remain to fully elucidate the basic science mechanisms governing Achilles tendon injury, healing, treatment, and rehabilitation. PMID:25332943

  2. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  3. Students' Use of Optional Online Reviews and Its Relationship to Summative Assessment Outcomes in Introductory Biology.

    PubMed

    Carpenter, Shana K; Rahman, Shuhebur; Lund, Terry J S; Armstrong, Patrick I; Lamm, Monica H; Reason, Robert D; Coffman, Clark R

    2017-01-01

    Retrieval practice has been shown to produce significant enhancements in student learning of course information, but the extent to which students make use of retrieval to learn information on their own is unclear. In the current study, students in a large introductory biology course were provided with optional online review questions that could be accessed as Test questions (requiring students to answer the questions before receiving feedback) or as Read questions (providing students with the question and correct answer up-front). Students more often chose to access the questions as Test compared with Read, and students who used the Test questions scored significantly higher on subsequent exams compared with students who used Read questions or did not access the questions at all. Following an in-class presentation of superior exam performance following use of the Test questions, student use of Test questions increased significantly for the remainder of the term. These results suggest that practice questions can be an effective tool for enhancing student achievement in biology and that informing students about performance-based outcomes coincides with increased use of retrieval practice. © 2017 S. K. Carpenter et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Australian Item Bank Program: Science Item Bank. Book 3: Biology.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Item Bank consists of three volumes of multiple-choice questions. Book 3 contains questions on the biological sciences. The questions are designed to be suitable for high school students (year 8 to year 12 in Australian schools). The questions are classified by the subject content of the question, the cognitive skills…

  5. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  6. Can science be a business? Lessons from biotech.

    PubMed

    Pisano, Gary P

    2006-10-01

    In 1976, Genentech, the first biotechnology company, was founded by a young venture capitalist and a university professor to exploit recombinant DNA technology. Thirty years and more than 300 billion dollars in investments later, only a handful of biotech firms have matched Genentech's success or even shown a profit. No avalanche of new drugs has hit the market, and the long-awaited breakthrough in R&D productivity has yet to materialize. This disappointing performance raises a question: Can organizations motivated by the need to make profits and please shareholders successfully conduct basic scientific research as a core activity? The question has largely been ignored, despite intense debate over whether business's invasion of basic science-long the domain of universities and nonprofit research institutions- is limiting access to discoveries, thereby slowing advances in science. Biotech has not lived up to its promise, says the author, because its anatomy, which has worked well in other high-tech sectors, can't handle the fundamental challenges facing drug R&D: profound, persistent uncertainty and high risks rooted in the limited knowledge of human biology; the need for the diverse disciplines involved in drug discovery to work together in an integrated fashion; and barriers to learning, including tacit knowledge and murky intellectual property rights, which can slow the pace of scientific advance. A more suitable anatomy would include increased vertical integration; a smaller number of closer, longer collaborations; an emphasis by universities on sharing rather than patenting scientific discoveries; more cross-disciplinary academic research; and more federal and private funding for translational research, which bridges basic and applied science. With such modifications, science can be a business.

  7. New and Emerging Strategies in Platelet-Rich Plasma Application in Musculoskeletal Regenerative Procedures: General Overview on Still Open Questions and Outlook

    PubMed Central

    Veronesi, Francesca; Maglio, Melania; Sartori, Maria; Fini, Milena

    2015-01-01

    Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions. PMID:26075269

  8. Quantifying evolutionary dynamics from variant-frequency time series

    NASA Astrophysics Data System (ADS)

    Khatri, Bhavin S.

    2016-09-01

    From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

  9. Quantifying evolutionary dynamics from variant-frequency time series.

    PubMed

    Khatri, Bhavin S

    2016-09-12

    From Kimura's neutral theory of protein evolution to Hubbell's neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher's angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

  10. One hundred questions of importance to the conservation of global biological diversity.

    PubMed

    Sutherland, W J; Adams, W M; Aronson, R B; Aveling, R; Blackburn, T M; Broad, S; Ceballos, G; Côté, I M; Cowling, R M; Da Fonseca, G A B; Dinerstein, E; Ferraro, P J; Fleishman, E; Gascon, C; Hunter, M; Hutton, J; Kareiva, P; Kuria, A; Macdonald, D W; Mackinnon, K; Madgwick, F J; Mascia, M B; McNeely, J; Milner-Gulland, E J; Moon, S; Morley, C G; Nelson, S; Osborn, D; Pai, M; Parsons, E C M; Peck, L S; Possingham, H; Prior, S V; Pullin, A S; Rands, M R W; Ranganathan, J; Redford, K H; Rodriguez, J P; Seymour, F; Sobel, J; Sodhi, N S; Stott, A; Vance-Borland, K; Watkinson, A R

    2009-06-01

    We identified 100 scientific questions that, if answered, would have the greatest impact on conservation practice and policy. Representatives from 21 international organizations, regional sections and working groups of the Society for Conservation Biology, and 12 academics, from all continents except Antarctica, compiled 2291 questions of relevance to conservation of biological diversity worldwide. The questions were gathered from 761 individuals through workshops, email requests, and discussions. Voting by email to short-list questions, followed by a 2-day workshop, was used to derive the final list of 100 questions. Most of the final questions were derived through a process of modification and combination as the workshop progressed. The questions are divided into 12 sections: ecosystem functions and services, climate change, technological change, protected areas, ecosystem management and restoration, terrestrial ecosystems, marine ecosystems, freshwater ecosystems, species management, organizational systems and processes, societal context and change, and impacts of conservation interventions. We anticipate that these questions will help identify new directions for researchers and assist funders in directing funds. ©2009 Society for Conservation Biology.

  11. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  12. Who's Asking?

    ERIC Educational Resources Information Center

    Kohn, Alfie

    2015-01-01

    In this article, Alfie Kohn discusses four questions about questioning--starting with questions that are more basic, and progressing to some that are "deeper and potentially more subversive of traditional schooling." He begins by considering what questions we should ask students, and encourages teachers to keep questions with…

  13. Using the Web to Encourage Student-generated Questions in Large-Format Introductory Biology Classes

    PubMed Central

    Olson, Joanne K.; Clough, Michael P.

    2007-01-01

    Students rarely ask questions related to course content in large-format introductory classes. The use of a Web-based forum devoted to student-generated questions was explored in a second-semester introductory biology course. Approximately 80% of the enrolled students asked at least one question about course content during each of three semesters during which this approach was implemented. About 95% of the students who posted questions reported reading the instructor's response to their questions. Although doing so did not contribute to their grade in the course, approximately 75% of the students reported reading questions posted by other students in the class. Approximately 60% of the students reported that the Web-based question-asking activity contributed to their learning of biology. PMID:17339393

  14. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

  15. Genome projects and the functional-genomic era.

    PubMed

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  16. Are we working towards global research priorities for management and conservation of sea turtles?

    USGS Publications Warehouse

    Rees, A.F.; Alfaro-Shigueto, J.; Barata, P.C.R.; Bjorndal, K.A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.M.; Cardona, L.; Carreras, C.; Casale, P.; Ceriani, S.A.; Dutton, P.H.; Eguchi, T.; Formia, A.; Fuentes, M.M.P.B.; Fuller, W.J.; Girondot, M.; Godfrey, M.H.; Hamann, M.; Hart, Kristen M.; Hays, G.C.; Hochscheid, S.; Kaska, Y.; Jensen, M.P.; Mangel, J.C.; Mortimer, J.A.; Naro-Maciel, E.; Ng, C.K.Y.; Nichols, W.J.; Phillott, A.D.; Reina, R.D.; Revuelta, O.; Schofield, G.; Seminoff, J.A.; Shanker, K.; Tomás, J.; van de Merwe, J.P.; Van Houtan, K.S.; Vander Zanden, H.B.; Wallace, B.P.; Wedemeyer-Strombel, K.R.; Work, Thierry M.; Godley, B.J.

    2016-01-01

    In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is obviously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.

  17. Revisiting Preschoolers' Living Things Concept: A Microgenetic Analysis of Conceptual Change in Basic Biology

    ERIC Educational Resources Information Center

    Opfer, John E.; Siegler, Robert S.

    2004-01-01

    Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…

  18. Interview: from Down's syndrome to basic epigenetics and back again.

    PubMed

    Lawrence, Jeanne; Telfer, Caroline

    2013-12-01

    Dr Jeanne Lawrence talks to Caroline Telfer, Commissioning Editor. Dr Jeanne Lawrence is an internationally recognized leader in the study of chromosome regulation by noncoding RNA and nuclear and genome organization. Her research bridges fundamental questions about genome regulation with clinical implications of recent advances in epigenetics. Her interest in chromosome structure and regulation has been a theme throughout her career and she has been honored for her work developing sensitive FISH technology for the detection of single copy genes, as well as RNAs. Her laboratory's publications include the initial demonstration of cell type-specific gene organization with nuclear subdomains; the novel biology of a noncoding RNA, XIST, which coats a whole X-chromosome to induce its silencing; and a new architectural role for a large noncoding RNA to scaffold a nuclear body. Her laboratory's work on epigenetic chromosome regulation in stem cells led to recent studies regarding unanticipated roles of repeat sequences in normal chromosome regulation and deregulation in cancer. Most recently, her laboratory has demonstrated a new approach to translate the basic mechanism of X-chromosome inactivation to correct a chromosomal dosage imbalance in patient-derived cells with trisomy 21 (Down's syndrome). Dr Lawrence has received awards from numerous agencies, including a Research Career Development Award from the National Center for Human Genome Research, career awards from the American Society of Cell Biology, the German Society for Biochemistry, the Muscular Dystrophy Association and a John Merck Fund Translational Research Award. She has served on the NIH National Advisory Council for Human Genome Research, numerous study sections and is currently a monitoring editor for the Journal of Cell Biology. Dr Lawrence has a BA in Biology and Music from Stephens College (MO, USA), a MS in Human Genetics and Genetic Counseling from Rutgers University (NJ, USA) and a PhD in Developmental Biology from Brown University (RI, USA). She is currently a Professor and Interim Chair of the Department of Cell and Developmental Biology at the University of Massachusetts Medical School (MA, USA).

  19. A writing-intensive course improves biology undergraduates' perception and confidence of their abilities to read scientific literature and communicate science.

    PubMed

    Brownell, Sara E; Price, Jordan V; Steinman, Lawrence

    2013-03-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

  20. Directions in biomedical research: a plea for ideological pluralism.

    PubMed

    Malone, P Colm; Agutter, Paul S

    2003-08-01

    Feinstein [A.R. Feinstein, Am. J. Med. 107 (1999) 461] complained that 'basic medical science' has overwhelmed 'pathophysiological medical science' during the past half century, and 'destroyed the bridge between bedside and bench'. We agree that a 'drastic reorientation' will be necessary to correct the overemphasis and imbalance. Re-examining the roots of his problem, we believe that a plea to restore a balance between the 'status' (esteem) of 'large research' and 'small research' in medical science brings back into question the decision of academic physiologists to invoke the framework of Physics in/of 1847 [P.F. Cranefield, J. Hist. Med. Allied Sci. 12 (1957) 407] (together with an absolutist 'Prime Mover'/Metaphysic which Einstein would delete from Physics in 1905). The current 'imbalance' arose when that Cartesian 'Prime Mover' was NOT deleted from the Biological frame. Feinstein felt that the 'privileged status' (esteem) in which fund-giving bodies hold 'Small' researches compared to 'Large' should be cancelled. Once Biology replaces its Cartesian absolutism with a relativist framework, redress will follow naturally when living-material has regained the status of cause as well as effect. Descartes' 'Great Watchmaker' is a Dead God in Biology: a non-metaphysical Biological Perspective would restore balance between 'large' and 'small' investigations. ('Pluralism' implies that no scientific perspective would be second-rate in a relativist framework.)

  1. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  2. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine.

    PubMed

    Genchi, Giada Graziana; Marino, Attilio; Tapeinos, Christos; Ciofani, Gianni

    2017-01-01

    With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities), underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.

  3. KEEPING AN EYE ON RETINOBLASTOMA CONTROL OF HUMAN EMBRYONIC STEM CELLS

    PubMed Central

    Conklin, Jamie F.; Sage, Julien

    2010-01-01

    Human embryonic stem cells (hESCs) hold great promise in regenerative medicine. However, before the full potential of these cells is achieved, major basic biological questions need to be addressed. In particular, there are still gaps in our knowledge of the molecular mechanisms underlying the derivation of hESCs from blastocysts, the regulation of the undifferentiated, pluripotent state, and the control of differentiation into specific lineages. Furthermore, we still do not fully understand the tumorigenic potential of hESCs, limiting their use in regenerative medicine. The RB pathway is a key signaling module that controls cellular proliferation, cell survival, chromatin structure, and cellular differentiation in mammalian cells. Members of the RB pathway are important regulators of hESC biology and manipulation of the activity of this pathway may provide novel means to control the fate of hESCs. Here we review what is known about the expression and function of members of the RB pathway in hESCs and discuss areas of interest in this field. PMID:19760644

  4. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  5. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  6. An interactive computer lab of the galvanic cell for students in biochemistry.

    PubMed

    Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran

    2018-01-01

    We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Origin and evolution of life on terrestrial planets.

    PubMed

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  8. Adaptively Selecting Biology Questions Generated from a Semantic Network

    ERIC Educational Resources Information Center

    Zhang, Lishan; VanLehn, Kurt

    2017-01-01

    The paper describes a biology tutoring system with adaptive question selection. Questions were selected for presentation to the student based on their utilities, which were estimated from the chance that the student's competence would increase if the questions were asked. Competence was represented by the probability of mastery of a set of biology…

  9. A new organismal systems biology: how animals walk the tight rope between stability and change.

    PubMed

    Padilla, Dianna K; Tsukimura, Brian

    2014-07-01

    The amount of knowledge in the biological sciences is growing at an exponential rate. Simultaneously, the incorporation of new technologies in gathering scientific information has greatly accelerated our capacity to ask, and answer, new questions. How do we, as organismal biologists, meet these challenges, and develop research strategies that will allow us to address the grand challenge question: how do organisms walk the tightrope between stability and change? Organisms and organismal systems are complex, and multi-scale in both space and time. It is clear that addressing major questions about organismal biology will not come from "business as usual" approaches. Rather, we require the collaboration of a wide range of experts and integration of biological information with more quantitative approaches traditionally found in engineering and applied mathematics. Research programs designed to address grand challenge questions will require deep knowledge and expertise within subfields of organismal biology, collaboration and integration among otherwise disparate areas of research, and consideration of organisms as integrated systems. Our ability to predict which features of complex integrated systems provide the capacity to be robust in changing environments is poorly developed. A predictive organismal biology is needed, but will require more quantitative approaches than are typical in biology, including complex systems-modeling approaches common to engineering. This new organismal systems biology will have reciprocal benefits for biologists, engineers, and mathematicians who address similar questions, including those working on control theory and dynamical systems biology, and will develop the tools we need to address the grand challenge questions of the 21st century. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    PubMed

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Contextual analysis of immunological response through whole-organ fluorescent imaging.

    PubMed

    Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C

    2013-09-01

    As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.

  12. The Future of Cell Biology: Emerging Model Organisms.

    PubMed

    Goldstein, Bob; King, Nicole

    2016-11-01

    Most current research in cell biology uses just a handful of model systems including yeast, Arabidopsis, Drosophila, Caenorhabditis elegans, zebrafish, mouse, and cultured mammalian cells. And for good reason - for many biological questions, the best system for the question is likely to be found among these models. However, in some cases, and particularly as the questions that engage scientists broaden, the best system for a question may be a little-studied organism. Modern research tools are facilitating a renaissance for unusual and interesting organisms as emerging model systems. As a result, we predict that an ever-expanding breadth of model systems may be a hallmark of future cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interest in Biology: A Developmental Shift Characterized Using Self-Generated Questions

    ERIC Educational Resources Information Center

    Baram-Tsabari, Ayelet; Yarden, Anat

    2007-01-01

    Identifying students' interests in biology can play an important role in improving existing curricula to meet their needs. An analysis of 1,751 self-generated biological questions raised by children, adolescents, and adults yielded data regarding the different age groups' interests in biology. Research limitations and applications for teaching are…

  14. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  15. Opportunities and questions for the fundamental biological sciences in space

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.; Vernikos, Joan

    1993-01-01

    With the advent of sophisticated space facilities we discuss the overall nature of some biological questions that can be addressed. We point out the need for broad participation by the biological community, the necessary facilities, and some unique requirements.

  16. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A comparison of a biological sciences curriculum study (BSCS) laboratory and a traditional laboratory on student achievement at two private liberal arts colleges

    NASA Astrophysics Data System (ADS)

    Hall, Donald A.; McCurdy, Donald W.

    The purpose of this experiment was to compare an inquiry-oriented Biological Sciences Curriculum Study (BSCS) style laboratory approach with a more directive traditional approach on student outcomes in the cognitive and affective domains of learning at two private, midwestern liberal-arts colleges. The BSCS approach emphasized basic and integrated science processes, concept development through extensive questioning, and increased student discretion, while the traditional approach contained highly structured, more prescriptive, teacher-oriented activities. Intact laboratory sections of students enrolled in introductory general biology at two private liberal-arts colleges were randomly selected into two treatment groups. Pretest and posttest measures were taken on three dependent variables: (1) biological content achievement, measured with a researcher-generated Test on Biology Laboratory Concepts, (2) reasoning ability, measured with the Group Assessment of Logical Thinking, and (3) attitude toward biology, measured with the Biology Student Behavior Inventory. Analysis of covariance indicated the experimental group (n = 60) using the BSCS-style laboratory approach scored significantly higher than the comparison group (n = 59) in levels of performance on biology content achievement, F(1, 114) = 4.07, p < 0.05. There were no significant differences between the two groups in performance levels on attitude toward biology or on reasoning ability. However, both groups experienced a 15-percent increase in the number of formal thinkers as indicated by pretest-posttest gain scores on the reasoning ability test. These results lend support to the hypothesis that a BSCS-style laboratory approach fosters desired learner outcomes at the postsecondary level. In addition, these findings support the notion that the science laboratory may be used as a primary vehicle to promote formal reasoning skills.

  18. 60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth.

    PubMed

    Bicknell, Andrew B

    2016-05-01

    The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered. © 2016 Society for Endocrinology.

  19. The case for advanced physics topics in oral and maxillofacial surgery.

    PubMed

    Tandon, Rahul; Herford, Alan S

    2014-10-01

    Research in oral and maxillofacial surgery has focused mainly on principles founded in the biological and chemical sciences, which have provided excellent answers to many questions. However, recent technologic advances have begun to gain prominence in many of the medical sciences, providing clinicians with more effective tools for diagnosis and treatment. The era of modern physics has led to the development of diagnostic techniques that could provide information at a more basic level than many of the current biochemical methods used. The goal of this report is to introduce 2 of these methods and describe how they can be applied to oral and maxillofacial surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Peeling the onion: the outer layers of Cryptococcus neoformans.

    PubMed

    Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L

    2018-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.

  1. Peeling the onion: the outer layers of Cryptococcus neoformans

    PubMed Central

    Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L

    2018-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health. PMID:29742198

  2. Neuroscience and education.

    PubMed

    Goswami, Usha

    2004-03-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional, emotional and mnemonic functions is also making progress, particularly since the advent of the cognitive neurosciences, which focus specifically on understanding higher level processes of cognition via imaging technology. Neuroimaging has enabled scientists to study the human brain at work in vivo, deepening our understanding of the very complex processes underpinning speech and language, thinking and reasoning, reading and mathematics. It seems timely, therefore, to consider how we might implement our increased understanding of brain development and brain function to explore educational questions.

  3. JPRS Report, China, Handbook of Military Knowledge for Commanders

    DTIC Science & Technology

    1988-03-07

    Chemical and Biological Weapons Chapter I Nuclear Weapons (178) A. Summary Statement on Nuclear Weapons (178) 1. Basic Principles of Nuclear...199) 1. Basic Principles of Protection Against Nuclear, Chemical and Biological Weapons* (199) 2. Maior Actions For Protection Against Nuclear...people’s bodies through the digestive tract. Skin contact. Biological warfare agents may enter the body directly through the skin , mucous membranes or

  4. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Availability of Instructional Materials at the Basic Education Level in Enugu Educational Zone of Enugu State, Nigeria

    ERIC Educational Resources Information Center

    Chukwu, Leo C.; Eze, Thecla A. Y.; Agada, Fidelia Chinyelugo

    2016-01-01

    The study examined the availability of instructional materials at the basic education level in Enugu Education Zone of Enugu State, Nigeria. One research question and one hypothesis guided the study. The research question was answered using mean and grand mean ratings, while the hypothesis was tested using t-test statistics at 0.05 level of…

  6. Just working with the cellular machine: A high school game for teaching molecular biology.

    PubMed

    Cardoso, Fernanda Serpa; Dumpel, Renata; da Silva, Luisa B Gomes; Rodrigues, Carlos R; Santos, Dilvani O; Cabral, Lucio Mendes; Castro, Helena C

    2008-03-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several questions and a game story that invites the students for helping the human immunological system to produce antibodies (IgG) and fight back a pathogenic bacterium second-time invasion. The game involves answering questions completing the game board in which the antibodies "are synthesized" through the molecular biology process. At the end, a problem-based learning approach is used, and a last question is raised about proteins. Biology teachers and high school students evaluated the game and considered it an easy and interesting tool for teaching the theme. An increase of about 5-30% in answering molecular biology questions revealed that the game improves learning and induced a more engaged and proactive learning profile in the high school students. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  7. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  8. Students’ Use of Optional Online Reviews and Its Relationship to Summative Assessment Outcomes in Introductory Biology

    PubMed Central

    Carpenter, Shana K.; Rahman, Shuhebur; Lund, Terry J. S.; Armstrong, Patrick I.; Lamm, Monica H.; Reason, Robert D.; Coffman, Clark R.

    2017-01-01

    Retrieval practice has been shown to produce significant enhancements in student learning of course information, but the extent to which students make use of retrieval to learn information on their own is unclear. In the current study, students in a large introductory biology course were provided with optional online review questions that could be accessed as Test questions (requiring students to answer the questions before receiving feedback) or as Read questions (providing students with the question and correct answer up-front). Students more often chose to access the questions as Test compared with Read, and students who used the Test questions scored significantly higher on subsequent exams compared with students who used Read questions or did not access the questions at all. Following an in-class presentation of superior exam performance following use of the Test questions, student use of Test questions increased significantly for the remainder of the term. These results suggest that practice questions can be an effective tool for enhancing student achievement in biology and that informing students about performance-based outcomes coincides with increased use of retrieval practice. PMID:28408408

  9. Facial Affect Reciprocity in Dyadic Interactions

    DTIC Science & Technology

    2012-09-01

    experiment and the beginning of the debrief. Alphas were high and acceptable for all groups in all studies for both pretests and posttests (Table 3... group members. Such questions are rooted in a basic understanding of the interpersonal functions of emotion and expression; yet, research on the...responding of group members. Such questions are rooted in a basic understanding of the interpersonal functions of emotion. Yet, research on the interpersonal

  10. Some Basic Techniques in Bioimpedance Research

    NASA Astrophysics Data System (ADS)

    Martinsen, Ørjan G.

    2004-09-01

    Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.

  11. Bioinstrumentation: Tools for Understanding Life.

    ERIC Educational Resources Information Center

    Wandersee, James H., Ed.; And Others

    This book was written to help introductory biology teachers gain a basic understanding of contemporary bioinstrumentation and the uses to which it is put in the laboratory. It includes topics that are most basic to understanding the nature of biology. The book is divided into five sections: (1) "Separation and Identification" that includes…

  12. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  13. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides

  14. Assessment of Biology Majors' Versus Nonmajors' Views on Evolution, Creationism, and Intelligent Design.

    PubMed

    Paz-Y-Miño C, Guillermo; Espinosa, Avelina

    2009-03-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n =237, nonmajors n =239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students' attitudes toward evolution; (3) students' position about the teaching of human evolution; (4) evolution in science exams; and (5) students' willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists.

  15. Assessment of Biology Majors’ Versus Nonmajors’ Views on Evolution, Creationism, and Intelligent Design

    PubMed Central

    Paz-y-Miño C., Guillermo

    2016-01-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n=237, nonmajors n=239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students’ attitudes toward evolution; (3) students’ position about the teaching of human evolution; (4) evolution in science exams; and (5) students’ willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists. PMID:26973732

  16. Mina Shaughnessy in the 1990s: Some Changing Answers in Basic Writing.

    ERIC Educational Resources Information Center

    McAlexander, Patricia J.

    Although Mina Shaughnessy remains influential in the basic writing field, her answers to the vital questions of who basic writers are and why they underachieve as writers are changing. Whether she intended to or not, Shaughnessy's book "Errors and Expectations" (published in 1977) was a major force in forming an image of basic writers as…

  17. Time to make the doughnuts: Building and shaping seamless tubes.

    PubMed

    Sundaram, Meera V; Cohen, Jennifer D

    2017-07-01

    A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Questions of Brain Hemispheric Specialization and Gender Difference in Spatial Tests.

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This paper presents a review of selected literature relevant to a general question of hemispheric specialization (right or left brain) and questions of gender differences in spatial abilities among a group of art students. Three basic questions for discussion are proposed: (1) is there a relationship between hemispheric dominance and spatial…

  19. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 1. Statistical Analysis of a Quantitative Study

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 1 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught in the twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used. The study compared performance in five questions that tested recall of knowledge or application of algorithmic procedures (type-A…

  20. Electronic Data Interchange in U.S. Navy Contracting Activities

    DTIC Science & Technology

    1992-12-01

    the basic research question, the following subsidiary questions were asked: 1. How is EDI being used in the private sector and within the Department of...eliminated by using EDI transactions. According to a DoD small business EDI Guide , (DLA Partnership, 1991, p.15) in financial management applications, a...and to place orders against basic ordering agreements (BOA). The ASO is currently transmitting the ASC X12 850 [Purchase Order] to approximately 25

  1. Head Lice: Treatment Frequently Asked Questions (FAQs)

    MedlinePlus

    ... Treatment FAQs Malathion FAQs Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ...

  2. Head Lice: Malathion Frequently Asked Questions

    MedlinePlus

    ... Treatment FAQs Malathion FAQs Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ...

  3. Head Lice: Frequently Asked Questions (FAQs)

    MedlinePlus

    ... Treatment FAQs Malathion FAQs Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ...

  4. Body Lice Frequently Asked Questions (FAQs)

    MedlinePlus

    ... Treatment FAQs Malathion FAQs Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ...

  5. Viewpoint: Back to the Basics in Social Studies? Personal Statements by Three Canadian Educators

    ERIC Educational Resources Information Center

    Sutherland, Neil; And Others

    1977-01-01

    Neil Sutherland discusses the historical context of the back to basics movement in social studies. Ken Osborne points out that the movement is stifling innovation. Max van Manen addresses the question of what curricula should be considered basic. (Author/RM)

  6. Interpretive versus didactic learning approach towards oral biology: a student's perspective.

    PubMed

    Farooq, Imran

    2014-10-01

    This study analyzed the preference of dental students for oral biology questions that require either an interpretive or a descriptive approach to answer and to compare the preferences with their final examination result retrospectively. A questionnaire requiring student academic number and containing two questions (one asked with an interpretive approach/the other asked with a descriptive approach) from random topics of oral biology course was distributed among students who have already appeared in the final examination. Majority of the students who had achieved good grades (A+, A, B+, B) preferred interpretive questions whereas majority of the students with average grades (C+, C, D+, D) selected descriptive questions. Common reason for picking interpretive question was that it enhances critical thinking. The descriptive questions were argued to provide students with a chance to explain more. Hence, students should be encouraged to learn interpretively to promote enquiry based learning (EBL) and critical thinking.

  7. MAD Submission Form

    Science.gov Websites

    best answered by professional advice/consulting. Questions concerning the development of commercial products or the operation of a commercial organization. Questions answered by basic references, such as

  8. Strategies for structuring interdisciplinary education in Systems Biology: an European perspective

    PubMed Central

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure; Alberghina, Lilia; Almaas, Eivind; Besozzi, Daniela; Blomberg, Anders; Bretschneider, Till; Cascante, Marta; Collin, Olivier; de Atauri, Pedro; Depner, Cornelia; Dickinson, Robert; Dobrzynski, Maciej; Fleck, Christian; Garcia-Ojalvo, Jordi; Gonze, Didier; Hahn, Jens; Hess, Heide Marie; Hollmann, Susanne; Krantz, Marcus; Kummer, Ursula; Lundh, Torbjörn; Martial, Gifta; dos Santos, Vítor Martins; Mauer-Oberthür, Angela; Regierer, Babette; Skene, Barbara; Stalidzans, Egils; Stelling, Jörg; Teusink, Bas; Workman, Christopher T; Hohmann, Stefan

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii) a description of possible career paths for students who undergo such an education, (iv) conditions that should improve the recruitment of students to such programmes and (v) mechanisms for collaboration and excellence spreading among education professionals. With the growing interest of industry in applying Systems Biology approaches in their fields, a concerted action between academia and industry is needed to build this expertise. Here we present a reflection of the European situation and expertise, where most of the challenges we discuss are universal, anticipating that our suggestions will be useful internationally. We believe that one of the overriding goals of any Systems Biology education should be a student’s ability to phrase and communicate research questions in such a manner that they can be solved by the integration of experiments and modelling, as well as to communicate and collaborate productively across different experimental and theoretical disciplines in research and development. PMID:28725471

  9. Growth of a Species, an Association, a Science: 80 Years of Growth and Development Research

    PubMed Central

    Sherwood, Richard J.; Duren, Dana L.

    2014-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying “what makes people different.” The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. PMID:23283658

  10. Growth of a species, an association, a science: 80 years of growth and development research.

    PubMed

    Sherwood, Richard J; Duren, Dana L

    2013-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying "what makes people different." The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. Copyright © 2012 Wiley Periodicals, Inc.

  11. Evolutionary Biology: Its Value to Society

    ERIC Educational Resources Information Center

    Carson, Hampton L.

    1972-01-01

    Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…

  12. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    PubMed

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.

  13. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector.

    PubMed

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-02-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.

  14. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    PubMed Central

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  15. Fixed-Cell Imaging of Schizosaccharomyces pombe.

    PubMed

    Hagan, Iain M; Bagley, Steven

    2016-07-01

    The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. © 2016 Cold Spring Harbor Laboratory Press.

  16. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    PubMed

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  17. HPV in oropharyngeal cancer: the basics to know in clinical practice.

    PubMed

    Elrefaey, S; Massaro, M A; Chiocca, S; Chiesa, F; Ansarin, M

    2014-10-01

    The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is rising in contrast to the decreasing incidence of carcinomas in other subsites of the head and neck, in spite of the reduced prevalence of smoking. Human papilloma virus (HPV) infection, and in particular type 16 (HPV-16), is now recognized as a significant player in the onset of HPV positive OPSCC, with different epidemiological, clinical, anatomical, radiological, behavioural, biological and prognostic characteristics from HPV negative OPSCC. Indeed, the only subsite in the head and neck with a demonstrated aetiological viral link is, at present, the oropharynx. These observations lead to questions regarding management choices for patients based on tumour HPV status with important consequences on treatment, and on the role of vaccines and targeted therapy over the upcoming years.

  18. Breastfeed Your Baby

    MedlinePlus

    ... Basics: Health Benefits What are the benefits of breastfeeding? Breastfeeding gives you and your baby time to ... Basics: Common Questions If you are worried about breastfeeding, you aren't alone. It's normal to have ...

  19. Cosmic secrets

    NASA Astrophysics Data System (ADS)

    Schommers, W.

    1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On the anthropic principle. 4.11. Summary -- 5. Cosmological constant and physical reality. 5.1. Introductory remarks. 5.2. The cosmological constant. 5.3. Critical remarks on basic quantum theory. 5.4. Projection theory and the emptying. 5.5. Artificial vacuum effects!? 5.6. On the observation of physically real process. 5.7. Curved spaces. 5.8. Flatness and horizon problem. 5.8. Summary -- 6. Final remarks.

  20. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  1. Creating and Selling Embryos for “Donation”: Ethical Challenges

    PubMed Central

    Klitzman, Robert; Sauer, Mark V.

    2015-01-01

    The commercial creation and sale of embryos has begun, posing a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, firstly, regarding the rights of the unborn children – their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring will thus never learn that their parents are not their biological parents. Yet, such disclosures – regarding not only one, but both of these biological parents – may be important for these individuals; and lack of this knowledge may impede their physical and psychological health. Secondly, questions surface regarding the fees that providers should charge for embryos, and whether these amounts should vary based on the traits of one or both of the gamete donors. Some prospective parents may seek specific traits in a baby (e.g., height or eye/hair coloring), prompting creation of embryos from two gamete donors who possess these characteristics. Thirdly, ownership of embryos created without an advanced directive by patients poses dilemmas – e.g., disposition of any remaining embryos. Fourthly, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married and procreate. This discussion has several critical implications for future practice, and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists and other physicians about these techniques and practices. Clinicians can refer such patients to Assisted Reproductive Technology specialists, but familiarity with the basic aspects of the issues and complexities involved could aid themselves and their patients Several of these issues can be relatively easily addressed through guidelines from professional associations (e.g., limiting the number of embryos sold from each pair of gamete donors). As creation and sales of embryos will likely spread, consideration of appropriate responses is critical in order to establish standards of care to help the future offspring, and ensure ongoing public trust. PMID:25448512

  2. Creating and selling embryos for "donation": ethical challenges.

    PubMed

    Klitzman, Robert; Sauer, Mark V

    2015-02-01

    The commercial creation and sale of embryos has begun, which poses a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, first, regarding the rights of the unborn children and their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring thus will never learn that their parents are not their biologic parents. Yet, such disclosures, regarding not only one but both of these biologic parents, may be important for these individuals; and a lack of this knowledge may impede their physical and psychological health. Second, questions surface regarding the fees that providers should charge for embryos and whether these amounts should vary based on the traits of 1 or both of the gamete donors. Some prospective parents may seek specific traits in a baby (eg, height or eye/hair coloring), which prompts the creation of embryos from 2 gamete donors who possess these characteristics. Third, ownership of embryos created without an advanced directive by patients poses dilemmas (eg, disposition of any remaining embryos). Fourth, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married, and procreate. This discussion has several critical implications for future practice and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists, and other physicians about these techniques and practices. Clinicians can refer such patients to assisted reproductive technology specialists; however, familiarity with the basic aspects of the issues and complexities involved could aid these providers and their patients Several of these issues can be addressed relatively easily through guidelines from professional associations (eg, limiting the number of embryos sold from each pair of gamete donors). Because creation and sales of embryos will likely spread, consideration of appropriate responses is critical to establish standards of care to help the future offspring, and ensure ongoing public trust. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy.

    PubMed

    Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J

    2013-04-05

    This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies.

  4. Searching for Organics, Fossils, and Biology on Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    One of the goals of Astrobiology is to understand life on a fundamental level. All life on Earth is constructed from the same basic biochemical building blocks consisting of 20 amino acids with left handed symmetry, five nucleotides, a few sugars of right handed symmetry and some lipids. Using the metaphor of computers this is equivalent to saying that all life shares the same hardware. Beyond hardware similarity, it is now known that all life has fundamentally the same software. The genetic code of life is common to all organisms. Some have argued that the "hammer of evolution is heavy" and life anywhere is likely to be composed of identical biochemical and genetic patterns. However, in a system as complex as biochemistry it is likely that there are numerous local optima and the details of the optimum found by evolutionary selection on another world would likely depend on the initial conditions and random developments in the early biological history on that world. To address these fundamental questions in Astrobiology we need a second example of life: a second genesis.

  5. Compound facial expressions of emotion: from basic research to clinical applications

    PubMed Central

    Du, Shichuan; Martinez, Aleix M.

    2015-01-01

    Emotions are sometimes revealed through facial expressions. When these natural facial articulations involve the contraction of the same muscle groups in people of distinct cultural upbringings, this is taken as evidence of a biological origin of these emotions. While past research had identified facial expressions associated with a single internally felt category (eg, the facial expression of happiness when we feel joyful), we have recently studied facial expressions observed when people experience compound emotions (eg, the facial expression of happy surprise when we feel joyful in a surprised way, as, for example, at a surprise birthday party). Our research has identified 17 compound expressions consistently produced across cultures, suggesting that the number of facial expressions of emotion of biological origin is much larger than previously believed. The present paper provides an overview of these findings and shows evidence supporting the view that spontaneous expressions are produced using the same facial articulations previously identified in laboratory experiments. We also discuss the implications of our results in the study of psychopathologies, and consider several open research questions. PMID:26869845

  6. The rationale for fundamental research in space biology: Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W.; Krauss, Robert W.

    1993-01-01

    With the construction of Space Station Freedom, NASA will have available a new platform for experiments in space that promises many advantages over those already flown. Biologists are poised to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science that are long overdue. The unique space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology. Solutions to basic questions about living systems, which may now be grown through many generations in space, will not only explain abnormalities already observed there, but will add to our understanding of how life functions on Earth. Much will be learned about evolution that has built us the way we are, but also about what it has in store for the Earth's species in the future. NASA must not lose this opportunity to contribute to the welfare of the peoples of the Earth while at the same time create knowledge that will enable human exploration of space in the decades ahead.

  7. Wound Repair: Toward Understanding and Integration of Single-Cell and Multicellular Wound Responses

    PubMed Central

    Sonnemann, Kevin J.; Bement, William M.

    2016-01-01

    The importance of wound healing to medicine and biology has long been evident, and consequently, wound healing has been the subject of intense investigation for many years. However, several relatively recent developments have added new impetus to wound repair research: the increasing application of model systems; the growing recognition that single cells have a robust, complex, and medically relevant wound healing response; and the emerging recognition that different modes of wound repair bear an uncanny resemblance to other basic biological processes such as morphogenesis and cytokinesis. In this review, each of these developments is described, and their significance for wound healing research is considered. In addition, overlapping mechanisms of single-cell and multicellular wound healing are highlighted, and it is argued that they are more similar than is often recognized. Based on this and other information, a simple model to explain the evolutionary relationships of cytokinesis, single-cell wound repair, multicellular wound repair, and developmental morphogenesis is proposed. Finally, a series of important, but as yet unanswered, questions is posed. PMID:21721944

  8. Interaction of Inorganic Nanoparticles With Cell Membranes

    DTIC Science & Technology

    2008-10-20

    the field of colloidal and biological behaviour of nanoparticles. Questions regarding the colloidal behavior of particles in biological liquids...better the behaviour of nanoparticles in living systems. 2. Research work During the preparation phase of this project we have defined following...unique knowledge of the participating researgroups in the field of colloidal and biological behaviour of nanoparticles. Questions regarding the

  9. Understanding viruses: Philosophical investigations.

    PubMed

    Pradeu, Thomas; Kostyrka, Gladys; Dupré, John

    2016-10-01

    Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biology Question Generation from a Semantic Network

    NASA Astrophysics Data System (ADS)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.

  11. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits.

    PubMed

    Kida, S; Kato, T

    2015-01-01

    Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.

  12. Utilization of different anti-viral mechanisms by mammalian embryonic stem cells and differentiated cells.

    PubMed

    Guo, Yan-Lin

    2017-01-01

    Embryonic stem cells (ESCs) have received tremendous attention because of their potential applications in regenerative medicine. Over the past two decades, intensive research has not only led to the generation of various types of cells from ESCs that can be potentially used for the treatment of human diseases but also led to the formation of new concepts and breakthroughs that have significantly impacted our understanding of basic cell biology and developmental biology. Recent studies have revealed that ESCs and other types of pluripotent cells do not have a functional interferon (IFN)-based anti-viral mechanism, challenging the idea that the IFN system is developed as the central component of anti-viral innate immunity in all types of cells in vertebrates. This finding also provided important insight into a question that has been uncertain for a long time: whether or not the RNA interference (RNAi) anti-viral mechanism operates in mammalian cells. An emerging paradigm is that mammals may have adapted distinct anti-viral mechanisms at different stages of organismal development; the IFN-based system is mainly used by differentiated somatic cells, while the RNAi anti-viral mechanism may be used in ESCs. This paper discusses the molecular basis and biological implications for mammals to have different anti-viral mechanisms during development.

  13. How Asking a Very Basic Research Question Led Us to a Model for at Least Three Diseases | Poster

    Cancer.gov

    By Howard Young Editor’s note: This article is adapted from Dr. Young’s January 12, 2015, post to the I am Intramural Blog of the Intramural Research Program. When I started this project, it was not my objective to develop a model for any specific disease, nor did I even suspect that the ultimate result would be some insight into autoimmune disease. The basic research question

  14. Inga Fischer-Hjalmars (1918-2008): Swedish Pharmacist, Humanist, and Pioneer Quantum Chemist

    ERIC Educational Resources Information Center

    Johansson, Adam Johannes

    2012-01-01

    A wide variety of questions can be asked about the molecules that compose the physical reality around us and constitute biological life. Some of these questions are answered by the science called biology, others find their answer in chemistry, whereas the answers to the most fundamental questions are only to be found in the theories of physics.…

  15. Deconstructing Superorganisms and Societies to Address Big Questions in Biology.

    PubMed

    Kennedy, Patrick; Baron, Gemma; Qiu, Bitao; Freitak, Dalial; Helanterä, Heikki; Hunt, Edmund R; Manfredini, Fabio; O'Shea-Wheller, Thomas; Patalano, Solenn; Pull, Christopher D; Sasaki, Takao; Taylor, Daisy; Wyatt, Christopher D R; Sumner, Seirian

    2017-11-01

    Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Using Astrobiology case studies to bring science decision making into the classroom: Mars sample return, exobiology and SETI

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.

  17. Proceedings From the Turner Resource Network Symposium: The Crossroads of Health Care Research and Health Care Delivery

    PubMed Central

    Backeljauw, Philippe F.; Bondy, Carolyn; Chernausek, Steven D.; Cernich, Joseph T.; Cole, David A.; Fasciano, Laura P.; Foodim, Joan; Hawley, Scott; Hong, David S.; Knickmeyer, Rebecca C.; Kruszka, Paul; Lin, Angela E.; Lippe, Barbara M.; Lorigan, Gary A.; Maslen, Cheryl L.; Mauras, Nelly; Page, David C.; Pemberton, Victoria L.; Prakash, Siddharth K.; Quigley, Charmian A.; Ranallo, Kelly C.; Reiss, Allan L.; Sandberg, David E.; Scurlock, Cindy; Silberbach, Michael

    2016-01-01

    Turner syndrome, a congenital condition that affects ∼1/2,500 births, results from absence or structural alteration of the second sex chromosome. There has been substantial effort by numerous clinical and genetic research groups to delineate the clinical, pathophysiological, cytogenetic, and molecular features of this multisystem condition. Questions about the molecular-genetic and biological basis of many of the clinical features remain unanswered, and health care providers and families seek improved care for affected individuals. The inaugural “Turner Resource Network (TRN) Symposium” brought together individuals with Turner syndrome and their families, advocacy group leaders, clinicians, basic scientists, physician-scientists, trainees and other stakeholders with interest in the well-being of individuals and families living with the condition. The goal of this symposium was to establish a structure for a TRN that will be a patient-powered organization involving those living with Turner syndrome, their families, clinicians, and scientists. The TRN will identify basic and clinical questions that might be answered with registries, clinical trials, or through bench research to promote and advocate for best practices and improved care for individuals with Turner syndrome. The symposium concluded with the consensus that two rationales justify the creation of a TRN: inadequate attention has been paid to the health and psychosocial issues facing girls and women who live with Turner syndrome;investigations into the susceptibility to common disorders such as cardiovascular or autoimmune diseases caused by sex chromosome deficiencies will increase understanding of disease susceptibilities in the general population. PMID:25920614

  18. Advanced Placement Economics. Macroeconomics: Student Activities.

    ERIC Educational Resources Information Center

    Morton, John S.

    This book is designed to help advanced placement students better understand macroeconomic concepts through various activities. The book contains 6 units with 64 activities, sample multiple-choice questions, sample short essay questions, and sample long essay questions. The units are entitled: (1) "Basic Economic Concepts"; (2) "Measuring Economic…

  19. Basic Information about Lead in Drinking Water

    MedlinePlus

    ... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...

  20. Competition Overview Presentation: The basics on competing for EPA assistance programs

    EPA Pesticide Factsheets

    The basics on competing for EPA assistance programs. Finding EPA Competitive Opportunities and contact the Officer of Grants and Debarment competition staff should you have any additional questions or concerns.

  1. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.

  2. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  3. Teacher Effectiveness as Correlate of Students' Cognitive Achievement at Upper Basic Education in Basic Technology

    ERIC Educational Resources Information Center

    Owoh, Titus M.

    2016-01-01

    This study sought to find out the relationship between students perception of their teacher effectiveness and academic achievement in Basic Technology. Teacher's personality, teaching techniques/classroom management strategy and appearance, all integrate to make for teacher effectiveness. To carry out this research, two research questions and one…

  4. Adult Basic Education Materials Evaluation Guide.

    ERIC Educational Resources Information Center

    Harrison, David

    This guide is intended for use by adult basic education practitioners in the screening of basic reading textbooks prior to their adoption for classroom use. The guide is in the form of a questionnaire and consists of dichotomous-choice questions arranged into three sections that relate to the product design, adult learning, and reading instruction…

  5. Basic Relationships among Scale, Quality, and Benefits in Sino-Foreign Cooperative Education

    ERIC Educational Resources Information Center

    Lin, Jinhui

    2016-01-01

    The basic relationships among scale, quality, and benefits in Sino-foreign cooperative education are key to the development of cooperative education. It is necessary to construct a theoretical framework for the basic relationships among scale, quality, and benefits in Sino-foreign cooperative education and analyze the questions faced in…

  6. The Importance of Incorporating Multiculturalism in Basic Communication Courses.

    ERIC Educational Resources Information Center

    Funkhouser, Edward T.

    Multiculturalism has a place in basic communication courses. At a personal level, cross-cultural communication is concerned with the way a person chooses to treat another--it is a question of communication ethics, a subject that should be introduced in any basic communication course because communicators must consider how to deal fairly and…

  7. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering aremore » now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."« less

  8. The Basic Epistemological Questions--Are There Also Valid Answers?

    ERIC Educational Resources Information Center

    Oderman, Dale B.

    Epistemology is the branch of philosophy that seeks answers to two main questions: How do we know? and How do we know we know? This paper is concerned with how four major schools of thought have addressed these questions and the implications that their answers to these questions have for education. The paper begins by discussing how four major…

  9. The American Indians: Answers to 101 Questions.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Presented in a simple and straightforward manner, this publication answers questions basic to an understanding of the American Indian and his socioeconomic position in the United States. The following identify major areas covered and representative questions: (1) The Indian People (Who is an Indian?); (2) The Legal Status of Indians (Are Indians…

  10. Intellectual and Physical Disabilities in Prehistory and Early Civilization

    ERIC Educational Resources Information Center

    Berkson, Gershon

    2004-01-01

    This paper is focused on three basic questions: The first concerns when specific disabilities first appeared during human evolution. The second question has to do with causes of disabilities. The third question concerns social responses to people with disabilities. Discussions on each of the issues are presented.

  11. Cues Matter: Learning Assistants Influence Introductory Biology Student Interactions during Clicker-Question Discussions.

    PubMed

    Knight, Jennifer K; Wise, Sarah B; Rentsch, Jeremy; Furtak, Erin M

    2015-01-01

    The cues undergraduate biology instructors provide to students before discussions of clicker questions have previously been shown to influence student discussion. We further explored how student discussions were influenced by interactions with learning assistants (LAs, or peer coaches). We recorded and transcribed 140 clicker-question discussions in an introductory molecular biology course and coded them for features such as the use of reasoning and types of questions asked. Students who did not interact with LAs had discussions that were similar in most ways to students who did interact with LAs. When students interacted with LAs, the only significant changes in their discussions were the use of more questioning and more time spent in discussion. However, when individual LA-student interactions were examined within discussions, different LA prompts were found to generate specific student responses: question prompts promoted student use of reasoning, while students usually stopped their discussions when LAs explained reasons for answers. These results demonstrate that LA prompts directly influence student interactions during in-class discussions. Because clicker discussions can encourage student articulation of reasoning, instructors and LAs should focus on how to effectively implement questioning techniques rather than providing explanations. © 2015 J. K Knight et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Improving basic life support training for medical students.

    PubMed

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  13. Improving large class performance and engagement through student-generated question banks.

    PubMed

    Hancock, Dale; Hare, Nicole; Denny, Paul; Denyer, Gareth

    2018-03-12

    Disciplines such as Biochemistry and Molecular Biology, which involve concepts not included in the high-school curriculum, are very challenging for many first year university students. These subjects are particularly difficult for students accustomed to surface learning strategies involving memorization and recall of facts, as a deeper understanding of the relationship between concepts is needed for successful transfer to related areas and subsequent study. In this article, we explore an activity in a very large first year Molecular Biology course, in which students create multiple-choice questions related to targeted learning outcomes, and then answer and evaluate one another's questions. This activity encompasses elements of both self- and peer-assessment and the generative tasks of creating questions and producing written feedback may contribute to a deeper understanding of the material. We make use of a free online platform to facilitate all aspects of the process and analyze the effect of student engagement with the task on overall course performance. When compared to previous semester's cohorts, we observe a pronounced improvement in class performance on exam questions targeting similar concepts to the student-generated questions. In addition, those students that engage to a greater extent with the activity perform significantly better on the targeted exam questions than those who are less active, yet all students perform similarly on a set of isolated control questions appearing on the same exam. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  14. Analytical approaches to determination of carnitine in biological materials, foods and dietary supplements.

    PubMed

    Dąbrowska, Monika; Starek, Małgorzata

    2014-01-01

    l-Carnitine is a vitamin-like amino acid derivative, which is an essential factor in fatty acid metabolism as acyltransferase cofactor and in energy production processes, such as interconversion in the mechanisms of regulation of cetogenesis and termogenesis, and it is also used in the therapy of primary and secondary deficiency, and in other diseases. The determination of carnitine and acyl-carnitines can provide important information about inherited or acquired metabolic disorders, and for monitoring the biochemical effect of carnitine therapy. The endogenous carnitine pool in humans is maintained by biosynthesis and absorption of carnitine from the diet. Carnitine has one asymmetric carbon giving two stereoisomers d and l, but only the l form has a biological positive effect, thus chiral recognition of l-carnitine enantiomers is extremely important in biological, chemical and pharmaceutical sciences. In order to get more insight into carnitine metabolism and synthesis, a sensitive analysis for the determination of the concentration of free carnitine, carnitine esters and the carnitine precursors is required. Carnitine has been investigated in many biochemical, pharmacokinetic, metabolic and toxicokinetic studies and thus many analytical methods have been developed and published for the determination of carnitine in foods, dietary supplements, pharmaceutical formulations, biological tissues and body fluid. The analytical procedures presented in this review have been validated in terms of basic parameters (linearity, limit of detection, limit of quantitation, sensitivity, accuracy, and precision). This article presented the impact of different analytical techniques, and provides an overview of applications that address a diverse array of pharmaceutical and biological questions and samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Dentistry in the future--on the role and goal of basic research in oral biology.

    PubMed

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.

  16. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  17. Gravitational Biology Facility on Space Station: Meeting the needs of space biology

    NASA Technical Reports Server (NTRS)

    Allen, Katherine; Wade, Charles

    1992-01-01

    The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.

  18. Commentary: Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2013-01-01

    Most biochemistry, genetics, cell biology, and molecular biology classes have extensive prerequisite or co-requisite requirements, often including introductory chemistry, introductory biology, and organic chemistry coursework. But what is the function of these prerequisites? While it seems logical that a basic understanding of biological and…

  19. Computational complexity of ecological and evolutionary spatial dynamics

    PubMed Central

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu; Nowak, Martin A.

    2015-01-01

    There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP). PMID:26644569

  20. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education

    PubMed Central

    Rose, Peter W.; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F.; Christie, Cole H.; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S.; Westbrook, John D.; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M.; Bourne, Philip E.; Burley, Stephen K.

    2015-01-01

    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. PMID:25428375

  1. Meeting Basic Learning Needs through Programmes of Early Childhood Care and Development.

    ERIC Educational Resources Information Center

    Consultative Group on Early Childhood Care and Development, Haydenville, MA.

    Noting that early childhood development is the foundation for basic education across the life span, the first chapter of this report discusses the benefits of early interventions for individuals and society and justifies the basis for programs which aim at meeting the basic learning needs of young children. It also suggests several questions which…

  2. The Alpha Mu Study: A Report on the Survey of Basic Business Survival Skills.

    ERIC Educational Resources Information Center

    Whitney, Eugene P.

    A study was conducted to secure information relating to the following questions: (1) Are high school graduates leaving school with sufficient basic business skills to adequately manage their personal business affairs? and (2) what role is the business education department playing to provide all students with these basic business skills? A list of…

  3. Marine mammal subspecies in the age of genetics: Introductory remarks from the Associate Editor and Editor-in-Chief of Marine Mammal Science

    Treesearch

    Michael K. Schwartz; Daryl J. Boness

    2017-01-01

    Almost every conservation genetics and evolutionary biology textbook has a section questioning: "What is a species or subspecies?" It has been one of the most discussed, nearly unanswerable questions in all of biology. At issue is how to logically divide a variable that is generally continuous, with some occasional discrete breaks. Answering this question is...

  4. Breastfeeding-Basics

    Cancer.gov

    Breastfeeding is a great way to give your baby a healthy start. Here we cover some of the most common questions new moms have. There are also people in your community who can answer other, more specific questions you may have.

  5. Summary report of a workshop on research opportunities in plant biochemistry, December 11--13, 1992, Kona, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    A DOE-sponsored workshop was held December 11--13, 1992 in Kona, Hawaii to discuss those aspects of fundamental research in plant biochemistry deemed essential to provide the basic information base necessary for exploiting plant biotechnology to meet future societal needs. Twenty nine scientists, with interests representing many of the various areas of plant biochemistry, participated. The workshop was intended to define in both broad and specific terms the current state of knowledge in the general area of metabolic biochemistry, and to identify those areas that afford unusual opportunity or that are relatively underdeveloped in comparison with other areas of plant biology.more » Participants provided critiques of the state of knowledge of the major areas of metabolic biochemistry in relation to a series of questions that are presented herein.« less

  6. Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation.

    PubMed

    Getto, Philipp; Marciniak-Czochra, Anna

    2015-01-01

    Mathematical modeling is a powerful technique to address key questions and paradigms in a variety of complex biological systems and can provide quantitative insights into cell kinetics, fate determination and development of cell populations. The chapter is devoted to a review of modeling of the dynamics of stem cell-initiated systems using mathematical methods of ordinary differential equations. Some basic concepts and tools for cell population dynamics are summarized and presented as a gentle introduction to non-mathematicians. The models take into account different plausible mechanisms regulating homeostasis. Two mathematical frameworks are proposed reflecting, respectively, a discrete (punctuated by division events) and a continuous character of transitions between differentiation stages. Advantages and constraints of the mathematical approaches are presented on examples of models of blood systems and compared to patients data on healthy hematopoiesis.

  7. Functional phosphoproteomic mass spectrometry-based approaches

    PubMed Central

    2012-01-01

    Mass Spectrometry (MS)-based phosphoproteomics tools are crucial for understanding the structure and dynamics of signaling networks. Approaches such as affinity purification followed by MS have also been used to elucidate relevant biological questions in health and disease. The study of proteomes and phosphoproteomes as linked systems, rather than research studies of individual proteins, are necessary to understand the functions of phosphorylated and un-phosphorylated proteins under spatial and temporal conditions. Phosphoproteome studies also facilitate drug target protein identification which may be clinically useful in the near future. Here, we provide an overview of general principles of signaling pathways versus phosphorylation. Likewise, we detail chemical phosphoproteomic tools, including pros and cons with examples where these methods have been applied. In addition, basic clues of electrospray ionization and collision induced dissociation fragmentation are detailed in a simple manner for successful phosphoproteomic clinical studies. PMID:23369623

  8. Endangered species and a threatened discipline: behavioural ecology.

    PubMed

    Caro, Tim; Sherman, Paul W

    2011-03-01

    Behavioural ecologists often see little connection between the current conservation crisis and the future of their discipline. This view is myopic because our abilities to investigate and interpret the adaptive significance and evolutionary histories of behaviours are increasingly being compromised in human-dominated landscapes because of species extinctions, habitat destruction, invasive species, pollution, and climate change. In this review, we argue that many central issues in behavioural ecology will soon become prohibitively difficult to investigate and interpret, thus impeding the rapid progress that characterizes the field. To address these challenges, behavioural ecologists should design studies not only to answer basic scientific questions but also to provide ancillary information for protection and management of their study organisms and habitats, and then share their biological insights with the applied conservation community. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. [Tracking study to improve basic academic ability in chemistry for freshmen].

    PubMed

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2010-08-01

    The aims of this study were to assess the basic academic ability of freshmen with regard to chemistry and implement suitable educational guidance measures. At Tohoku Pharmaceutical University, basic academic ability examinations are conducted in chemistry for freshmen immediately after entrance into the college. From 2003 to 2009, the examination was conducted using the same questions, and the secular changes in the mean percentage of correct response were statistically analyzed. An experience survey was also conducted on 2007 and 2009 freshmen regarding chemical experiments at senior high school. Analysis of the basic academic ability examinations revealed a significant decrease in the mean percentage of correct responses after 2007. With regard to the answers for each question, there was a significant decrease in the percentage of correct answers for approximately 80% of questions. In particular, a marked decrease was observed for calculation questions involving percentages. A significant decrease was also observed in the number of students who had experiences with chemical experiments in high school. However, notable results have been achieved through the implementation of practice incorporating calculation problems in order to improve calculation ability. Learning of chemistry and a lack of experimental experience in high school may be contributory factors in the decrease in chemistry academic ability. In consideration of the professional ability demanded of pharmacists, the decrease in calculation ability should be regarded as a serious issue and suitable measures for improving calculation ability are urgently required.

  10. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2017-02-21

    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.

  11. Keys to Success: School Facilities Primer, Questions & Answers 101.

    ERIC Educational Resources Information Center

    Brady, Jim

    This publication provides answers to basic questions to help school board members more fully address the complexities of the planning, design, and construction process in order to maximize the goal of student success. The 101 questions and answers are in the areas of: facility planning; learning environment; information technology; safe schools;…

  12. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Paul E., E-mail: pwallner@theabr.org; Anscher, Mitchell S.; Barker, Christopher A.

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less

  13. Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary.

    PubMed

    Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. What is biological physics?

    NASA Astrophysics Data System (ADS)

    Moss, Frank

    1997-11-01

    The question arises in a number of contexts from the editorial policies of our journals to the decisions and priorities of agencies that financially support scientific research. What kinds of papers should Physical Review E and Physical Review Letters accept within this category? What constitutes success in choosing which projects to fund? Do biological physicists discover new physics, or new biology, or do they simply make their considerable instrumental and analytical talents available to the biologists(see for example, V.A. Parsegian, Physics Today), July 1997 p. 23 and a Counterpoint by R. H. Austin, ibid p. 27.? And are there bridges to medical science? Are there now some questions in biological and medical science that cannot be creditably addressed without contemporary physics? And what does it mean that the president has ventured that the next five decades will be the age of biology as opposed to the last (which he described as the age of physics)? These questions seem interesting (at least to those who call themselves biological physicists) and may be gaining significance in view of the fact that what we loosely describe as biological physics as a field seems to be growing.

  15. The Generalizability of Students' Interests in Biology Across Gender, Country and Religion

    NASA Astrophysics Data System (ADS)

    Hagay, G.; Baram-Tsabari, A.; Ametller, J.; Cakmakci, G.; Lopes, B.; Moreira, A.; Pedrosa-de-Jesus, H.

    2013-06-01

    In order to bridge the existing gap between biology curricula and students' interests in biology, a strategy for identifying students' interest based on their questions and integrating them into the curriculum was developed. To characterize the level of generalizability of students' science interests over 600 high school students from Portugal, Turkey, England and Israel, who chose biology as an advanced subject, their interest level was ranked in 36 questions that were originally raised by Israeli students. Results indicate that students from four different countries show interest in similar science questions. The most intriguing questions were the ones that dealt with human health and new developments in reproduction and genetics. Religious affiliation had the strongest effect on students' interest level, followed by national affiliation and gender. The findings suggest that students' interest in one context is relevant to the development of interest-based learning materials in a different context. However, despite these similarities, cultural and sociological differences need to be taken into account.

  16. The Carnegie Department of Embryology at 100: Looking Forward.

    PubMed

    Spradling, Allan C

    2016-01-01

    Biological research has a realistic chance within the next 50 years of discovering the basic mechanisms by which metazoan genomes encode the complex morphological structures and capabilities that characterize life as we know it. However, achieving those goals is now threatened by researchers who advocate an end to basic research on nonmammalian organisms. For the sake of society, medicine, and the science of biology, the focus of biomedical research should place more emphasis on basic studies guided by the underlying evolutionary commonality of all major animals, as manifested in their genes, pathways, cells, and organs. © 2016 Elsevier Inc. All rights reserved.

  17. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    PubMed

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  18. Introducing basic molecular biology to Turkish rural and urban primary school children via hands-on PCR and gel electrophoresis activities.

    PubMed

    Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner

    2014-01-01

    This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.

  19. Small and remarkable

    PubMed Central

    Campos, Marcelo Lattarulo; Carvalho, Rogério Falleiros; Benedito, Vagner Augusto

    2010-01-01

    Hormones are molecules involved in virtually every step of plant development and studies in this field have been shaping plant physiology for more than a century. The model plant Arabidopsis thaliana, long used as a tool to study plant hormones, lacks significant important developmental traits, such as fleshy climacteric fruit, compound leaf and multicellular trichomes, suggesting the necessity for alternative plant models. An attractive option often used is tomato, a species also of major economic importance, being ideal to bring together basic and applied plant sciences. The tomato Micro-Tom (MT) cultivar makes it possible to combine the direct benefits of studying a crop species with the fast life cycle and small size required for a suitable biological model. However, few obscure questions are constantly addressed to MT, creating a process herein called “MT mystification”. In this work we present evidence clarifying these questions and show the potential of MT, aiming to demystify it. To corroborate our ideas we showed that, by making use of MT, our laboratory demonstrated straightforwardly new hormonal functions and also characterized a novel antagonistic hormonal interaction between jasmonates and brassinosteroids in the formation of anti-herbivory traits in tomato. PMID:20037476

  20. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  1. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  2. Public Awareness Survey Recommendations of the NHTSA-GHSA Working Group

    DOT National Transportation Integrated Search

    2011-07-01

    The Governors Highway Safety Association (GHSA) and the National Highway Traffic Safety Administration (NHTSA) developed a basic set of survey questions including information on seat belt use, impaired driving, and speeding. These core questions can ...

  3. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  4. Revisiting the mitogenetic effect of ultra-weak photon emission

    PubMed Central

    Volodyaev, Ilya; Beloussov, Lev V.

    2015-01-01

    This paper reviews the 90 years long controversial history of the so-called “mitogenetic radiation,” the first case of non-chemical distant interactions, reported by Gurwitsch (1923). It was soon described as ultraweak UV, emitted by a number of biological systems, and stimulating mitosis in “competent” (in this sense) cells. In the following 20 years this phenomenon attracted enormous interest of the scientific community, and gave rise to more than 700 publications around the world. Yet, this wave of research vanished after several ostensibly disproving works in late 1930-s, and was not resumed later, regardless of quite serious grounds for that. The authors discuss separately two aspects of the problem: (1) do living organisms emit ultraweak radiation in the UV range (irrespective of whether it has any biological role), and (2) are there any real effects of this ultraweak photon emission (UPE) upon cell division and/or other biological functions? Analysis of the available data permits to conclude, that UV fraction of UPE should be regarded real, while its biological effects are difficult to reproduce. This causes a paradox. A number of presently known qualities of UPE were initially discovered (predicted?) by the “early workers” on the basis of biological effects. Yet the qualities they discovered were proved later (the UV component of UPE, the sources of UPE among biological systems, etc…), while the biological effect they used for UPE “detection” remains questionable. Importance of this area for basic biology and medicine, and potential usefulness of UPE as a non-invasive research method, invite scientists to attack this problem again, applying powerful research facilities of modern science. Yet, because of complexity and uncertainty of the problem, further progress in this area demands comprehensive examination of both positive and negative works, with particular attention to their methodical details. PMID:26441668

  5. Biological Concepts. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This manual contains the textual material for a three-lesson unit which introduces students to the basic concepts applicable to all biological treatment systems. The general topic areas addressed in the lessons are: (1) the microorganisms found in biological systems; (2) the factors that affect the growth and health of biological systems; and (3)…

  6. Back to the Basics: An Investigation of School- and District-Level Remediation Efforts Associated with Minnesota's Basic Standards for High School Graduation.

    ERIC Educational Resources Information Center

    Schleisman, Jane L.; Peterson, Kristin A.; Davison, Mark L.

    This report describes an investigation of the types of additional instructional opportunities and remediation efforts provided by Minnesota schools and districts for students who do not initially meet basic skill requirements in reading and/or mathematics in eighth grade. Primary research questions included: What additional instructional…

  7. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  8. Adult Basic Education and Self-Esteem: Practical Strategies for Addressing Self-Esteem Problems among Basic Skills Students.

    ERIC Educational Resources Information Center

    Kirstein, Kurt D.

    The strategies used by practicing adult basic education (ABE) teachers to retain students with poor self-esteem were examined through an Internet survey that was sent to 115 ABE instructors at community colleges in Washington. The survey, which contained questions about the prevalence of poor self-esteem among ABE dropouts, specific behaviors…

  9. Cues Matter: Learning Assistants Influence Introductory Biology Student Interactions during Clicker-Question Discussions

    PubMed Central

    Knight, Jennifer K.; Wise, Sarah B.; Rentsch, Jeremy; Furtak, Erin M.

    2015-01-01

    The cues undergraduate biology instructors provide to students before discussions of clicker questions have previously been shown to influence student discussion. We further explored how student discussions were influenced by interactions with learning assistants (LAs, or peer coaches). We recorded and transcribed 140 clicker-question discussions in an introductory molecular biology course and coded them for features such as the use of reasoning and types of questions asked. Students who did not interact with LAs had discussions that were similar in most ways to students who did interact with LAs. When students interacted with LAs, the only significant changes in their discussions were the use of more questioning and more time spent in discussion. However, when individual LA–student interactions were examined within discussions, different LA prompts were found to generate specific student responses: question prompts promoted student use of reasoning, while students usually stopped their discussions when LAs explained reasons for answers. These results demonstrate that LA prompts directly influence student interactions during in-class discussions. Because clicker discussions can encourage student articulation of reasoning, instructors and LAs should focus on how to effectively implement questioning techniques rather than providing explanations. PMID:26590204

  10. Questions and Issues in Basic Writing and Computing (Computers and Controversy).

    ERIC Educational Resources Information Center

    Gay, Pamela

    1991-01-01

    Presents findings from 18 reviewed studies with regard to attitude and the quality of writing performance. Discusses pedagogy and the problem of defining basic writers. Suggests research directions that can help move educators toward a new pedagogy. (MG)

  11. Analysis of Questions Used in the Teaching of Non-Narrative Poetry.

    ERIC Educational Resources Information Center

    McBride, William Gilbert

    The purposes of this study were to analyze questions used in the teaching of non-narrative poetry and to ascertain whether it is possible to establish any generally useful, basic pattern of question asking that would provide the student some fundamental guidelines for the study of this type of literature. First, a detailed examination of Robert…

  12. The Effects of Different Feedback Strategies Using Computer-Administered Multiple-Choice Questions as Instruction.

    ERIC Educational Resources Information Center

    Clariana, Roy B.; And Others

    The present study investigated the effects of using different forms of material with 100 eleventh grade students enrolled in a 5-week CBI (computer based instruction) summer enrichment program in Memphis, Tennessee. The basic design consisted of two conditions of instructional support (text and questions vs. questions only), two testings…

  13. Growth Impacts on Public Service Expenditures: Some Questions for the Community. Coping with Growth.

    ERIC Educational Resources Information Center

    Rimbey, Neil R.

    Defining public services as the basic community/regional services which are provided to residents through tax receipts and service charges, this publication identifies variables for each service group and presents them in the form of questions that communities should find useful when analyzing impacts of growth. After listing questions dealing…

  14. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  15. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  16. Bibliometric analysis of original molecular biology research in anaesthesia.

    PubMed

    Schreiber, K; Girard, T; Kindler, C H

    2004-10-01

    Molecular biology has expanded the horizons of anaesthesia during the last 20 years and has led to an increase of basic science articles that are published in the specialised anaesthetic journals or originate in anaesthetic institutions. We searched for and analysed the specific features, such as year of publication, publishing journal, and country of origin, of all such molecular biology articles stored in the MEDLINE database during the period 1986-2002. We identified 1265 original articles that used molecular biology techniques; 223 (18%) of these articles were published in anaesthetic journals and 1042 (82%) articles in 556 other biomedical journals. While in the late 1980s only a few molecular biology articles were published each year by anaesthetic institutions, worldwide this number reached approximately 200 basic science articles by the end of 2002. The USA clearly dominates the field of anaesthesia with respect to molecular biology research with 839 (66%) such articles.

  17. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.

    PubMed

    Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L

    2017-09-01

    Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.

  19. The nature of individual differences in inhibited temperament and risk for psychiatric disease: a review and meta-analysis

    PubMed Central

    Clauss, J. A.; Avery, S. N.; Blackford, J. U.

    2015-01-01

    What makes us different from one another? Why does one person jump out of airplanes for fun while another prefers to stay home and read? Why are some babies born with a predisposition to become anxious? Questions about individual differences in temperament have engaged the minds of scientists, psychologists, and philosophers for centuries. Recent technological advances in neuroimaging and genetics provide an unprecedented opportunity to answer these questions. Here we review the literature on the neurobiology of one of the most basic individual differences—the tendency to approach or avoid novelty. This trait, called inhibited temperament, is innate, heritable, and observed across species. Importantly, inhibited temperament also confers risk for psychiatric disease. Here, we provide a comprehensive review of inhibited temperament including neuroimaging and genetic studies in human and non-human primates. We conducted a meta-analysis of neuroimaging findings in inhibited humans that points to alterations in a fronto-limbic-basal ganglia circuit; these findings provide the basis of a model of inhibited temperament neurocircuitry. Lesion and neuroimaging studies in non-human primate models of inhibited temperament highlight roles for the amygdala, hippocampus, orbitofrontal cortex, and dorsal prefrontal cortex. Genetic studies highlight a role for genes that regulate neurotransmitter function, such as the serotonin transporter polymorphisms (5-HTTLPR), as well as genes that regulate stress response, such as corticotropin-releasing hormone (CRH). Together these studies provide a foundation of knowledge about the genetic and neural substrates of this most basic of temperament traits. Future studies using novel imaging methods and genetic approaches promise to expand upon these biological bases of inhibited temperament and inform our understanding of risk for psychiatric disease. PMID:25784645

  20. The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis.

    PubMed

    Clauss, J A; Avery, S N; Blackford, J U

    2015-04-01

    What makes us different from one another? Why does one person jump out of airplanes for fun while another prefers to stay home and read? Why are some babies born with a predisposition to become anxious? Questions about individual differences in temperament have engaged the minds of scientists, psychologists, and philosophers for centuries. Recent technological advances in neuroimaging and genetics provide an unprecedented opportunity to answer these questions. Here we review the literature on the neurobiology of one of the most basic individual differences-the tendency to approach or avoid novelty. This trait, called inhibited temperament, is innate, heritable, and observed across species. Importantly, inhibited temperament also confers risk for psychiatric disease. Here, we provide a comprehensive review of inhibited temperament, including neuroimaging and genetic studies in human and non-human primates. We conducted a meta-analysis of neuroimaging findings in inhibited humans that points to alterations in a fronto-limbic-basal ganglia circuit; these findings provide the basis of a model of inhibited temperament neurocircuitry. Lesion and neuroimaging studies in non-human primate models of inhibited temperament highlight roles for the amygdala, hippocampus, orbitofrontal cortex, and dorsal prefrontal cortex. Genetic studies highlight a role for genes that regulate neurotransmitter function, such as the serotonin transporter polymorphisms (5-HTTLPR), as well as genes that regulate stress response, such as corticotropin-releasing hormone (CRH). Together these studies provide a foundation of knowledge about the genetic and neural substrates of this most basic of temperament traits. Future studies using novel imaging methods and genetic approaches promise to expand upon these biological bases of inhibited temperament and inform our understanding of risk for psychiatric disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value.

    PubMed

    Simon, Martin; Plattner, Helmut

    2014-01-01

    Unicellular eukaryotes have been appreciated as model systems for the analysis of crucial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with "higher" eukaryotic/metazoan cells for which full genomic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic understanding of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favorable models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena-a field of rising interest. © 2014 Elsevier Inc. All rights reserved.

  2. Limits on reliable information flows through stochastic populations.

    PubMed

    Boczkowski, Lucas; Natale, Emanuele; Feinerman, Ofer; Korman, Amos

    2018-06-06

    Biological systems can share and collectively process information to yield emergent effects, despite inherent noise in communication. While man-made systems often employ intricate structural solutions to overcome noise, the structure of many biological systems is more amorphous. It is not well understood how communication noise may affect the computational repertoire of such groups. To approach this question we consider the basic collective task of rumor spreading, in which information from few knowledgeable sources must reliably flow into the rest of the population. We study the effect of communication noise on the ability of groups that lack stable structures to efficiently solve this task. We present an impossibility result which strongly restricts reliable rumor spreading in such groups. Namely, we prove that, in the presence of even moderate levels of noise that affect all facets of the communication, no scheme can significantly outperform the trivial one in which agents have to wait until directly interacting with the sources-a process which requires linear time in the population size. Our results imply that in order to achieve efficient rumor spread a system must exhibit either some degree of structural stability or, alternatively, some facet of the communication which is immune to noise. We then corroborate this claim by providing new analyses of experimental data regarding recruitment in Cataglyphis niger desert ants. Finally, in light of our theoretical results, we discuss strategies to overcome noise in other biological systems.

  3. The Role of Noise in Brain Function

    NASA Astrophysics Data System (ADS)

    Roy, S.; Llinás, R.

    2012-12-01

    Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.

  4. Generic Drugs: Questions and Answers

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Drugs Home Drugs Resources for You Information for Consumers (Drugs) Questions & Answers Generic Drugs: Questions & Answers Share Tweet Linkedin Pin it More ...

  5. DCB Funding

    Cancer.gov

    The Division of Cancer Biology (DCB) funds and supports extramural basic research that investigates the fundamental biology behind cancer. Find out more about DCB's grants process and funding opportunities.

  6. Toward mapping the biology of the genome.

    PubMed

    Chanock, Stephen

    2012-09-01

    This issue of Genome Research presents new results, methods, and tools from The ENCODE Project (ENCyclopedia of DNA Elements), which collectively represents an important step in moving beyond a parts list of the genome and promises to shape the future of genomic research. This collection sheds light on basic biological questions and frames the current debate over the optimization of tools and methodological challenges necessary to compare and interpret large complex data sets focused on how the genome is organized and regulated. In a number of instances, the authors have highlighted the strengths and limitations of current computational and technical approaches, providing the community with useful standards, which should stimulate development of new tools. In many ways, these papers will ripple through the scientific community, as those in pursuit of understanding the "regulatory genome" will heavily traverse the maps and tools. Similarly, the work should have a substantive impact on how genetic variation contributes to specific diseases and traits by providing a compendium of functional elements for follow-up study. The success of these papers should not only be measured by the scope of the scientific insights and tools but also by their ability to attract new talent to mine existing and future data.

  7. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    PubMed

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  8. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    PubMed

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  9. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  10. Teaching Cell Biology to Nonscience Majors through Forensics, or How to Design a Killer Course

    ERIC Educational Resources Information Center

    Arwood, Laura

    2004-01-01

    Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose.…

  11. Examining the impact of question surface features on students' answers to constructed-response questions on photosynthesis.

    PubMed

    Weston, Michele; Haudek, Kevin C; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of two question prompts. We asked four versions of the question with different combinations of the two plant species and order of prompts in an introductory cell biology course. We found that there was not a significant difference in the content of student responses to versions of the question stem with different species or order of prompts, using both computerized lexical analysis and expert scoring. We conducted 20 face-to-face interviews with students to further probe the effects of question wording on student responses. During the interviews, we found that students thought that the plant species was neither relevant nor confusing when answering the question. Students identified the prompts as both relevant and confusing. However, this confusion was not specific to a single version. © 2015 M. Weston et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Assessment of Department of Defense Basic Research

    DTIC Science & Technology

    2005-01-01

    Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF...with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information... downloaded from: http://www.nap.edu/catalog/11177.html Assessment of Department of Defense Basic Research Committee on Department of Defense Basic

  13. The NIE Conference on Basic Mathematical Skills and Learning (Euclid, Ohio, October 4-6, 1975). Volume I: Contributed Position Papers.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC.

    In October 1975 a conference was convened in Euclid, Ohio, by the Basic Skills Group of the National Institute of Education (NIE). Thirty-three participants presented position papers addressing two major questions: (1) What are basic mathematical skills and learning? (2) What are the major problems related to children's acquisition of basic…

  14. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

    PubMed

    Rose, Peter W; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F; Christie, Cole H; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S; Westbrook, John D; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M; Bourne, Philip E; Burley, Stephen K

    2015-01-01

    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  16. Teaching Nature in Cities and Towns. Urban Outdoor Biology and Ecology.

    ERIC Educational Resources Information Center

    Vogl, Sonia Wolff; Vogl, Robert L.

    Developed to assist teachers in the teaching of outdoor biology and ecology, this guide contains lessons that can be conducted in an urban environment for elementary level students. Each lesson begins with thought-provoking introductory questions which lead into the actual activity, and concludes with discussion questions and suggestions for…

  17. Biological and Commonsense Constructions of Gender.

    ERIC Educational Resources Information Center

    McKenna, Wendy

    Karen Horney's critique of Freud's theory of female development suggests that much theory and research in psychology is androcentric, and calls for the elimination of biases. This point is questioned, and the posit that scientific knowledge does not answer the question of what makes a person either female or male is explored. Biological,…

  18. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. Copyright © 2015 John Wiley & Sons, Inc.

  19. HIV/AIDS Information Needs of Sexually Transmitted Infection Clinic Patients: Content Analysis of Questions Asked during Prevention Counseling

    ERIC Educational Resources Information Center

    Kalichman, Seth C.; Cain, Demetria; Knecht, Joanna; Hill, Justin

    2008-01-01

    Basic factual information about disease is the cornerstone of health promotion and disease prevention interventions. Previous studies have shown that content analysis of the questions asked of service providers can elucidate the information needs of service consumers. Questions asked by individuals at known high risk for HIV infection have not…

  20. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    PubMed

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  1. The rainbow and the worm

    PubMed Central

    Hunt, Tam

    2013-01-01

    What is life? Many have asked this question, and no definitive answer is yet widely accepted. Is life something truly distinct from non-living stuff, as many dualists have suggested for millennia? Is there an élan vital that distinguishes living from dead stuff? Or is life about certain types of organization, metabolism, reproduction, goal-oriented behavior? None of these answers have yet won the debate. There is, however, an intriguing new set of ideas that have been developed by Mae-Wan Ho, a biophysicist and science activist (as she calls herself) based in London. Ho’s basic assertion is that life exists on a spectrum and is at its root organized, quantum coherent energy. Ho’s work attempts to bridge the gap between physics and biology by recognizing that there is no real gap at all—just a gap in current methods and habits of thinking. PMID:23795236

  2. Tumors of the central nervous system: clinical aspects, molecular mechanisms, unanswered questions, and future research directions.

    PubMed

    Babcock, Michael A; Kostova, Felina V; Guha, Abhijit; Packer, Roger J; Pollack, Ian F; Maria, Bernard L

    2008-10-01

    Central nervous system tumors are the most common solid tumors in children. Many histological subtypes and biological variants exist. The 2007 Neurobiology of Disease in Children Symposium, held in conjunction with the 36th annual meeting of the Child Neurology Society, aimed to define current knowledge in the field and to develop specific aims for future clinical, translational, and fundamental science. Because of advances in structural and metabolic imaging, surgical technique, and combination therapies, the life expectancy of children with some of the most common tumors, such as cerebellar astrocytomas and medulloblastomas, has improved. Other common tumor types, including diffuse pontine gliomas and malignant embryonal tumors, still have a dismal prognosis. As novel therapies are identified for pediatric central nervous system tumors, long-term survival may be associated with considerable disability. A cooperative effort is crucial to early diagnosis and to translating basic research findings into safe, effective new treatments.

  3. GPR40 agonists for the treatment of type 2 diabetes: life after 'TAKing' a hit.

    PubMed

    Mancini, A D; Poitout, V

    2015-07-01

    The free fatty acid receptor GPR40 has been proposed as a potential target for type 2 diabetes (T2D) pharmacotherapy. This idea has been validated in both preclinical and clinical studies, in which activation of GPR40 was shown to improve glycaemic control by stimulating glucose-dependent insulin secretion; however, the recent termination of phase III clinical trials using the GPR40 agonist TAK-875 (fasiglifam) has raised important questions regarding the long-term safety and viability of targeting GPR40 and, more specifically, about our understanding of this receptor's basic biology. In the present review, we provide a summary of established and novel concepts related to GPR40's pharmacobiology and discuss the current status and future outlook for GPR40-based drug development for the treatment of T2D. © 2015 John Wiley & Sons Ltd.

  4. Final Technical Report for Award # ER64999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, William W.

    2014-10-08

    This report provides a summary of activities for Award # ER64999, a Genomes to Life Project funded by the Office of Science, Basic Energy Research. The project was entitled "Methanogenic archaea and the global carbon cycle: a systems biology approach to the study of Methanosarcina species". The long-term goal of this multi-investigator project was the creation of integrated, multiscale models that accurately and quantitatively predict the role of Methanosarcina species in the global carbon cycle under dynamic environmental conditions. To achieve these goals we pursed four specific aims: (1) genome sequencing of numerous members of the Order Methanosarcinales, (2) identificationmore » of genomic sources of phenotypic variation through in silico comparative genomics, (3) elucidation of the transcriptional networks of two Methanosarcina species, and (4) development of comprehensive metabolic network models for characterized strains to address the question of how metabolic models scale with genetic distance.« less

  5. Transcriptional and post-transcriptional regulation of NK cell development and function

    PubMed Central

    Leong, Jeffrey W.; Wagner, Julia A.; Ireland, Aaron R.; Fehniger, Todd A.

    2016-01-01

    Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-bindings microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease. PMID:26948928

  6. Estrogen replacement therapy, Alzheimer's disease, and mild cognitive impairment.

    PubMed

    Mulnard, Ruth A; Corrada, Marìa M; Kawas, Claudia H

    2004-09-01

    This article highlights the latest findings regarding estrogen replacement therapy in the treatment and prevention of Alzheimer's disease (AD) and mild cognitive impairment in women. Despite considerable evidence from observational studies, recent randomized clinical trials of conjugated equine estrogens, alone and in combination with progestin, have shown no benefit for either the treatment of established AD or for the short-term prevention of AD, mild cognitive impairment, or cognitive decline. Based on the evidence, there is no role at present for estrogen replacement therapy in the treatment or prevention of AD or cognitive decline, despite intriguing results from the laboratory and from observational studies. However, numerous questions remain about the biologic effects of estrogens on brain structure and function. Additional basic and clinical investigations are necessary to examine different forms and dosages of estrogens, other populations, and the relevance of timing and duration of exposure.

  7. Examining the process of de novo gene birth: an educational primer on "integration of new genes into cellular networks, and their structural maturation".

    PubMed

    Frietze, Seth; Leatherman, Judith

    2014-03-01

    New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.

  8. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    PubMed

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  9. Accounting for uncertainty in DNA sequencing data.

    PubMed

    O'Rawe, Jason A; Ferson, Scott; Lyon, Gholson J

    2015-02-01

    Science is defined in part by an honest exposition of the uncertainties that arise in measurements and propagate through calculations and inferences, so that the reliabilities of its conclusions are made apparent. The recent rapid development of high-throughput DNA sequencing technologies has dramatically increased the number of measurements made at the biochemical and molecular level. These data come from many different DNA-sequencing technologies, each with their own platform-specific errors and biases, which vary widely. Several statistical studies have tried to measure error rates for basic determinations, but there are no general schemes to project these uncertainties so as to assess the surety of the conclusions drawn about genetic, epigenetic, and more general biological questions. We review here the state of uncertainty quantification in DNA sequencing applications, describe sources of error, and propose methods that can be used for accounting and propagating these errors and their uncertainties through subsequent calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Resveratrol and cancer: Challenges for clinical translation

    PubMed Central

    Singh, Chandra K.; Ndiaye, Mary A.; Ahmad, Nihal

    2014-01-01

    Significant work has been done towards identifying the health-beneficial effects of the grape antioxidant resveratrol in a variety of bioassay- and disease- models, with much research being focused on its possible application to cancer management. Despite the large number of preclinical studies dealing with different aspects of the biological effects of resveratrol, it’s translation to clinics is far from reality due to a variety of challenges. In this review, we discuss the issues and questions associated with resveratrol becoming an effective in vivo anticancer drug, from basic metabolic issues to the problems faced by incomplete understanding of the mechanism(s) of action in the body. We also explore efforts taken by researchers, both public and private, to contend with some of these issues. By examining the published data and previous clinical trials, we have attempted to identify the problems and issues that hinder the clinical translation of resveratrol for cancer management. PMID:25446990

  11. HIV infection and specific mucosal immunity: workshop 4B.

    PubMed

    Challacombe, S J; Fidel, P L; Tugizov, S; Tao, L; Wahl, S M

    2011-04-01

    Most HIV infections are transmitted across mucosal epithelium. An area of fundamental importance is understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, which leads to increased susceptibility to bacterial, fungal, and viral infections of oral and other mucosae. This workshop attempted to address 5 basic issues-namely, HIV acquisition across mucosal surfaces, innate and adaptive immunity in HIV resistance, antiviral activity of breast milk as a model mucosal fluid, neutralizing immunoglobulin A antibodies against HIV, and progress toward a mucosal vaccine against HIV. The workshop attendants agreed that progress had been made in each area covered, with much recent information. However, these advances revealed how little work had been performed on stratified squamous epithelium compared with columnar epithelium, and the attendants identified several important biological questions that had not been addressed. It is increasingly clear that innate immunity has an important biological role, although basic understanding of the mechanisms of normal homeostasis is still being investigated. Application of the emerging knowledge was lacking with regard to homeostatic mucosal immunity to HIV and its role in changing this homeostasis. With regard to breast milk, a series of studies have demonstrated the differences between transmitters and nontransmitters, although whether these findings could be generalized to other secretions such as saliva was less clear. Important progress toward an oral mucosal HIV vaccine has been made, demonstrating proof of principle for administering vaccine candidates into oral lymphoid tissues to trigger anti-HIV local and systemic immune responses. Similarly, experimental data emphasized the central role of neutralizing antibodies to prevent HIV infection via mucosal routes.

  12. [Research on basic questions of intellectual property rights of acupuncture and moxibustion].

    PubMed

    Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin

    2011-12-01

    Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.

  13. A basic recursion concept inventory

    NASA Astrophysics Data System (ADS)

    Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.

    2017-04-01

    Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.

  14. Bryon S. Donohoe, Ph.D | NREL

    Science.gov Websites

    structural biology and plant/algal cell biology to address questions about the cellular mechanisms involved Biology, University of Colorado at Boulder M.A., Biology, University of Colorado at Denver B.S

  15. Biological Event Modeling for Response Planning

    NASA Astrophysics Data System (ADS)

    McGowan, Clement; Cecere, Fred; Darneille, Robert; Laverdure, Nate

    People worldwide continue to fear a naturally occurring or terrorist-initiated biological event. Responsible decision makers have begun to prepare for such a biological event, but critical policy and system questions remain: What are the best courses of action to prepare for and react to such an outbreak? Where resources should be stockpiled? How many hospital resources—doctors, nurses, intensive-care beds—will be required? Will quarantine be necessary? Decision analysis tools, particularly modeling and simulation, offer ways to address and help answer these questions.

  16. What makes for sound science?

    PubMed

    Costa, Fabrizio; Cramer, Grant; Finnegan, E Jean

    2017-11-10

    The inclusive threshold policy for publication in BMC journals including BMC Plant Biology means that editorial decisions are largely based on the soundness of the research presented rather than the novelty or potential impact of the work. Here we discuss what is required to ensure that research meets the requirement of scientific soundness. BMC Plant Biology and the other BCM-series journals ( https://www.biomedcentral.com/p/the-bmc-series-journals ) differ in policy from many other journals as they aim to provide a home for all publishable research. The inclusive threshold policy for publication means that editorial decisions are largely based on the soundness of the research presented rather than the novelty or potential impact of the work. The emphasis on scientific soundness ( http://blogs.biomedcentral.com/bmcseriesblog/2016/12/05/vital-importance-inclusive/ ) rather than novelty or impact is important because it means that manuscripts that may be judged to be of low impact due to the nature of the study as well as those reporting negative results or that largely replicate earlier studies, all of which can be difficult to publish elsewhere, are available to the research community. Here we discuss the importance of the soundness of research and provide some basic guidelines to assist authors to determine whether their research is appropriate for submission to BMC Plant Biology.Prior to a research article being sent out for review, the handling editor will first determine whether the research presented is scientifically valid. To be valid the research must address a question of biological significance using suitable methods and analyses, and must follow community-agreed standards relevant to the research field.

  17. Establishing health benefits of bioactive food components: a basic research scientist's perspective

    USDA-ARS?s Scientific Manuscript database

    Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects beyond basic nutrition. However, a question continues to lurk: are these 'super foods' backed by sound science or simply an exaggerated portrayal of very small '...

  18. Medical Microbiology: Deficits and Remedies

    ERIC Educational Resources Information Center

    Gabridge, Michael G.

    1974-01-01

    Microbiology is a typical medical science in which basic information can have direct application. Yet, surveys and questionnaires of recent medical school graduates indicate a serious lack of retentiion in regard to basic biological science. (Author)

  19. A Computerized Content Analysis of the Perceived Criterion Categories for the "Speech to Inform" of Inexperienced and Experienced Basic Course Students.

    ERIC Educational Resources Information Center

    Jones, Tom; Di Salvo, Vince

    A computerized content analysis of the "theory input" for a basic speech course was conducted. The questions to be answered were (1) What does the inexperienced basic speech student hold as a conceptual perspective of the "speech to inform" prior to his being subjected to a college speech class? and (2) How does that inexperienced student's…

  20. Teaching and learning of medical biochemistry according to clinical realities: A case study.

    PubMed

    Jabaut, Joshua M; Dudum, Ramzi; Margulies, Samantha L; Mehta, Akshita; Han, Zhiyong

    2016-01-01

    To foster medical students to become physicians who will be lifelong independent learners and critical thinkers with healthy skepticism and provide high-quality patient care guided by the best evidence, teaching of evidence-based medicine (EBM) has become an important component of medical education. Currently, the teaching and learning of biochemistry in medical schools incorporates its medical relevance and applications. However, to our knowledge there have been no reports on integrating EBM with teaching and learning medical biochemistry. Here, we present a case study to illustrate the significance of this approach. This case study was based on a biochemistry/nutrition question in a popular board review book about whether a homeless alcoholic man is at risk of developing a deficiency of vitamin E. The possible answers and explanation provided in the book raised a question about the correct answer, which provided us with an opportunity to adapt the philosophy and certain basic EBM principles to find evidence for the clinical applicability of a commonly taught biochemistry topic. The outcome of this case study not only taught us how to conduct an EBM exercise to answer a specific patient question, but also provided us with an opportunity for in-depth teaching and learning of the medical relevance of a specific biochemistry topic based on the best clinical evidence obtained from a systematic research of medical literature. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Structural Biology and Molecular Applications Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  2. Engineering Education: A Clear Decision

    ERIC Educational Resources Information Center

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  3. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  4. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  5. Basics of Biosafety

    NASA Technical Reports Server (NTRS)

    Wong, Willy

    2009-01-01

    This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.

  6. An Investigation into Students' Difficulties in Numerical Problem Solving Questions in High School Biology Using a Numeracy Framework

    ERIC Educational Resources Information Center

    Scott, Fraser J.

    2016-01-01

    The "mathematics problem" is a well-known source of difficulty for students attempting numerical problem solving questions in the context of science education. This paper illuminates this problem from a biology education perspective by invoking Hogan's numeracy framework. In doing so, this study has revealed that the contextualisation of…

  7. No question about exciting questions in cell biology.

    PubMed

    Pollard, Thomas D

    2013-12-01

    Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  8. Improving School Bus Driver Performance.

    ERIC Educational Resources Information Center

    Farmer, Ernest

    This reference source is intended to assist the school bus driver training instructor in course preparation. Instructional units for program planning each contain pertinent course questions, a summary, and evaluation questions. Unit 1, "Introduction to the School Bus Driver Training Program," focuses on basic course objectives and…

  9. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  10. Development and Evaluation of a Fully-Online Introductory Biology Course With an Emphasis on the Possibility of Life Beyond Earth

    NASA Astrophysics Data System (ADS)

    Bratton, D., III; Mead, C.; Horodyskyj, L.; Anbar, A. D.

    2016-12-01

    BioBeyond, a fully-online introductory biology course, is distinguished by its driving narrative and its emphasis on education through exploration. BioBeyond applies the narrative, big-question, and active learning principles of its predecessor, Habitable Worlds, in the context of the disciplinarily constrained and higher enrollment environment of non-majors introductory biology. To align with the driving question "Are We Alone?" the course takes a novel approach to sequencing topics compared to typical introductory biology, exploring biological questions that arise from the main question in a narrative-driven format: What is life? How did it get so diverse? Was it always this way? What was the earliest life? What signatures does life leave behind? What is the future of life on Earth? Can humans survive the rigors of exploring other planets? To encourage construction and contextualization of new knowledge, critical thinking, scientific inquiry, and active learning, BioBeyond combines multiple features not often seen in introductory biology: a narrative centered around a big question, a continuous scoring system which assesses students as they learn rather than with high-stakes quizzes and tests, and, significantly, all of the learning experiences are adaptive and responsive, making use of Smart Sparrow's intelligent tutoring system. In Spring and Summer semesters of 2016, BioBeyond was deployed 34 times at 17 institutions nationwide, with another 56 classes at 17 institutions planned for Fall 2016. Each semester, feedback is collected and used to fuel a round of improvements. In addition, we are evaluating our course outcomes at five separate institutions of higher education, comparing the achievement of learning and development outcomes in BioBeyond to traditional offerings of introductory biology, using published concept inventories and surveys regarding interest in science, creative thinking, and scientific thinking. These results will also inform future development of BioBeyond and its planned sister courses.

  11. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.

    1995-07-01

    The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.

  12. Immunity, Life and Dancing Starlings: A Physician's Perspective.

    PubMed

    Bercovich, Dani; Goodman, Geoffrey; Gershwin, M Eric

    2016-08-01

    Immune function is the most basic physiological process in humans and indeed throughout the animal kingdom. Interestingly, the vast majority of textbooks of physiology do not include a chapter on immunity. Our species survival is dependent on the diversity of the immune response and the ability for antigen presentation and effector mechanisms to be enormously promiscuous. As physicians, we are likely all too aware of how brief our life span is and the myriad of diseases and events that shorten it. It is not surprising that we question where our life comes from and our relationship within the universe. Many hypotheses have been offered regarding the likelihood that intelligent life exists elsewhere. We propose that such issues be discussed in the context of basic biologic observations on earth, such as the sight of a dense flock of tens of thousands of starlings maneuvering in rapid twists and turns at dusk before settling in trees for the night. The mathematical likelihood for life elsewhere was proposed by Frank Drake in a classic equation whose 'thesis' has stimulated the search for alien civilizations and the nature of life. A fundamental gap in this equation is the presence of a diverse immune response, a feature essential for survival of Life, presumably also extra-terrestrially.

  13. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  14. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz.

  15. Portuguese Basic Courses.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic course in Brazilian Portuguese consists of 75 lessons in six volumes. Volume I is in two parts, with the dialogs, questions and exercises presented in Portuguese in the first part, and the intonation patterns and English translations presented in the second. The general format follows the Defense Language Institute format, employing…

  16. Using Every Pupil Response in Mathematics Instruction.

    ERIC Educational Resources Information Center

    Lauritzen, Carol

    1985-01-01

    Discusses the "Every Pupil Response" (EPR) strategy and its use in teaching basic facts, problem-solving, place value, and fractions. Basically, the technique involves children responding simultaneously to a question by holding up a card, using parts of their bodies, or stick figures. Advantages of EPR are noted. (JN)

  17. HEALTH AND NUTRITION LESSON PLANS AND STUDENT WORKSHEETS, ADULT BASIC EDUCATION.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS MANUAL PROVIDES ADULT BASIC EDUCATION TEACHERS WITH LESSON PLANS IN HEALTH AND NUTRITION. EACH LESSON CONTAINS BACKGROUND MATERIAL OFFERING SPECIFIC INFORMATION ON THE SUBJECT OF EACH LESSON, AIMS, LESSON DEVELOPMENT, AND TWO STUDENT WORKSHEETS. DISCUSSION QUESTIONS ARE SUGGESTED TO ENCOURAGE THE GREATEST POSSIBLE STUDENT INVOLVEMENT. THE TEN…

  18. Basic Skills Achievement, 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    The Austin Independent School District (AISD) office of Research and Evaluation presents Basic Skills Achievement, 1981-82 (BSA). The BSA answers the following questions: (1) How does AISD student achievement compare to student achievement nationwide? (2) How does AISD's 1981-82 student achievement compare to the achievement of students in past…

  19. Econosense: A Common Sense Approach to the Study of Economics.

    ERIC Educational Resources Information Center

    McPheron, Linda

    This student activity book and teacher's guide address specific economic terms and concepts correlated to specific student learning objectives. The concepts presented are those essential to any student developing a basic understanding of economics. Each lesson follows a specific format with a basic core of information, comprehension questions,…

  20. The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond":Unresolved questions, challenges and future directions for the field.

    PubMed

    Lehman, Michael N; Coolen, Lique M; Steiner, Robert A; Neal-Perry, Genevieve; Wang, Luhong; Moenter, Suzanne M; Moore, Aleisha M; Goodman, Robert L; Hwa-Yeo, Shel; Padilla, Stephanie L; Kauffman, Alexander S; Garcia, James; Kelly, Martin J; Clarkson, Jenny; Radovick, Sally; Babwah, Andy V; Leon, Silvia; Tena-Sempere, Manuel; Comninos, Alex; Seminara, Stephanie; Dhillo, Waljit S; Levine, Jon; Terasawa, Ei; Negron, Ariel; Herbison, Allan E

    2018-04-14

    The 3 rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond" was held March 30-31 at the Rosen Centre Hotel in Orlando, Florida, providing an international forum for multidisciplinary scientists to meet and share cutting-edge research on kisspeptin biology and its relevance to human health and disease. The meeting built upon previous world conferences focused on the role of kisspeptin and associated peptides in the control of gonadotropin-releasing hormone (GnRH) secretion and reproduction. Based on recent discoveries, the scope of this meeting was expanded to include functions of kisspeptin and related peptides in other physiological systems including energy homeostasis, pregnancy, ovarian and uterine function, and thermoregulation. In addition, discussions addressed the translation of basic knowledge of kisspeptin biology to the treatment of disease, with the goal of seeking consensus about the best approaches to improve human health. The two-day meeting featured a non-traditional structure, with each day starting with poster sessions followed by lunch discussions and facilitated large-group sessions with short presentations to maximize the exchange of new, unpublished data. Topics were identified by a survey prior to the meeting, and focused on major unresolved questions, important controversies, and future directions in the field. Finally, career development activities provided mentoring for trainees and junior investigators, and networking opportunities for those individuals with established researchers in the field. Overall, the meeting was rated as a success by attendees and covered a wide range of lively and provocative discussion topics on the changing nature of the field of "kisspeptinology" and its future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    NASA Astrophysics Data System (ADS)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  2. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    PubMed Central

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students’ conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α = 0.80) and test–retest stability (r = 0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. PMID:25713098

  3. Manpower information and the community mental health system.

    PubMed

    Kamis-Gould, E; Staines, G L

    1986-10-01

    The lack of knowledge about basic manpower issues in the community mental health system led the authors to devise five questions that address manpower issues of general interest to community mental health system managers. The questions concern the ratio of staff to population, the types of professionals on staff and their demographic characteristics, the amount of time staff spend on various activities, the cost of the work force, and the outcomes of services. The authors discuss how these questions have been considered in the literature, and they illustrate with analyses of data from a survey of staff of New Jersey's mental health agencies how the issues of number, type, and cost of staff can be explored. The authors believe that basic manpower information can contribute directly to the decisions of managers of mental health service systems.

  4. On Productive Knowledge and Levels of Questions.

    ERIC Educational Resources Information Center

    Andre, Thomas

    A model is proposed for memory that stresses a distinction between episodic memory for encoded personal experience and semantic memory for abstractors and generalizations. Basically, the model holds that questions influence the nature of memory representations formed during instruction, and that memory representation controls the way in which…

  5. Delayed Reinforcement of Operant Behavior

    ERIC Educational Resources Information Center

    Lattal, Kennon A.

    2010-01-01

    The experimental analysis of delay of reinforcement is considered from the perspective of three questions that seem basic not only to understanding delay of reinforcement but also, by implication, the contributions of temporal relations between events to operant behavior. The first question is whether effects of the temporal relation between…

  6. Attention Deficit Disorder. NICHCY Briefing Paper.

    ERIC Educational Resources Information Center

    Fowler, Mary

    This briefing paper uses a question-and-answer format to provide basic information about children with attention deficit disorder (ADD). Questions address the following concerns: nature and incidence of ADD; causes of ADD; signs of ADD (impulsivity, hyperactivity, disorganization, social skill deficits); the diagnostic ADD assessment; how to get…

  7. Psychology, the Population Explosion, and the Question of Freedom and Dignity.

    ERIC Educational Resources Information Center

    Platzek, Donna Brown

    This paper examines the question of why women want children from several disciplinary viewpoints including psychoanalysis; role learning; and economic, political, and religious aspects. Basically, however, childbearing motivations can be divided into four categories: altruistic, fatalistic, narcissistic, and instrumental. Children can fulfill a…

  8. Basic Questions for Introductory Sociology.

    ERIC Educational Resources Information Center

    Parmley, Ingram C.

    1980-01-01

    Looks at five questions that serve as the core of an introductory sociology course, presenting the essence of sociology without inundating the student with information: What is sociology? How do societies develop rules for living? What if the rules don't work? How are new rules developed? So what? (AYC)

  9. Student Performance along Axes of Scenario Novelty and Complexity in Introductory Biology: Lessons from a Unique Factorial Approach to Assessment.

    PubMed

    Deane-Coe, Kirsten K; Sarvary, Mark A; Owens, Thomas G

    2017-01-01

    In an undergraduate introductory biology laboratory course, we used a summative assessment to directly test the learning objective that students will be able to apply course material to increasingly novel and complex situations. Using a factorial framework, we developed multiple true-false questions to fall along axes of novelty and complexity, which resulted in four categories of questions: familiar content and low complexity (category A); novel content and low complexity (category B); familiar content and high complexity (category C); and novel content and high complexity (category D). On average, students scored more than 70% on all questions, indicating that the course largely met this learning objective. However, students scored highest on questions in category A, likely because they were most similar to course content, and lowest on questions in categories C and D. While we anticipated students would score equally on questions for which either novelty or complexity was altered (but not both), we observed that student scores in category C were lower than in category B. Furthermore, students performed equally poorly on all questions for which complexity was higher (categories C and D), even those containing familiar content, suggesting that application of course material to increasingly complex situations is particularly challenging to students. © 2017 K. K. Deane-Coe et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Fort Ord’s Merit-Reward System: A Contingency Management Program in Basic Combat Training,

    DTIC Science & Technology

    1979-01-01

    medicine colleague, Dr. Llewellyn Legters , that the recommendation emerged to develop and test a contingency management system for basic training. One...1965, 16, 438. 9Datel, W. E., & Legters , L. J. Reinforcement measurement in a social system. Journal of Biological Psychology, 1971, 13 (1), 33-38 13...ODatel, W. E., & Legters , L. J. The psychology of the Army recruit. Journal of Biological Psychology, 1970-71, 12, 34-40. l1Datel, W. E. Technical

  11. Basic and applied problems in developmental biology and immunobiology of cestode infections: Hymenolepis, Taenia and Echinococcus.

    PubMed

    Ito, A

    2015-02-01

    Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history. © 2014 John Wiley & Sons Ltd.

  12. Basic Techniques in Mammalian Cell Tissue Culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  13. Your Scores in Basic Skills: Iowa Tests of Basic Skills. AISD Junior High Schools, School Year 1981-82. AISD Senior High Schools, School Year 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX.

    Designed for junior high and high school students and their parents, this brochure explains the structure, function, and method for interpretation of the Iowa Tests of Basic Skills and the Sequential Tests of Educational Progress. A question and answer format is used to provide information on scope and purposes of the tests, meaning and accuracy…

  14. Your Child's Scores in Basic Skills: Iowa Tests of Basic Skills. AISD Kindergarten, School Year 1981-82. AISD Elementary Schools, School Year 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX.

    Designed for parents of kindergarten and elementary school children in Austin, Texas, this brochure explains the structure and function of the Iowa Tests of Basic Skills. A question and answer format is used to provide information on the scope and purposes of the tests, grade level differences in testing, meaning and accuracy of the scores, and…

  15. Effectiveness of Active Learning Strategy in Improving the Acoustic Awareness Skills and Understanding What Is Heard by the Basic Stage Students in Jordan

    ERIC Educational Resources Information Center

    Al-Odwan, Yaser

    2016-01-01

    This research aims to get acquainted with the effectiveness of the active learning strategy in improving the acoustic awareness skills and understanding what is heard by the basic stage students in Jordan by answering the two following questions: This research has been applied to a sample of 60 students from the basic third grade in Al-Ahnaf Ben…

  16. The 150 most important questions in cancer research and clinical oncology series: questions 15-24 : Edited by Chinese Journal of Cancer.

    PubMed

    2017-04-05

    To accelerate our endeavors to overcome cancer, Chinese Journal of Cancer has launched a program of publishing 150 most important questions in cancer research and clinical oncology. In this article, 10 more questions are presented as follows. Question 15: Can tumor-induced erythrogenesis provide qualified red blood cells for carrying oxygen to distant organs? Question 16: Can we overcome tumor resistance to platinum-containing antineoplastic drugs by activating the sensitivity factors in the tumor? Question 17: How can a cancer cell stay dormant for years? Question 18: Why do cancer cells use distinct transcriptomic and proteomic programs to reach the same metastatic phenotype? Question 19: Why do some cancers regress spontaneously? Question 20: What are the regulatory mechanisms occurring in donor cells that determine selective sorting of biological content into vesicles and their biological consequences in recipient cells? Are the genetic transfer and exchange of biological messages between cells transient? Is the phenotypic manipulation of recipient cells temporary or prolonged and persistent? If extracellular vesicles possess immune-modulatory potential, how could they be exploited for immune interventions and cancer immunotherapy? Presumably the cargo of extracellular vesicles reflects the cells of their origin and can be used for cancer diagnosis, how could the uniform/stringent capture criteria be met universally for applying EVs in point-of-care diagnostics for cancer patients? Question 21: Can we use self-sampling technologies to monitor the tumor genetic alterations for more precise targeted therapy? Can we cure a heterogeneous tumor by sequentially targeting the driver molecules? Question 22: Can we postpone the onset of non-infection-related cancers? Question 23: How many types of cells can jointly form the tumor vasculature to provide blood supply for tumor progression? Question 24: How tumor cells transmit their epigenetic features to daughter cells and maintain the malignant phenotype?

  17. Sex and the Biology Teacher

    ERIC Educational Resources Information Center

    Keller, Dolores Elaine

    1972-01-01

    Summarizes evidence that mammals are basically female, with masculine characteristics being imposed by hormonal changes in embryos or post-natally. Advocates the removal of male-dominant terminology in biological research and teaching. (AL)

  18. Engaging Non-Science Majors by Integrating Biology and the Liberal Arts

    ERIC Educational Resources Information Center

    Bozzone, Donna M.; Doyle, Mary Beth

    2017-01-01

    We describe a pair of fully integrated courses designed to teach biology to non-majors in a manner that connects authentically to the liberal arts. The co-taught courses were organized around the question: What does it mean to be human? Students investigated this question in the context of three topics: dis/ability, race, and sex and gender. In…

  19. High Tech Decision Making in the Airpower Age

    DTIC Science & Technology

    1995-05-01

    Note (About Question 1): Current World "All possible question(issues) for further breakup" Break up of the former Soviet Union Megatrends ...nukes, chemical & biological weapons) - also delivery vehicles (for sale on the open market) - advanced conventional weaponry - active/passive...costly to enemy in terms of rebuilding infrastructure, equipment -need to develop countermeasure -may violate the Biological Weapons convention

  20. Biology in Bloom: Implementing Bloom's Taxonomy to Enhance Student Learning in Biology

    PubMed Central

    Dirks, Clarissa; Wenderoth, Mary Pat

    2008-01-01

    We developed the Blooming Biology Tool (BBT), an assessment tool based on Bloom's Taxonomy, to assist science faculty in better aligning their assessments with their teaching activities and to help students enhance their study skills and metacognition. The work presented here shows how assessment tools, such as the BBT, can be used to guide and enhance teaching and student learning in a discipline-specific manner in postsecondary education. The BBT was first designed and extensively tested for a study in which we ranked almost 600 science questions from college life science exams and standardized tests. The BBT was then implemented in three different collegiate settings. Implementation of the BBT helped us to adjust our teaching to better enhance our students' current mastery of the material, design questions at higher cognitive skills levels, and assist students in studying for college-level exams and in writing study questions at higher levels of Bloom's Taxonomy. From this work we also created a suite of complementary tools that can assist biology faculty in creating classroom materials and exams at the appropriate level of Bloom's Taxonomy and students to successfully develop and answer questions that require higher-order cognitive skills. PMID:19047424

  1. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    ERIC Educational Resources Information Center

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  2. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

    PubMed Central

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-01-01

    Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367

  3. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    PubMed

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-06-15

    The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.

  4. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  5. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis

    PubMed Central

    Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie

    2016-01-01

    Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance. PMID:27471460

  6. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.

    PubMed

    Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie

    2016-01-01

    Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance.

  7. The solar system: Importance of research to the biological sciences

    NASA Technical Reports Server (NTRS)

    Klein, Harold P.

    1992-01-01

    An attempt is made to describe the scope of scientific areas that comprise the current field of exobiology in the United States. From investigations of astrophysical phenomena that deal with the birth of stars and planetary systems to questions of molecular biology involving phylogenetic relationships among organisms, from attempts to simulate the synthesis of biological precursor molecules in the chemistry laboratory to making measurements of the organic constituents of Titan's atmosphere, these researches all converge toward a common objective--answering the question of how life came about in the universe.

  8. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  9. 78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...

  10. Subjectivity: A Case of Biological Individuation and an Adaptive Response to Informational Overflow

    PubMed Central

    Jonkisz, Jakub

    2016-01-01

    The article presents a perspective on the scientific explanation of the subjectivity of conscious experience. It proposes plausible answers for two empirically valid questions: the ‘how’ question concerning the developmental mechanisms of subjectivity, and the ‘why’ question concerning its function. Biological individuation, which is acquired in several different stages, serves as a provisional description of how subjective perspectives may have evolved. To the extent that an individuated informational space seems the most efficient way for a given organism to select biologically valuable information, subjectivity is deemed to constitute an adaptive response to informational overflow. One of the possible consequences of this view is that subjectivity might be (at least functionally) dissociated from consciousness, insofar as the former primarily facilitates selection, the latter action. PMID:27555835

  11. Managing marine mollusc diseases in the context of regional and international commerce: policy issues and emerging concerns.

    PubMed

    Carnegie, Ryan B; Arzul, Isabelle; Bushek, David

    2016-03-05

    Marine mollusc production contributes to food and economic security worldwide and provides valuable ecological services, yet diseases threaten these industries and wild populations. Although the infrastructure for mollusc aquaculture health management is well characterized, its foundations are not without flaws. Use of notifiable pathogen lists can leave blind spots with regard to detection of unlisted and emerging pathogens. Increased reliance on molecular tools has come without similar attention to diagnostic validation, raising questions about assay performance, and has been accompanied by a reduced emphasis on microscopic diagnostic expertise that could weaken pathogen detection capabilities. Persistent questions concerning pathogen biology and ecology promote regulatory paralysis that impedes trade and which could weaken biosecurity by driving commerce to surreptitious channels. Solutions that might be pursued to improve shellfish aquaculture health management include the establishment of more broad-based surveillance programmes, wider training and use of general methods like histopathology to ensure alertness to emerging diseases, an increased focus on assay assessment and validation as fundamental to assay development, investment in basic research, and application of risk analyses to improve regulation. A continual sharpening of diagnostic tools and approaches and deepening of scientific knowledge is necessary to manage diseases and promote sustainable molluscan shellfish industries. © 2016 The Author(s).

  12. Managing marine mollusc diseases in the context of regional and international commerce: policy issues and emerging concerns

    PubMed Central

    Carnegie, Ryan B.; Arzul, Isabelle; Bushek, David

    2016-01-01

    Marine mollusc production contributes to food and economic security worldwide and provides valuable ecological services, yet diseases threaten these industries and wild populations. Although the infrastructure for mollusc aquaculture health management is well characterized, its foundations are not without flaws. Use of notifiable pathogen lists can leave blind spots with regard to detection of unlisted and emerging pathogens. Increased reliance on molecular tools has come without similar attention to diagnostic validation, raising questions about assay performance, and has been accompanied by a reduced emphasis on microscopic diagnostic expertise that could weaken pathogen detection capabilities. Persistent questions concerning pathogen biology and ecology promote regulatory paralysis that impedes trade and which could weaken biosecurity by driving commerce to surreptitious channels. Solutions that might be pursued to improve shellfish aquaculture health management include the establishment of more broad-based surveillance programmes, wider training and use of general methods like histopathology to ensure alertness to emerging diseases, an increased focus on assay assessment and validation as fundamental to assay development, investment in basic research, and application of risk analyses to improve regulation. A continual sharpening of diagnostic tools and approaches and deepening of scientific knowledge is necessary to manage diseases and promote sustainable molluscan shellfish industries. PMID:26880834

  13. Age Dependent Variability in Gene Expression in Fischer 344 ...

    EPA Pesticide Factsheets

    Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in

  14. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    PubMed Central

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  15. Secure encapsulation and publication of biological services in the cloud computing environment.

    PubMed

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  16. Basic Training for Skill Development.

    ERIC Educational Resources Information Center

    B.T.S.D. Review, 1974

    1974-01-01

    Profound changes in our socioeconomic structure seem to question the relevance of both "institutional" as well as "open school" forms of education. The educator is faced with the challenge of selecting a model, combining models, or devising a new one. Dealing with these fundamental questions, 10 articles have been selected for their potential…

  17. Unionizing: A Guide for Child Care Workers.

    ERIC Educational Resources Information Center

    Whitebook, Marcy; And Others

    Including excerpts from contracts protecting unionized child care workers, this booklet explains basic terminology and facts about unionizing and addresses child care workers' concerns. Section 1 answers commonly asked questions about unions and offers advice about how to answer parents' questions about workers' attempts to organize. Section 2…

  18. A Not so Trivial Pursuit.

    ERIC Educational Resources Information Center

    Magahay-Johnson, Wendy

    1985-01-01

    Describes procedures for designing trivia games to be used in teaching English as a second language. The students participate in designing the games, thereby gaining practice in the four basic language skills and the formation of yes-no questions, information questions, and statements. Provides examples for young intermediate ESL students. (SED)

  19. The Semantic-Pragmatics Interface and Island Constraints in Chinese

    ERIC Educational Resources Information Center

    Jin, Dawei

    2016-01-01

    This thesis is about strong island effects and intervention effects. Strong island effects are contexts where operator-variable dependencies cannot be established. The paradigmatic cases of strong island violations in Chinese occur in "why"-questions. This thesis explores a basic contrast: "why"-questions fail to be interpreted…

  20. Science 101: Can Electromagnetic Waves Affect Emotions?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…

  1. Accessing Programs for Infants, Toddlers, and Preschoolers with Disabilities.

    ERIC Educational Resources Information Center

    Horne, Richard, Ed.

    1990-01-01

    Intended for use by parents of infants, toddlers and preschoolers, this guide presents, in question and answer format, basic information about early intervention and special education services. Questions about services for the period from birth through 2 years include the following: "What are early intervention services?""What is an…

  2. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    ERIC Educational Resources Information Center

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  3. Borrowing and Repaying Student Loans

    ERIC Educational Resources Information Center

    Hillman, Nicholas W.

    2015-01-01

    This essay synthesizes the most recent and rigorous research on student loan debt. It focuses on basic questions about who borrows, how much, and whether debt affects behaviors. Answers to these questions are necessary for informing federal student loan policymaking, yet the research findings are surprisingly mixed because of poor data quality,…

  4. Exploring the causal machinery behind sex ratios at birth: does hepatitis B play a role?

    PubMed

    Hamoudi, Amar

    2010-01-01

    The causal machinery underlying sex determination is directly relevant to many questions relating gender and family composition to social and economic outcomes. In recent work, Oster highlighted a correlation between parental hepatitis B carrier status and sex of the child. One of her analyses went further, speaking directly to causality. That analysis appeared to have answered an important question that had remained unresolved in medical and biological literatures—namely, does chronic infection with hepatitis B cause male‐skewed sex ratios at birth? Oster’s creative empirical analysis appeared to suggest that it does; however, in this article I reassess the result and present evidence that, at the very least, the question remains open. Further investigation into questions around the causal machinery of sex determination is warranted in the social science literature, as well as in that of biology and medicine. However, my results suggest that it is extremely unlikely that chronic hepatitis B infection plays a biologically significant role.

  5. [Progress in synthetic biology of "973 Funding Program" in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  6. Use of olivine and plagioclase saturation surfaces for the petrogenetic modeling of recrystallized basic plutonic systems

    NASA Technical Reports Server (NTRS)

    Hanson, G. N.

    1983-01-01

    During petrogenetic studies of basic plutonic rocks, there are at least three major questions to be considered: (1) what were the relative proportions of cumulate crystals and intercumulus melt in a given sample? (2) what is the composition and variation in composition of the melts within the pluton? and (3) what is the original composition of the liquids, their source and evolution prior to the time of emplacement? Use of both saturation surfaces can place strong limits on the compositions of potential cumulate phases and intercumulus melts. Consideration of appropriate trace elements can indicate whether a sample is an orthocumulate, adcumulate or mesocumulate. Thus, when trace element and petrographic data are considered together with the saturation surfaces, it should be possible to begin to answer the three major questions given above, even for strongly recrystallized basic plutons.

  7. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  8. Outdoor Biology Instructional Strategies Trial Edition. Set I.

    ERIC Educational Resources Information Center

    Fairwell, Kay, Ed.; And Others

    The Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set I contains 24 varied activities which make use of crafts, simulations, and basic investigative techniques to provide introductory learning experiences in outdoor biology for children aged 10 to 15. The individual water-resistant folio for each activity includes biological…

  9. A Study of Rubisco through Western Blotting and Tissue Printing Techniques

    ERIC Educational Resources Information Center

    Ma, Zhong; Cooper, Cynthia; Kim, Hyun-Joo; Janick-Buckner, Diane

    2009-01-01

    We describe a laboratory exercise developed for a cell biology course for second-year undergraduate biology majors. It was designed to introduce undergraduates to the basic molecular biology techniques of Western blotting and immunodetection coupled with the technique of tissue printing in detecting the presence, relative abundance, and…

  10. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  11. Action Biology. Advanced Placement for the Second Year. First Edition.

    ERIC Educational Resources Information Center

    Davis, Mary Pitt

    This document provides biology experiments designed for students who have completed a first year biology course. This self contained laboratory booklet contains four sections. In section 1, "Instrumentation in the Study of Cells," discussion sections and suggestions for teacher demonstrations are provided. It also includes some basic materials…

  12. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    USDA-ARS?s Scientific Manuscript database

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  13. Population biology of the forest pathogen Heterbasidion annosum:implications for forest management

    Treesearch

    M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns

    1998-01-01

    Heterobasidion annosumranks as one of the most destructive pathogens in North American coniferous forests. Understanding the popula­tion biology of this fungus may facilitate un­derstanding not only the basic biology of the organism, but also the general patterns of disease development,...

  14. 78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...

  15. The Use of Pre-Lectures in a University Biology Course--Eliminating the Need for Prerequisites

    ERIC Educational Resources Information Center

    da Silva, Karen Burke; Hunter, Narelle

    2009-01-01

    First year biology students at Flinders University with no prior biology background knowledge fail at almost twice the rate as those with a background. To remedy this discrepancy we enabled students to attend a weekly series of pre-lectures aimed at providing basic biological concepts, thereby removing the need for students to complete a…

  16. Oregon & Federal Basic Income Tax Return Preparation. Student's Manual 1981.

    ERIC Educational Resources Information Center

    Young, Donna, Ed.

    This student manual contains materials for a 20-session course in basic income tax preparation. Each session may include some or all of these components: a reading assignment, a vocabulary list, interview questions pertinent to that session's subject matter, informative/reference materials, problems to work out in class or at home, exercises, and…

  17. Basic Skills in Asian Studies: Japan.

    ERIC Educational Resources Information Center

    Hantula, James

    This publication contains 20 learning activities for developing basic skills while teaching about Japan at the secondary level. The activities are self-contained and each consists of a short description, followed by a five-item true or false test and five open-ended questions for student practice. The learning activities are followed by a…

  18. Basic Grammar in Use: Reference and Practice for Students of English.

    ERIC Educational Resources Information Center

    Murphy, Raymond

    This basic grammar book for beginning to low-intermediate level students of English contains 106 units. The units are divided into the following categories: Present; Past; Present Perfect; Passive; Future and Modals; Imperative; "There" and "It"; Verb Forms; Auxiliary Verbs; Negatives; Questions; "To" and "-ing"; Reported Speech; "Get" and "Go";…

  19. Teaching BASIC. A Step by Step Guide.

    ERIC Educational Resources Information Center

    Allen, M. F.

    This three-chapter guide provides simple explanations about BASIC programming for a teacher to use in a classroom situation, and suggests procedures for a "hands-on" course. Numerous examples are presented of the questions, problems, and level of understanding to expect from first-time, adult users (ages 13 and up). The course materials…

  20. French Basic Course. Units 13-24 Revised.

    ERIC Educational Resources Information Center

    Cossard, Monique; Salazar, Robert

    This self-instructional course is the second volume of the basic course in French. The material is divided into 12 chapters. Each of the first 11 chapters contains a dialogue, followed by notes concerning the dialogue, a list of useful expressions and vocabulary, vocabulary exercises, and questions on the dialogue. The subjects of the dialogues…

  1. Chapter 1 Basic Skills Improvement Program. An Information Booklet for Parents.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    This information booklet for parents answers some of the questions parents often ask about their children's participation in basic skills improvement programs. It suggests ways in which parents can support and reinforce the school's role and offers suggestions for parent involvement and ideas for at-home activities to support skill development.…

  2. Biosimilars: Primer for the Health-System Pharmacist

    PubMed Central

    Lucio, Steven D.; Stevenson, James G.; Hoffman, James M.

    2014-01-01

    Purpose Basic information pharmacists and other clinicians must know to successfully manage the introduction of biosimilars into health systems is summarized, including manufacturing, regulatory, and medication use policy concepts. Summary Under development for more than a decade, the biosimilar market in the United States is now closer to becoming a reality than ever before. Legislation granting the Food and Drug Administration (FDA) authority to approve lower cost, follow-on versions of previously approved biologics was signed into law in March 2010. Additional draft guidance further clarifying the requirements of the biosimilars approval pathway was published in February 2012, and FDA is currently conducting multiple preparatory meetings with potential biosimilar applicants. While intended to occupy a position similar to that of small molecule generics, biosimilars will present new challenges given that biologic medications are manufactured, regulated, and marketed differently from small molecules. As a result, it is critically important for pharmacists to be knowledgeable on the unique characteristics of biologics and prepare their organizations for the introduction of biosimilars, including use of the formulary system.. Biosimilars will pose questions of medication use policy around therapeutic interchange, pharmacovigilance, and in the transitions of care for health system patients. Conclusion As stewards of appropriate medication use, pharmacists must take the initiative to educate themselves, physicians, other clinicians and patients on these products to ensure an accurate understanding of this new category of drugs and to assure the safe and optimal use of biosimilars. PMID:24173009

  3. Analysis of a SNP linked to lactase persistence: An exercise for teaching molecular biology techniques to undergraduates.

    PubMed

    Schultheis, Patrick J; Bowling, Bethany V

    2011-01-01

    Recent experimental evidence indicates that the ability of adults to tolerate milk, cheese, and other lactose-containing dairy products is an autosomal dominant trait that co-evolved with dairy farming in Central Europe about 7,500 years ago. Among persons of European descent, this trait is strongly associated with a C to T substitution at a polymorphic site 13,910 bp upstream of the lactase gene. This mutation results in the persistent expression of lactase into adulthood enabling individuals carrying a T(-13,910) allele to digest lactose as adults. In this report, we describe a laboratory exercise for an undergraduate molecular biology course in which students determine their own genotype at the -13,910 polymorphic site and correlate this with their ability to tolerate dairy products. The exercise is used as a tool to teach basic molecular biology procedures such as agarose gel electrophoresis, PCR1, and DNA sequencing. Students are actively engaged in the learning process, not only by analyzing their own DNA but also by applying their knowledge and skills to answer an authentic question. The exercise is also integrated with lecture material on the control of gene expression at the transcriptional level, in particular, how transcription factors can influence the activity of a promoter by binding to cis-acting DNA regulatory elements located within the proximal promoter of a gene or distant enhancer regions. Copyright © 2010 Wiley Periodicals, Inc.

  4. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research.

    PubMed

    Grunspan, Daniel Z; Wiggins, Benjamin L; Goodreau, Steven M

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. © 2014 D. Z. Grunspan et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Quality of Life Philosophy I. Quality of Life, Happiness, and Meaning in Life

    PubMed Central

    Ventegodt, Søren; Andersen, Niels Jørgen; Merrick, Joav

    2003-01-01

    In the Danish Quality of Life Survey, we asked 10,000 people about their quality of life with the validated SEQOL questionnaire with more than 300 questions on their quality of life. How did they feel? How content were they with their lives? How happy were they? Did they feel their needs were fulfilled? And many more questions. We asked the questions we believed to be important for their quality of life (QOL). The results were quite surprising and forced us to recontemplate the following philosophical questions: What is quality of life, happiness, and meaning in life? What is a human being? Do we need a new biology? Is the brain the seat of consciousness? How do we seize the meaning of life and by doing so, will we become well again? What are the key concepts of quality of life? The meaning of life is connectedness and development. It is about realizing every opportunity and potential in one’s existence. The opportunities must be found and acknowledged. What do you find when you find yourself deep down? You find your real self and your purpose in life. You realize that you are already a part of a larger totality. Antonovsky called it “coherence”. Maslow called it “transcendence”. Frankl called it “meaning of life”. We call it simply “being”.To test if these philosophical questions are actually relevant for medicine, we looked at the consequences for patients being taught the quality of life philosophy. Quite surprisingly we learned from our pilot studies with “quality of life as medicine” that just by assimilating the basic concepts of the quality of life philosophy presented in this series of papers, patients felt better and saw their lives as more meaningful. The improvement of the patient’s personal philosophy of life seems to be the essence of holistic medicine, helping the patient to assume more responsibility for his or her own existence. PMID:14646011

  6. Quality of life philosophy I. Quality of life, happiness, and meaning in life.

    PubMed

    Ventegodt, Søren; Andersen, Niels Jørgen; Merrick, Joav

    2003-12-01

    In the Danish Quality of Life Survey, we asked 10,000 people about their quality of life with the validated SEQOL questionnaire with more than 300 questions on their quality of life. How did they feel? How content were they with their lives? How happy were they? Did they feel their needs were fulfilled? And many more questions. We asked the questions we believed to be important for their quality of life (QOL). The results were quite surprising and forced us to recontemplate the following philosophical questions: What is quality of life, happiness, and meaning in life? What is a human being? Do we need a new biology? Is the brain the seat of consciousness? How do we seize the meaning of life and by doing so, will we become well again? What are the key concepts of quality of life? The meaning of life is connectedness and development. It is about realizing every opportunity and potential in one"s existence. The opportunities must be found and acknowledged. What do you find when you find yourself deep down? You find your real self and your purpose in life. You realize that you are already a part of a larger totality. Antonovsky called it "coherence". Maslow called it "transcendence". Frankl called it "meaning of life". We call it simply "being". To test if these philosophical questions are actually relevant for medicine, we looked at the consequences for patients being taught the quality of life philosophy. Quite surprisingly we learned from our pilot studies with "quality of life as medicine" that just by assimilating the basic concepts of the quality of life philosophy presented in this series of papers, patients felt better and saw their lives as more meaningful. The improvement of the patient"s personal philosophy of life seems to be the essence of holistic medicine, helping the patient to assume more responsibility for his or her own existence.

  7. Biology Professors' and Teachers' Positions Regarding Biological Evolution and Evolution Education in a Middle Eastern Society

    ERIC Educational Resources Information Center

    BouJaoude, Saouma; Asghar, Anila; Wiles, Jason R.; Jaber, Lama; Sarieddine, Diana; Alters, Brian

    2011-01-01

    This study investigated three questions: (1) What are Lebanese secondary school (Grade 9-12) biology teachers' and university biology professors' positions regarding biological evolution?, (2) How do participants' religious affiliations relate to their positions about evolutionary science?, and (3) What are participants' positions regarding…

  8. Legislative and Regulatory Actions Needed to Deal with a Changing Domestic Telecommunications Industry.

    DTIC Science & Technology

    1981-09-24

    procedures? GAO recommends that the Congress address these questions by amending the Communications Act of 1934 to establish the basic framework to create...concerns with rate of return/rate base regulation 198 VII Basic procedures used in establishing rates of return 201 VIII Problems regarding AT&T’s rate...prompted a critical reexamination of the basic communications policy and regulatory methods con- tained in the Communications Act of 1934 (47 U.S.C

  9. Redox Biology Final Examination 2016 | Center for Cancer Research

    Cancer.gov

    Numerous registrants have requested a certificate upon completion of the Redox Biology (RB) course. In order to obtain a certificate, you must answer 8 of the 12 questions below correctly. In the final examination, 1 question is derived from each of the 1-hour lectures. It is highly recommended that you have a copy of each PowerPoint presentation prior to taking the examination.

  10. Biology 30: Grade 12 Diploma Examination = Biologie 30: Examen en vue du diplome 12 annee.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Student Evaluation Branch.

    This document, in both English and French versions, is the Biology 30 Grade 12 Diploma Examination from Alberta Education. It is a 2.5 hour closed-book examination consisting of 48 multiple-choice and 8 numerical-response questions of equal value that are worth 70% of the examination, and 2 written-response questions of equal value worth 30% of…

  11. Redox Biology Final Examination 2016 | Center for Cancer Research

    Cancer.gov

    Numerous registrants have requested a certificate upon completion of the Redox Biology (RB) course. In order to obtain a certificate, you must answer 8 of the 12 questions below correctly. In the final examination, 1 question is derived from each of the 1-hour lectures. It is highly recommended that you have a copy of each PowerPoint presentation prior to taking the

  12. Knowledge on the subject of human physiology among Polish high school students--a cross-sectional study.

    PubMed

    Zwinczewska, Helena; Rozwadowska, Joanna; Traczyk, Anna; Majda, Szymon; Wysocki, Michał; Grabowski, Kamil; Kopeć, Sylwia; Głowacki, Roman; Węgrzyn, Katarzyna; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2014-01-01

    In most cases the only knowledge an individual will receive with regards to their own body and its proper functioning is during their high school education. The aim of this study was to evaluate high school students' knowledge about basic physiology. The research was carried out in five, randomly chosen high schools in Krakow, Poland. Young people in the age of 17-19 years were asked to fill in the questionnaire designed by the authors. The first part of the survey included personal data. The second part contained 20 close-ended questions assessing students' knowledge about the basics of human physiology. Question difficulty varied from easy through average, and up to difficult. The maximum number of points to achieve was 20. One-thousand-and eighty-three (out of 1179 invited--91.86%) Polish high school students (63.25% female) filled in a 20-item questionnaire constructed by the authors regarding basic human physiology. The mean age of the group was 17.66 ± 0.80 years. The mean score among the surveyed was 10.15 ± 3.48 (range 0-20). Only 26.04% of students achieved a grade of 60% or more, and only one person obtained the highest possible score. Females achieved significantly better scores than males (10.49 ± 3.38 vs. 9.56 ± 3.56; p < 0.0001). Pupils in their second year who were in the process of studying physiology, obtained better results than those in their third year who had already finished the biology course (10.70 ± 3.27 vs. 9.81 ± 3.74 respectively; p < 0.0001) and those in their first year who did not yet study human physiology (10.70 ± 3.27 vs. 9.63 ± 2.74 respectively; p = 0.003). Over 23% of students did not know that mature red blood cells do not have cell nuclei and a similar number of them answered that humans have 500,000 erythrocytes in 1 mm3 of blood. Over 32% believed that plasma does not participate in the transport of respiratory gases, and 31% believed that endocrine glands secrete hormones within their immediate vicinity and into the blood. Our research has shown that young people, especially men, often lack basic physiological knowledge needed to make conscious and responsible decisions regarding their health. Our results suggest that more emphasis should be put on properly teaching human physiology in high school, especially to those students who do not plan a career in medicine-related fields. This study brings to light the disturbing fact that about a year after a student finishes his basic physiology course his knowledge of the subject returns to a pre high school level.

  13. Just caring: defining a basic benefit package.

    PubMed

    Fleck, Leonard M

    2011-12-01

    What should be the content of a package of health care services that we would want to guarantee to all Americans? This question cannot be answered adequately apart from also addressing the issue of fair health care rationing. Consequently, as I argue in this essay, appeal to the language of "basic," "essential," "adequate," "minimally decent," or "medically necessary" for purposes of answering our question is unhelpful. All these notions are too vague to be useful. Cost matters. Effectiveness matters. The clinical circumstances of a patient matters. But what we must ultimately determine is what we mutually agree are the just claims to needed health care of each American in a relatively complex range of clinical circumstances. Answering this question will require a public moral conversation, a fair process of rational democratic deliberation aimed at defining both just claims to needed health care and just limits.

  14. Fostering Effective Studying and Study Planning with Study Questions

    ERIC Educational Resources Information Center

    Wilhelm, Pascal; Pieters, Jules M.

    2007-01-01

    In a course on biological psychology and neuropsychology, study questions were provided that also appeared as test questions in the course exam. This method was introduced to support students in active processing and reproduction of the study texts, and study planning. Data were gathered to test the hypothesis that study question use would be…

  15. The effects of question types in textual reading upon retention of biology concepts

    NASA Astrophysics Data System (ADS)

    Leonard, William H.; Lowery, Lawrence F.

    Do instructional questions to students enhance learning? If so, do certain types of questions cause greater learning outcomes than others? The area of instructional questions and questioning strategies has generated much research over the past two decades. A number of studies have found instructional questions to account for a large fraction of teaching time (Bellack et al., 1963; Schreiber, 1967; Moyer, 1967). Teacher use of oral questions in instruction, especially higher level cognitive questions, has consistently shown positive effects on student achievement (Redfield & Rousseau, 1981). Questions asked after oral prose presentations in psychology have been found to enhance recall of factual information (Sefkow & Meyers, 1980). Some large teacher training programs have specific instruction in questioning strategies (Lanier & Davis, 1972; Lowery, 1974). Questioning in textual reading has also been investigated, especially in the social sciences and languages, with respect to both the presence of questions in a text and the position and type of such questions. Although there are conflicting results, in general, questions placed within text materials have appeared to cause significantly higher performance than reading the materials without questions (Rothkopf & Bisbicos, 1967; Rothkopf & Bloom, 1970; Watts & Anderson, 1971; Quellmalz, 1972; Reynolds, Standiford, & Anderson, 1979; Corrozi, 1971). Questions placed after the reading have been found to be significantly more productive than prequestions, or questions placed immediately before the reading passages (Rothkopf & Bisbicos, 1967; Frase, Patrick, & Schumer, 1970; Watts & Anderson, 1971). In one study, placing questions before the associated information reduced paragraph reading time from the time required when questions followed the information passage (Morasky & Wilcox, 1970). Finally, higher level cognitive post- and prequestions (comprehensive and application) have consistently produced more learning than recall and factual questions (Watts & Anderson, 1971; Falker, 1974; Rickards, 1974, 1976). The effect of placing questions directly within textual narrative has been much less researched than the issue of placing questions before or after the reading passage. The effect of this interspersed questioning strategy as part of science textbooks is apparently unresearched to date. The purpose of the research reported here was to determine the relative effects of certain question types when these questions were interspersed throughout the reading passage in textual materials for students in university introductory biology. It was hypothesized for experimental purposes that students reading a passage in biology concepts with specific types of interspersed questions would comprehend and retain no more of that passge than students reading the same passage without interspersed questions.

  16. Students' perceptions of motivation in high school biology class: Informing current theories

    NASA Astrophysics Data System (ADS)

    McManic, Janet A.

    The purpose of this study was to investigate students' perceptions of motivation to achieve while participating in general level high school biology classes. In a national poll of teacher's attitudes, student's motivation was a top concern of teachers (Elam, 1989). The student's perceptions of motivation are important to understand if improvements and advancements in motivation are to be implemented in the science classroom. This qualitative study was conducted in an urban high school that is located in a major metropolitan area in the southeast of the United States. The student body of 1100 is composed of Caucasian, African-American, Hispanic, and Asian students. The focus question of the study was: What are students' perceptions of their motivation in biology class? From general level biology classes, purposeful sampling narrowed the participants to fifteen students. Semi-structured interviews were conducted with the participants having varying measurements of motivation on the Scale of Intrinsic versus Extrinsic Orientation in the Classroom (Harter, 1980). The interviews were recorded and transcribed. After transcription, the interviews were coded by the constant comparative method (Glaser & Strauss, 1967). The coded data of students' responses were analyzed and compared to current theories of motivation. The current theories are the social-cognitive model (Bandura, 1977), attribution theory (Weiner, 1979), basic needs theory (Maslow, 1954) and choice theory (Glasser, 1986). The results of this study support the social cognitive model of motivation (Bandura, 1977) through the description of family structure and its relationship to motivation (Gonzalez, 2002). The study upheld previous research in that extrinsic orientation was shown to be prevalent in older students (Harter, 1981; Anderman & Maehr, 1994). In addition, the students' responses disclosed the difficulties encountered in studying biology. Students expressed the opinion that biology terms are complicated; the material is too extensive to be understood and there is no relevance between the subject and the student. Positive affirmations of biology classes included hands-on activities and dissections. According to this study, in order to encourage student learning in biology, it may prove beneficial to implement suitable or applicable adaptations in the class environment.

  17. Biology Education Research: Lessons and Future Directions

    ERIC Educational Resources Information Center

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2013-01-01

    Biologists have long been concerned about the quality of undergraduate biology education. Over time, however, biology faculty members have begun to study increasingly sophisticated questions about teaching and learning in the discipline. These scholars, often called biology education researchers, are part of a growing field of inquiry called…

  18. Origin of life. The role of experiments, basic beliefs, and social authorities in the controversies about the spontaneous generation of life and the subsequent debates about synthesizing life in the laboratory.

    PubMed

    Deichmann, Ute

    2012-01-01

    For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.

  19. Christine English | NREL

    Science.gov Websites

    Hydrogenases: New Frontiers in Basic and Applied Studies for Biological and Synthetic H2 Production. Dalton Histone H3 in S-Phase. Journal of Biological Chemistry, 12, 1334-1340. English, C.M., Adkins, M.W

  20. Exploring autonomy through computational biomodelling.

    PubMed

    Palfreyman, Niall

    2009-07-01

    The question of whether living organisms possess autonomy of action is tied up with the nature of causal efficacy. Yet the nature of organisms is such that they frequently defy conventional causal language. Did the fig wasp select the fig, or vice versa? Is this an epithelial cell because of its genetic structure, or because it develops within the epithelium? The intimate coupling of biological levels of organisation leads developmental systems theory to deconstruct the biological organism into a life-cycle process which constitutes itself from the resources available within a complete developmental system. This radical proposal necessarily raises questions regarding the ontological status of organisms: Does an organism possess existence distinguishable from its molecular composition and social environment? The ambiguity of biological causality makes such questions difficult to answer or even formulate, and computational biology has an important role to play in operationalising the language in which they are framed. In this article we review the role played by computational biomodels in shedding light on the ontological status of organisms. These models are drawn from backgrounds ranging from molecular kinetics to niche construction, and all attempt to trace biological processes to a causal, and therefore existent, source. We conclude that computational biomodelling plays a fertile role in furnishing a proof of concept for conjectures in the philosophy of biology, and suggests the need for a process-based ontology of biological systems.

  1. Molecular basis of angiosperm tree architecture

    USDA-ARS?s Scientific Manuscript database

    The shoot architecture of trees greatly impacts orchard and forest management methods. Amassing greater knowledge of the molecular genetics behind tree form can benefit these industries as well as contribute to basic knowledge of plant developmental biology. This review covers basic components of ...

  2. Urban Outdoor Education

    ERIC Educational Resources Information Center

    Daugs, Donald R.

    1978-01-01

    Suggests that survival consciousness has made it imperative that all people have a knowledge of basic biology and ecological relationships. Shows how the urban teacher can utilize the school grounds and buildings to help students gain such basic understanding of the natural environment. (Author/RK)

  3. The origins of the universe: why is there something rather than nothing?

    PubMed

    Paulson, Steve; Albert, David; Holt, Jim; Turok, Neil

    2015-12-01

    Perhaps the greatest mystery is why the universe exists in the first place. How is it possible for something to emerge from nothing, or has a universe in some form always existed? This question of origins-both of the universe as a whole and of the fundamental laws of physics-raises profound scientific, philosophical, and religious questions, culminating in the most basic existential question of all: Why are we here? Discussion of this and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  4. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-07-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.

  5. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  6. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.

    PubMed

    Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude

    2009-01-01

    Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.

  7. Nutrition and Health in Amphibian Husbandry

    PubMed Central

    Ferrie, Gina M.; Alford, Vance C.; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S.; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A.; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R.; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P.; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M. Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J.; Wilson, Brad; Valdes, Eduardo V.

    2015-01-01

    Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists’ understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. PMID:25296396

  8. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  9. Separating the Research Question from the Laboratory Techniques: Advancing High-School Biology Teachers' Ability to Ask Research Questions

    ERIC Educational Resources Information Center

    Hasson, Eilat; Yarden, Anat

    2012-01-01

    Inquiry is essentially a process in which research questions are asked and an attempt is made to find the answers. However, the formulation of operational research questions of the sort used in authentic scientific inquiry is not a trivial task. Here, we set out to explore the possible influence of separating the research question from the…

  10. Frequently Asked Questions about ADHD and the Answers from the Internet.

    ERIC Educational Resources Information Center

    Loechler, Kathy

    1999-01-01

    Identifies useful Internet sites about attention-deficit hyperactivity disorder (ADHD) and the results of searching these sites to answer common questions concerning incidence of ADHD, basic information about Ritalin drug therapy, educational placement of students with ADHD, sources of information about special needs, and what parents can do at…

  11. Comprehensive School Reform: The Implementation Gap. Research Brief

    ERIC Educational Resources Information Center

    RAND Corporation, 2006

    2006-01-01

    Does Comprehensive School Reform (CSR) work? Research results have been mixed. Some studies have measured a modest improvement in student achievement; others have found no effect. A team of RAND researchers has approached the question of CSR's effectiveness by first focusing on an even more basic question: Has CSR been implemented? A shortcoming…

  12. Response: Training Doctoral Students to Be Scientists

    ERIC Educational Resources Information Center

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  13. 77 FR 64186 - Proposed Collection; Comment Request for Form 13614

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... 13614, Interview and Intake Sheet. DATES: Written comments should be received on or before December 17... INFORMATION: Title: Interview and Intake Sheet. OMB Number: 1545-1964. Form Number: Form 13614-C and 13614-C... questions to guide volunteers in asking taxpayers basic questions about themselves. The intake sheet is an...

  14. Flight Engineer. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) to be used by FAA testing centers and FAA-designated written test examiners when administering the flight engineer written test. The book can be used to test applicants in the following flight engineer knowledge areas: basic, turbojet powered, turbopropeller powered, and…

  15. Faith Informing Competitive Youth Athletes in Christian Schooling

    ERIC Educational Resources Information Center

    Hoven, Matt

    2016-01-01

    How do students use religious faith to inform their actions in competitive sport? This qualitative study critically reflects on this question based upon the thinking processes and experiences of 15-year-old participants in sports and, in turn, produces a basic conceptual framework toward the question at hand. Overall, students reported a complex,…

  16. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  17. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  18. BIOPS Interactive: An e-Learning Platform Focused on Protein Structure and DNA

    ERIC Educational Resources Information Center

    Pontelli, Enrico; Pinto, Jorge; Qin, Xiaoxiao; He, Jing; Bevan, David; MacCuish, Norah; MacCuish, John; Chapman, Mitch; Moreland, David

    2009-01-01

    One of the difficulties in teaching basic molecular biology concepts to the students with little biological background is the lack of hands-on exercises that combines the challenges of the concepts with visualization and immediate feedback. BIOPS Interactive is a web-based interactive learning environment for molecular biology that complements…

  19. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry.  Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by

  20. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    NASA Astrophysics Data System (ADS)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned retirement (2016). The extension will allow partner agencies to deploy new experiments there, resuming basic research focusing more forward-looking goals. For deep-space, since consumables logistics becomes more difficult- and habitability an issue, with diminishing Earth's view, further research has been recommended. Four major areas have been identified for human protection: (1) radiation mitigation; (2) highly recyclable bio-regenerative (BR) LSS; (3) micro-gravity countermeasures- including artificial gravity (AG), and (4) psychological safety. To contribute to the efforts to address these issues, a basic lab/virtual iterative research has been proposed, assuming (in a worst case scenario) that: I) It won't be possible to send people to long deep space missions, safely, with the current (low quality of life) support technology (ISS micro-gravity 'up-gradings'); II) The alternative to implant a Mars surface human supportive biosphere would also not be possible, due to environmental/ evolutionary restraints (life could adapt and survive, but not necessarily to favor humans). From the above considerations arises the question: Would an average approach be possible where, by applying the artificial gravity concept to S/Cs, a fragment of Earth bio-regenerative environment could be integrated inside reusable manned vehicles- thus enhancing its habitability/autonomy in long deep space missions? For this research question a provisory answer/hypothesis has been provided. And to test it, a small AG+BR bench simulator (plus computer methods) has been devised.

  1. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    ERIC Educational Resources Information Center

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  2. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology.

    PubMed

    Spooner, B S

    1993-04-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  3. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    ERIC Educational Resources Information Center

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  4. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.

    1993-01-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  5. Defense Threat Reduction Agency > Research

    Science.gov Websites

    Sciences Protection Sciences Science to Defeat WMD Science to Secure WMD Chemical/Biological Technologies unconventional means to answer some of the most difficult questions about chemical, biological, radiological and partnering with us, explore our pages. Chemical/Biological Technologies Chemical and biological threats are

  6. What Makes Biology Learning Difficult and Effective: Students' Views

    ERIC Educational Resources Information Center

    Cimer, Atilla

    2012-01-01

    The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…

  7. The Teaching of Evolution and Creationism in Minnesota

    ERIC Educational Resources Information Center

    Moore, Randy; Kraemer, Karen

    2005-01-01

    The evolution-related attitudes and actions of Minnesota high school biology teachers were studied to estimate the prevalence of creationism among biology teachers. Minnesota's high school biology teachers were questioned about the evolution education in public schools regarding the percentage of biology teachers who teach evolution, class-time…

  8. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  9. Within-Case and Cross-Case Analyses of Questions Posed by Fifth-Grade Students Working in Small Groups to Investigate Pendulum Motion

    NASA Astrophysics Data System (ADS)

    Tisel, James Michael

    The focus of this basic qualitative research is student questions in an unstructured inquiry setting. Case and cross-case analyses were conducted (Miles and Huberman, 1984) of the questions posed by fifth grade students working in laboratory groups of size three to five students as they investigated pendulum motion. To establish the conceptual framework for the study, literature was reviewed in the areas of cognitive theory (constructivism, conceptual change, and other theories), approaches to science, and the importance of student questions in the learning process. A review of group work, related studies of student questions and activities and relevant methods of qualitative research was also undertaken. The current study occupies the relatively unique position of being about the questions students posed to each other (not the teacher) at the outset of and throughout an unstructured inquiry activity with a minimum of teacher initiation or intervention. The focus is on finding out what questions students ask, when they ask them, what categories the questions fall into in relation to possible models of the scientific method, student motivation, and what role the questions play as the students take part in an inquiry activity. Students were video and/or audio-recorded as they did the investigation. They wrote down their questions during one-minute pauses that occurred at roughly eight-minute intervals. The groups were interviewed the next day about their experience. The recordings, question sheets, and interview accounts and recordings were analyzed by the researcher. Accounts of the experience of each group were prepared, and reiterated attempts were made to classify the questions as the main themes and categories emerged. It was found that students posed their key research question (most typically related to pendulum damping effects) midway through the first half of their activity, after having first met some competence and other needs in relation to measurement procedures and basic information. The main research question typically emerged gradually in an implicitly shared form. It was found that Deci and Ryan's self-determination theory (2000) with the core needs of competence, autonomy, and relatedness, served as a useful tool for categorizing and understanding the role of the questions. Basic questions about procedures in relation to gaining competence with measurement were considered by the researcher to be most prevalent. When compared to, for instance, Lawson's hypothetico-predictive model of doing science (2003a) it was noted that puzzling observations were not necessarily made at the outset, and key questions took place much later in the investigative process than what typical scientific models might suggest. Further, more focused research in the areas of self-determination theory in relation to student questions as they engage in inquiry could be of benefit in determining the motivations behind student questions. Educational programs that have, as their goal, authentic student inquiry should take into account that student research questions evolve over time as they meet various needs in the process of initiating their investigations.

  10. Darwin 101 (Enhanced): From Earth to Space

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Charles Darwin was a modest man, yet one of the great revolutionaries of intellectual history. Born into a culture wedded to Genesis, he brought biology into the realm of natural world. The implications range from of the "why" questions of biology, to our view societies to our ability to combat AIDS. In our era of genomics and space exploration, these insights are being applied to the age-old question: are we alone?

  11. Grade 12 Diploma Examination: Biology 30. June 1988 = Examen en vue du Diplome Douzieme Annee: Biologie 30. Juin 1988.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    Biology 30 is a 12th-grade science course for students in Alberta, Canada. This document is a final test for the course. Intended for administration during June, 1988, it contains 80 multiple-choice questions and five written-response questions. Two-and-one-half hours are allowed for completing the test. No answer key is included since scoring is…

  12. Grade 12 Diploma Examination: Biology 30. January 1989 = Examen en vue du diplome douzieme annee: Biologie 30. Janvier 1989.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    Biology 30 is a 12th-grade science course for students in Alberta, Canada. This document is the final test for the course. Intended for administration during January 1989, it contains 70 multiple-choice questions and seven written-response questions. Two-and-one-half hours are allowed for completing the test. No answer key is included since…

  13. Grade 12 Diploma Examination: Biology 30. June 1989 = Examen en vue du diplome douzieme annee: Biologie 30. Juin 1989.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    Biology 30 is a 12th-grade science course for students in Alberta, Canada. Intended for administration during June 1989, it contains 70 multiple-choice questions and 7 written-response questions. Two-and-one-half hours are allowed for completing the test. No answer key is included since scoring is done by the provincial education department. The…

  14. Grade 12 Diploma Examination: Biology 30. January 1988 = Examen en vue du diplome douzieme annee: Biologie 30. Janvier 1988.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    Biology 30 is a 12th-grade science course for students in Alberta, Canada. This document is a final test for the course. Intended for administration during January 1988, it contains 80 multiple-choice questions and four written-response questions. Two-and-one-half hours are allowed for completing the test. No answer key is included since scoring…

  15. Pesticide Applicator Training Manual, Category 8B: Mosquito Control for New Jersey. A Training Program for the Certification of Commercial Pesticide Applicators, and Study Questions.

    ERIC Educational Resources Information Center

    Schulze, Terry L., Ed.; Kriner, Ray R., Ed.

    This training manual provides information needed to meet the mimimum EPA standards for certification as a commercial applicator of pesticides in the mosquito control category. The text discusses the aspects of mosquito biology and control by biological, mechanical, and integrated measures. A study guide with sample and study questions is included.…

  16. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    NASA Astrophysics Data System (ADS)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  17. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    PubMed

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  18. Facial expressions of emotion are not culturally universal.

    PubMed

    Jack, Rachael E; Garrod, Oliver G B; Yu, Hui; Caldara, Roberto; Schyns, Philippe G

    2012-05-08

    Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.

  19. Facial expressions of emotion are not culturally universal

    PubMed Central

    Jack, Rachael E.; Garrod, Oliver G. B.; Yu, Hui; Caldara, Roberto; Schyns, Philippe G.

    2012-01-01

    Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843–850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature–nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011

  20. Advice to Mental Health Intervention for Recruits Based on an Investigation for Mental Status of Servicemen during Basic Military Training

    ERIC Educational Resources Information Center

    Hong-zheng, Li; Dan-min, Miao; Mei-ying, Lei; Xiao-yan, Chen; Xiao-bing, Liu

    2007-01-01

    Basic military training consists of highly regimented training in the context of fairly extreme psychosocial stressors, and some recruits suffered from rigorous disturbance in mind. Even if practical measures which include instructive psychological intervention have been taken to ameliorate the disturbance, some questions still have not been…

  1. Are Online Quizzes an Effective Tool for Mastering Basic Algebra?

    ERIC Educational Resources Information Center

    Read, Wayne; Higgins, Patrick

    2012-01-01

    On-line quizzes are used to help first year University Mathematics students identify weaknesses in their basic skills and improve them. Quizzes developed as a formative tool have been utilised at JCU [James Cook University] for eight years. However, before this research no-one has questioned the effectiveness of quizzes for this task. We present a…

  2. The Not So Common Sense: Differences in How People Judge Social and Political Life.

    ERIC Educational Resources Information Center

    Rosenberg, Shawn W.

    This interdisciplinary book challenges two basic assumptions that orient much contemporary social scientific thinking. Offering theory and empirical research, the book rejects the classic liberal view that people share a basic common sense or rationality; while at the same time, it questions the view of contemporary social theory that meaning is…

  3. Visual Basic Programming Impact on Cognitive Style of College Students: Need for Prerequisites

    ERIC Educational Resources Information Center

    White, Garry L.

    2012-01-01

    This research investigated the impact learning a visual programming language, Visual Basic, has on hemispheric cognitive style, as measured by the Hemispheric Mode Indicator (HMI). The question to be answered is: will a computer programming course help students improve their cognitive abilities in order to perform well? The cognitive styles for…

  4. Warning Signals: Basic Criteria for Tracking At-Risk Infants and Toddlers.

    ERIC Educational Resources Information Center

    Blackman, James

    Developed by a multidisciplinary group (convened by Project Zero to Three) of 17 experts in the identification and evaluation of high risk infants and young children, this manual presents basic criteria for tracking at risk infants and toddlers. The first section answers such questions about the criteria as the following: What is a tracking system…

  5. The Universal Basic Education Programme and Female Trafficking in South-South, Nigeria

    ERIC Educational Resources Information Center

    Ogonor, Bridget O.; Osunde, Austin U.

    2007-01-01

    The study investigated the impact of the Universal Basic Education (UBE) programme on the phenomenon of female trafficking in South-South Nigeria. To this end, six research questions were raised. These revolved around: (i) resource situation and adequacy of training provided for repatriated trafficked victims in the service provider centre; (ii)…

  6. Inclusive Classrooms: A Basic Qualitative Study of K-8 Urban Charter School Teachers

    ERIC Educational Resources Information Center

    Williams, Regina N.

    2017-01-01

    The rapid growth of charter schools has been accompanied with numerous questions related to special education such as whether or not charter schools and their unique missions can actually meet the needs of students with disabilities (Karp, 2012). This basic qualitative study explores the practices and procedures used by primary school teachers to…

  7. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    PubMed

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.

  8. Distinguishing among Declarative, Descriptive and Causal Questions to Guide Field Investigations and Student Assessment

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare V.

    2011-01-01

    Teachers as well as students often have difficulty formulating good research questions because not all questions lend themselves to scientific investigation. The following is a guide for high-school and college life-science teachers to help students define question types central to biological field studies. The mayfly nymph was selected as the…

  9. Communication: Beyond the Basics: Other Communication Levels.

    ERIC Educational Resources Information Center

    Gratz, J. E.; Gratz, Elizabeth

    1979-01-01

    In addition to the basic communication skills of reading, writing, listening, and speaking, the authors suggest five other levels of communication to help teachers expand students' horizons: kinetic and symbolic; mental; extraterrestrial, biological, and technological; imagery; and perceptual. Each level is briefly discussed. (MF)

  10. How Asking a Very Basic Research Question Led Us to a Model for at Least Three Diseases | Poster

    Cancer.gov

    By Howard Young Editor’s note: This article is adapted from Dr. Young’s January 12, 2015, post to the I am Intramural Blog of the Intramural Research Program. When I started this project, it was not my objective to develop a model for any specific disease, nor did I even suspect that the ultimate result would be some insight into autoimmune disease. The basic research question I was asking was why there are sequences in the 3? untranslated region (3?UTR) of the interferon-gamma (IFN-gamma) mRNA that are more highly conserved than in the coding region of the gene.

  11. [Understanding questions: a specific difficulty in children with pragmatic communication and language disorders].

    PubMed

    Monfort, I; Monfort, M

    2010-03-03

    The question-answer schema is the basis for communicative interaction and is therefore a fundamental aim of the work carried out with children with severe communication and language impairment. Answering questions requires basic skills that enable the listener to identify intonation and facial expression, as well as skills in interpreting intentions and in understanding linguistic content. Some questions can rest on contextual-social keys and others may be based on lexical or structural keys. Some questions, however, call for a more complex understanding, such as 'what' and 'who' questions. Here, we propose an analysis of the skills involved in understanding questions and the consequences on intervention strategies. Intervention in understanding questions should combine different approaches (cognitive, social, linguistic) depending on the type of question, the specific difficulties the child has and the context.

  12. English-as-a-Second-Language Programs in Basic Skills Education Program 1. Appendix

    DTIC Science & Technology

    1984-01-01

    the Army? question understood (1) - gramatically correct (1) no rephrasing/repetition (1) 8. Why are you taking this English Language Course...question understood (1) gramatically correct (1) no rephrasing/repetition (1) 9. Do you think you will use English when you are no longer in the Arnfy...How will you use English?) question understood (1) - gramatically correct (1) -_ no rephrasing/repetition (1) E-4 Page 2 PATROL SCENE Now we want to show

  13. Asking Questions: Will Army Tactical Interrogation be Ready for War?

    DTIC Science & Technology

    1986-12-17

    still never answer the basic question: "Is there enough?" It is the interrogator portion of this question that this paper will address to provide a...tenative answer for the near to midrange future. Section II of this paper will examine the historical 2 AA 4 importance of interrogator derived...the former that this paper will concern itself. In addition to interrogators, there have historically existed, and there continue to exist today (almost

  14. Using Pre-Assessment and In-Class Questions to Change Student Understanding of Molecular Movements †

    PubMed Central

    Shi, J.; Knight, Jennifer K.; Chun, Hyonho; Guild, Nancy A.; Martin, Jennifer M.

    2017-01-01

    Understanding how different types of molecules move through cell membranes is a fundamental part of cell biology. To identify and address student misconceptions surrounding molecular movement through cell membranes, we surveyed student understanding on this topic using pre-class questions, in-class clicker questions, and subsequent exam questions in a large introductory biology course. Common misconceptions identified in student responses to the pre-class assessment questions were used to generate distractors for clicker questions. Two-tier diagnostic clicker questions were used to probe incoming common student misconceptions (first tier) and their reasoning (second tier). Two subsequent lectures with assessment clicker questions were used to help students construct a new framework to understand molecular movement through cell membranes. Comparison of pre-assessment and post-assessment (exam) performance showed dramatic improvement in students’ understanding of molecular movement: student answers to exam questions were 74.6% correct with correct reasoning while only 1.3% of the student answers were correct with correct reasoning on the pre-class assessment. Our results show that students’ conceptual understanding of molecular movement through cell membranes progressively increases through discussions of a series of clicker questions and suggest that this clicker-based teaching strategy was highly effective in correcting common student misconceptions on this topic. PMID:28512521

  15. Assessment of Learning Gains Associated with Independent Exam Analysis in Introductory Biology

    PubMed Central

    William, Adrienne E.; Aguilar-Roca, Nancy M.; Tsai, Michelle; Wong, Matthew; Beaupré, Marin Moravec; O’Dowd, Diane K.

    2011-01-01

    This study evaluates the impact of an independent postmidterm question analysis exercise on the ability of students to answer subsequent exam questions on the same topics. It was conducted in three sections (∼400 students/section) of introductory biology. Graded midterms were returned electronically, and each student was assigned a subset of questions answered incorrectly by more than 40% of the class to analyze as homework. The majority of questions were at Bloom's application/analysis level; this exercise therefore emphasized learning at these higher levels of cognition. Students in each section answered final exam questions matched by topic to all homework questions, providing a within-class control group for each question. The percentage of students who correctly answered the matched final exam question was significantly higher (p < 0.05) in the Topic Analysis versus Control Analysis group for seven of 19 questions. We identified two factors that influenced activity effectiveness: 1) similarity in topic emphasis of the midterm–final exam question pair and 2) quality of the completed analysis homework. Our data suggest that this easy-to-implement exercise will be useful in large-enrollment classes to help students develop self-regulated learning skills. Additional strategies to help introductory students gain a broader understanding of topic areas are discussed. PMID:22135369

  16. Assessment of learning gains associated with independent exam analysis in introductory biology.

    PubMed

    Williams, Adrienne E; William, Adrienne E; Aguilar-Roca, Nancy M; Tsai, Michelle; Wong, Matthew; Beaupré, Marin Moravec; O'Dowd, Diane K

    2011-01-01

    This study evaluates the impact of an independent postmidterm question analysis exercise on the ability of students to answer subsequent exam questions on the same topics. It was conducted in three sections (∼400 students/section) of introductory biology. Graded midterms were returned electronically, and each student was assigned a subset of questions answered incorrectly by more than 40% of the class to analyze as homework. The majority of questions were at Bloom's application/analysis level; this exercise therefore emphasized learning at these higher levels of cognition. Students in each section answered final exam questions matched by topic to all homework questions, providing a within-class control group for each question. The percentage of students who correctly answered the matched final exam question was significantly higher (p < 0.05) in the Topic Analysis versus Control Analysis group for seven of 19 questions. We identified two factors that influenced activity effectiveness: 1) similarity in topic emphasis of the midterm-final exam question pair and 2) quality of the completed analysis homework. Our data suggest that this easy-to-implement exercise will be useful in large-enrollment classes to help students develop self-regulated learning skills. Additional strategies to help introductory students gain a broader understanding of topic areas are discussed.

  17. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  18. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  19. Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease

    MedlinePlus

    ... NIGMS use research organisms to explore the basic biology and chemistry of life. Scientists decide which organism ... controls allow for more precise understanding of the biological factors being studied and provide greater certainty about ...

  20. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

Top