A scientific role for Space Station Freedom: Research at the cellular level
NASA Technical Reports Server (NTRS)
Johnson, Terry C.; Brady, John N.
1993-01-01
The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.
Education M.S., Biomedical Basic Science, Department of Biochemistry and Molecular Genetics, University of Interaction with Histones H3 and H4," Molecular and Cellular Biology (2013) "The Lysine 48 and Cerevisiae," Molecular and Cellular Biology (2007) View all NREL Publications for Seth M. Noone
Thin film bioreactors in space
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Scheld, H. W.
1989-01-01
Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.
An introduction to the molecular basics of aryl hydrocarbon receptor biology.
Abel, Josef; Haarmann-Stemmann, Thomas
2010-11-01
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Translational bioinformatics: linking the molecular world to the clinical world.
Altman, R B
2012-06-01
Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.
ERIC Educational Resources Information Center
Yeong, Foong May
2015-01-01
Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…
Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.
ERIC Educational Resources Information Center
Songer, Catherine J.; Mintzes, Joel J.
1994-01-01
Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…
Feeding Behaviors in Cellular Slime Molds: A Microbial System To Study Competition.
ERIC Educational Resources Information Center
Bozzone, Donna M.
1997-01-01
Describes a laboratory project for first-year biology students that examines competition among various cellular slime molds. After a brief introduction to the topic of competition and basic life history information about cellular slime molds, students choose a question and design original experiments to seek an answer. (Author/AIM)
Systems biology of cellular membranes: a convergence with biophysics.
Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini
2017-09-01
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Oxygen regulates molecular mechanisms of cancer progression and metastasis.
Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan
2014-03-01
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
NASA Astrophysics Data System (ADS)
Mehta, Pankaj; Lang, Alex H.; Schwab, David J.
2016-03-01
A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.
Microfluidic tools for cell biological research
Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.
2010-01-01
Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269
Integration of Basic Sciences in Health's Courses
ERIC Educational Resources Information Center
Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.
2012-01-01
Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…
ERIC Educational Resources Information Center
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael
2016-01-01
"Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…
Mechano-biological Coupling of Cellular Responses to Microgravity
NASA Astrophysics Data System (ADS)
Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan
2015-11-01
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.
Spooner, B S
1993-04-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
NASA Technical Reports Server (NTRS)
Spooner, B. S.
1993-01-01
The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.
Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons
ERIC Educational Resources Information Center
Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.
2011-01-01
Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…
The Biotechnology Facility for International Space Station.
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-03-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.
ERIC Educational Resources Information Center
Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.
2010-01-01
A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…
Altered cell function in microgravity
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
1991-01-01
The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.
REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology
NASA Astrophysics Data System (ADS)
Zhmakin, A. I.
2008-03-01
Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.
Molecular and Cellular Biophysics
NASA Astrophysics Data System (ADS)
Jackson, Meyer B.
2006-01-01
Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems. Offers a unique synthesis of concepts across a wide range of biophysical topics Provides a rigorous theoretical treatment, alongside applications in biological systems Author has been teaching biophysics for nearly 25 years
Epel, Elissa S; Lithgow, Gordon J
2014-06-01
The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Interactome Networks and Human Disease
Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László
2011-01-01
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution.
Miller, William B; Torday, John S
2018-04-13
Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity. Copyright © 2018 Elsevier Ltd. All rights reserved.
From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.
Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di
2018-04-25
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
How to Make a Synthetic Multicellular Computer
Macia, Javier; Sole, Ricard
2014-01-01
Biological systems perform computations at multiple scales and they do so in a robust way. Engineering metaphors have often been used in order to provide a rationale for modeling cellular and molecular computing networks and as the basis for their synthetic design. However, a major constraint in this mapping between electronic and wet computational circuits is the wiring problem. Although wires are identical within electronic devices, they must be different when using synthetic biology designs. Moreover, in most cases the designed molecular systems cannot be reused for other functions. A new approximation allows us to simplify the problem by using synthetic cellular consortia where the output of the computation is distributed over multiple engineered cells. By evolving circuits in silico, we can obtain the minimal sets of Boolean units required to solve the given problem at the lowest cost using cellular consortia. Our analysis reveals that the basic set of logic units is typically non-standard. Among the most common units, the so called inverted IMPLIES (N-Implies) appears to be one of the most important elements along with the NOT and AND functions. Although NOR and NAND gates are widely used in electronics, evolved circuits based on combinations of these gates are rare, thus suggesting that the strategy of combining the same basic logic gates might be inappropriate in order to easily implement synthetic computational constructs. The implications for future synthetic designs, the general view of synthetic biology as a standard engineering domain, as well as potencial drawbacks are outlined. PMID:24586222
PHARMAVIRTUA: Educational Software for Teaching and Learning Basic Pharmacology
ERIC Educational Resources Information Center
Fidalgo-Neto, Antonio Augusto; Alberto, Anael Viana Pinto; Bonavita, André Gustavo Calvano; Bezerra, Rômulo José Soares; Berçot, Felipe Faria; Lopes, Renato Matos; Alves, Luiz Anastacio
2014-01-01
Information and communication technologies have become important tools for teaching scientific subjects such as anatomy and histology as well as other, nondescriptive subjects like physiology and pharmacology. Software has been used to facilitate the learning of specific concepts at the cellular and molecular levels in the biological and health…
Wright, Nicholas J.D.; Alston, Gregory L.
2015-01-01
Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276
Emerging Biomimetic Applications of DNA Nanotechnology.
Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan
2018-06-25
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Role of basic biological sciences in clinical orthodontics: a case series.
Davidovitch, Ze'ev; Krishnan, Vinod
2009-02-01
Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.
In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.
Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C
2014-02-01
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
At the Edge of Translation – Materials to Program Cells for Directed Differentiation
Arany, Praveen R; Mooney, David J
2010-01-01
The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763
The BioScope Initiative: Integrating Technology into the Biology Classroom.
ERIC Educational Resources Information Center
Ashburn, Sarah J.; Eichinger, David C.; Witham, Shelly A.; Cross, Vanessa D.; Krockover, Gerald H.; Pae, Tae-Il; Islam, Samantha; Robinson, J. Paul
2002-01-01
Reports on the quantitative and qualitative assessment of the CD-ROM "Cell Structure and Function" which includes five sections: (1) Basics; (2) Simple Cell; (3) Cell Viewer; (4) Cellular Changes; and (5) Handles. Evaluates the effectiveness of the CD-ROM with the participation of (n=65) students. Applies both qualitative and statistical methods.…
From Purines to Basic Biochemical Concepts: Experiments for High School Students
ERIC Educational Resources Information Center
Marini, Isabella; Ipata, Piero Luigi
2007-01-01
Many high school biology courses address mainly the molecular and cellular basis of life. The complexity that underlies the most essential processes is often difficult for the students to understand; possibly, in part, because of the inability to see and explore them. Six simple practical experiments on purine catabolism as a part of a…
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David
2016-01-01
“Sickle cell anemia: tracking down a mutation” is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. PMID:26873898
Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael
2016-03-01
"Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
An engineering design approach to systems biology.
Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A
2017-07-17
Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.
Wnt signaling and osteoporosis
Manolagas, Stavros C.
2014-01-01
Major advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis, over the last 20 years, have dramatically altered the management of this disease. The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs. PMID:24815296
Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W
2016-04-18
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
Genomic instability and bystander effects: a paradigm shift in radiation biology?
NASA Technical Reports Server (NTRS)
Morgan, William F.
2002-01-01
A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.
Ultrasonic Characteristics and Cellular Properties of Anabaena Gas Vesicles.
Yang, Yaoheng; Qiu, Zhihai; Hou, Xuandi; Sun, Lei
2017-12-01
Ultrasound imaging is a common modality in clinical examination and biomedical research, but has not played a significant role in molecular imaging for lack of an appropriate contrast agent. Recently, biogenic gas vesicles (GVs), naturally formed by cyanobacteria and haloarchaea, have exhibited great potential as an ultrasound molecular imaging probe with a much smaller size (∼100 nm) and improved imaging contrast. However, the basic acoustic and biological properties of GVs remain unclear, which hinders future application. Here, we studied the fundamental acoustic properties of a rod-shaped gas vesicle from Anabaena, a kind of cyanobacterium, including attenuation, oscillation resonance, and scattering, as well as biological behaviors (cellular internalization and cytotoxicity). We found that GVs have two resonance peaks (85 and 120 MHz). We also observed a significant non-linear effect and its pressure dependence as well. Ultrasound B-mode imaging reveals sufficient echogenicity of GVs for ultrasound imaging enhancement at high frequencies. Biological characterization also reveals endocytosis and non-toxicity. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.
Fajkus, J; Simícková, M; Maláska, J
2002-04-29
The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.
X-ray micro-modulated luminescence tomography (XMLT)
Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge
2014-01-01
Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898
Evolutionary game theory: cells as players.
Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan
2014-12-01
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
NASA Astrophysics Data System (ADS)
Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.
The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival
In vivo cell biology in zebrafish – providing insights into vertebrate development and disease
Vacaru, Ana M.; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W.; Sadler, Kirsten C.
2014-01-01
ABSTRACT Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease. PMID:24481493
PACS—Realization of an adaptive concept using pressure actuated cellular structures
NASA Astrophysics Data System (ADS)
Gramüller, B.; Boblenz, J.; Hühne, C.
2014-10-01
A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.
Ultrasensitive response motifs: basic amplifiers in molecular signalling networks
Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.
2013-01-01
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029
Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.
Li, Jhe-Hao; Chiu, Wen-Chieh; Yao, Yun-Chiao; Cheng, Richard P
2015-05-01
Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 μM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH₂ groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines. Copyright © 2015. Published by Elsevier Ltd.
Molecular Force Spectroscopy on Cells
NASA Astrophysics Data System (ADS)
Liu, Baoyu; Chen, Wei; Zhu, Cheng
2015-04-01
Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.
A personal account of the development of modern biological research in Portugal.
De Sousa, Maria
2009-01-01
Portugal celebrated in 2006 its first 20 years of the formal introduction of the practice of external evaluation of research proposals in the national funding system. Accounts of changes in numbers of publications, citations, numbers of research projects funded and budget figures can be found in Government Reports (www.oces.mctes.pt.). An offshoot of the decisive and firm implementation of that practice in what was to become the Health Sciences was that the area became an attractor for young researchers in the basic biological sciences, namely, molecular, cellular and developmental biology. Reciprocally, the entry of basic biological scientists into medically oriented groups totally changed the landscape, the soil, the seeding, the cross-fertilization and the flowering of biomedical research in the country. This paper is a personal account of the experience of a scientist who was asked by the then President of the National Research Council, Jose Mariano Gago to co-ordinate the introduction of external evaluation of research projects and research institutes in the Health Sciences in Portugal between 1986 and 1997.
NASA Astrophysics Data System (ADS)
Gong, He; Fan, Yubo; Zhang, Ming
2008-04-01
The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.
Basics for the preparation of quantum dots and their interactions with living cells.
Jiang, Xiue; Bai, Jing; Wang, Tiantian
2014-01-01
A study of the interactions between nanoparticles and living cells is invaluable in understanding the nano-biological effect and the mechanism of cellular endocytosis. Here we describe two methods for the preparation of semiconductor quantum dots with different physiochemical properties. Furthermore, we describe how to study the interaction of the two quantum dots with living HeLa cells and red blood cells with confocal microscopy.
Next-generation mammalian genetics toward organism-level systems biology.
Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R
2017-01-01
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Advances in the cellular and molecular biology of angiogenesis.
Egginton, Stuart; Bicknell, Roy
2011-12-01
Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine.
Small Molecule Docking from Theoretical Structural Models
NASA Astrophysics Data System (ADS)
Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto
Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.
Yin, Jinghua; Zhang, Jian; Lu, Qianjin
2017-07-01
Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.
Space-time dynamics of Stem Cell Niches: a unified approach for Plants.
Pérez, Maria Del Carmen; López, Alejandro; Padilla, Pablo
2013-06-01
Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.
Space-time dynamics of stem cell niches: a unified approach for plants.
Pérez, Maria del Carmen; López, Alejandro; Padilla, Pablo
2013-04-02
Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.
2009-05-21
pyruvate dehydrogenase complex (PDC) and 2-oxo- glutarate dehydrogenase complex. These dehydrogenase complexes share the same basic structure, perform the...Science 312 (2006) 927-930. [20] J. Dancis, M. Levitz, R.G. Westall, Maple syrup urine disease: branched- chain keto- aciduria , Pediatrics 25 (1960...2127 2128 Dancis J, Levitz M, Westall RG. 1960. Maple syrup urine disease: branched-chain keto- aciduria . Pediatrics 25:72-9. Danner DJ, Lemmon
Mukhopadhyay, Debaditya; Dasso, Mary
2017-01-01
Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.
Haeri, Mohammad; Knox, Barry E
2012-01-01
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) and their aggregation impair normal cellular function and can be toxic, leading to cell death. Prolonged expression of misfolded proteins triggers ER stress, which initiates a cascade of reactions called the unfolded protein response (UPR). Protein misfolding is the basis for a variety of disorders known as ER storage or conformational diseases. There are an increasing number of eye disorders associated with misfolded proteins and pathologic ER responses, including retinitis pigmentosa (RP). Herein we review the basic cellular and molecular biology of UPR with focus on pathways that could be potential targets for treating retinal degenerative diseases. PMID:22737387
Preface: cardiac control pathways: signaling and transport phenomena.
Sideman, Samuel
2008-03-01
Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.
Developmental Gene Regulation and Mechanisms of Evolution
NASA Technical Reports Server (NTRS)
1998-01-01
The Marine Biological Laboratory and the National Aeronautics and Space Administration have established a cooperative agreement with the formation of a Center for Advanced Studies 'in the Space Life Sciences (CASSLS) at the MBL. This Center serves as an interface between NASA and the basic science community, addressing issues of mutual interest. The Center for Advanced Studies 'in the Space Life Sciences provides a forum for scientists to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play 'in fundamental cellular and physiologic processes. In addition the Center will sponsor discussions on evolutionary biology. These interactions will inform the community of research opportunities that are of interest to NASA. This workshop is one of a series of symposia, workshops and seminars that will be held at the MBL to advise NASA on a wide variety of topics in the life sciences, including cell biology, developmental biology, mg evolutionary biology, molecular biology, neurobiology, plant biology and systems biology.
Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms
NASA Astrophysics Data System (ADS)
Henley, Christopher L.
2009-05-01
How might systematic left-right (L/R) asymmetry of the body plan originate in multicellular animals (and plants)? Somehow, the microscopic handedness of biological molecules must be brought up to macroscopic scales. Basic symmetry principles suggest that the usual "biological" mechanisms—diffusion and gene regulation—are insufficient to implement the "right-hand rule" defining a third body axis from the other two. Instead, on the cellular level, "physical" mechanisms (forces and collective dynamic states) are needed involving the long stiff fibers of the cytoskeleton. I discuss some possible scenarios; only in the case of vertebrate internal organs is the answer currently known (and even that is in dispute).
Cell and molecular mechanics of biological materials
NASA Astrophysics Data System (ADS)
Bao, G.; Suresh, S.
2003-11-01
Living cells can sense mechanical forces and convert them into biological responses. Similarly, biological and biochemical signals are known to influence the abilities of cells to sense, generate and bear mechanical forces. Studies into the mechanics of single cells, subcellular components and biological molecules have rapidly evolved during the past decade with significant implications for biotechnology and human health. This progress has been facilitated by new capabilities for measuring forces and displacements with piconewton and nanometre resolutions, respectively, and by improvements in bio-imaging. Details of mechanical, chemical and biological interactions in cells remain elusive. However, the mechanical deformation of proteins and nucleic acids may provide key insights for understanding the changes in cellular structure, response and function under force, and offer new opportunities for the diagnosis and treatment of disease. This review discusses some basic features of the deformation of single cells and biomolecules, and examines opportunities for further research.
Palatal Seam Disintegration: To Die or Not to Die? That Is No Longer the Question
Nawshad, Ali
2008-01-01
Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial step of palate development. Complete disintegration of the MES is the final essential phase of palatal confluency with surrounding mesenchymal cells. In general, the mechanisms of palatal seam disintegration are not overwhelmingly complex, but given the large number of interacting constituents; their complicated circuitry involving feedforward, feedback, and crosstalk; and the fact that the kinetics of interaction matter, this otherwise simple mechanism can be quite difficult to interpret. As a result of this complexity, apparently simple but highly important questions remain unanswered. One such question pertains to the fate of the palatal seam. Such questions may be answered by detailed and extensive quantitative experimentation of basic biological studies (cellular, structural) and the newest molecular biological determinants (genetic/dye cell lineage, gene activity, kinase/enzyme activity), as well as animal model (knockouts, transgenic) approaches. System biology and cellular kinetics play a crucial role in cellular MES function; omissions of such critical contributors may lead to inaccurate understanding of the fate of MES. Excellent progress has been made relevant to elucidation of the mechanism(s) of palatal seam disintegration. Current understanding of palatal seam disintegration suggests epithelial–mesenchymal transition and/or programmed cell death as two most common mechanisms of MES disintegration. In this review, I discuss those two mechanisms and the differences between them. PMID:18629865
Tip-enhanced Raman scattering of bacillus subtilis spores
NASA Astrophysics Data System (ADS)
Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.
2015-07-01
Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.
Phosphate toxicity: new insights into an old problem
RAZZAQUE, M. Shawkat
2011-01-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267
Phosphate toxicity: new insights into an old problem.
Razzaque, M Shawkat
2011-02-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Can Simple Biophysical Principles Yield Complicated Biological Functions?
NASA Astrophysics Data System (ADS)
Liphardt, Jan
2011-03-01
About once a year, a new regulatory paradigm is discovered in cell biology. As of last count, eukaryotic cells have more than 40 distinct ways of regulating protein concentration and function. Regulatory possibilities include site-specific phosphorylation, epigenetics, alternative splicing, mRNA (re)localization, and modulation of nucleo-cytoplasmic transport. This raises a simple question. Do all the remarkable things cells do, require an intricately choreographed supporting cast of hundreds of molecular machines and associated signaling networks? Alternatively, are there a few simple biophysical principles that can generate apparently very complicated cellular behaviors and functions? I'll discuss two problems, spatial organization of the bacterial chemotaxis system and nucleo-cytoplasmic transport, where the latter might be true. In both cases, the ability to precisely quantify biological organization and function, at the single-molecule level, helped to find signatures of basic biological organizing principles.
Kwak, Minsuk; Mu, Luye; Lu, Yao; Chen, Jonathan J.; Brower, Kara; Fan, Rong
2013-01-01
Secreted proteins including cytokines, chemokines, and growth factors represent important functional regulators mediating a range of cellular behavior and cell–cell paracrine/autocrine signaling, e.g., in the immunological system (Rothenberg, 2007), tumor microenvironment (Hanahan and Weinberg, 2011), or stem cell niche (Gnecchi etal., 2008). Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically identical cell population can give rise to diverse phenotypic differences (Niepel etal., 2009). Non-genetic heterogeneity is also emerging as a potential barrier to accurate monitoring of cellular immunity and effective pharmacological therapies (Cohen etal., 2008; Gascoigne and Taylor, 2008), but can hardly assessed using conventional approaches that do not examine cellular phenotype at the functional level. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer. PMID:23390614
Synthetic biology: new engineering rules for an emerging discipline
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572
Synthetic biology: new engineering rules for an emerging discipline.
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.
KEEPING AN EYE ON RETINOBLASTOMA CONTROL OF HUMAN EMBRYONIC STEM CELLS
Conklin, Jamie F.; Sage, Julien
2010-01-01
Human embryonic stem cells (hESCs) hold great promise in regenerative medicine. However, before the full potential of these cells is achieved, major basic biological questions need to be addressed. In particular, there are still gaps in our knowledge of the molecular mechanisms underlying the derivation of hESCs from blastocysts, the regulation of the undifferentiated, pluripotent state, and the control of differentiation into specific lineages. Furthermore, we still do not fully understand the tumorigenic potential of hESCs, limiting their use in regenerative medicine. The RB pathway is a key signaling module that controls cellular proliferation, cell survival, chromatin structure, and cellular differentiation in mammalian cells. Members of the RB pathway are important regulators of hESC biology and manipulation of the activity of this pathway may provide novel means to control the fate of hESCs. Here we review what is known about the expression and function of members of the RB pathway in hESCs and discuss areas of interest in this field. PMID:19760644
Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy.
Gramatges, Maria M; Bertuch, Alison A
2013-12-01
Telomeres are DNA-protein structures that form a protective cap on chromosome ends. As such, they prevent the natural ends of linear chromosomes from being subjected to DNA repair activities that would result in telomere fusion, degradation, or recombination. Both the DNA and protein components of the telomere are required for this essential function, because insufficient telomeric DNA length, loss of the terminal telomeric DNA structure, or deficiency of key telomere-associated factors may elicit a DNA damage response and result in cellular senescence or apoptosis. In the setting of failed checkpoint mechanisms, such DNA-protein defects can also lead to genomic instability through telomere fusions or recombination. Thus, as shown in both model systems and in humans, defects in telomere biology are implicated in cellular and organismal aging as well as in tumorigenesis. Bone marrow failure and malignancy are 2 life-threatening disease manifestations in the inherited telomere biology disorder dyskeratosis congenita. We provide an overview of basic telomere structure and maintenance. We outline the telomere biology defects observed in dyskeratosis congenita, focusing on recent discoveries in this field. Last, we review the evidence of how telomere biology may impact sporadic aplastic anemia and the risk for various cancers. Copyright © 2013 Mosby, Inc. All rights reserved.
The Biotechnology Facility for International Space Station
NASA Technical Reports Server (NTRS)
Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer
2004-01-01
The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Kim, Tae-il; McCall, Jordan G; Jung, Yei Hwan; Huang, Xian; Siuda, Edward R; Li, Yuhang; Song, Jizhou; Song, Young Min; Pao, Hsuan An; Kim, Rak-Hwan; Lu, Chaofeng; Lee, Sung Dan; Song, Il-Sun; Shin, Gunchul; Al-Hasani, Ream; Kim, Stanley; Tan, Meng Peun; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A; Bruchas, Michael R
2013-04-12
Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.
Virtual immunology: software for teaching basic immunology.
Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio
2013-01-01
As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.
Review of the biological effects of weightlessness on the human endocrine system
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.
1993-01-01
Studies from space flights over the past two decades have demonstrated that there are basic physiological changes in humans during space flight. These changes include cephalad fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known but the general approach has been to investigate systemic and hormonal changes. However, data from the 1973-1974 Skylabs, Spacelab 3 (SL-3), Spacelab D-I (SL-DI), and now the new SLS-1 missions support a more basic biological response to microgravity that may occur at the tissue, cellular, and molecular level. This report summarizes ground-based and SLS-1 experiments that examined the mechanism of loss of red blood cell mass in humans, the loss of bone mass and lowered osteoblast growth under space flight conditions, and loss of immune function in microgravity.
New measurements for hadrontherapy and space radiation: biology
NASA Technical Reports Server (NTRS)
Blakely, E. A.
2001-01-01
The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.
Interfacing Neural Network Components and Nucleic Acids
Lissek, Thomas
2017-01-01
Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat. PMID:29255707
Systemic lupus erythematosus: Clinical and experimental aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolen, J.S.
1987-01-01
This text covers questions related to the history, etiology, pathogenesis, clinical aspects and therapy of systematic lupus erythematosus (SLE). Both animal models and human SLE are considered. With regard to basic science, concise information on cellular immunology, autoantibodies, viral aspects and molecular biology in SLE is provided. Clinical topics then deal with medical, dermatologic, neurologic, radiologic, pathologic, and therapeutic aspects. The book not only presents the most recent information on clinical and experimental insights, but also looks at future aspects related to the diagnosis and therapy of SLE.
van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.
2014-01-01
In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911
Sozen, Ibrahim; Arici, Aydin
2002-07-01
To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.
Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert
2014-09-01
This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.
Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min
2009-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.
RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN
2010-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.
Genomic Signal Processing: Predicting Basic Molecular Biological Principles
NASA Astrophysics Data System (ADS)
Alter, Orly
2005-03-01
Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of these two sets of states. Mapping genome-scale protein binding data using pseudoinverse projection onto patterns of RNA expression data that had been extracted by SVD and GSVD, a novel correlation between DNA replication initiation and RNA transcription during the cell cycle in yeast, that might be due to a previously unknown mechanism of regulation, is predicted. (1) Alter & Golub, Proc. Natl. Acad. Sci. USA 101, 16577 (2004). (2) Alter, Golub, Brown & Botstein, Miami Nat. Biotechnol. Winter Symp. 2004 (www.med.miami.edu/mnbws/alter-.pdf)
General morphological and biological features of neoplasms: integration of molecular findings.
Diaz-Cano, S J
2008-07-01
This review highlights the importance of morphology-molecular correlations for a proper implementation of new markers. It covers both general aspects of tumorigenesis (which are normally omitted in papers analysing molecular pathways) and the general mechanisms for the acquired capabilities of neoplasms. The mechanisms are also supported by appropriate diagrams for each acquired capability that include overlooked features such as mobilization of cellular resources and changes in chromatin, transcription and epigenetics; fully accepted oncogenes and tumour suppressor genes are highlighted, while the pathways are also presented as activating or inactivating with appropriate colour coding. Finally, the concepts and mechanisms presented enable us to understand the basic requirements for the appropriate implementation of molecular tests in clinical practice. In summary, the basic findings are presented to serve as a bridge to clinical applications. The current definition of neoplasm is descriptive and difficult to apply routinely. Biologically, neoplasms develop through acquisition of capabilities that involve tumour cell aspects and modified microenvironment interactions, resulting in unrestricted growth due to a stepwise accumulation of cooperative genetic alterations that affect key molecular pathways. The correlation of these molecular aspects with morphological changes is essential for better understanding of essential concepts as early neoplasms/precancerous lesions, progression/dedifferentiation, and intratumour heterogeneity. The acquired capabilities include self-maintained replication (cell cycle dysregulation), extended cell survival (cell cycle arrest, apoptosis dysregulation, and replicative lifespan), genetic instability (chromosomal and microsatellite), changes of chromatin, transcription and epigenetics, mobilization of cellular resources, and modified microenvironment interactions (tumour cells, stromal cells, extracellular, endothelium). The acquired capabilities defining neoplasms are the hallmarks of cancer, but they also comprise useful tools to improve diagnosis and prognosis, as well as potential therapeutic targets. The application of these concepts in oncological pathology leads to consideration of the molecular test requirements (Molecular Test Score System) for reliable implementation; these requirements should cover biological effects, molecular pathway, biological validation, and technical validation. Sensible application of molecular markers in tumour pathology always needs solid morphological support.
Yeast Genomics for Bread, Beer, Biology, Bucks and Breath
NASA Astrophysics Data System (ADS)
Sakharkar, Kishore R.; Sakharkar, Meena K.
The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.
Luker, Gary D
2002-04-01
The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.
New Applications for Phage Integrases
Fogg, Paul C.M.; Colloms, Sean; Rosser, Susan; Stark, Marshall; Smith, Margaret C.M.
2014-01-01
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. PMID:24857859
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Microscopic Imaging and Spectroscopy with Scattered Light
Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim
2012-01-01
Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940
Tissue morphodynamics shaping the early mouse embryo.
Sutherland, Ann E
2016-07-01
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo
2015-09-01
Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
Santosh, Arvind Babu Rajendra; Jones, Thaon Jon
2014-03-17
In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.
Klinger, Christen M.; Ramirez-Macias, Inmaculada; Herman, Emily K.; Turkewitz, Aaron P.; Field, Mark C.; Dacks, Joel B.
2016-01-01
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage. PMID:27444378
NASA Astrophysics Data System (ADS)
Tu, Yuhai; Rappel, Wouter-Jan
2018-03-01
Adaptation refers to the biological phenomenon where living systems change their internal states in response to changes in their environments in order to maintain certain key functions critical for their survival and fitness. Adaptation is one of the most ubiquitous and arguably one of the most fundamental properties of living systems. It occurs throughout all biological scales, from adaptation of populations of species over evolutionary time to adaptation of a single cell to different environmental stresses during its life span. In this article, we review some of the recent progress made in understanding molecular mechanisms of cellular-level adaptation. We take the minimalist (or the physicist) approach and study the simplest systems that exhibit generic adaptive behaviors, namely chemotaxis in bacterium cells (Escherichia coli) and eukaryotic cells (Dictyostelium). We focus on understanding the basic biochemical interaction networks that are responsible for adaptation dynamics. By combining theoretical modeling with quantitative experimentation, we demonstrate universal features in adaptation as well as important differences in different cellular systems. Future work in extending the modeling framework to study adaptation in more complex systems such as sensory neurons is also discussed.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
Applying ecological and evolutionary theory to cancer: a long and winding road.
Thomas, Frédéric; Fisher, Daniel; Fort, Philippe; Marie, Jean-Pierre; Daoust, Simon; Roche, Benjamin; Grunau, Christoph; Cosseau, Céline; Mitta, Guillaume; Baghdiguian, Stephen; Rousset, François; Lassus, Patrice; Assenat, Eric; Grégoire, Damien; Missé, Dorothée; Lorz, Alexander; Billy, Frédérique; Vainchenker, William; Delhommeau, François; Koscielny, Serge; Itzykson, Raphael; Tang, Ruoping; Fava, Fanny; Ballesta, Annabelle; Lepoutre, Thomas; Krasinska, Liliana; Dulic, Vjekoslav; Raynaud, Peggy; Blache, Philippe; Quittau-Prevostel, Corinne; Vignal, Emmanuel; Trauchessec, Hélène; Perthame, Benoit; Clairambault, Jean; Volpert, Vitali; Solary, Eric; Hibner, Urszula; Hochberg, Michael E
2013-01-01
Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.
Impact of Radiation Biology on Fundamental Insights in Biology
DOE R&D Accomplishments Database
Setlow, Richard B.
1982-07-27
Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.
Robust Design of Biological Circuits: Evolutionary Systems Biology Approach
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523
Robust design of biological circuits: evolutionary systems biology approach.
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.
A Summary of the Biological Basis of Frailty.
Fielding, Roger A
2015-01-01
Frailty has been defined as a geriatric syndrome that is characterized by a reduction in the physiological reserve required for an individual to respond to endogenous and exogenous stressors. Using a discrete definition of frailty that includes sedentariness, involuntary weight loss, fatigue, poor muscle strength, and slow gait speed, 'frailty' has been associated with increased disability, postsurgical complications, and increased mortality. Despite the strong associations between frailty and subsequent poor outcomes, limited attention to this common geriatric condition has been paid in clinical settings. A more fundamental basic understanding of the biological factors that contribute to the frailty phenotype has begun to emerge. Multiple underlying biological factors such as dysregulation of inflammatory processes, genomic instability, oxidative stress, mitochondrial dysfunction, and cellular senescence appear to contribute to the clinical presentation of frailty. This chapter summarizes the papers presented on the biological basis of frailty from the 83rd Nestlé Nutrition Institute Workshop on 'Frailty, Pathophysiology, Phenotype and Patient Care' held in Barcelona, Spain, in March 2014. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.
Tsukiji, Shinya; Hamachi, Itaru
2014-08-01
The ability to introduce any chemical probe to any endogenous target protein in its native environment, that is in cells and in vivo, is anticipated to provide various new exciting tools for biological and biomedical research. Although still at the prototype stage, the ligand-directed tosyl (LDT) chemistry is a novel type of affinity labeling technique that we developed for such a dream. This chemistry allows for modifying native proteins by various chemical probes with high specificity in various biological settings ranging from in vitro (in test tubes) to in living cells and in vivo. Since the first report, the list of proteins that are successfully labeled by the LDT chemistry has been increasing. A growing number of studies have demonstrated its utility to create semisynthetic proteins directly in cellular contexts. The in situ generated semisynthetic proteins are applicable for various types of analysis and imaging of intracellular biological processes. In this review, we summarize the basic properties of the LDT chemistry and its applications toward in situ engineering and analysis of native proteins in living systems. Current limitations and future challenges of this area are also described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spencer, Netanya Y; Engelhardt, John F
2014-03-18
Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases.
2015-01-01
Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469
Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation
Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George
2014-01-01
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
The delivery of therapeutic oligonucleotides
Juliano, Rudolph L.
2016-01-01
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology. PMID:27084936
Computation as the mechanistic bridge between precision medicine and systems therapeutics.
Hansen, J; Iyengar, R
2013-01-01
Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients.
Computation as the Mechanistic Bridge Between Precision Medicine and Systems Therapeutics
Hansen, J; Iyengar, R
2014-01-01
Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients. PMID:23212109
Evolutionary cell biology: two origins, one objective.
Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley
2014-12-02
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.
Evolutionary cell biology: Two origins, one objective
Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley
2014-01-01
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324
Mammalian synthetic biology for studying the cell
Mathur, Melina; Xiang, Joy S.
2017-01-01
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576
High-content screening of small compounds on human embryonic stem cells.
Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W
2010-08-01
Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.
The Emergence of Predators in Early Life: There was No Garden of Eden
de Nooijer, Silvester; Holland, Barbara R.; Penny, David
2009-01-01
Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features. PMID:19492046
Selenium and selenocysteine: roles in cancer, health and development
Hatfield, Dolph L.; Tsuji, Petra A.; Carlson, Bradley A.; Gladyshev, Vadim N.
2014-01-01
The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid 1990s, selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace elucidating its many roles in health, development, and cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions. PMID:24485058
NASA Technical Reports Server (NTRS)
Duke, Jackie
1992-01-01
A basic question of space biology is whether changes in gravity are perceived at the cellular level. Previous studies with a variety of cells have shown that this is the case, but to date the response of skeletal cells has not been examined, even though the skeleton is sensitive to gravitational changes. The objective of the CELLS Experiment is to examine the effect of microgravity in vitro on a skeletal cell known to be sensitive to gravitational changes both in vivo and in vitro - the mammalian chondrocyte. Various aspects of the experiment are discussed.
Phage M13 for the treatment of Alzheimer and Parkinson disease.
Messing, Joachim
2016-06-01
The studies of microbes have been instrumental in combatting infectious diseases, but they have also led to great insights into basic biological mechanism like DNA replication, transcription, and translation of mRNA. In particular, the studies of bacterial viruses, also called bacteriophage, have been quite useful to study specific cellular processes because of the ease to isolate their DNA, mRNA, and proteins. Here, I review the recent discovery of how properties of the filamentous phage M13 emerge as a novel approach to combat neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Frietze, Seth; Leatherman, Judith
2014-03-01
New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.
Non-specific cellular uptake of surface-functionalized quantum dots
NASA Astrophysics Data System (ADS)
Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.
2010-07-01
We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.
Biophysics at the Boundaries: The Next Problem Sets
NASA Astrophysics Data System (ADS)
Skolnick, Malcolm
2009-03-01
The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future biophysicists to fill these roles.
Mammalian synthetic biology for studying the cell.
Mathur, Melina; Xiang, Joy S; Smolke, Christina D
2017-01-02
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.
Using cellular automata to generate image representation for biological sequences.
Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C
2005-02-01
A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.
Exosomal miRNAs as potential biomarkers of cardiovascular risk in children
2014-01-01
Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806
Deretic, Vojo
2008-01-01
Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.
2005-01-01
Students are most motivated and learn best when they are immersed in an environment that causes them to realize why they should learn. Perhaps nowhere is this truer than when teaching the biological sciences to engineers. Transitioning from a traditionally mathematics-based to a traditionally knowledge-based pedagogical style can challenge student learning and engagement. To address this, human pathologies were used as a problem-based context for teaching knowledge-based cell biological mechanisms. Lectures were divided into four modules. First, a disease was presented from clinical, economic, and etiological standpoints. Second, fundamental concepts of cell and molecular biology were taught that were directly relevant to that disease. Finally, we discussed the cellular and molecular basis of the disease based on these fundamental concepts, together with current clinical approaches to the disease. The basic science is thus presented within a “shrink wrap” of disease application. Evaluation of this contextual technique suggests that it is very useful in improving undergraduate student focus and motivation, and offers many advantages to the instructor as well. PMID:15917872
Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-04-01
The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Thermal injury models for optical treatment of biological tissues: a comparative study.
Fanjul-Velez, Felix; Ortega-Quijano, Noe; Salas-Garcia, Irene; Arce-Diego, Jose L
2010-01-01
The interaction of optical radiation with biological tissues causes an increase in the temperature that, depending on its magnitude, can provoke a thermal injury process in the tissue. The establishment of laser irradiation pathological limits constitutes an essential task, as long as it enables to fix and delimit a range of parameters that ensure a safe treatment in laser therapies. These limits can be appropriately described by kinetic models of the damage processes. In this work, we present and compare several models for the study of thermal injury in biological tissues under optical illumination, particularly the Arrhenius thermal damage model and the thermal dosimetry model based on CEM (Cumulative Equivalent Minutes) 43°C. The basic concepts that link the temperature and exposition time with the tissue injury or cellular death are presented, and it will be shown that they enable to establish predictive models for the thermal damage in laser therapies. The results obtained by both models will be compared and discussed, highlighting the main advantages of each one and proposing the most adequate one for optical treatment of biological tissues.
Atomic force microscopy-based characterization and design of biointerfaces
NASA Astrophysics Data System (ADS)
Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.
2017-03-01
Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.
A cascade reaction network mimicking the basic functional steps of adaptive immune response
NASA Astrophysics Data System (ADS)
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
An undergraduate course, and new textbook, on ``Physical Models of Living Systems''
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.
The basics of thiols and cysteines in redox biology and chemistry.
Poole, Leslie B
2015-03-01
Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Partial Gravity Biological Tether Experiment on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Wallace, S.; Graham, L.
2018-02-01
A tether-based partial gravity bacterial biological experiment represents a viable biological experiment to investigate the fundamental internal cellular processes between altered levels of gravity and cellular adaption.
At a glance: cellular biology for engineers.
Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R
2008-10-01
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Evolutionary tradeoffs in cellular composition across diverse bacteria
Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori
2016-01-01
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336
Using a Virtual Tissue Culture System to Assist Students in Understanding Life at the Cellular Level
ERIC Educational Resources Information Center
McLauglin, Jacqueline S.; Seaquist, Stephen B.
2008-01-01
In every biology course ever taught in the nation's classrooms, and in every biology book ever published, students are taught about the "cell." The cell is as fundamental to biology as the atom is to chemistry. Truly, everything an organism does occurs fundamentally at the cellular level. Beyond memorizing the cellular definition, students are not…
2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Judith
The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genomemore » organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.« less
An Introduction to Programming for Bioscientists: A Python-Based Primer
Mura, Cameron
2016-01-01
Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language’s usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a “variable,” the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences. PMID:27271528
An Introduction to Programming for Bioscientists: A Python-Based Primer.
Ekmekci, Berk; McAnany, Charles E; Mura, Cameron
2016-06-01
Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a "variable," the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.
NASA Technical Reports Server (NTRS)
Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.
1974-01-01
The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.
Pelaia, Girolamo; Renda, Teresa; Gallelli, Luca; Vatrella, Alessandro; Busceti, Maria Teresa; Agati, Sergio; Caputi, Mario; Cazzola, Mario; Maselli, Rosario; Marsico, Serafino A
2008-08-01
Airway smooth muscle (ASM) plays a key role in bronchomotor tone, as well as in structural remodeling of the bronchial wall. Therefore, ASM contraction and proliferation significantly participate in the development and progression of asthma. Many contractile agonists also behave as mitogenic stimuli, thus contributing to frame a hyperresponsive and hyperplastic ASM phenotype. In this review, the molecular mechanisms and signaling pathways involved in excitation-contraction coupling and ASM cell growth will be outlined. Indeed, the recent advances in understanding the basic aspects of ASM biology are disclosing important cellular targets, currently explored for the implementation of new, more effective anti-asthma therapies.
Behavioural science at work for Canada: National Research Council laboratories.
Veitch, Jennifer A
2007-03-01
The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.
Hereditary spastic paraplegias: membrane traffic and the motor pathway
Blackstone, Craig; O’Kane, Cahir J.; Reid, Evan
2017-01-01
Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution — in axonal maintenance and degeneration. PMID:21139634
Hereditary spastic paraplegias: membrane traffic and the motor pathway.
Blackstone, Craig; O'Kane, Cahir J; Reid, Evan
2011-01-01
Voluntary movement is a fundamental way in which animals respond to, and interact with, their environment. In mammals, the main CNS pathway controlling voluntary movement is the corticospinal tract, which encompasses connections between the cerebral motor cortex and the spinal cord. Hereditary spastic paraplegias (HSPs) are a group of genetic disorders that lead to a length-dependent, distal axonopathy of fibres of the corticospinal tract, causing lower limb spasticity and weakness. Recent work aimed at elucidating the molecular cell biology underlying the HSPs has revealed the importance of basic cellular processes — especially membrane trafficking and organelle morphogenesis and distribution— in axonal maintenance and degeneration.
A credit-card library approach for disrupting protein-protein interactions.
Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D
2006-04-15
Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.
Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B
2010-02-01
The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.
Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald
2015-02-01
Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.
Kagan, Herbert M; Li, Wande
2003-03-01
Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.
Correlative Fluorescence and Electron Microscopy
Schirra, Randall T.; Zhang, Peijun
2014-01-01
Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959
Bloom syndrome: a mendelian prototype of somatic mutational disease.
German, J
1993-11-01
Spontaneous mutations in human somatic cells occur far more often than normal in individuals with Bloom syndrome. The basis for understanding these mutations and their developmental consequences emerges from examination of BS at the molecular, cellular, and clinical levels. The major clinical feature of BS, proportional dwarfism, as well as its major clinical complication, an exceptionally early emergence of neoplasia of the types and sites that affect the general population, are attributable to the excessive occurrence of mutations in somatic cells. Here, the following aspects of BS are discussed: (i) the BS phenotype; (ii) neoplasia in BS, including the means--the Bloom's Syndrome Registry--by which the significant risk for diverse sites and types of cancer in these patients was revealed; (iii) the biological basis for the cancer proneness of BS; and, finally, (iv) the significance for both basic human biology and clinical medicine of BS as the prototype of somatic mutational disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terence Flotte, MD; Patricia McNulty
2010-06-29
This project funded the procurement of state-of-the-art research equipment to support world class faculty members within the RNAi Therapeutics Institute, a central program of the Advanced Therapeutics Cluster (ATC) project. The equipment purchased under this grant supports the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School which seeks to build a community of scientists passionate about RNA. By uniting researchers studying the fundamental biology and mechanisms of cellular RNAs with those working to devise human therapies using or targeting nucleic acids, the RTI represents a new model for scientific exploration. By interweaving basic and applied nucleic acidmore » scientists with clinicians dedicated to finding new cures, our goal is to create a new paradigm for organizing molecular research that enables the rapid application of new biological discoveries to solutions for unmet challenges in human health.« less
Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko
2010-05-01
For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
Life is determined by its environment
NASA Astrophysics Data System (ADS)
Torday, John S.; Miller, William B.
2016-10-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.
Life is determined by its environment
Torday, John S.; Miller, William B.
2016-01-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547
Sordaria macrospora, a model organism to study fungal cellular development.
Engh, Ines; Nowrousian, Minou; Kück, Ulrich
2010-12-01
During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.
Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N
2015-01-01
Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.
Wound repair and regeneration: mechanisms, signaling, and translation.
Eming, Sabine A; Martin, Paul; Tomic-Canic, Marjana
2014-12-03
The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body's natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies. Copyright © 2014, American Association for the Advancement of Science.
Wound repair and regeneration: Mechanisms, signaling, and translation
Eming, Sabine A.; Martin, Paul; Tomic-Canic, Marjana
2015-01-01
The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies. PMID:25473038
Protein S-glutathionylation: from current basics to targeted modifications.
Popov, Doina
2014-10-01
The interaction between antioxidant glutathione and the free thiol in susceptible cysteine residues of proteins leads to reversible protein S-glutathionylation. This reaction ensures cellular homeostasis control (as a common redox-dependent post-translational modification associated with signal transduction) and intervenes in oxidative stress-related cardiovascular pathology (as initiated by redox imbalance). The purpose of this review is to evaluate the recent knowledge on protein S-glutathionylation in terms of chemistry, broad cellular intervention, specific quantification, and potential for therapeutic exploitation. The data bases searched were Medline and PubMed, from 2009 to 2014 (term: glutathionylation). Protein S-glutathionylation ensures protection of protein thiols against irreversible over-oxidation, operates as a biological redox switch in both cell survival (influencing kinases and protein phosphatases pathways) and cell death (by potentiation of apoptosis), and cross-talks with phosphorylation and with S-nitrosylation. Collectively, protein S-glutathionylation appears as a valuable biomarker for oxidative stress, with potential for translation into novel therapeutic strategies.
Castrillo, Juan I; Lista, Simone; Hampel, Harald; Ritchie, Craig W
2018-01-01
Alzheimer's disease (AD) is a complex multifactorial disease, involving a combination of genomic, interactome, and environmental factors, with essential participation of (a) intrinsic genomic susceptibility and (b) a constant dynamic interplay between impaired pathways and central homeostatic networks of nerve cells. The proper investigation of the complexity of AD requires new holistic systems-level approaches, at both the experimental and computational level. Systems biology methods offer the potential to unveil new fundamental insights, basic mechanisms, and networks and their interplay. These may lead to the characterization of mechanism-based molecular signatures, and AD hallmarks at the earliest molecular and cellular levels (and beyond), for characterization of AD subtypes and stages, toward targeted interventions according to the evolving precision medicine paradigm. In this work, an update on advanced systems biology methods and strategies for holistic studies of multifactorial diseases-particularly AD-is presented. This includes next-generation genomics, neuroimaging and multi-omics methods, experimental and computational approaches, relevant disease models, and latest genome editing and single-cell technologies. Their progressive incorporation into basic research, cohort studies, and trials is beginning to provide novel insights into AD essential mechanisms, molecular signatures, and markers toward mechanism-based classification and staging, and tailored interventions. Selected methods which can be applied in cohort studies and trials, with the European Prevention of Alzheimer's Dementia (EPAD) project as a reference example, are presented and discussed.
Riding the Waves: How Our Cells Send Signals | Center for Cancer Research
The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.
The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor survival of cells with damaged DNA. A third endpoint to be examined will be DNA damage induced by combined exposure to radiation and microgravity and its repair. In the current work, preparatory experiments for the space experiment CERASP were performed. For radiation exposure on the ISS, an artificial radiation source is necessary since long-term exposure to cosmic radiation of frozen cells for damage accumulation will not be feasible. The biological activity of the designated space radiation source, the β-emitter promethium-147, was evaluated. Different shielding scenarios according to the experiment and safety requirements were evaluated. As growth surface for the human embryonic kidney cells, polytetrafluoroethylene and polyolefin foils were tested. For protection issues, the shielding effect of titanium foils was evaluated. With the prototype Pm-147 radiation source, the requirements of CERASP can be fulfilled with cells growing on the polytetrafluoroethylene foil and titanium foils for safety issues. In this setting, β-rays activated NF-κB-dependent reporter gene expression in human embryonic kidney cells. Regarding cell survival and NF-κB activation, the Pm-147 radiation source meets the requirements of the space experiment CERASP.
Coordinating an IPLS class with a biology curriculum: NEXUS/Physics
NASA Astrophysics Data System (ADS)
Redish, Edward
2014-03-01
A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.
The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae
Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale
2015-01-01
Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143
Campo-Cabal, Gerardo
2012-01-01
The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Conzelmann, Holger; Gilles, Ernst-Dieter
2008-01-01
Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.
Tuan, Rocky S; Lee, Francis Young-In; T Konttinen, Yrjö; Wilkinson, J Mark; Smith, Robert Lane
2008-01-01
New clinical and basic science data on the cellular and molecular mechanisms by which wear particles stimulate the host inflammatory response have provided deeper insight into the pathophysiology of periprosthetic bone loss. Interactions among wear particles, macrophages, osteoblasts, bone marrow-derived mesenchymal stem cells, fibroblasts, endothelial cells, and T cells contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines such as TNF-alpha, RANKL, M-SCF, PGE2, IL-1, IL-6, and IL-8. These cytokines not only promote osteoclastogenesis but interfere with osteogenesis led by osteoprogenitor cells. Recent studies indicate that genetic variations in TNF-alpha, IL-1, and FRZB can result in subtle changes in gene function, giving rise to altered susceptibility or severity for periprosthetic inflammation and bone loss. Continuing research on the biologic effects and mechanisms of action of wear particles will provide a rational basis for the development of novel and effective ways of diagnosis, prevention, and treatment of periprosthetic inflammatory bone loss.
Constraints on Fluctuations in Sparsely Characterized Biological Systems.
Hilfinger, Andreas; Norman, Thomas M; Vinnicombe, Glenn; Paulsson, Johan
2016-02-05
Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.
Prospects for discovery by epigenome comparison
Milosavljevic, Aleksandar
2010-01-01
Epigenomic analysis efforts have so far focused on the multiple layers of epigenomic information within individual cell types. With the rapidly increasing diversity of epigenomically mapped cell types, unprecedented opportunities for comparative analysis of epigenomes are opening up. One such opportunity is to map the bifurcating tree of cellular differentiation. Another is to understand the epigenomically mediated effects of mutations, environmental influences, and disease processes. Comparative analysis of epigenomes therefore has the potential to provide wide-ranging fresh insights into basic biology and human disease. The realization of this potential will critically depend on availability of a cyberinfrastructure that will scale with the volume of data and diversity of applications and a number of other computational challenges. PMID:20944597
CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells
Kim, Eun Ji; Kang, Ki Ho; Ju, Ji Hyeon
2017-01-01
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology—and particularly clustered regularly interspaced short palindromic repeats (CRISPR)—will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed. PMID:28049282
CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
Kim, Eun Ji; Kang, Ki Ho; Ju, Ji Hyeon
2017-01-01
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Constraints on Fluctuations in Sparsely Characterized Biological Systems
NASA Astrophysics Data System (ADS)
Hilfinger, Andreas; Norman, Thomas M.; Vinnicombe, Glenn; Paulsson, Johan
2016-02-01
Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.
New insights on glucosylated lipids: metabolism and functions.
Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio
2013-09-01
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering
Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.
2014-01-01
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993
Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie
2012-01-01
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563
NASA Astrophysics Data System (ADS)
Nelson, Philip
2015-03-01
I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses:
Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics.
Puré, Ellen; Blomberg, Rachel
2018-05-03
Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.
Migration of cells in a social context
Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.
2013-01-01
In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032
Migration of cells in a social context.
Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R
2013-01-02
In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.
Endocytosis of glycosylphosphatidylinositol-anchored proteins
2009-01-01
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981
Lau, Dennis H; Volders, Paul G A; Kohl, Peter; Prinzen, Frits W; Zaza, Antonio; Kääb, Stefan; Oto, Ali; Schotten, Ulrich
2015-05-01
Cardiac electrophysiology has evolved into an important subspecialty in cardiovascular medicine. This is in part due to the significant advances made in our understanding and treatment of heart rhythm disorders following more than a century of scientific discoveries and research. More recently, the rapid development of technology in cellular electrophysiology, molecular biology, genetics, computer modelling, and imaging have led to the exponential growth of knowledge in basic cardiac electrophysiology. The paradigm of evidence-based medicine has led to a more comprehensive decision-making process and most likely to improved outcomes in many patients. However, implementing relevant basic research knowledge in a system of evidence-based medicine appears to be challenging. Furthermore, the current economic climate and the restricted nature of research funding call for improved efficiency of translation from basic discoveries to healthcare delivery. Here, we aim to (i) appraise the broad challenges of translational research in cardiac electrophysiology, (ii) highlight the need for improved strategies in the training of translational electrophysiologists, and (iii) discuss steps towards building a favourable translational research environment and culture. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.
Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R
1989-01-01
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.
A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms
ERIC Educational Resources Information Center
Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.
2015-01-01
Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…
Wang, Cun; Huang, Qiaorong; Meng, Wentong; Yu, Yongyang; Yang, Lie; Peng, Zhihai; Hu, Jiankun; Li, Yuan; Mo, Xianming; Zhou, Zongguang
2016-01-01
Introduction Liver is the most common site of distant metastasis in colorectal cancer (CRC). Early diagnosis and appropriate treatment selection decides overall prognosis of patients. However, current diagnostic measures were basically imaging but not functional. Circulating tumor cells (CTCs) known as hold the key to understand the biology of metastatic mechanism provide a novel and auxiliary diagnostic strategy for CRC with liver metastasis (CRC-LM). Results The expression of CD133+ and CD133+CD54+CD44+ cellular subpopulations were higher in the peripheral blood of CRC-LM patients when compared with those without metastasis (P<0.001). Multivariate analysis proved the association between the expression of CD133+CD44+CD54+ cellular subpopulation and the existence of CRC-LM (P<0.001). The combination of abdominal CT/MRI, CEA and the CD133+CD44+CD54+ cellular subpopulation showed increased detection and discrimination rate for liver metastasis, with a sensitivity of 88.2% and a specificity of 92.4%. Meanwhile, it also show accurate predictive value for liver metastasis (OR=2.898, 95% C.I.1.374–6.110). Materials and Method Flow cytometry and multivariate analysis was performed to detect the expression of cancer initiating cells the correlation between cellular subpopulations and liver metastasis in patients with CRC. The receiver operating characteristic curves combined with the area under the curve were generated to compare the predictive ability of the cellular subpopulation for liver metastasis with current CT and MRI images. Conclusions The identification, expression and application of CTC subpopulations will provide an ideal cellular predictive marker for CRC liver metastasis and a potential marker for further investigation. PMID:27764803
A tribute to Dr. Gordon Hisashi Sato (December 24, 1927-March 31, 2017).
Sato, J Denry; Okamoto, Tetsuji; Barnes, David; Hayashi, Jun; Serrero, Ginette; McKeehan, Wallace L
2018-03-01
Gordon H. Sato, an innovator in mammalian tissue culture and integrated cellular physiology, passed away in 2017. In tribute to Dr. Sato, In Vitro Cellular and Developmental Biology-Animal presents a collection of invited remembrances from six colleagues whose associations with Dr. Sato spanned more than 40 years. Dr. Sato was a past president of the Tissue Culture Association (now the Society for In Vitro Biology), editor-in-chief of In Vitro Cellular and Developmental Biology (1987-1991), and the recipient of the lifetime achievement award from the Society for In Vitro Biology (2002). He was elected to the US National Academy of Sciences in 1984.
Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.
Putker, Marrit; O'Neill, John Stuart
2016-01-01
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal
Putker, Marrit; O’Neill, John Stuart
2016-01-01
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072
Contextual analysis of immunological response through whole-organ fluorescent imaging.
Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C
2013-09-01
As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.
Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.
Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf
2012-01-01
Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation
2013-01-01
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease. PMID:23899561
Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program
ERIC Educational Resources Information Center
O'Connor, Kim C.
2005-01-01
There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…
Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru
2013-08-01
Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cell biology perspectives in phage biology.
Ansaldi, Mireille
2012-01-01
Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.
Cellular automata simulation of topological effects on the dynamics of feed-forward motifs
Apte, Advait A; Cain, John W; Bonchev, Danail G; Fong, Stephen S
2008-01-01
Background Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems. Results Feed-forward motif dynamics were studied using cellular automata and compared with differential equation modeling. The number of cellular automata iterations needed for a 100% conversion of a substrate into a target product was used as an inverse measure of the transformation rate. Several basic topological patterns were identified that order the specific feed-forward constructions according to the rate of dynamics they enable. At the same number of network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher network efficacy than single feed-forward motifs. Additionally, a topological property of isodynamicity was identified for feed-forward motifs where different network architectures resulted in the same overall rate of the target production. Conclusion It was shown for classes of structural motifs with feed-forward architecture that network topology affects the overall rate of a process in a quantitatively predictable manner. These fundamental results can be used as a basis for simulating larger networks as combinations of smaller network modules with implications on studying synthetic gene circuits, small regulatory systems, and eventually dynamic whole-cell models. PMID:18304325
The Roles of Glutathione Peroxidases during Embryo Development
Ufer, Christoph; Wang, Chi Chiu
2011-01-01
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4. PMID:21847368
The Roles of Glutathione Peroxidases during Embryo Development.
Ufer, Christoph; Wang, Chi Chiu
2011-01-01
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
Photobiomodulation on senescence
NASA Astrophysics Data System (ADS)
Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao
2006-09-01
Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.
Cellular traditional Chinese medicine on photobiomodulation
NASA Astrophysics Data System (ADS)
Liu, Timon Cheng-Yi; Cheng, Lei; Liu, Jiang; Wang, Shuang-Xi; Xu, Xiao-Yang; Deng, Xiao-Yuan; Liu, Song-Hao
2006-09-01
Although yin-yang is one of the basic models of traditional Chinese medicine (TCM) for TCM objects such as whole body, five zangs or six fus, they are widely used to discuss cellular processes in papers of famous journals such as Cell, Nature, or Science. In this paper, the concept of the degree of difficulty (DD) of a process was introduced to redefine yin and yang and extend the TCM yin-yang model to the DD yin-yang model so that we have the DD yin-yang inter-transformation, the DD yin-yang antagonism, the DD yin-yang interdependence and the DD yin ping yang mi, which and photobiomodulation (PBM) on cells are supported by each other. It was shown that healthy cells are in the DD yin ping yang mi so that there is no PBM, and there is PBM on non-healthy cells until the cells become healthy so that PBM can be called a cellular rehabilitation. The DD yin-yang inter-transformation holds for our biological information model of PBM. The DD yin-yang antagonism and the DD yin-yang interdependence also hold for a series of experimental studies such as the stimulation of DNA synthesis in HeLa cells after simultaneous irradiation with narrow-band red light and a wide-band cold light, or consecutive irradiation with blue and red light.
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
The nuclear envelope from basic biology to therapy.
Worman, Howard J; Foisner, Roland
2010-02-01
The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.
Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A
2017-01-01
Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.
Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K.; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V. McNeil; Segarra, Verónica A.
2017-01-01
Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented—one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research. PMID:28861134
Matias, Pedro M.; Baek, Sung Hee; Bandeiras, Tiago M.; Dutta, Anindya; Houry, Walid A.; Llorca, Oscar; Rosenbaum, Jean
2015-01-01
Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models. PMID:25988184
Cloning Expeditions: Risky but Rewarding
2013-01-01
In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478
At the bench: adoptive cell therapy for melanoma.
Urba, Walter J
2014-06-01
The cellular and molecular principles that furnish the foundation for ACT of melanoma and their implications for further clinical research are reviewed. The parallel advances in basic immunology, preclinical animal studies, and clinical trials over the last two decades have been integrated successfully with improvements in technology to produce an effective ACT strategy for patients with melanoma. From the initial observation that tumors could be treated effectively by the transfer of immune cells to current strategies using preconditioning with myeloablative therapy before adoptive transfer of native or genetically altered T cells, the role of preclinical animal models is discussed. The importance of the pmel transgenic mouse model in the determination of the mechanisms of lymphodepletion, the ongoing work to identify the optimal T cells for adoptive immunotherapy, and the early impact of the emerging discipline of synthetic biology are highlighted. The clinical consequences of the research described herein are reviewed in the companion manuscript. © 2014 Society for Leukocyte Biology.
Fundamentals of rapid injection molding for microfluidic cell-based assays.
Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B
2018-01-30
Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.
Protein-protein interaction networks (PPI) and complex diseases
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram
2014-01-01
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094
Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean
2015-01-01
Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions
NASA Astrophysics Data System (ADS)
Kocman, Vojč; Plavec, Janez
2017-05-01
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.
Thinking Developmentally: The Next Evolution in Models of Health.
Garner, Andrew S
2016-09-01
As the basic sciences that inform conceptions of human health advance, so must the models that are used to frame additional research, to teach the next generation of providers, and to inform health policy. This article briefly reviews the evolution from a biomedical model to a biopsychosocial (BPS) model and to an ecobiodevelopmental (EBD) model. Like the BPS model, the EBD model reaffirms the biological significance of psychosocial features within the patient's ecology, but it does so at the molecular and cellular levels. More importantly, the EBD model adds the dimension of time, forcing providers to "think developmentally" and to acknowledge the considerable biological and psychological consequences of previous experiences. For the health care system to move from a reactive "sick care" system to a proactive "well care" system, all providers must begin thinking developmentally by acknowledging the dynamic but cumulative dance between nature and nurture that drives development, behavior, and health, not only in childhood, but across the lifespan.
NASA Astrophysics Data System (ADS)
Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.
Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related to cellular mechanisms involved in sensing, i.e., adaptation to stimuli. This should not mean that when coping with living cells, stray effects might not also corrupt the measurement itself, introducing distinct dynamics. Besides targeted/specific process, analytical platforms might exhibit additional ones due to “stray influences” that could include the effect of, e.g.: supporting matrix, nonspecific binding and temperature variation. Stray processes interfere with the desired ones and the measured data could display a non-monotonous behavior.
Molecular paleontology and complexity in the last eukaryotic common ancestor
Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.
2013-01-01
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660
Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2013-01-01
The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.
Murine macrophages: a technical approach.
Martinez-Pomares, Luisa; Gordon, Siamon
2008-01-01
In this chapter, we describe current protocols used for the characterization of macrophages (MPhi) in mouse tissues and in cell suspensions from spleen and lymph nodes. Also, we include a brief description of a complementary approach: culture of primary MPhi. Although culture MPhi are extremely useful for analysing the basic biology of MPhi and their receptors, it should not be forgotten that the term MPhi encompasses a wide range of different types of cells with phenotypic characteristics dependent on their activation state and tissue of origin. In our view, there is no perfect MPhi marker and analysis of the expression profile of several markers, and functional studies are required to make an informed guess of the cellular characteristics and function of the MPhi population of interest.
H2S, a novel therapeutic target in renal-associated diseases?
Pan, Wen-Jun; Fan, Wen-Jing; Zhang, Chi; Han, Dan; Qu, Shun-Lin; Jiang, Zhi-Sheng
2015-01-01
For more than a century, hydrogen sulfide (H2S) has been regarded as a toxic gas. Recently, the understanding of the biological effects of H2S has been changed. This review surveys the growing recognition of H2S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the urinary system. This article reviews recent progress of basic and pharmacological researches related to endogenous H2S in urinary system, including the regulatory effects of H2S in the process of antioxidant, inflammation, cellular matrix remodeling and ion channels, and the role of endogenous H2S pathway in the pathogenesis of renal and urogenital disorders. Copyright © 2014. Published by Elsevier B.V.
8(th) Symposium on Hemostasis: Translational and Basic Science Discoveries.
Margaritis, Paris; Key, Nigel S
2016-05-01
It has been 14 years since the first symposium on hemostasis at UNC Chapel Hill that focused primarily on the tissue factor (TF) and Factor VIIa (FVIIa) biology, biochemistry and translational work for the treatment of bleeding. Concepts, mechanistic data and therapeutic agents have since emerged that permeate not only aspects of the TF and FVIIa functions, but also broader processes in hemostasis and thrombosis. These processes involve circulating proteins, receptors, cells and cellular components that interact within the coagulation system as well as with additional systems that are dysregulated in disorders seemingly unrelated to bleeding/thrombosis. The reviews in this symposium provide the research background to understand such interactions and integrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expanding the scope of site-specific recombinases for genetic and metabolic engineering.
Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F
2014-01-01
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.
Dyer, Michael A
2016-10-01
Retinoblastoma is a rare childhood cancer of the developing retina, and studies on this orphan disease have led to fundamental discoveries in cancer biology. Retinoblastoma has also emerged as a model for translational research for pediatric solid tumors, which is particularly important as personalized medicine expands in oncology. Research on retinoblastomas has been combined with the exploration of retinal development and retinal degeneration to advance a new model of cell type-specific disease susceptibility termed 'cellular pliancy'. The concept can even be extended to species-specific regeneration. This review discusses the remarkable path of retinoblastoma research and how it has shaped the most current efforts in basic, translational, and clinical research in oncology and beyond. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A
2016-07-08
Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Aronson, Benjamin D; Silveira, Linda A
2009-01-01
In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.
LINEs, SINEs and other retroelements: do birds of a feather flock together?
Roy-Engel, Astrid M
2012-01-01
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact.
LINEs, SINEs and other retroelements: do birds of a feather flock together?
Roy-Engel, Astrid M.
2012-01-01
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact. PMID:22201808
Astrovirology: Viruses at Large in the Universe.
Berliner, Aaron J; Mochizuki, Tomohiro; Stedman, Kenneth M
2018-02-01
Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.
Roles and regulations of the ETS transcription factor ELF4/MEF
Suico, Mary Ann; Shuto, Tsuyoshi; Kai, Hirofumi
2017-01-01
Abstract Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity. PMID:27932483
Shifts in growth strategies reflect tradeoffs in cellular economics
Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas
2009-01-01
The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218
Neuro-glial crosstalk in inflammatory bowel disease.
Neunlist, M; Van Landeghem, L; Bourreille, A; Savidge, T
2008-06-01
Inflammatory bowel disease (IBD) is a multifactorial disease in which environmental, immune and genetic factors are involved in the pathogenesis. Although biological therapies (antibodies anti-tumour necrosis factor-alpha or anti-integrin) have considerably improved the symptoms and quality of life of IBD patients, some drawbacks have emerged limiting their long-term use. In addition, prevention of relapses and treatment of resistant ulcers remains a clinical challenge. In this context, a better understanding of the pathophysiology of IBD and the development of novel therapeutic intervention would benefit from further basic and preclinical research into the role of the cellular microenvironment and the interaction between its cellular constituents. In this context, the role of the enteric nervous system (ENS) in the regulation of the intestinal epithelial barrier (IEB) and the gut immune response has fuelled an increased interest in the last few years. Recent advances, summarized in this review, have highlighted the ENS as playing a key role in the control of IEB functions and gut immune homeostasis, and that alterations of the ENS could be directly associated in the development of IBD and its associated symptoms.
ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...
Evolutionary cell biology: functional insight from "endless forms most beautiful".
Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B
2015-12-15
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Weber, Carolyn F.
2016-01-01
Western science has grown increasingly reductionistic and, in parallel, the undergraduate life sciences curriculum has become disciplinarily fragmented. While reductionistic approaches have led to landmark discoveries, many of the most exciting scientific advances in the late 20th century have occurred at disciplinary interfaces; work at these interfaces is necessary to manage the world’s looming problems, particularly those that are rooted in cellular-level processes but have ecosystem- and even global-scale ramifications (e.g., nonsustainable agriculture, emerging infectious diseases). Managing such problems requires comprehending whole scenarios and their emergent properties as sums of their multiple facets and complex interrelationships, which usually integrate several disciplines across multiple scales (e.g., time, organization, space). This essay discusses bringing interdisciplinarity into undergraduate cellular biology courses through the use of multiscalar topics. Discussing how cellular-level processes impact large-scale phenomena makes them relevant to everyday life and unites diverse disciplines (e.g., sociology, cell biology, physics) as facets of a single system or problem, emphasizing their connections to core concepts in biology. I provide specific examples of multiscalar topics and discuss preliminary evidence that using such topics may increase students’ understanding of the cell’s position within an ecosystem and how cellular biology interfaces with other disciplines. PMID:27146162
Investigating Novice and Expert Conceptions of Genetically Modified Organisms
Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.
2017-01-01
The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students’ conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non–biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. PMID:28821537
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, R.
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology
Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip
2015-01-01
A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580
Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses
Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.
2014-01-01
Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432
Quantum-dot cellular automata: Review and recent experiments (invited)
NASA Astrophysics Data System (ADS)
Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.
1999-04-01
An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.
Applications of systems biology towards microbial fuel production.
Gowen, Christopher M; Fong, Stephen S
2011-10-01
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Udave, Ceasar
2017-01-01
Microgravity is one of the most import factors in space flight where its impact on living biological organisms is concerned. Many different ailments have been reported in astronauts such as spaceflight related osteopenia, cardiovascular concerns, and loss of eye sight. In order to understand why µg causes these issues we must understand what is happening at the most basic of biological structures, the cell. The work done in this report is a culmination of contributions made to a much larger project. The project seeks to understand how cellular physiology is changing in SMG conditions and use this knowledge to feed into a follow-up study on the genetic changes that are seen in SMG environments. Cells were imaged using confocal microscopy after 20hrs and 48hrs in a 3D clinostat called the Gravite. Lengths, widths, heights, and total cell areas were measured using an image analysis software package ImageJ. There were significant differences in lengths and widths of cell nuclei, and total area of cell coverage. The report then discusses some of the problems with the testing apparatus and how 3D printing technology may be used to create better sample holders for the 3D clinostat.
Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu
2017-04-01
Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.
Cellular therapies for heart disease: unveiling the ethical and public policy challenges.
Raval, Amish N; Kamp, Timothy J; Hogle, Linda F
2008-10-01
Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.
Community College Biology Lesson Catalogue.
ERIC Educational Resources Information Center
Herrick, Kathie G.
This catalog contains descriptions of the available biology lessons on PLATO IV, compiled to assist instructors in planning their curricula. Information is provided for 87 lessons in the following areas: experimental tools and techniques; chemical basis of life; cellular structure and function; bioenergetics - enzymes and cellular metabolism;…
Swanson, Larry W.; Bota, Mihail
2010-01-01
The nervous system is a biological computer integrating the body's reflex and voluntary environmental interactions (behavior) with a relatively constant internal state (homeostasis)—promoting survival of the individual and species. The wiring diagram of the nervous system's structural connectivity provides an obligatory foundational model for understanding functional localization at molecular, cellular, systems, and behavioral organization levels. This paper provides a high-level, downwardly extendible, conceptual framework—like a compass and map—for describing and exploring in neuroinformatics systems (such as our Brain Architecture Knowledge Management System) the structural architecture of the nervous system's basic wiring diagram. For this, the Foundational Model of Connectivity's universe of discourse is the structural architecture of nervous system connectivity in all animals at all resolutions, and the model includes two key elements—a set of basic principles and an internally consistent set of concepts (defined vocabulary of standard terms)—arranged in an explicitly defined schema (set of relationships between concepts) allowing automatic inferences. In addition, rules and procedures for creating and modifying the foundational model are considered. Controlled vocabularies with broad community support typically are managed by standing committees of experts that create and refine boundary conditions, and a set of rules that are available on the Web. PMID:21078980
NASA Astrophysics Data System (ADS)
Stojicic, Nevena; Walrafen, David; Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Weisshaar, Maria-Paz; Horneck, Gerda
Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SOS-LUX test, which represents the radiobiological part of the German space experiment "Gene, immune and cellular responses to single and combined space flight conditions (TRIPLE-LUX)" which has been selected by the IDI/USRA Peer Review Panel for NASA/ESA to be performed on the International Space Station (ISS). It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). The luminescent/fluorescent bioassay SWITCH (SWITCH: Salmonella Weighting of Induced Toxicity Cyto/GenoTox for Human Health) as successor of the SOS-LUX test for rapid toxicity (genotoxicity and cytotoxicity) testing, makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-LUX test and the LAC- Fluoro test. The SWITCH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage-dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of β-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation of various qualities (from UVC to UVA) have given insights into cellular mechanisms relevant for estimation of health risks, resulting from exposure of astronauts to the extraordinary radiation environment of space.
Learning cell biology as a team: a project-based approach to upper-division cell biology.
Wright, Robin; Boggs, James
2002-01-01
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.
Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)
NASA Astrophysics Data System (ADS)
Forshee, Jay Lance, II
Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity via expert agreement, response process validity through student think-aloud interviews, and via the Delphi survey methodology. Included is a discussion of item function (difficulty, discrimination, and point-biserial correlation), persistent misconceptions and the interpretation, uses, and future directions of the CCRCI.
Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology
ERIC Educational Resources Information Center
Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.
2017-01-01
When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
2016-01-01
ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765
Cell biology: at the center of modern biomedicine.
Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom
2012-10-01
How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.
Ceratopteris richardii: a productive model for revealing secrets of signaling and development
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Roux, S. J.
2000-01-01
Ceratopteris richardii is an aquatic fern grown in tropical and subtropical regions of the world. It is proven to be a productive model system for studies in the genetics, biochemistry, and cell biology of basic biologic processes that occur in early gametophytic development. It provides several advantages to biologists, especially those interested in gravitational biology, polarity development, and in the genetics of sexual development. It is easy to culture, has a relatively short life cycle, and offers an array of attractive features that facilitate genetic studies. The germination and early development of large populations of genetically identical spores are easy to synchronize, and both the direction of polarity development and cell-level gravity responses can be measured and readily manipulated within the first 24 h of spore development. Although there is no reliable transformation system available yet in Ceratopteris, recent studies suggest that the technique of RNA interference can be used to block translation of specific genes in a related fern, Marsilea, and current studies will soon reveal the applicability of this approach, as well as of other transformation approaches, in Ceratopteris. A recently completed expressed sequence tag (EST) sequencing project makes available the partial sequence of more than 2000 cDNAs, representing a significant percentage of the genes being expressed during the first 24 h of spore germination, when many developmentally interesting processes are occurring. A microarray of these ESTs is being constructed, so especially for those scientists interested in basic cellular phenomena that occur early in spore germination, the availability of the ESTs and of the microarray will make Ceratopteris an even more attractive model system.
Ceratopteris richardii: a productive model for revealing secrets of signaling and development.
Chatterjee, A; Roux, S J
2000-09-01
Ceratopteris richardii is an aquatic fern grown in tropical and subtropical regions of the world. It is proven to be a productive model system for studies in the genetics, biochemistry, and cell biology of basic biologic processes that occur in early gametophytic development. It provides several advantages to biologists, especially those interested in gravitational biology, polarity development, and in the genetics of sexual development. It is easy to culture, has a relatively short life cycle, and offers an array of attractive features that facilitate genetic studies. The germination and early development of large populations of genetically identical spores are easy to synchronize, and both the direction of polarity development and cell-level gravity responses can be measured and readily manipulated within the first 24 h of spore development. Although there is no reliable transformation system available yet in Ceratopteris, recent studies suggest that the technique of RNA interference can be used to block translation of specific genes in a related fern, Marsilea, and current studies will soon reveal the applicability of this approach, as well as of other transformation approaches, in Ceratopteris. A recently completed expressed sequence tag (EST) sequencing project makes available the partial sequence of more than 2000 cDNAs, representing a significant percentage of the genes being expressed during the first 24 h of spore germination, when many developmentally interesting processes are occurring. A microarray of these ESTs is being constructed, so especially for those scientists interested in basic cellular phenomena that occur early in spore germination, the availability of the ESTs and of the microarray will make Ceratopteris an even more attractive model system.
Making evolutionary biology a basic science for medicine
Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David
2010-01-01
New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069
Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David
2010-01-26
New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.
WE-DE-202-00: Connecting Radiation Physics with Computational Biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario
2011-01-01
BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281
Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow
Bissoyi, Akalabya; Bit, Arindam; Singh, Bikesh Kumar; Singh, Abhishek Kumar; Patra, Pradeep Kumar
2016-01-01
Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue. The prime objective of this investigation is to evaluate the effects of shear-stress and cell-substrate interaction in successful recovery of adherent human mesenchymal-stem-cells (hMSCs). A customized microfluidic bioreactor has been used for the purpose. We have measured the changes in focal-point-adhesion (FPAs) by changing induced shear stress inside the bioreactor. The findings indicate that with increase in shear stress, FPAs increases between substrate and MSCs. Further, experimental results show that increased FPAs (4e-3 μbar) enhances the cellular survivability of adherent MSCs. Probably, for the first time involvement of focal point interaction in the outcome of cryopreservation of MSCs has been clarified, and it proved a potentially new approach for modification of cryopreservation protocol by up-regulating focal point of cells to improve its clinical application. PMID:27748463
Integrated cellular network of transcription regulations and protein-protein interactions
2010-01-01
Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology. PMID:20211003
Integrated cellular network of transcription regulations and protein-protein interactions.
Wang, Yu-Chao; Chen, Bor-Sen
2010-03-08
With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.
Precision medicine for psychopharmacology: a general introduction.
Shin, Cheolmin; Han, Changsu; Pae, Chi-Un; Patkar, Ashwin A
2016-07-01
Precision medicine is an emerging medical model that can provide accurate diagnoses and tailored therapeutic strategies for patients based on data pertaining to genes, microbiomes, environment, family history and lifestyle. Here, we provide basic information about precision medicine and newly introduced concepts, such as the precision medicine ecosystem and big data processing, and omics technologies including pharmacogenomics, pharamacometabolomics, pharmacoproteomics, pharmacoepigenomics, connectomics and exposomics. The authors review the current state of omics in psychiatry and the future direction of psychopharmacology as it moves towards precision medicine. Expert commentary: Advances in precision medicine have been facilitated by achievements in multiple fields, including large-scale biological databases, powerful methods for characterizing patients (such as genomics, proteomics, metabolomics, diverse cellular assays, and even social networks and mobile health technologies), and computer-based tools for analyzing large amounts of data.
Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies
2015-01-01
Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652
Current concepts for the combined treatment modality of ionizing radiation with anticancer agents.
Oehler, Christoph; Dickinson, Daniel J; Broggini-Tenzer, Angela; Hofstetter, Barbara; Hollenstein, Andreas; Riesterer, Oliver; Vuong, Van; Pruschy, Martin
2007-01-01
In current applied radiobiology, there exists a tremendous effort in basic and translational research to identify novel treatment modalities combining ionizing radiation with anticancer agents. This is mainly due to the highly improved molecular understanding of intrinsic radioresistance and the profiling of cellular stress responses to irradiation during recent years. Ionizing radiation not only damages DNA but also affects multiple cellular components that induce a multi-layered stress response. The treatment responses can be restricted to the individual cell level but might also be part of an intercellular stress communication network. Both DNA damage-induced signaling (which results in cell cycle arrest and induction of the DNA-repair machinery) and also ionizing radiation-induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA-damage, represent interesting targets for anticancer treatment modalities to sensitize for ionizing radiation. Due to the lack of molecular knowledge classic radiobiology assembled the cellular and tissue responses into four groups (4 R's of radiotherapy) which describe biological factors influencing the treatment response to fractionated radiotherapy. These classic 4 R's are Repair, Reassortment, Repopulation and Reoxygenation. With the tremendous progress in molecular oncology we now begin to understand theses factors on the molecular level. At the same time this classification may guide modern molecular radiobiologists to identify novel pharmaceuticals and antisignaling agents which can modulate the treatment response to irradiation. In this review we describe current approaches to sensitize tumor cells with novel anticancer agents along the lines of these 4 R's.
Metabolomics: the apogee of the omic triology
Patti, Gary J; Yanes, Oscar; Siuzdak, Gary
2013-01-01
Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and shaping our understanding of cell biology, physiology, and medicine. PMID:22436749
NASA Astrophysics Data System (ADS)
Korpusik, Adam
2017-02-01
We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.
Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.
Marchal, Claire; Sasaki, Takayo; Vera, Daniel; Wilson, Korey; Sima, Jiao; Rivera-Mulia, Juan Carlos; Trevilla-García, Claudia; Nogues, Coralin; Nafie, Ebtesam; Gilbert, David M
2018-05-01
This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.
Changes in gene expression and signal transduction in microgravity
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.
2001-01-01
Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
New Tools and New Biology: Recent Miniaturized Systems for Molecular and Cellular Biology
Hamon, Morgan; Hong, Jong Wook
2013-01-01
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology. PMID:24305843
Towards a perceptive understanding of size in cellular biology.
Zoppè, Monica
2017-06-29
Cells are minute-typically too small to be seen by the human eye. Even so, the cellular world encompasses a range of scales, from roughly a tenth of a nanometer (10 -10 m) to a millimeter (10 -3 m) or larger, spanning seven orders of magnitude or more. Because they are so far from our experience, it is difficult for us to envision such scales. To help our imagination grasp such dimensions, I propose the adoption of a 'perceptive scale' that can facilitate a more direct experience of cellular sizes. From this, as I argue below, will stem a new perception also of biological shape, cellular space and dynamic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, S.
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, J.
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are themore » most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological processes are too complex for a mechanistic approach. Can computer simulations be used to guide future biological research? We will debate the feasibility of explaining biology from a physicists’ perspective. Learning Objectives: Understand the potential applications and limitations of computational methods for dose-response modeling at the molecular, cellular and tissue levels Learn about mechanism of action underlying the induction, repair and biological processing of damage to DNA and other constituents Understand how effects and processes at one biological scale impact on biological processes and outcomes on other scales J. Schuemann, NCI/NIH grantsS. McMahon, Funding: European Commission FP7 (grant EC FP7 MC-IOF-623630)« less
SABRE: a bio-inspired fault-tolerant electronic architecture.
Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M
2013-03-01
As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.
The Next Frontier: Quantitative Biochemistry in Living Cells.
Honigmann, Alf; Nadler, André
2018-01-09
Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.
Biological Based Risk Assessment for Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Exposures from galactic cosmic rays (GCR) - made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs) - comprised largely of low- to medium-energy protons are the primary health concern for astronauts for long-term space missions. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation, making risk assessments for cancer and degenerative risks, such as central nervous system effects and heart disease, highly uncertain. The goal for space radiation protection at NASA is to be able to reduce the uncertainties in risk assessments for Mars exploration to be small enough to ensure acceptable levels of risks are not exceeded and to adequately assess the efficacy of mitigation measures such as shielding or biological countermeasures. We review the recent BEIR VII and UNSCEAR-2006 models of cancer risks and their uncertainties. These models are shown to have an inherent 2-fold uncertainty as defined by ratio of the 95% percent confidence level to the mean projection, even before radiation quality is considered. In order to overcome the uncertainties in these models, new approaches to risk assessment are warranted. We consider new computational biology approaches to modeling cancer risks. A basic program of research that includes stochastic descriptions of the physics and chemistry of radiation tracks and biochemistry of metabolic pathways, to emerging biological understanding of cellular and tissue modifications leading to cancer is described.
Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M
2010-11-07
We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.
Lace, Beatrice; Prandi, Cristina
2016-08-01
Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Laboratory for Energy-Related Health Research annual report, fiscal year 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-02-01
This report to the US Department of Energy summarizes research activities for the period from 1 October 1985--30 September 1986 at the Laboratory for Energy-related Health Research (LEHR) which is operated by the University of California, Davis. The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactivemore » substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear medical diagnostic and therapeutic methods are also involved. This is an interdisciplinary program spanning physics, chemistry, environmental engineering, biophysics and biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Challenges in structural approaches to cell modeling
Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.
2016-01-01
Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863
Mast, Fred D.; Ratushny, Alexander V.
2014-01-01
Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336
75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General... Branch, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, FDA...
A core viral protein binds host nucleosomes to sequester immune danger signals
Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.
2016-01-01
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237
Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks
2011-01-01
Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155
The bioelectric code: An ancient computational medium for dynamic control of growth and form.
Levin, Michael; Martyniuk, Christopher J
2018-02-01
What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, David; Schuldt, Carsten; Lorenz, Jessica; Tschirner, Teresa; Moebius-Winkler, Maximilian; Kaes, Josef; Glaser, Martin; Haendler, Tina; Schnauss, Joerg
2015-03-01
Biologically evolved materials are often used as inspiration in the development of new materials as well as examinations into the underlying physical principles governing their behavior. For instance, the biopolymer constituents of the highly dynamic cellular cytoskeleton such as actin have inspired a deep understanding of soft polymer-based materials. However, the molecular toolbox provided by biological systems has been evolutionarily optimized to carry out the necessary functions of cells, and the inability modify basic properties such as biopolymer stiffness hinders a meticulous examination of parameter space. Using actin as inspiration, we circumvent these limitations using model systems assembled from programmable materials such as DNA. Nanorods with comparable, but controllable dimensions and mechanical properties as actin can be constructed from small sets of specially designed DNA strands. In entangled gels, these allow us to systematically determine the dependence of network mechanical properties on parameters such as persistence length and crosslink strength. At higher concentrations in the presence of local attractive forces, we see a transition to highly-ordered bundled and ``aster'' phases similar to those previously characterized in systems of actin or microtubules.
High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.
Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi
2011-02-07
Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.
75 FR 26970 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
...-496-8551, [email protected] . Name of Committee: Molecular, Cellular and Developmental...: Oncology 1--Basic Translational Integrated Review Group, Cancer Genetics Study Section. Date: June 3-4... 20892, (301) 435-1154, [email protected] . Name of Committee: Molecular, Cellular and Developmental...
75 FR 25273 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Genetics Integrated Review Group, Molecular Genetics C Study Section. Date: June 3-4, 2010. Time: 8 a.m. to... Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer Molecular Pathobiology Study... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and...
Cellular signaling identifiability analysis: a case study.
Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo
2010-05-21
Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Understanding Biological Regulation Through Synthetic Biology.
Bashor, Caleb J; Collins, James J
2018-05-20
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
Farzadfard, Fahim; Lu, Timothy K
2014-11-14
Cellular memory is crucial to many natural biological processes and sophisticated synthetic biology applications. Existing cellular memories rely on epigenetic switches or recombinases, which are limited in scalability and recording capacity. In this work, we use the DNA of living cell populations as genomic "tape recorders" for the analog and distributed recording of long-term event histories. We describe a platform for generating single-stranded DNA (ssDNA) in vivo in response to arbitrary transcriptional signals. When coexpressed with a recombinase, these intracellularly expressed ssDNAs target specific genomic DNA addresses, resulting in precise mutations that accumulate in cell populations as a function of the magnitude and duration of the inputs. This platform could enable long-term cellular recorders for environmental and biomedical applications, biological state machines, and enhanced genome engineering strategies. Copyright © 2014, American Association for the Advancement of Science.
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Mitral valve disease—morphology and mechanisms
Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.
2016-01-01
Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167
Del Mármol, Josefina; Rietmeijer, Robert A; Brohawn, Stephen G
2018-01-01
Mechanical force sensation is fundamental to a wide breadth of biology from the classic senses of touch, pain, hearing, and balance to less conspicuous sensations of proprioception, blood pressure, and osmolarity and basic aspects of cell growth, differentiation, and development. These diverse and essential systems use force-gated (or mechanosensitive) ion channels that convert mechanical stimuli into cellular electrical signals. TRAAK, TREK1, and TREK2 are K + -selective ion channels of the two-pore domain K + (K2P) family that are mechanosensitive: they are gated open by increasing membrane tension. TRAAK and TREK channels are thought to play roles in somatosensory and other mechanosensory processes in neuronal and non-neuronal tissues. Here, we present protocols for three assays to study mechanical activation of these channels in cell membranes: (1) cell swelling, (2) cell poking, and (3) patched membrane stretching. Patched membrane stretching is also applicable to the study of mechanosensitive K2P channel activity in a cell-free system and a procedure for proteoliposome reconstitution and patching is also presented. These approaches are also readily applicable to the study of other mechanosensitive ion channels.
Blood biomarkers for brain injury: What are we measuring?
Kawata, Keisuke; Liu, Charles Y.; Merkel, Steven F.; Ramirez, Servio H.; Tierney, Ryan T.; Langford, Dianne
2016-01-01
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury. PMID:27181909
Levine, Beth; Klionsky, Daniel J.
2017-01-01
Autophagy is an ancient pathway in which parts of eukaryotic cells are self-digested within the lysosome or vacuole. This process has been studied for the past seven decades; however, we are only beginning to gain a molecular understanding of the key steps required for autophagy. Originally characterized as a hormonal and starvation response, we now know that autophagy has a much broader role in biology, including organellar remodeling, protein and organelle quality control, prevention of genotoxic stress, tumor suppression, pathogen elimination, regulation of immunity and inflammation, maternal DNA inheritance, metabolism, and cellular survival. Although autophagy is usually a degradative pathway, it also participates in biosynthetic and secretory processes. Given that autophagy has a fundamental role in many essential cellular functions, it is not surprising that autophagic dysfunction is associated with a wide range of human diseases. Genetic studies in various fungi, particularly Saccharomyces cerevisiae, provided the key initial breakthrough that led to an explosion of research on the basic mechanisms and the physiological connections of autophagy to health and disease. The Nobel Committee has recognized this breakthrough by the awarding of the 2016 Nobel Prize in Physiology or Medicine for research in autophagy. PMID:28039434
Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus
2015-07-31
Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.
The Interpretation of Cellular Transport Graphics by Students with Low and High Prior Knowledge
ERIC Educational Resources Information Center
Cook, Michelle; Carter, Glenda; Wiebe, Eric N.
2008-01-01
The purpose of this study was to examine how prior knowledge of cellular transport influenced how high school students in the USA viewed and interpreted graphic representations of this topic. The participants were Advanced Placement Biology students (n = 65); each participant had previously taken a biology course in high school. After assessing…
Time scale of diffusion in molecular and cellular biology
NASA Astrophysics Data System (ADS)
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
Detection and differentiation of coxiella burnetii in biological fluids
Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.
1990-01-01
Methods for detecting the presence of Coxiella burenetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.
Detection and differentiation of coxiella burnetii in biological fluids
Frazier, Marvin E.; Mallavia, Louis P.; Baca, Oswald G.; Samuel, James E.
1989-01-01
Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.
Detection and differentiation of coxiella burnetii in biological fluids
Frazier, Marvin E.; Mallavia, Louis P.; Samuel, James E.; Baca, Oswald G.
1993-01-01
Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA with a DNA probe containing DNA sequences that specifically hybridize with C. burnetii DNA of strains associated with the capacity to cause acute or chronic disease.
Mast, Fred D; Ratushny, Alexander V; Aitchison, John D
2014-09-15
Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. © 2014 Mast et al.
75 FR 3241 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurodifferentiation..., (301) 435- 1178, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...
Nanobodies and recombinant binders in cell biology.
Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich
2015-06-08
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.
From bedside to cell biology: a century of history on lysosomal dysfunction.
Coutinho, Maria Francisca; Matos, Liliana; Alves, Sandra
2015-01-15
Lysosomal storage disorders (LSDs) are a group of rare genetic diseases, generally caused by a deficiency of specific lysosomal enzymes, which results in abnormal accumulation of undegraded substrates. The first clinical reports describing what were later shown to be LSDs were published more than a hundred years ago. In general, the history and pathophysiology of LSDs has impacted on our current knowledge of lysosomal biology. Classically, depending on the nature of the substrates, LSDs can be divided into different subgroups. The mucopolysaccharidoses (MPSs) are those caused by impaired degradation of glycosaminoglycans (GAGs). Amongst LSDs, the MPSs are a major group of pathologies with crucial historical relevance, since their study has revealed important biological pathways and highlighted interconnecting pathological cascades which are still being unveiled nowadays. Here we review the major historical discoveries in the field of LSDs and their impact on basic cellular knowledge and practical applications. Attention will be focused on the MPSs, with occasional references to other LSDs. We will show as studies on the metabolic basis of this group of diseases have increased our knowledge of the complex degradative pathways associated with the lysosome and established the basis to the development of specific therapeutic approaches aiming at correcting or, at least ameliorating their associated phenotypes. Copyright © 2014 Elsevier B.V. All rights reserved.
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
Ebrahim, Ali; Lerman, Joshua A; Palsson, Bernhard O; Hyduke, Daniel R
2013-08-08
COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software. Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes. COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets. http://opencobra.sourceforge.net/
Quantum biology at the cellular level--elements of the research program.
Bordonaro, Michael; Ogryzko, Vasily
2013-04-01
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...
Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.
Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L
2016-08-01
The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-07-01
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. Electronic supplementary information (ESI) available: Additional figures (Table S1, Fig. S1-S5). See DOI: 10.1039/c4nr01676a
The human pain genetics database: an interview with Luda Diatchenko.
Diatchenko, Luda
2018-06-05
Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.
Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien
2017-06-01
Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.
Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates
Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda
2012-01-01
One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039
Materials with structural hierarchy
NASA Technical Reports Server (NTRS)
Lakes, Roderic
1993-01-01
The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.
Challenges in structural approaches to cell modeling.
Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A
2016-07-31
Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shao, Yue
2014-01-01
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188
In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.
Bechtel, William; Abrahamsen, Adele
2007-01-01
Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.
Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter
2014-09-01
Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.
Factors influencing extract of Hibiscus sabdariffa staining of rat testes.
Bassey, R B; Bakare, A A; Peter, A I; Oremosu, A A; Osinubi, A A
2012-08-01
Some plant extracts can be used in biology and medicine to reveal or identify cellular components and tissues. We investigated the effects of time and concentration on staining of histological sections of rat testes by an acidified extract of Hibiscus sabdariffa. An ethanolic extract of H. sabdariffa was diluted using 1% acetic acid in 70% ethanol to stain histological sections of testes at concentrations of 0.2, 0.1 and 0.05 g/ml for 5, 10, 15, 30, 45 and 60 min. The sections of testes were stained deep red. The staining efficiency of H. sabdariffa was greater at a high concentration and required less time to achieve optimal staining. H. sabdariffa is a strongly basic dye that can be used for various diagnostic purposes. Staining time and concentration must be considered to achieve optimal results.
NASA Technical Reports Server (NTRS)
Vernikos, J.
1996-01-01
The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.
Fundamentals of flow cytometry.
Jaroszeski, M J; Radcliff, G
1999-02-01
Flow cytometers are instruments that are used primarily to measure the physical and biochemical characteristics of biological particles. This technology is used to perform measurements on whole cells as well as prepared cellular constituents, such as nuclei and organelles. Flow cytometers are investigative tools for a broad range of scientific disciplines because they make measurements on thousands of individual cells/particles in a matter of seconds. This is a unique advantage relative to other detection instruments that provide bulk particle measurements. Flow cytometry is a complex and highly technical field; therefore, a basic understanding of the technology is essential for all users. The purpose of this article is to provide fundamental information about the instrumentation used for flow cytometry as well as the methods used to analyze and interpret data. This information will provide a foundation to use flow cytometry effectively as a research tool.
... Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry ... Glycobiology, Synthesis, Natural Products, Chemical Reactions Computers in Biology Bioinformatics, Modeling, Systems Biology, Data Visualization Diseases Cancer, ...
Investigating Novice and Expert Conceptions of Genetically Modified Organisms.
Potter, Lisa M; Bissonnette, Sarah A; Knight, Jonathan D; Tanner, Kimberly D
2017-01-01
The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non-biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales. © 2017 L. M. Potter et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Baumstark-Khan, Christa; Spitta, Luis; Thelen, Melanie; Arenz, Andrea; Franz, Markus; Schulze-Varnholt, Dirk; Berger, Thomas; Reitz, Günther
The combined action of ionizing radiation and microgravity will continue to influence future space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. It has been estimated that on a 3-year mission to Mars about 3% of the bodies' cell nuclei would have been hit by one iron ion with the consequence that nuclear DNA will be heavily damaged. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. DNA repair studies in space on bacteria, yeast cells and human fibroblasts, which were irradiated before, flight, gave contradictory results: from inhibition of repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. The space experiment CERASP (CEllular Responses to RAdiation in SPace) to be performed at the International Space Station (ISS) is aimed to supply basic information on the cellular response in microgravity to radiation applied during flight. It makes use of a recombinant human cell line as reporter for cellular signal transduction modulation by genotoxic environmental conditions. The main biological endpoints under investigation will be gene activation based on enhanced green fluorescent protein (EGFP, originally isolated from the bioluminescent jellyfish Aequorea victoria) expression controlled by a DNA damage-dependent promoter element which reflects the activity of the nuclear factor kappa B (NF- κB) pathway. The NF- κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, anti-apoptosis and tumorgenesis. For radiation exposure during space flight a radiation source has been constructed as damage accumulation by cosmic radiation will certainly be insufficient for analysis. The space experiment specific hardware consists of a specially designed radiation source made up of the β-emitter promethium-147, combined with a miniaturized culture vessel and a seeding apparatus. With this prototype hardware, the requirements of CERASP can be fulfilled with cells growing on the polytetrafluoroethylene foil. The radiation source can be enveloped with additional titanium foils for safety issues. The results from the preparatory experimental phase clearly show that the Pm-147 radiation source meets the requirements for the space experiment CERASP.
Publications of the space biology program for 1975-1977: A special bibliography
NASA Technical Reports Server (NTRS)
Felt, J. C. (Compiler); Halstead, T. W. (Compiler)
1978-01-01
Documents cited represent research encompassing several disciplines of space biology: botany and plant pathology, physiology and biophysics, agricultural and environmental sciences, anatomy and embryology, cellular and comparative biology, horticulture and aerospace biology.
structural biology and plant/algal cell biology to address questions about the cellular mechanisms involved Biology, University of Colorado at Boulder M.A., Biology, University of Colorado at Denver B.S
Electron cryo-tomography captures macromolecular complexes in native environments.
Baker, Lindsay A; Grange, Michael; Grünewald, Kay
2017-10-01
Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work. Copyright © 2017. Published by Elsevier Ltd.
Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.
Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A
2017-10-02
The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies.
Daulat, Avais M; Puvirajesinghe, Tania M; Camoin, Luc; Borg, Jean-Paul
2018-05-18
Cell polarity is a vital biological process involved in the building, maintenance and normal functioning of tissues in invertebrates and vertebrates. Unsurprisingly, molecular defects affecting polarity organization and functions have a strong impact on tissue homeostasis, embryonic development and adult life, and may directly or indirectly lead to diseases. Genetic studies have demonstrated the causative effect of several polarity genes in diseases; however, much remains to be clarified before a comprehensive view of the molecular organization and regulation of the protein networks associated with polarity proteins is obtained. This challenge can be approached head-on using proteomics to identify protein complexes involved in cell polarity and their modifications in a spatio-temporal manner. We review the fundamental basics of mass spectrometry techniques and provide an in-depth analysis of how mass spectrometry has been instrumental in understanding the complex and dynamic nature of some cell polarity networks at the tissue (apico-basal and planar cell polarities) and cellular (cell migration, ciliogenesis) levels, with the fine dissection of the interconnections between prototypic cell polarity proteins and signal transduction cascades in normal and pathological situations. This review primarily focuses on epithelial structures which are the fundamental building blocks for most metazoan tissues, used as the archetypal model to study cellular polarity. This field offers broad perspectives thanks to the ever-increasing sensitivity of mass spectrometry and its use in combination with recently developed molecular strategies able to probe in situ proteomic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Multiscale Computational Model of the Response of Swine Epidermis After Acute Irradiation
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2012-01-01
Radiation exposure from Solar Particle Events can lead to very high skin dose for astronauts on exploration missions outside the protection of the Earth s magnetic field [1]. Assessing the detrimental effects to human skin under such adverse conditions could be predicted by conducting territorial experiments on animal models. In this study we apply a computational approach to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis [2]. Incorporating experimentally measured histological and cell kinetic parameters into a multiscale tissue modeling framework, we obtain results of population kinetics and proliferation index comparable to unirradiated and acutely irradiated swine experiments [3]. It is noted the basal cell doubling time is 10 to 16 days in the intact population, but drops to 13.6 hr in the regenerating populations surviving irradiation. This complex 30-fold variation is proposed to be attributed to the shortening of the G1 phase duration. We investigate this radiation induced effect by considering at the sub-cellular level the expression and signaling of TGF-beta, as it is recognized as a key regulatory factor of tissue formation and wound healing [4]. This integrated model will allow us to test the validity of various basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and should lead to a fuller understanding of the pathophysiological effects of ionizing radiation on the skin.
Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.
Fong, Stephen S
2014-08-01
Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.
Molecular Thermodynamics for Cell Biology as Taught with Boxes
Mayorga, Luis S.; López, María José; Becker, Wayne M.
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of “information” and Maxwell's demons operating under nonequilibrium conditions. PMID:22383615
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus
Yamada, Shinya; Hatta, Masato; Staker, Bart L.; Watanabe, Shinji; Imai, Masaki; Shinya, Kyoko; Sakai-Tagawa, Yuko; Ito, Mutsumi; Ozawa, Makoto; Watanabe, Tokiko; Sakabe, Saori; Li, Chengjun; Kim, Jin Hyun; Myler, Peter J.; Phan, Isabelle; Raymond, Amy; Smith, Eric; Stacy, Robin; Nidom, Chairul A.; Lank, Simon M.; Wiseman, Roger W.; Bimber, Benjamin N.; O'Connor, David H.; Neumann, Gabriele; Stewart, Lance J.; Kawaoka, Yoshihiro
2010-01-01
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. PMID:20700447
Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.
2017-01-01
Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638
Molecular thermodynamics for cell biology as taught with boxes.
Mayorga, Luis S; López, María José; Becker, Wayne M
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of "information" and Maxwell's demons operating under nonequilibrium conditions.
Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions.
Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Lorenz, H Peter; Longaker, Michael T
2018-02-01
Significance: Scarring of the skin from burns, surgery, and injury constitutes a major burden on the healthcare system. Patients affected by major scars, particularly children, suffer from long-term functional and psychological problems. Recent Advances: Scarring in humans is the end result of the wound healing process, which has evolved to rapidly repair injuries. Wound healing and scar formation are well described on the cellular and molecular levels, but truly effective molecular or cell-based antiscarring treatments still do not exist. Recent discoveries have clarified the role of skin stem cells and fibroblasts in the regeneration of injuries and formation of scar. Critical Issues: It will be important to show that new advances in the stem cell and fibroblast biology of scarring can be translated into therapies that prevent and reduce scarring in humans without major side effects. Future Directions: Novel therapies involving the use of purified human cells as well as agents that target specific cells and modulate the immune response to injury are currently undergoing testing. In the basic science realm, researchers continue to refine our understanding of the role that particular cell types play in the development of scar.
Theoretical aspects of cellular decision-making and information-processing.
Kobayashi, Tetsuya J; Kamimura, Atsushi
2012-01-01
Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.
Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin
2014-09-01
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.
ORF phage display to identify cellular proteins with different functions.
Li, Wei
2012-09-01
Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.
Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers.
Lagathu, Claire; Cossarizza, Andrea; Béréziat, Véronique; Nasi, Milena; Capeau, Jacqueline; Pinti, Marcello
2017-06-01
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Soleimani, Hamid; Drakakis, Emmanuel M
2017-06-01
Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.
An Overview of Biofield Devices
Muehsam, David; Chevalier, Gaétan; Barsotti, Tiffany
2015-01-01
Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of “biofield” interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or “subtle” processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine. PMID:26665041
An Overview of Biofield Devices.
Muehsam, David; Chevalier, Gaétan; Barsotti, Tiffany; Gurfein, Blake T
2015-11-01
Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of "biofield" interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or "subtle" processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine.
Structure and Function of Viral Deubiquitinating Enzymes.
Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L
2017-11-10
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Opfer, John E.; Siegler, Robert S.
2004-01-01
Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…
Mechanical properties of porous and cellular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, K.; Green, D.J.; Gibson, L.J.
1991-01-01
This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less
Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.
Hess, Christoph; Kemper, Claudia
2016-08-16
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Lectindb: a plant lectin database.
Chandra, Nagasuma R; Kumar, Nirmal; Jeyakani, Justin; Singh, Desh Deepak; Gowda, Sharan B; Prathima, M N
2006-10-01
Lectins, a class of carbohydrate-binding proteins, are now widely recognized to play a range of crucial roles in many cell-cell recognition events triggering several important cellular processes. They encompass different members that are diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities, and specificities as well as their larger biological roles and potential applications. It is not surprising, therefore, that the vast amount of experimental data on lectins available in the literature is so diverse, that it becomes difficult and time consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. To achieve an effective use of all the data toward understanding the function and their possible applications, an organization of these seemingly independent data into a common framework is essential. An integrated knowledge base ( Lectindb, http://nscdb.bic.physics.iisc.ernet.in ) together with appropriate analytical tools has therefore been developed initially for plant lectins by collating and integrating diverse data. The database has been implemented using MySQL on a Linux platform and web-enabled using PERL-CGI and Java tools. Data for each lectin pertain to taxonomic, biochemical, domain architecture, molecular sequence, and structural details as well as carbohydrate and hence blood group specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value not only for basic studies in lectin biology but also for basic studies in pursuing several applications in biotechnology, immunology, and clinical practice, using these molecules.
Invited review article: Advanced light microscopy for biological space research.
De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
Invited Review Article: Advanced light microscopy for biological space research
NASA Astrophysics Data System (ADS)
De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.
2014-10-01
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.
75 FR 54641 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
...-435-2309, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 4-5, 2010. Time... 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and Developmental...
NASA Astrophysics Data System (ADS)
Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.
2018-06-01
Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
78 FR 64229 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... Committee: AIDS and Related Research Integrated Review Group; AIDS Molecular and Cellular Biology Study...; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: November 18-19, 2013. Time: 10:00 a...
Biased and unbiased strategies to identify biologically active small molecules.
Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël
2014-08-15
Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.
Using titanium complexes to defeat cancer: the view from the shoulders of titans.
Cini, Melchior; Bradshaw, Tracey D; Woodward, Simon
2017-02-20
When the first titanium complex with anticancer activity was identified in the 1970s, it was attractive, based on the presence of the dichloride unit in TiCl 2 Cp 2 (Cp = η-C 5 H 5 ) 2 , to assume its mode of biological action was closely aligned with cisplatin [cis-PtCl 2 (NH 3 ) 2 ]. Over the intervening 40 years however a far more complicated picture has arisen indicating multiple cellular mechanisms of cellular action can be triggered by titanium anti-cancer agents. This tutorial review aims to unpick the historical data and provide new researchers, without an explicit cancer biology background, a contemporary interpretation of both older and newer literature and to review the best techniques for attaining the identities of the biologically active titanium species and how these interact with the cancer cellular machinery.
Genomically Encoded Analog Memory with Precise In vivo DNA Writing in Living Cell Populations
Farzadfard, Fahim; Lu, Timothy K.
2014-01-01
Cellular memory is crucial to many natural biological processes and for sophisticated synthetic-biology applications. Existing cellular memories rely on epigenetic switches or recombinases, which are limited in scalability and recording capacity. Here, we use the DNA of living cell populations as genomic ‘tape recorders’ for the analog and distributed recording of long-term event histories. We describe a platform for generating single-stranded DNA (ssDNA) in vivo in response to arbitrary transcriptional signals. When co-expressed with a recombinase, these intracellularly expressed ssDNAs target specific genomic DNA addresses, resulting in precise mutations that accumulate in cell populations as a function of the magnitude and duration of the inputs. This platform could enable long-term cellular recorders for environmental and biomedical applications, biological state machines, and enhanced genome engineering strategies. PMID:25395541
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent; Beghuin, Didier
As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALMmore » ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.« less
Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil
2014-01-01
Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.
Shao, Yue; Fu, Jianping
2014-03-12
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ordinary differential equations with applications in molecular biology.
Ilea, M; Turnea, M; Rotariu, M
2012-01-01
Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.
77 FR 2738 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
..., Review Group; Clinical Molecular Imaging and Probe Development. Date: February 2-3, 2012. Time: 7 p.m. to..., Bethesda, MD 20892, (301) 435-1777, [email protected] . Name of Committee: Molecular, Cellular and...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology...
77 FR 30021 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: June 14, 2012. Time: 8:00 a.m. to 7..., Bethesda, MD 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and...
2011-01-01
Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
Nipah virus matrix protein: expert hacker of cellular machines.
Watkinson, Ruth E; Lee, Benhur
2016-08-01
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.
Iwasa, Janet H
2016-04-01
Proficiency in art and illustration was once considered an essential skill for biologists, because text alone often could not suffice to describe observations of biological systems. With modern imaging technology, it is no longer necessary to illustrate what we can see by eye. However, in molecular and cellular biology, our understanding of biological processes is dependent on our ability to synthesize diverse data to generate a hypothesis. Creating visual models of these hypotheses is important for generating new ideas and for communicating to our peers and to the public. Here, I discuss the benefits of creating visual models in molecular and cellular biology and consider steps to enable researchers to become more effective visual communicators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Towards a Quantum Game of Life
NASA Astrophysics Data System (ADS)
Flitney, Adrian P.; Abbott, Derek
Cellular automata provide a means of obtaining complex behaviour from a simple array of cells and a deterministic transition function. They supply a method of computation that dispenses with the need for manipulation of individual cells and they are computationally universal. Classical cellular automata have proved of great interest to computer scientists but the construction of quantum cellular automata pose particular difficulties. We present a version of John Conway's famous two-dimensional classical cellular automata Life that has some quantum-like features, including interference effects. Some basic structures in the new automata are given and comparisons are made with Conway's game.
Modeling formalisms in Systems Biology
2011-01-01
Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422
A comparative cellular and molecular biology of longevity database.
Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L
2013-10-01
Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
Development of oriC-Based Plasmids for Mesoplasma florum.
Matteau, Dominick; Pepin, Marie-Eve; Baby, Vincent; Gauthier, Samuel; Arango Giraldo, Mélissa; Knight, Thomas F; Rodrigue, Sébastien
2017-04-01
The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication ( oriC ) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10 -6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florum oriC intergenic region or the heterologous oriC region of Mycoplasma capricolum , Mycoplasma mycoides , or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli , reaching frequencies up to 7.87 × 10 -6 and 8.44 × 10 -7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum -based near-minimal cellular chassis for synthetic biology. IMPORTANCE Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides cluster of mycoplasmas, which has become a model for whole-genome cloning, genome transplantation, and genome minimization. However, M. florum shows higher growth rates than other Mollicutes , has no known pathogenic potential, and possesses a significantly smaller genome that positions this species among some of the simplest free-living organisms. So far, the lack of genetic engineering tools has limited our capacity to understand the basic biology of M. florum in order to modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first artificial plasmids and transformation methods for this bacterium. This represents a strong basis for ongoing genome engineering efforts using this near-minimal microorganism. Copyright © 2017 American Society for Microbiology.
Gene Chips: A New Tool for Biology
NASA Astrophysics Data System (ADS)
Botstein, David
2005-03-01
The knowledge of many complete genomic sequences has led to a ``grand unification of biology,'' consisting of direct evidence that most of the basic cellular functions of all organisms are carried out by genes and proteins whose primary sequences are directly related by descent (i.e. orthologs). Further, genome sequences have made it possible to study all the genes of a single organism simultaneously. We have been using DNA microarrays (sometime referred to as ``gene chips'') to study patterns of gene expression and genome rearrangement in yeast and human cells under a variety of conditions and in human tumors and normal tissues. These experiments produce huge volumes of data; new computational and statistical methods are required to analyze them properly. Examples from this work will be presented to illustrate how genome-scale experiments and analysis can result in new biological insights not obtainable by traditional analyses of genes and proteins one by one. For lymphomas, breast tumors, lung tumors, liver tumors, gastric tumors, brain tumors and soft tissue tumors we have been able, by the application of clustering algorithms, to subclassify tumors of similar anatomical origin on the basis of their gene expression patterns. These subclassifications appear to be reproducible and clinically as well as biologically meaningful. By studying synchronized cells growing in culture, we have identified many hundreds of yeast and human genes that are expressed periodically, at characteristically different points in the cell division cycle. In humans, it turns out that most of these genes are the same genes that comprise the ``proliferation cluster,'' i.e. the genes whose expression is specifically associated with the proliferativeness of tumors and tumor cell lines. Finally, we have been applying a variant of our DNA microarray technology (which we call ``array comparative hybridization'') to follow the DNA copy number of genes, both in tumors and in yeast cells undergoing adaptive evolution during hundreds of generations of growth in continuous culture. These studies suggest a basic similarity in mechanism between adaptive evolution in yeast and tumor progression in humans.
Prion 2005: Between Fundamentals and Society's Needs.
Treiber, Carina
2006-01-25
Prion diseases for the most part affect individuals older than 60 years of age and share features with other diseases characterized by protein deposits in the brain, such as Alzheimer's disease and Parkinson's disease. The international conference "Prion 2005: Between Fundamentals and Society's Needs," organized by the German Transmissible Spongiform Encephalopathies Research Platform, aimed to integrate and coordinate the research efforts of participants to better achieve prevention, treatment, control, and management of prion diseases, including Creutzfeldt-Jakob disease and fatal familial insomnia in humans. Several main topics were discussed, such as the molecular characteristics of prion strains, the cell biology of cellular and pathogenic forms of the prion proteins, the pathogenesis of the diseases they cause, emerging problems, and promising approaches for therapy and new diagnostic tools. The presentations at the Prion 2005 conference provided new insights in both basic and applied research, which will have broad implications for society's needs.
Cortical Evolution: Judge the Brain by Its Cover
Geschwind, Daniel H.; Rakic, Pasko
2014-01-01
To understand the emergence of human higher cognition, we must understand its biological substrate—the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders. PMID:24183016
Integrated strain array for cellular mechanobiology studies
NASA Astrophysics Data System (ADS)
Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.
2011-05-01
We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.
Mobility of membrane-trapped particles
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Stone, Howard
2015-11-01
The translation or diffusion of particles along membranes or interfaces is of interest because it is a model system for describing basic features of interfacial hydrodynamics. It is also important in cellular signalling in biology and biophysics, and it can be used to deduce the rheological properties of surface films. Here, we consider the translational mobility of spherical and oblate spheroidal particles protruding into the surrounding subphase liquid. Both the subphase and surface film contribute to the resistance experienced by the particle, which is calculated as a function of the degree of protrusion as well as the viscosity contrast between the surface film and the surrounding fluid. The calculations are based on a combination of a perturbation expansion involving the particle shape and the Lorentz reciprocal theorem. It appears that just considering one term of the expansions is in very good agreement with available analytical and numerical results.
The Evolution of the Stem Cell Theory for Heart Failure.
Silvestre, Jean-Sébastien; Menasché, Philippe
2015-12-01
Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected "big bang" in the stem cell theory, "blasting" the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
Fluorescent-protein-based probes: general principles and practices.
Ai, Hui-Wang
2015-01-01
An important application of fluorescent proteins is to derive genetically encoded fluorescent probes that can actively respond to cellular dynamics such as pH change, redox signaling, calcium oscillation, enzyme activities, and membrane potential. Despite the large diverse group of fluorescent-protein-based probes, a few basic principles have been established and are shared by most of these probes. In this article, the focus is on these general principles and strategies that guide the development of fluorescent-protein-based probes. A few examples are provided in each category to illustrate the corresponding principles. Since these principles are quite straightforward, others may adapt them to create fluorescent probes for their own interest. Hopefully, the development of the ever-growing family of fluorescent-protein-based probes will no longer be limited to a small number of laboratories specialized in senor development, leading to the situation that biological studies will be bettered assisted by genetically encoded sensors.
A real-time measurement system for parameters of live biology metabolism process with fiber optics
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhao, Hui; Liu, Zemin; Cheng, Jinke; Cai, Rong
2010-08-01
Energy metabolism is one of the basic life activities of cellular in which lactate, O2 and CO2 will be released into the extracellular environment. By monitoring the quantity of these parameters, the mitochondrial performance will be got. A continuous measurement system for the concentration of O2, CO2 and PH value is introduced in this paper. The system is made up of several small-sized fiber optics biosensors corresponding to the container. The setup of the system and the principle of measurement of several parameters are explained. The setup of the fiber PH sensor based on principle of light absorption is also introduced in detail and some experimental results are given. From the results we can see that the system can measure the PH value precisely suitable for cell cultivation. The linear and repeatable accuracies are 3.6% and 6.7% respectively, which can fulfill the measurement task.
Wang, Xiao-Jing; Krystal, John H.
2014-01-01
Psychiatric disorders such as autism and schizophrenia arise from abnormalities in brain systems that underlie cognitive, emotional and social functions. The brain is enormously complex and its abundant feedback loops on multiple scales preclude intuitive explication of circuit functions. In close interplay with experiments, theory and computational modeling are essential for understanding how, precisely, neural circuits generate flexible behaviors and their impairments give rise to psychiatric symptoms. This Perspective highlights recent progress in applying computational neuroscience to the study of mental disorders. We outline basic approaches, including identification of core deficits that cut across disease categories, biologically-realistic modeling bridging cellular and synaptic mechanisms with behavior, model-aided diagnosis. The need for new research strategies in psychiatry is urgent. Computational psychiatry potentially provides powerful tools for elucidating pathophysiology that may inform both diagnosis and treatment. To achieve this promise will require investment in cross-disciplinary training and research in this nascent field. PMID:25442941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Larson MD
This project funded since 1986 serves as a core project for cancer research throughout MSKCC, producing key radiotracers as well as basic knowledge about thel physics of radiation decay and imaging, for nuclear medicine applications to cancer diagnosis and therapy. In recent years this research application has broadened to include experiments intended to lead to an improved understanding of cancer biology and into the discovery and testing of new cancer drugs. Advances in immune based radiotargeting form the basis for this project. Both antibody and cellular based immune targeting methods have been explored. The multi-step targeting methodologies (MST) developed bymore » NeoRex (Seattle,Washington), have been adapted for use with positron emitting isotopes and PET allowing the quantification and optimization of targeted delivery. In addition, novel methods for radiolabeling immune T-cells with PET tracers have advanced our ability to track these cells of prolonged period of time.« less
Effects of the physicochemical properties of gold nanostructures on cellular internalization
Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie
2015-01-01
Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673
The Use of Microgravity Simulators for Space Research
NASA Technical Reports Server (NTRS)
Zhang, Ye; Richards, Stephanie E.; Richards, Jeffrey T.; Levine, Howard G.
2016-01-01
The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. Kennedy Space Center (KSC) provides ground microgravity simulator support to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.
The Use of Microgravity Simulators for Space Research
NASA Technical Reports Server (NTRS)
Zhang, Ye; Richards, Stephanie E.; Wade, Randall I.; Richards, Jeffrey T.; Fritsche, Ralph F.; Levine, Howard G.
2016-01-01
The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. A Micro-g Simulator Center is being developed at Kennedy Space Center (KSC) to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.
Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells
Shapiro, Mikhail G.; Priest, Michael F.; Siegel, Peter H.; Bezanilla, Francisco
2013-01-01
Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems. PMID:23790370
HOMER: the Holographic Optical Microscope for Education and Research
NASA Astrophysics Data System (ADS)
Luviano, Anali
Holography was invented in 1948 by Dennis Gabor and has undergone major advancements since the 2000s leading to the development of commercial digital holographic microscopes (DHM). This noninvasive form of microscopy produces a three-dimensional (3-D) digital model of a sample without altering or destroying the sample, thus allowing the same sample to be studied multiple times. HOMER-the Holographic Optical Microscope for Education and Research-produces a 3-D image from a two-dimensional (2-D) interference pattern captured by a camera that is then put through reconstruction software. This 2-D pattern is created when a reference wave interacts with the sample to produce a secondary wave that interferes with the unaltered part of the reference wave. I constructed HOMER to be an efficient, portable in-line DHM using inexpensive material and free reconstruction software. HOMER uses three different-colored LEDs as light sources. I am testing the performance of HOMER with the goal of producing tri-color images of samples. I'm using small basic biological samples to test the effectiveness of HOMER and plan to transition to complex cellular and biological specimens as I pursue my interest in biophysics. Norwich University.
Mechanisms of radiation interaction with DNA: Potential implications for radiation protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of themore » workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studer, Anthony
Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C 4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C 4 photosynthesis, the hydration of CO 2 into bicarbonate, and is potentially rate limiting in C 4more » grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C 4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C 4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.« less
Single-cell printer: automated, on demand, and label free.
Gross, Andre; Schöndube, Jonas; Niekrawitz, Sonja; Streule, Wolfgang; Riegger, Lutz; Zengerle, Roland; Koltay, Peter
2013-12-01
Within the past years, single-cell analysis has developed into a key topic in cell biology to study cellular functions that are not accessible by investigation of larger cell populations. Engineering approaches aiming to access single cells to extract information about their physiology, phenotype, and genotype at the single-cell level are going manifold ways, meanwhile allowing separation, sorting, culturing, and analysis of individual cells. Based on our earlier research toward inkjet-like printing of single cells, this article presents further characterization results obtained with a fully automated prototype instrument for printing of single living cells in a noncontact inkjet-like manner. The presented technology is based on a transparent microfluidic drop-on-demand dispenser chip coupled with a camera-assisted automatic detection system. Cells inside the chip are detected and classified with this detection system before they are expelled from the nozzle confined in microdroplets, thus enabling a "one cell per droplet" printing mode. To demonstrate the prototype instrument's suitability for biological and biomedical applications, basic experiments such as printing of single-bead and cell arrays as well as deposition and culture of single cells in microwell plates are presented. Printing efficiencies greater than 80% and viability rates about 90% were achieved.
Discovery of simian virus 40 (SV40) and its relationship to poliomyelitis virus vaccines.
Hilleman, M R
1998-01-01
Simian Virus 40 (SV40) was discovered in 1959 as a covert contaminant of poliovirus vaccines prepared using Macacus monkey renal cell cultures. This inapparent polyoma virus of monkeys was detected using Cercopithecus renal cell cultures and was eliminated from poliovaccines. There has been no evidence to implicate SV40 virus of vaccine origin in long- or short-term consequences in human subjects. Of importance, SV40 virus provided a new model for basic studies of viral pathogenesis and for cell transformation and neoplasia. Neoplastic transformation is fixed on the promiscuous binding of SV40 large T antigen to anti-oncogene cellular protein elements. SV40 also served as a valuable model for defining the immunology of virus-induced cancer and in its prevention and cure. Further, it has been a prime tool for elucidating the molecular details of eukaryotic cell processes. Numerous techniques now used in molecular biology were pioneered in the SV40 system. The SV40 promoter is commonly used in vector expression constructs and it has continued to be a model to develop new tools for site-specific mutagenesis. The virus has been critically important to studies in modern genetics and in molecular biology.
Wang, Fan; Wang, Hai-qiao; Dong, Gui-rong
2011-04-01
In the present paper, the authors review the progress of researches on the mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage from experimental studies and research methods. The effects of acupuncture intervention mainly involve (1) lessening inflammatory reactions, (2) reducing impairment of free radicals and excitatory amino acids on cerebral neurons, (3) balancing release of vascular bioactive substances to increase regional cerebral blood flow, and (4) promoting repair and regeneration of the neural tissue, etc. In regard to the research methods, many new biological techniques such as biological molecular approaches, neuro-cellular chemical methods, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real time-PCR, situ hybridization, western blotting, electron microscope, etc., have been extensively applied to researches on the underlying mechanism of acupuncture therapy for cerebral infarction. In addition, the authors also pointed out that in spite of achieving some bigger progresses in experimental studies, most of the results basically reflect static, isolated and regional changes rather than dynamic and whole body changes. For this reason, more vivo research techniques and noninvasive research methods are highly recommended to be used in the future research on the underlying mechanisms of acupuncture therapy for acute cerebral ischemia.
Redox signaling in skeletal muscle: role of aging and exercise.
Ji, Li Li
2015-12-01
Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function. Copyright © 2015 The American Physiological Society.
Genome Scale Modeling in Systems Biology: Algorithms and Resources
Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali
2014-01-01
In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031
JPRS Report, China, Handbook of Military Knowledge for Commanders
1988-03-07
Chemical and Biological Weapons Chapter I Nuclear Weapons (178) A. Summary Statement on Nuclear Weapons (178) 1. Basic Principles of Nuclear...199) 1. Basic Principles of Protection Against Nuclear, Chemical and Biological Weapons* (199) 2. Maior Actions For Protection Against Nuclear...people’s bodies through the digestive tract. Skin contact. Biological warfare agents may enter the body directly through the skin , mucous membranes or
Frontiers of optofluidics in synthetic biology.
Tan, Cheemeng; Lo, Shih-Jie; LeDuc, Philip R; Cheng, Chao-Min
2012-10-07
The development of optofluidic-based technology has ushered in a new era of lab-on-a-chip functionality, including miniaturization of biomedical devices, enhanced sensitivity for molecular detection, and multiplexing of optical measurements. While having great potential, optofluidic devices have only begun to be exploited in many biotechnological applications. Here, we highlight the potential of integrating optofluidic devices with synthetic biological systems, which is a field focusing on creating novel cellular systems by engineering synthetic gene and protein networks. First, we review the development of synthetic biology at different length scales, ranging from single-molecule, single-cell, to cellular population. We emphasize light-sensitive synthetic biological systems that would be relevant for the integration with optofluidic devices. Next, we propose several areas for potential applications of optofluidics in synthetic biology. The integration of optofluidics and synthetic biology would have a broad impact on point-of-care diagnostics and biotechnology.
Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.
2017-01-01
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739
Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana
2017-07-25
ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.
Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle
2015-01-01
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644
Polyomavirus and Naturally Occuring Neuroglial Tumors in Raccoons (Procyon Lotor).
Pesavento, Patricia A; Brostoff, Terza; Church, Molly E; Dela Cruz, Florante N; Woolard, Kevin D
2016-01-01
Polyomavirus (PyV) infections are widespread in human populations and, although generally associated with silent persistence, rarely cause severe disease. Among diseases convincingly associated with natural PyV infections of humans, there are remarkably different tissue tropisms and outcomes, including progressive multifocal leukoencephalopathy, transient or progressive nephropathy, and cancer. The variable character and unpredictable outcomes of infection attest to large gaps in our basic understanding of PyV biology. In particular, the rich history of research demonstrating the oncogenic potential of PyVs in laboratory animals begs the question of why cancer is not more often associated with infection. Raccoon polyomavirus (RacPyV), discovered in 2010, is consistently identified in neuroglial tumors in free-ranging raccoons in the western United States. Exposure to RacPyV is widespread, and RacPyV is detected in tissues of raccoons without tumors. Studying the relationship of RacPyV with its natural host is a unique opportunity to uncover cogent cellular targets and protein interactions between the virus and its host. Our hypothesis is that RacPyV, as an intact episome, alters cellular pathways within neural progenitor cells and drives oncogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chemes, Hector E
2013-01-01
Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.
Macías, M T; Navarro, T; Lavara, A; Robredo, L M; Sierra, I; Lopez, M A
2003-01-01
The radioisotope techniques used in molecular and cellular biology involve external and internal irradiation risk. The personal dosemeter may be a reasonable indicator for external irradiation. However, it is necessary to control the possible internal contamination associated with the development of these techniques. The aim of this project is to analyse the most usual techniques and to establish programmes of internal monitoring for specific radionuclides (32P, 35S, 14C, 3H, 125I and 131I). To elaborate these programmes it was necessary to analyse the radioisotope techniques. Two models have been applied (NRPB and IAEA) to the more significant techniques, according to the physical and chemical nature of the radionuclides, their potential importance in occupational exposure and the possible injury to the genetic material of the cell. The results allowed the identification of the techniques with possible risk of internal contamination. It was necessary to identify groups of workers that require individual monitoring. The risk groups have been established among the professionals exposed, according to different parameters: the general characteristics of receptor, the radionuclides used (the same user can work with one, two or three radionuclides at the same time) and the results of the models applied. Also a control group was established. The study of possible intakes in these groups has been made by urinalysis and whole-body counter. The theoretical results are coherent with the experimental results. They have allowed guidance to individual monitoring to be proposed. Basically, the document shows: (1) the analysis of the radiosotopic techniques, taking into account the special containment equipment; (2) the establishment of the need of individual monitoring; and (3) the required frequency of measurements in a routine programme.
Livingston, B T; Killian, C E; Wilt, F; Cameron, A; Landrum, M J; Ermolaeva, O; Sapojnikov, V; Maglott, D R; Buchanan, A M; Ettensohn, C A
2006-12-01
Biomineralization, the biologically controlled formation of mineral deposits, is of widespread importance in biology, medicine, and engineering. Mineralized structures are found in most metazoan phyla and often have supportive, protective, or feeding functions. Among deuterostomes, only echinoderms and vertebrates produce extensive biomineralized structures. Although skeletons appeared independently in these two groups, ancestors of the vertebrates and echinoderms may have utilized similar components of a shared genetic "toolkit" to carry out biomineralization. The present study had two goals. First, we sought to expand our understanding of the proteins involved in biomineralization in the sea urchin, a powerful model system for analyzing the basic cellular and molecular mechanisms that underlie this process. Second, we sought to shed light on the possible evolutionary relationships between biomineralization in echinoderms and vertebrates. We used several computational methods to survey the genome of the purple sea urchin Strongylocentrotus purpuratus for gene products involved in biomineralization. Our analysis has greatly expanded the collection of biomineralization-related proteins. We have found that these proteins are often members of small families encoded by genes that are clustered in the genome. Most of the proteins are sea urchin-specific; that is, they have no apparent homologues in other invertebrate deuterostomes or vertebrates. Similarly, many of the vertebrate proteins that mediate mineral deposition do not have counterparts in the S. purpuratus genome. Our findings therefore reveal substantial differences in the primary sequences of proteins that mediate biomineral formation in echinoderms and vertebrates, possibly reflecting loose constraints on the primary structures of the proteins involved. On the other hand, certain cellular and molecular processes associated with earlier events in skeletogenesis appear similar in echinoderms and vertebrates, leaving open the possibility of deeper evolutionary relationships.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M
2015-04-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Halstead, T. W.
1994-01-01
The antiquity of biological sensitivity and response to gravity can be traced through the ubiquity of morphology, mechanisms, and cellular events in gravity sensing biological systems in the most diverse species of both plants and animals. Further, when we examine organisms at the cellular level to elucidate the molecular mechanism by which a gravitational signal is transduced into a biochemical response, the distinction between plants and animals becomes blurred.
Bioelectronic Sensors and Devices
NASA Astrophysics Data System (ADS)
Reed, Mark
Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.
The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making
2016-01-01
This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis. PMID:27617777
Denker, Elsa; Jiang, Di
2012-05-01
Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making.
Long, Marcus J C; Aye, Yimon
2016-10-02
This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis.
Cell manipulation in microfluidics.
Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu
2013-06-01
Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.
The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Dicello, John F.
2006-01-01
In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.
Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, Pamela; Flach, Evan
Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek tomore » move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international synthetic biology centers and related infrastructure (synthesis/software/foundries) meet to discuss technology, standards, and education. SEED2015 will be the second in an annual series of meeting held to bring researchers from industry and academia in the area of Synthetic Biology. The first SEED conference was highly successful, attracting 285 attendees with varying backgrounds from academia, industry and government. The SEED series provides leadership in the development of the field of synthetic biology and serves to broaden the participants in the field by appealing to broad sectors in industry and providing a means for young investigators and those outside of the field to participate. Further, the series closely integrates with groups such as the SBCC to provide a means by which the synthetic biology community can communicate with policy makers. Further, we will pursue making the meeting the center for the exchange of educational materials as centers for synthetic biology emerge globally. Proceedings will be published each year in the journal ACS Synthetic Biology. After each SEED meeting, surveys are distributed to assess the success of the conference and to help guide changes year-to-year. The diverse application areas further extend the expertise needed from people in areas such as plant biology, agriculture and soil science, environmental science, medicine, and the chemical industry. These areas could have a widespread impact on society in a number of ways. For example, the CRISPR/Cas9 system that serves to immunize bacteria from phage has provided the fundamental chemistry that is used to edit the genomes of diverse organisms, including human stem cells, crop plants, and livestock animals.« less
Moog, Daniel; Maier, Uwe G
2017-08-01
Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.
Simulations of Living Cell Origins Using a Cellular Automata Model
NASA Astrophysics Data System (ADS)
Ishida, Takeshi
2014-04-01
Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.
Simulations of living cell origins using a cellular automata model.
Ishida, Takeshi
2014-04-01
Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.
Experimental approaches to identify cellular G-quadruplex structures and functions.
Di Antonio, Marco; Rodriguez, Raphaël; Balasubramanian, Shankar
2012-05-01
Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA. Copyright © 2012 Elsevier Inc. All rights reserved.
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Biological species in the viral world.
Bobay, Louis-Marie; Ochman, Howard
2018-06-05
Due to their dependence on cellular organisms for metabolism and replication, viruses are typically named and assigned to species according to their genome structure and the original host that they infect. But because viruses often infect multiple hosts and the numbers of distinct lineages within a host can be vast, their delineation into species is often dictated by arbitrary sequence thresholds, which are highly inconsistent across lineages. Here we apply an approach to determine the boundaries of viral species based on the detection of gene flow within populations, thereby defining viral species according to the biological species concept (BSC). Despite the potential for gene transfer between highly divergent genomes, viruses, like the cellular organisms they infect, assort into reproductively isolated groups and can be organized into biological species. This approach revealed that BSC-defined viral species are often congruent with the taxonomic partitioning based on shared gene contents and host tropism, and that bacteriophages can similarly be classified in biological species. These results open the possibility to use a single, universal definition of species that is applicable across cellular and acellular lifeforms.
Using Student Self-Assessment of Biological Concepts in an Introductory Biology Course.
ERIC Educational Resources Information Center
Heinze-Fry, Jane Ann
1992-01-01
Describes the author's methods to establish what students enrolled in an introductory biology course for nonmajors know about biology prior to instruction. The project also compared preinstructional knowledge to postinstructional knowledge. Beginning students knew the least about plant transport/chemical control and cellular metabolism. Students…
Park, Daehoon; Choi, Eun H.
2014-01-01
This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-01
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e
Measurement of the traction force of biological cells by digital holography
Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.
2011-01-01
The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175
2009-01-01
Schwannomatosis Aspen, Colorado, 2006. (appended Item 1) 2. Crotti TN, Walsh NC, Barnes GL, Gerstenfeld LC, McHugh KP. Neurofibromin expression...Tumor Foundation, International Consortium for the Molecular and Cellular Biology of NF1, NF2, and Schwannomatosis , Aspen, Colorado, 2006...and Cellular Biology of NF1, NF2, and Schwannomatosis , Aspen, Colorado, 2006. A large proportion of patients with Neurofibromatosis Type 1
Piezo proteins: regulators of mechanosensation and other cellular processes.
Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G
2014-11-14
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wagner, Bridget K.; Clemons, Paul A.
2009-01-01
Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513
Evolutionary Cell Biology of Proteins from Protists to Humans and Plants.
Plattner, Helmut
2018-03-01
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca 2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca 2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca 2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H + -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions." © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Paul Carlson | Center for Cancer Research
Paul Carlson, Ph.D. March 28 Principal Investigator Laboratory of Mucosal Pathogens and Cellular Immunology Center for Biologics Evaluation and Research (CBER), FDA Topic: "Research and Regulation of novel biologic products at the FDA's Center for Biologics Evaluation and Research"
New Windows on the Biological World
ERIC Educational Resources Information Center
Arehart-Treichel, Joan
1975-01-01
Describes two new microscopes, the acoustic microscope and a scanning transmission microscope, both of which promise to yield fresh insights, based on revolutionary techniques into cellular biology. (BR)
Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology
Fai, Stephen; Bennett, Steffany A.L.
2010-01-01
The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This methodology enables visualization and analysis of the cellular position of target proteins and cells throughout the entire 3D culture topography and will facilitate a more detailed analysis of the spatial relationships between cells over the course of neurogenesis and gliogenesis in vitro. Both Imbeault and Valenzuela contributed equally and should be considered joint first authors. PMID:21258319
Some Basic Techniques in Bioimpedance Research
NASA Astrophysics Data System (ADS)
Martinsen, Ørjan G.
2004-09-01
Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.
Bioinstrumentation: Tools for Understanding Life.
ERIC Educational Resources Information Center
Wandersee, James H., Ed.; And Others
This book was written to help introductory biology teachers gain a basic understanding of contemporary bioinstrumentation and the uses to which it is put in the laboratory. It includes topics that are most basic to understanding the nature of biology. The book is divided into five sections: (1) "Separation and Identification" that includes…
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides
Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C
2015-09-07
Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells
Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian
2017-01-01
In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research. PMID:29286412
Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells.
Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian
2017-11-17
In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research.
Cellular burdens and biological effects on tissue level caused by inhaled radon progenies.
Madas, B G; Balásházy, I; Farkas, Á; Szoke, I
2011-02-01
In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The object of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects at tissue level. Applying computational fluid and particle dynamics techniques, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 min of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilised in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death-induced cell-cycle shortening has been applied to assess the biological responses. Present computations reveal that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological finding that the uneven deposition distribution of radon progenies may lead to inhomogeneous spatial distribution of tumours in the bronchial airways. In addition, at the macroscopic level, the relationship between cancer risk and radiation burden seems to be non-linear.
Cellular characterization of compression induced-damage in live biological samples
NASA Astrophysics Data System (ADS)
Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.
2011-06-01
Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.
Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie
2017-06-01
Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.
Kurakin, Alexei
2007-01-01
A large body of experimental evidence indicates that the specific molecular interactions and/or chemical conversions depicted as links in the conventional diagrams of cellular signal transduction and metabolic pathways are inherently probabilistic, ambiguous and context-dependent. Being the inevitable consequence of the dynamic nature of protein structure in solution, the ambiguity of protein-mediated interactions and conversions challenges the conceptual adequacy and practical usefulness of the mechanistic assumptions and inferences embodied in the design charts of cellular circuitry. It is argued that the reconceptualization of molecular recognition and cellular organization within the emerging interpretational framework of self-organization, which is expanded here to include such concepts as bounded stochasticity, evolutionary memory, and adaptive plasticity offers a significantly more adequate representation of experimental reality than conventional mechanistic conceptions do. Importantly, the expanded framework of self-organization appears to be universal and scale-invariant, providing conceptual continuity across multiple scales of biological organization, from molecules to societies. This new conceptualization of biological phenomena suggests that such attributes of intelligence as adaptive plasticity, decision-making, and memory are enforced by evolution at different scales of biological organization and may represent inherent properties of living matter. (c) 2007 John Wiley & Sons, Ltd.
Model-based design of experiments for cellular processes.
Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E
2013-01-01
Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
Taggart, Peter; Orini, Michele; Hanson, Ben; Hayward, Martin; Clayton, Richard; Dobrzynski, Halina; Yanni, Joseph; Boyett, Mark; Lambiase, Pier D
2014-08-01
Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; BéruBé, K.; Krebs, T.
2016-12-01
Combustion emissions cause health effects. The HICE-Aerosol and Health project team studies the physicochemical properties as well as biological and toxicological effects on lung cells of combustion particle emissions. The chemical composition and physical parameters thoroughly characterized. Human lung cells are exposed to the diluted combustion exhaust fumes at the air-liquid interface (ALI), allowing a realistic lung-cell exposure by simulation of the lung situation. After exposure, cellular responses of the exposed lung cells are studied by multi-omics molecular biological analyses on transcriptomic, proteomic and metabolomic level. Emissions of wood combustion (log wood, pellet heater), ship diesel engines and car gasoline engines are addressed. Special field deployable ALI-exposition systems in a mobile S2-biological laboratory were set up and applied. Human alveolar epithelial cells (A549, BEAS2B and primary cells) as well as murine macrophages were ALI-exposed to diluted emissions. The cellular effects were then comprehensively characterized (viability, cyto-toxicology, multi-omics effects monitoring) and put in context with the chemical and physical aerosol data. The following order of overall cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions. Interestingly the effects-strength for log-wood and pellet burner emissions are similar, although PM-concentrations are much higher for the log-wood heater. Similar mild biological effects are observed for the gasoline car emissions. The ship diesel engine emissions induced the most intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions showed lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emission contain high concentrations of known toxicants (transition metals, polycyclic aromatics). This result was recently confirmed by experiments with murine RAW macrophages. Detailed analyses of the activated cellular response pathways, such as pro-inflammatory responses, xenobiotic metabolism, phagocytosis and oxidative stress were performed. The data is suggesting a large difference in relative toxicity for different combustion sources.
Molecular Biology of Pseudorabies Virus: Impact on Neurovirology and Veterinary Medicine
Pomeranz, Lisa E.; Reynolds, Ashley E.; Hengartner, Christoph J.
2005-01-01
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves as a self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing. PMID:16148307
Cellular Analysis of Adult Neural Stem Cells for Investigating Prion Biology.
Haigh, Cathryn L
2017-01-01
Traditional primary and secondary cell cultures have been used for the investigation of prion biology and disease for many years. While both types of cultures produce highly valid and immensely valuable results, they also have their limitations; traditional cell lines are often derived from cancers, therefore subject to numerous DNA changes, and primary cultures are labor-intensive and expensive to produce requiring sacrifice of many animals. Neural stem cell (NSC) cultures are a relatively new technology to be used for the study of prion biology and disease. While NSCs are subject to their own limitations-they are generally cultured ex vivo in environments that artificially force their growth-they also have their own unique advantages. NSCs retain the ability for self-renewal and can therefore be propagated in culture similarly to secondary cultures without genetic manipulation. In addition, NSCs are multipotent; they can be induced to differentiate into mature cells of central nervous system (CNS) linage. The combination of self-renewal and multipotency allows NSCs to be used as a primary cell line over multiple generations saving time, costs, and animal harvests, thus providing a valuable addition to the existing cell culture repertoire used for investigation of prion biology and disease. Furthermore, NSC cultures can be generated from mice of any genotype, either by embryonic harvest or harvest from adult brain, allowing gene expression to be studied without further genetic manipulation. This chapter describes a standard method of culturing adult NSCs and assays for monitoring NSC growth, migration, and differentiation and revisits basic reactive oxygen species detection in the context of NSC cultures.
Space Biology: Patterns of Life
ERIC Educational Resources Information Center
Salisbury, Frank B.
1971-01-01
Present knowledge about Mars is compared with past beliefs about the planet. Biological experiments that indicate life may exist on Mars are interpreted. Life patterns or biological features that might be postulated for extraterrestrial life are presented at the molecular, cellular, organism, and ecosystem levels. (DS)
Dynamics of biological systems: role of systems biology in medical research.
Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf
2006-11-01
Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.
Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes.
Xu, Wang; Zeng, Zebing; Jiang, Jian-Hui; Chang, Young-Tae; Yuan, Lin
2016-10-24
Principle has it that even the most advanced super-resolution microscope would be futile in providing biological insight into subcellular matrices without well-designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small-molecule fluorescent probes that not only allow cellular-level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai
Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less
Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing
NASA Astrophysics Data System (ADS)
Seaton, D. D.; Krishnan, J.
2012-08-01
Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.
Engineered Biological Pacemakers | NCI Technology Transfer Center | TTC
The National Institute on Aging's Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.
Dissecting social cell biology and tumors using Drosophila genetics.
Pastor-Pareja, José Carlos; Xu, Tian
2013-01-01
Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.
Evolutionary Biology: Its Value to Society
ERIC Educational Resources Information Center
Carson, Hampton L.
1972-01-01
Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…
Focus issue: series on computational and systems biology.
Gough, Nancy R
2011-09-06
The application of computational biology and systems biology is yielding quantitative insight into cellular regulatory phenomena. For the month of September, Science Signaling highlights research featuring computational approaches to understanding cell signaling and investigation of signaling networks, a series of Teaching Resources from a course in systems biology, and various other articles and resources relevant to the application of computational biology and systems biology to the study of signal transduction.
Cellular and Molecular Actions of Methylene Blue in the Nervous System
Oz, Murat; Lorke, Dietrich E.; Hasan, Mohammed; Petroianu, George A.
2010-01-01
Methylene Blue (MB), following its introduction to biology in the 19th century by Ehrlich, has found uses in various areas of medicine and biology. At present, MB is the first line of treatment in methemoglobinemias, is used frequently in the treatment of ifosfamide-induced encephalopathy, and is routinely employed as a diagnostic tool in surgical procedures. Furthermore, recent studies suggest that MB has beneficial effects in Alzheimer's disease and memory improvement. Although the modulation of the cGMP pathway is considered the most significant effect of MB, mediating its pharmacological actions, recent studies indicate that it has multiple cellular and molecular targets. In the majority of cases, biological effects and clinical applications of MB are dictated by its unique physicochemical properties including its planar structure, redox chemistry, ionic charges, and light spectrum characteristics. In this review article, these physicochemical features and the actions of MB on multiple cellular and molecular targets are discussed with regard to their relevance to the nervous system. PMID:19760660
Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source
NASA Astrophysics Data System (ADS)
Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi
2009-09-01
Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.
Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury
Feala, Jacob D.; AbdulHameed, Mohamed Diwan M.; Yu, Chenggang; Dutta, Bhaskar; Yu, Xueping; Schmid, Kara; Dave, Jitendra; Tortella, Frank
2013-01-01
Abstract The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates. PMID:23510232
Reverse engineering of gene regulatory networks.
Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J
2007-05-01
Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.
Contribution of high-content imaging technologies to the development of anti-infective drugs.
Ang, Michelle Lay Teng; Pethe, Kevin
2016-08-01
Originally developed to study fundamental aspects of cellular biology, high-content imaging (HCI) was rapidly adapted to study host-pathogen interactions at the cellular level and adopted as a technology of choice to unravel disease biology. HCI platforms allow for the visualization and quantification of discrete phenotypes that cannot be captured using classical screening approaches. A key advantage of high-content screening technologies lies in the possibility to develop and interrogate physiologically significant, predictive ex vivo disease models that reproduce complex conditions relevant for infection. Here we review and discuss recent advances in HCI technologies and chemical biology approaches that are contributing to an increased understanding of the intricate host-pathogen interrelationship on the cellular level, and which will foster the development of novel therapeutic approaches for the treatment of human bacterial and protozoan infections. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.
2014-01-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311
Synthetic biology, inspired by synthetic chemistry.
Malinova, V; Nallani, M; Meier, W P; Sinner, E K
2012-07-16
The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology
ERIC Educational Resources Information Center
Wright, Robin; Boggs, James
2002-01-01
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…
Chemical biology 2012: from drug targets to biological systems and back.
Socher, Elke; Grossmann, Tom N
2013-01-02
Multiple sites sharing a common target: This year's EMBO conference on chemical biology encouraged over 340 researchers to come to Heidelberg, Germany, and discuss the use of diverse chemical strategies and tools to investigate biological questions and better understand cellular processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484
A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms
Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.
2015-01-01
Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313
Bioeffectiveness of Cosmic Rays Near the Earth Surface
NASA Astrophysics Data System (ADS)
Belisheva, N. K.
2014-10-01
Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October, 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA).A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. Calculations of the total flux of particles with the greatest bioeffectiveness and ambient dose equivalent neutron fluxes in different energy ranges showed that taking into account the duration of all cases GLE (19, 22, 24 October 1989), the cellular cultures were irradiated by ambient dose equivalent equal 217 microSv cm^2, which corresponds to a little less than half of the radiation dose astronauts during the day in Earth orbit (Reitz et.all, 2005; Semkova et al, 2012) and more than the average dose received by pilots per flying hour in 1997 (2.96 mSv h -1) (Langner et all, 2004). These doses are sufficient to cause genetic damages as material for the variability and the subsequent evolution of biological systems. Results of experiments conducted on cellular cultures during a great solar proton events showed that the main damages of the genetic material in the cellular nuclei appeared with increasing of the spectral hardness of solar protons that corresponded to the arrival of the particles with energies > 850 MeV in the near Earth space. The analysis shows that the prevalence of certain forms of congenital malformations in children (CDF) at high latitudes was associated with increases in fluxes of CR and with solar proton events accompanied by GLE cases. Furthermore, the frequency of incidence of all forms of congenital malformations in children increased in the years with low solar activity associated with an increase in the intensity of Cosmic rays. We found that the incidence of certain diseases of children and adults in Arctic region were higher in the year with high intensity of cosmic rays ( Belisheva, Talykova, Melnik, 2011). The results show that the GLE cases, associated with increase in particle fluxes of hard energy spectrum, can trigger DNA damage in human cells, as in the case of cellular cultures during solar proton events. These results are of basic importance for the recognition of the biological effectiveness of the background fluctuations of Cosmic rays
77 FR 57571 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
...: Genes, Genomes, and Genetics Integrated Review Group; Genomics, Computational Biology and Technology... Reproductive Sciences Integrated Review Group; Cellular, Molecular and Integrative Reproduction Study Section...: Immunology Integrated Review Group; Cellular and Molecular Immunology--B Study Section. [[Page 57572
Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A
2015-01-01
The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays. PMID:26517371
ERIC Educational Resources Information Center
Wayne, Randy; Staves, Mark P.
1998-01-01
Details the teaching of an undergraduate plant-cell biology class in the manner proposed by Jean Baptiste Carnoy when he established the first institute of cellular biology. Integrates mathematics, astronomy, physics, chemistry, anatomy, physiology, and ecology. Contains 226 references. (DDR)
Marine molluscs in environmental monitoring. I. Cellular and molecular responses
NASA Astrophysics Data System (ADS)
Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer
2003-10-01
The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic levels of biological organization—the molecular and cellular level—the parameters measured may have the capacity not only for biomonitoring environmental quality, but also for early warning.
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome
Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny
2018-01-01
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants. PMID:29472941
Kida, S; Kato, T
2015-01-01
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Taylor, Kathryne E.
2015-01-01
ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV. PMID:26178983
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.
2013-01-01
This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430
Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco
2011-01-01
Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.
Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa
2015-01-01
Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as observed in our study. PMID:25875852
Cellular responses to environmental DNA damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.
The hierarchical structure and mechanics of plant materials.
Gibson, Lorna J
2012-11-07
The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.
The hierarchical structure and mechanics of plant materials
Gibson, Lorna J.
2012-01-01
The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093