Sample records for basic chemistry research

  1. An Industrially Developed Basic Chemistry Course.

    ERIC Educational Resources Information Center

    Collins, L. W.; Haws, L. D.

    1979-01-01

    Describes a practical, job-related, 3 1/2 month long, basic chemistry course developed by Monsanto Research Corporation to train laboratory technicians and service employees. The course, centered around 31 chemistry topics, is designed to supplement university courses and stresses application of concepts. (BT)

  2. Donald J. Cram, Host-Guest Chemistry, Cram's Rule of Asymmetric Induction

    Science.gov Websites

    across organic chemistry, with applications in both basic research as well as specific fields, such as for life and science have forever changed "teaching in organic chemistry, and altered the shape organic chemistry; his research affects the many ways organic chemistry now appears in our daily lives

  3. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based Graduate-Level Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Toh, Chee-Seng

    2007-01-01

    A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.

  4. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  5. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  6. Private Philanthropy and Basic Research in Mid-Twentieth Century America: The Hickrill Chemical Research Foundation.

    PubMed

    Gortler, Leon; Weininger, Stephen J

    2017-02-01

    The Hickrill Chemical Research Foundation, located north of New York City on the estate of its patrons, Sylvan and Ruth Alice Norman Weil, had a short (1948-59) but productive life. Ruth Alice Weil received a Ph.D. in organic chemistry in 1947, directed by William von Eggers Doering of Columbia University. She intended that Hickrill contribute to cancer chemotherapy while providing resources for Doering's more speculative research. Ultimately, Doering's commitment to theoretical organic chemistry set Hickrill's research agenda. Lawrence Knox, an African American with a Harvard Ph.D., supervised the laboratory's daily activities. Hickrill's two dozen postdoctoral fellows produced path-breaking results in Hückel aromatic theory and reactive intermediate chemistry, fostering the postwar emphasis on "basic science." This essay places the Laboratory's successes in the wider context of postwar politics and scientific priorities. Private philanthropic support of basic science arose because it received little pre-World War II government support. In the immediate postwar period, modest organisations like Hickrill still met a need, but the increasing governmental defence- and non-defence-related support for science eventually rendered them unnecessary.

  7. Allied-Signal's Mary Good Analyzes New Threats to Chemical Profession.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Recounts an interview with chemist, educator, and executive Mary Good. Opinions are expressed about the status of basic research in chemistry, the relationship of chemical research to several federal agencies, the value of education in chemistry, and the perceptions of the public regarding the chemical community, particularly the health risks. (TW)

  8. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  9. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  10. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    ERIC Educational Resources Information Center

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  11. Research-Based Development of a Lesson Plan on Shower Gels and Musk Fragrances Following a Socio-Critical and Problem-Oriented Approach to Chemistry Teaching

    ERIC Educational Resources Information Center

    Marks, Ralf; Eilks, Ingo

    2010-01-01

    A case is described of the development of a lesson plan for 10th grade (age range 15-16) chemistry classes on the chemistry of shower gels. The lesson plan follows a socio-critical and problem-oriented approach to chemistry teaching. This means that, aside from learning about the basic chemistry of the components making up modern shower gels in…

  12. Peatland and water in the northern Lake States.

    Treesearch

    Don H. Boelter; Elon S. Verry

    1977-01-01

    The North Central Forest Experiment Station expanded its watershed research program in 1960 to include basic peatland studies. This paper reviews and summarizes basic principles developed from these studies of peatland hydrology, organic soil characteristics, and streamflow chemistry.

  13. A Bridge between Two Cultures: Uncovering the Chemistry Concepts Relevant to the Nursing Clinical Practice

    ERIC Educational Resources Information Center

    Brown, Corina E.; Henry, Melissa L. M.; Barbera, Jack; Hyslop, Richard M.

    2012-01-01

    This study focused on the undergraduate course that covers basic topics in general, organic, and biological (GOB) chemistry at a mid-sized state university in the western United States. The central objective of the research was to identify the main topics of GOB chemistry relevant to the clinical practice of nursing. The collection of data was…

  14. Knowledge Production at Industrial Research Institutes: Institutional Logics and Struggles for Relevance in the Swedish Institute for Surface Chemistry, 1980-2005

    ERIC Educational Resources Information Center

    Bruno, Karl; Larsen, Katarina; van Leeuwen, Thed N.

    2017-01-01

    This article examines dynamics of knowledge production and discourses of basic-applied science and relevance at the Swedish Institute for Surface Chemistry, a semi-public industrially oriented research institute, from 1980 to 2005. We employ a three-pronged method, consisting of (1) an analysis of how the institute articulated its research…

  15. The Chemistry of Health.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This booklet, geared toward an advanced high school or early college-level audience, describes how basic chemistry and biochemistry research can spur a better understanding of human health. It reveals how networks of chemical reactions keep our bodies running smoothly. Some of the tools and technologies used to explore these reactions are…

  16. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  17. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  18. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  19. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2017-12-09

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  20. Addiction Studies with Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joanna Fowler

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  1. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    NASA Astrophysics Data System (ADS)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  2. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  3. Are Creative Comparisons Developed by Prospective Chemistry Teachers Evidence of Their Conceptual Understanding? The Case of Inter- and Intramolecular Forces

    ERIC Educational Resources Information Center

    Sendur, Gulten

    2014-01-01

    The aim of this study is to determine prospective chemistry teachers' creative comparisons about the basic concepts of inter- and intramolecular forces, and to uncover the relationship between these creative comparisons and prospective teachers' conceptual understanding. Based on a phenomenological research method, this study was conducted with…

  4. Chemical research projects office: An overview and bibliography, 1975-1980

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Heimbuch, A. H.; Parker, J. A.

    1980-01-01

    The activities of the Chemical Research Projects Office at Ames Research Center, Moffett Field, California are reported. The office conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics, and physical and organic chemistry. It works to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. It conducts interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. The office also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies, and industry. Recent accomplishments are listed in this report. Activities of the three research groups, Polymer Research, Aircraft Operating and Safety, and Engineering Testing, are summarized. A complete bibliography which lists all Chemical Research Projects Office publications, contracts, grants, patents, and presentations from 1975 to 1980 is included.

  5. The Impact of Biotechnology upon Pharmacy Education.

    ERIC Educational Resources Information Center

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  6. Water Resources Research October 1, 1979 - September 30, 1980: Summary statements of research activities by the Water Resources Division

    USGS Publications Warehouse

    ,

    1981-01-01

    Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  8. Using Modern Solid-State Analytical Tools for Investigations of an Advanced Carbon Capture Material: Experiments for the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Wriedt, Mario; Sculley, Julian P.; Aulakh, Darpandeep; Zhou, Hong-Cai

    2016-01-01

    A simple and straightforward synthesis of an ultrastable porous metal-organic framework (MOF) based on copper(II) and a mixed N donor ligand system is described as a laboratory experiment for chemistry undergraduate students. These experiments and the resulting analysis are designed to teach students basic research tools and procedures while…

  9. The Discovery of Carboxyethylpyrroles (CEPs): Critical Insights into AMD, Autism, Cancer, and Wound Healing from Basic Research on the Chemistry of Oxidized Phospholipids

    PubMed Central

    Salomon, Robert G.; Hong, Li; Hollyfield, Joe G.

    2011-01-01

    Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach –from the chemistry of biomolecules to disease phenotype – is proving to be remarkably productive. PMID:21875030

  10. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  11. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less

  12. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    NASA Astrophysics Data System (ADS)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and recommendations for future research are included.

  13. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    PubMed Central

    Harris, D. Calvin; Jewett, Michael C.

    2014-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202

  14. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    ERIC Educational Resources Information Center

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  15. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    ERIC Educational Resources Information Center

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  16. Design of Chemical Literacy Assessment by Using Model of Educational Reconstruction (MER) on Solubility Topic

    NASA Astrophysics Data System (ADS)

    Yusmaita, E.; Nasra, Edi

    2018-04-01

    This research aims to produce instrument for measuring chemical literacy assessment in basic chemistry courses with solubility topic. The construction of this measuring instrument is adapted to the PISA (Programme for International Student Assessment) problem’s characteristics and the Syllaby of Basic Chemistry in KKNI-IndonesianNational Qualification Framework. The PISA is a cross-country study conducted periodically to monitor the outcomes of learners' achievement in each participating country. So far, studies conducted by PISA include reading literacy, mathematic literacy and scientific literacy. Refered to the scientific competence of the PISA study on science literacy, an assessment designed to measure the chemical literacy of the chemistry department’s students in UNP. The research model used is MER (Model of Educational Reconstruction). The validity and reliability values of discourse questions is measured using the software ANATES. Based on the acquisition of these values is obtained a valid and reliable chemical literacy questions.There are seven question items limited response on the topic of solubility with valid category, the acquisition value of test reliability is 0,86, and has a difficulty index and distinguishing good

  17. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  18. Application And Implication Of Nanomaterials In The Environment: An Overview Of Current Research At The Environmental Protection Agency (Romania)

    EPA Science Inventory

    The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...

  19. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  20. Research, the lifeline of medicine.

    PubMed

    Kornberg, A

    1976-05-27

    Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.

  1. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  2. Hazardous Materials Chemistry for the Non-Chemist. Second Edition.

    ERIC Educational Resources Information Center

    Wray, Thomas K.; Enholm, Eric J.

    This book provides a basic introduction for the student to hazardous materials chemistry. Coverage of chemistry, rather than non-chemical hazards, is particularly stressed on a level which the layman can understand. Basic terminology is emphasized at all levels, as are simple chemistry symbols, in order to provide the student with an introductory…

  3. Brain Chemistry and Behavior.

    ERIC Educational Resources Information Center

    Spaziano, Vincent T.; Gibbons, Judith L.

    1986-01-01

    Describes an interdisciplinary course providing basic background in behavior, pharmacology, neuroanatomy, neurotransmitters, drugs, and specific brain disorders. Provides rationale, goals, and operational details. Discusses a research project as a tool to improve critical evaluation of science reporting and writing skills. (JM)

  4. Inter-Institutional Partnerships Propel A Successful Collaborative Undergraduate Degree Program In Chemistry

    PubMed Central

    Wang, Qiquan

    2013-01-01

    Small private liberal arts colleges are increasingly tuition-dependent and mainly attract students by creating student-centered learning communities. On the other hand, larger universities tend to be trendsetters where its faculty tend to seek intellectual independence and are involved in career focused cutting-edge research. The Institutional Development Awards (IDeA) and Experimental Program to Stimulate Competitive Research (EPSCoR) are federal-state-university partnerships that builds basic research infrastructure and coax the state-wide higher education institutions to collaborate with each other in order to enhance their competitiveness. As a result in Delaware, Wesley College instituted curricular and operational changes to launch an undergraduate program in biological chemistry where its students take three upper division chemistry courses and can choose to participate in annual summer undergraduate internships at nearby Delaware State University. PMID:24273464

  5. [The effects of the success of the synthesis of Stovaïne in science and industry. Ernest Fourneau (1872-1949) and the transformation of the field of medicinal chemistry in France].

    PubMed

    Debue-Barazer, Christine

    2007-01-01

    The synthetic local anaesthetic Stovaine was commercialised in France in 1904. Its inventor, Ernest Fourneau, began his career as a pharmaceutical chemist in organic chemistry laboratories in Germany, where from 1899 to 1901 he discovered how basic research could benefit from the modern chemistry theories which had developed in Germany starting in the 1860s. Using the complex structure of cocaine, he invented an original molecule, with comparable activity, but less toxic. The knowledge and the know-how which he acquired in Germany nourished his reflection in the field of the chemistry of the relationships between structure and activity, and led him to the development of Stovaïne. Emile Roux, Director of the Pasteur Institute in Paris, was interested in his work and invited him to head the first French therapeutic chemistry laboratory, in which research on medicinal chemistry was organised scientifically. The industrial development of new medicines resulting from the Pasteur Institute's therapeutic chemistry laboratory was supported by the Etablissements Poulenc frères, France thus gaining international reputation in the domain of pharmaceutical chemistry.

  6. [Advancements of computer chemistry in separation of Chinese medicine].

    PubMed

    Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei

    2011-12-01

    Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.

  7. Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease

    MedlinePlus

    ... NIGMS use research organisms to explore the basic biology and chemistry of life. Scientists decide which organism ... controls allow for more precise understanding of the biological factors being studied and provide greater certainty about ...

  8. Critical Insights into Cardiovascular Disease from Basic Research on the Oxidation of Phospholipids: the γ-Hydroxyalkenal Phospholipid Hypothesis

    PubMed Central

    Salomon, Robert G.; Gu, Xiaodong

    2011-01-01

    Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach – from the chemistry of biomolecules to disease phenotype – that complements the more common opposite paradigm, is proving remarkably productive. PMID:21870852

  9. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  10. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.

    PubMed

    Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek

    2015-01-01

    This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.

  11. Practical Applications as a Source of Credibility: A Comparison of Three Fields of Dutch Academic Chemistry

    ERIC Educational Resources Information Center

    Hessels, Laurens K.; van Lente, Harro

    2011-01-01

    In many Western science systems, funding structures increasingly stimulate academic research to contribute to practical applications, but at the same time the rise of bibliometric performance assessments have strengthened the pressure on academics to conduct excellent basic research that can be published in scholarly literature. We analyze the…

  12. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications.

    PubMed

    Tsukiji, Shinya; Hamachi, Itaru

    2014-08-01

    The ability to introduce any chemical probe to any endogenous target protein in its native environment, that is in cells and in vivo, is anticipated to provide various new exciting tools for biological and biomedical research. Although still at the prototype stage, the ligand-directed tosyl (LDT) chemistry is a novel type of affinity labeling technique that we developed for such a dream. This chemistry allows for modifying native proteins by various chemical probes with high specificity in various biological settings ranging from in vitro (in test tubes) to in living cells and in vivo. Since the first report, the list of proteins that are successfully labeled by the LDT chemistry has been increasing. A growing number of studies have demonstrated its utility to create semisynthetic proteins directly in cellular contexts. The in situ generated semisynthetic proteins are applicable for various types of analysis and imaging of intracellular biological processes. In this review, we summarize the basic properties of the LDT chemistry and its applications toward in situ engineering and analysis of native proteins in living systems. Current limitations and future challenges of this area are also described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  14. Perfect Mirror Design Technology

    DTIC Science & Technology

    1999-02-01

    with Prof. Mario Molina, recipient of the 1995 Nobel Prize in Chemistry. The partnership, along with Aerodyne Research Inc., looked at how sulfur...Corporation is developing standards for nondestructive evaluation ( NDE ) techniques for industry use. Use of the new standards will result in improved...novel testing methodology that dramatically improves the accuracy of NDE techniques used to detect flaws. Basic Research Five years ago, the main

  15. Developing Global Leaders for Research, Regulation, and Stewardship of Crop Protection Chemistry in the 21st Century.

    PubMed

    Unsworth, John B; Corsi, Camilla; Van Emon, Jeanette M; Farenhorst, Annemieke; Hamilton, Denis J; Howard, Cody J; Hunter, Robert; Jenkins, Jeffrey J; Kleter, Gijs A; Kookana, Rai S; Lalah, Joseph O; Leggett, Michael; Miglioranza, Karina S B; Miyagawa, Hisashi; Peranginangin, Natalia; Rubin, Baruch; Saha, Bipul; Shakil, Najam A

    2016-01-13

    To provide sufficient food and fiber to the increasing global population, the technologies associated with crop protection are growing ever more sophisticated but, at the same time, societal expectations for the safe use of crop protection chemistry tools are also increasing. The goal of this perspective is to highlight the key issues that face future leaders in crop protection, based on presentations made during a symposium titled "Developing Global Leaders for Research, Regulation and Stewardship of Crop Protection Chemistry in the 21st Century", held in conjunction with the IUPAC 13th International Congress of Pesticide Chemistry in San Francisco, CA, USA, during August 2014. The presentations highlighted the fact that leaders in crop protection must have a good basic scientific training and understand new and evolving technologies, are aware of the needs of both developed and developing countries, and have good communication skills. Concern is expressed over the apparent lack of resources to meet these needs, and ideas are put forward to remedy these deficiencies.

  16. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  17. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  18. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.

    PubMed

    Cravatt, Benjamin F; Wright, Aaron T; Kozarich, John W

    2008-01-01

    Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.

  19. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  20. Marine biosurfaces research program

    NASA Astrophysics Data System (ADS)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  1. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  2. Organic synthesis toward small-molecule probes and drugs

    PubMed Central

    Schreiber, Stuart L.

    2011-01-01

    “Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  3. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  4. Faking It Won't Make It in Science

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2004-01-01

    For years, educators and researchers have seen teachers at all grade levels attempt to upgrade their grasp of physics, chemistry, and biology, from basic theories to complex material. Now, the pressure on schools and instructors to improve science instruction is likely to intensify, with approaching federal requirements on states to test students…

  5. Basic Research Plan.

    DTIC Science & Technology

    1996-05-01

    detection, catalysts for enhancing and controlling energetic reactions, synthesis of new compounds (e.g., narrow band-gap materials and non-linear...design for synthesis of advanced materials Fabricate porous lightweight and resilient structural materials with novel properties and uses Demonstrate...elements for 10 nm computer memory elements Demonstrate enhanced propellants and explosives with nanoparticle surface chemistry Demonstrate sensing of

  6. Plastic Solar Cells: A Multidisciplinary Field to Construct Chemical Concepts from Current Research

    ERIC Educational Resources Information Center

    Gomez, Rafael; Segura, Jose L.

    2007-01-01

    Examples of plastic solar-cell technology to illustrate core concepts in chemistry are presented. The principles of operations of a plastic solar cell could be used to introduce key concepts, which are fundamentally important to understand photosynthesis and the basic process that govern most novel optoelectronic devices.

  7. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Lawrence T.

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figuremore » prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion synthesis of C 60 and other fullerenes depended critically on a knowledge of hydrocarbon reactions at high temperatures in the gas phase, and the research supported by this project enabled further advances in the realm of carbon-rich materials.« less

  8. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  9. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  10. Institute for Sustainable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Ajay

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  11. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    ERIC Educational Resources Information Center

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  12. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    PubMed Central

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  13. Compliance Issues and Homeland Security with New Federal Regulations for Higher Education Institutions

    ERIC Educational Resources Information Center

    Valcik, Nicolas A.

    2010-01-01

    Research advancements into different fields of study have increased the risks for accidents, criminal acts, or a potential breach of national security, and the types of hazardous materials (HAZMAT) stored and used at universities and colleges are under new scrutiny. Before, a chemistry laboratory might only have basic substances such as sulfur,…

  14. Environmental chemistry: Volume A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  15. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  16. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  17. Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1988-01-01

    Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)

  18. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  19. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  20. A New Chemistry Course for Non-Chemistry Majors.

    ERIC Educational Resources Information Center

    Ariel, Magda; And Others

    1982-01-01

    A two-semester basic chemistry course for nonchemistry engineering majors is described. First semester provides introductory chemistry for freshmen while second semester is "customer-oriented," based on a departmental choice of three out of six independent modules. For example, aeronautical engineering "customers" would select…

  1. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  2. Chemotion ELN: an Open Source electronic lab notebook for chemists in academia.

    PubMed

    Tremouilhac, Pierre; Nguyen, An; Huang, Yu-Chieh; Kotov, Serhii; Lütjohann, Dominic Sebastian; Hübsch, Florian; Jung, Nicole; Bräse, Stefan

    2017-09-25

    The development of an electronic lab notebook (ELN) for researchers working in the field of chemical sciences is presented. The web based application is available as an Open Source software that offers modern solutions for chemical researchers. The Chemotion ELN is equipped with the basic functionalities necessary for the acquisition and processing of chemical data, in particular the work with molecular structures and calculations based on molecular properties. The ELN supports planning, description, storage, and management for the routine work of organic chemists. It also provides tools for communicating and sharing the recorded research data among colleagues. Meeting the requirements of a state of the art research infrastructure, the ELN allows the search for molecules and reactions not only within the user's data but also in conventional external sources as provided by SciFinder and PubChem. The presented development makes allowance for the growing dependency of scientific activity on the availability of digital information by providing Open Source instruments to record and reuse research data. The current version of the ELN has been using for over half of a year in our chemistry research group, serves as a common infrastructure for chemistry research and enables chemistry researchers to build their own databases of digital information as a prerequisite for the detailed, systematic investigation and evaluation of chemical reactions and mechanisms.

  3. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  4. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge.

    PubMed

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    A collaborative consortium, named "TRANSAUTOPHAGY," has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.

  5. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge

    PubMed Central

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    abstract A collaborative consortium, named “TRANSAUTOPHAGY,” has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications. PMID:27046256

  6. Identifying the Critical Components for a Conceptual Understanding of the Mole in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Fang, Su-Chi; Hart, Christina; Clarke, David

    2016-01-01

    The amount of substance and its unit the mole is a basic concept in chemistry. However, previous research has shown that teaching and learning the concept are challenging tasks for both teachers and students. The purpose of this study was to pinpoint the problems which emerge in the teaching and learning process, and provide integrated suggestions…

  7. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  8. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  9. Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.

    PubMed

    Müller, Markus T

    2018-02-01

    The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.

  10. USGS Research on Saline Waters Co-Produced with Energy Resources

    USGS Publications Warehouse

    ,

    1997-01-01

    The United States energy industry faces the challenge of satisfying our expanding thirst for energy while protecting the environment. This challenge is magnified by the increasing volumes of saline water produced with oil and gas in the Nation's aging petroleum fields. Ultimately, energy-producing companies are responsible for disposing of these waters. USGS research provides basic information, for use by regulators, industry, and the public, about the chemistry of co-produced waters and environmentally acceptable ways of handling them.

  11. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    ERIC Educational Resources Information Center

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  12. The Status of Chemistry in Two-Year Colleges: Results from a Survey of Chemistry Departments.

    ERIC Educational Resources Information Center

    Ryan, Mary Ann; Wesemann, Jodi L.; Boese, Janet M.; Neuschatz, Michael

    In the fall of 2001, the American Chemical Society (ACS) conducted a survey of two-year college chemistry departments to obtain basic data on chemistry faculty and chemistry courses taught at college. A questionnaire sent to appropriate representatives (department chairs, program heads, or deans) from 1195 campuses generated a 77% response rate.…

  13. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  14. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  15. Acidic and basic drugs in medicinal chemistry: a perspective.

    PubMed

    Charifson, Paul S; Walters, W Patrick

    2014-12-11

    The acid/base properties of a molecule are among the most fundamental for drug action. However, they are often overlooked in a prospective design manner unless it has been established that a certain ionization state (e.g., quaternary base or presence of a carboxylic acid) appears to be required for activity. In medicinal chemistry optimization programs it is relatively common to attenuate basicity to circumvent undesired effects such as lack of biological selectivity or safety risks such as hERG or phospholipidosis. However, teams may not prospectively explore a range of carefully chosen compound pKa values as part of an overall chemistry strategy or design hypothesis. This review summarizes the potential advantages and disadvantages of both acidic and basic drugs and provides some new analyses based on recently available public data.

  16. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in Dense Interstellar Clouds: Summary of Research

    NASA Technical Reports Server (NTRS)

    Irvine, William M.

    1999-01-01

    The basic theme of this program was the study of molecular complexity and evolution for the biogenic elements and compounds in interstellar clouds and in primitive solar system objects. Research included the detection and study of new interstellar and cometary molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation. One PhD dissertation on this research was completed by a graduate student at the University of Massachusetts. An additional 4 graduate students at the University of Massachusetts and 5 graduate students from other institutions participated in research supported by this grant, with 6 of these thus far receiving PhD degrees from the University of Massachusetts or their home institutions. Four postdoctoral research associates at the University of Massachusetts also participated in research supported by this grant, receiving valuable training.

  17. WATER CHEMISTRY ASSESSMENT METHODS

    EPA Science Inventory

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  18. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  19. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    NASA Astrophysics Data System (ADS)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.

  20. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  1. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  2. The Development and Evaluation of a Chemistry Curriculum for Nursing Schools in Israel.

    ERIC Educational Resources Information Center

    Dori, Yehudit; And Others

    A very diverse population of students choose nursing as a profession in Israel. Although chemistry is basic for studying nursing, most of these students have not studied chemistry in school for longer than a single year--usually in grade 10. A chemistry curriculum for nursing schools was developed, implemented, and evaluated. This curriculum was…

  3. Reaction Scale and Green Chemistry: Microscale or Macroscale, Which is Greener?

    ERIC Educational Resources Information Center

    Duarte, Rita C. C.; Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2017-01-01

    The different ways microscale and green chemistry allow reducing the deleterious impacts of chemistry on human health and the environment are discussed in terms of their different basic paradigms: green chemistry follows the ecologic paradigm and microscale the risk paradigm. A study of the synthesis of 1-bromobutane at macro- ? microscale (109.3…

  4. New ligand platforms featuring boron-rich clusters as organomimetic substituents*,**

    PubMed Central

    Spokoyny, Alexander M.

    2013-01-01

    200 years of research with carbon-rich molecules have shaped the development of modern chemistry. Research pertaining to the chemistry of boron-rich species has historically trailed behind its more distinguished neighbor (carbon) in the periodic table. Notably, a potentially rich and, in many cases, unmatched field of coordination chemistry using boronrich clusters remains fundamentally underdeveloped. Our work has been devoted to examining several basic concepts related to the functionalization of icosahedral boron-rich clusters and their use as ligands, aimed at designing fundamentally new hybrid molecular motifs and materials. Particularly interesting are icosahedral carboranes, which can be regarded as 3D analogs of benzene. These species comprise a class of boron-rich clusters that were discovered in the 1950s during the “space race” while researchers were developing energetic materials for rocket fuels. Ultimately, the unique chemical and physical properties of carborane species, such as rigidity, indefinite stability to air and moisture, and 3D aromaticity, may allow one to access a set of properties not normally available in carbon-based chemistry. While technically these species are considered as inorganic clusters, the chemical properties they possess make these boron-rich species suitable for replacing and/or altering structural and functional features of the organic and organometallic molecules—a phenomenon best described as “organomimetic”. Aside from purely fundamental features associated with the organomimetic chemistry of icosahedral carboranes, their use can also provide new avenues in the development of systems relevant to solving current problems associated with energy production, storage, and conversion. PMID:24311823

  5. [Tracking study to improve basic academic ability in chemistry for freshmen].

    PubMed

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2010-08-01

    The aims of this study were to assess the basic academic ability of freshmen with regard to chemistry and implement suitable educational guidance measures. At Tohoku Pharmaceutical University, basic academic ability examinations are conducted in chemistry for freshmen immediately after entrance into the college. From 2003 to 2009, the examination was conducted using the same questions, and the secular changes in the mean percentage of correct response were statistically analyzed. An experience survey was also conducted on 2007 and 2009 freshmen regarding chemical experiments at senior high school. Analysis of the basic academic ability examinations revealed a significant decrease in the mean percentage of correct responses after 2007. With regard to the answers for each question, there was a significant decrease in the percentage of correct answers for approximately 80% of questions. In particular, a marked decrease was observed for calculation questions involving percentages. A significant decrease was also observed in the number of students who had experiences with chemical experiments in high school. However, notable results have been achieved through the implementation of practice incorporating calculation problems in order to improve calculation ability. Learning of chemistry and a lack of experimental experience in high school may be contributory factors in the decrease in chemistry academic ability. In consideration of the professional ability demanded of pharmacists, the decrease in calculation ability should be regarded as a serious issue and suitable measures for improving calculation ability are urgently required.

  6. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  7. Chemical Oceanography and the Marine Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  8. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in the Pre-Solar Nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1997-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar clouds and in primitive solar system objects. Research has included the detection and study of a number of new interstellar molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation.

  9. Presidential Green Chemistry Challenge: 2011 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2011 award winner, Genomatica, is developing and commercializing sustainable basic and intermediate chemicals made from renewable feedstocks including sugars, biomass, and syngas.

  10. Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    More, Michelle B.

    2007-01-01

    A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.

  11. The Chemistry of Fitness. Active Activities.

    ERIC Educational Resources Information Center

    Bergandine, David R.; And Others

    1991-01-01

    The outline for a unit on the chemistry of fitness and nutrition is presented. Topics discussed include the organic basis of life, functional groups, kitchen experiments, micronutrients, energetics, fitness vs. fatness, current topics, and evaluation. This unit reviews the basic concepts of chemical bonding, acid-base chemistry, stoichiometry, and…

  12. Magnetic Excitations and Geometric Confinement; Theory and simulations

    NASA Astrophysics Data System (ADS)

    Wysin, Gary Matthew

    2015-12-01

    In this book, author Gary Wysin provides an overview of model systems and their behaviour and effects, and is intended for advanced students and researchers in physics, chemistry and engineering interested in confined magnetics. It is also suitable as an auxiliary text in a class on magnetism or solid state physics. Previous physics knowledge is expected, along with some basic knowledge of classical electromagnetism and electromagnetic waves for the latter chapters.

  13. Beginning to Teach Chemistry: How personal and academic characteristics of pre-service science teachers compare with their understandings of basic chemical ideas

    NASA Astrophysics Data System (ADS)

    Kind, Vanessa; Morten Kind, Per

    2011-10-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.

  14. Wine biotechnology in South Africa: towards a systems approach to wine science.

    PubMed

    Moore, John P; Divol, Benoit; Young, Philip R; Nieuwoudt, Hélène H; Ramburan, Viresh; du Toit, Maret; Bauer, Florian F; Vivier, Melané A

    2008-11-01

    The wine industry in South Africa is over three centuries old and over the last decade has reemerged as a significant competitor in world wine markets. The Institute for Wine Biotechnology (IWBT) was established in partnership with the Department of Viticulture and Oenology at Stellenbosch University to foster basic fundamental research in the wine sciences leading to applications in the broader wine and grapevine industries. This review focuses on the different research programmes of the Institute (grapevine, yeast and bacteria biotechnology programmes, and chemical-analytical research), commercialisation activities (SunBio) and new initiatives to integrate the various research disciplines. An important focus of future research is the Wine Science Research Niche Area programme, which connects the different research thrusts of the IWBT and of several research partners in viticulture, oenology, food science and chemistry. This 'Functional Wine-omics' programme uses a systems biology approach to wine-related organisms. The data generated within the programme will be integrated with other data sets from viticulture, oenology, analytical chemistry and the sensory sciences through chemometrics and other statistical tools. The aim of the programme is to model aspects of the wine making process, from the vineyard to the finished product.

  15. Waterworks Operator Training Manual.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    Sixteen self-study waterworks operators training modules are provided. Module titles are the following: basic mathematics, basic chemistry, analysis procedures, microbiology, basic electricity, hydraulics, chlorination, plant operation, surface water, ground water, pumps, cross connections, distribution systems, safety, public relations, and…

  16. What Does the Acid Ionization Constant Tell You? An Organic Chemistry Student Guide

    ERIC Educational Resources Information Center

    Rossi, Robert D.

    2013-01-01

    Many students find the transition from first-year general chemistry to second-year organic chemistry a daunting task. There are many reasons for this, not the least of which is their lack of a solid understanding and appreciation of the importance of some basic concepts and principles from general chemistry that play an extremely critical role in…

  17. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  18. Describing the apprenticeship of chemists through the language of faculty scientists

    NASA Astrophysics Data System (ADS)

    Skjold, Brandy Ann

    Attempts to bring authentic science into the K-16 classroom have led to the use of sociocultural theories of learning, particularly apprenticeship, to frame science education research. Science educators have brought apprenticeship to science classrooms and have brought students to research laboratories in order to gauge its benefits. The assumption is that these learning opportunities are representative of the actual apprenticeship of scientists. However, there have been no attempts in the literature to describe the apprenticeship of scientists using apprenticeship theory. Understanding what science apprenticeship looks like is a critical component of translating this experience into the classroom. This study sought to describe and analyze the apprenticeship of chemists through the talk of faculty scientists. It used Lave and Wenger’s (1991) theory of Legitimate Peripheral Participation as its framework, concentrating on describing the roles of the participants, the environment and the tasks in the apprenticeship, as per Barab, Squire and Dueber (2000). A total of nine chemistry faculty and teaching assistants were observed across 11 settings representing a range of learning experiences from introductory chemistry lectures to research laboratories. All settings were videotaped, focusing on the instructor. About 89 hours of video was taken, along with observer field notes. All videos were transcribed and transcriptions and field notes were analyzed qualitatively as a broad level discourse analysis. Findings suggest that learners are expected to know basic chemistry content and how to use basic research equipment before entering the research lab. These are taught extensively in classroom settings. However, students are also required to know how to use the literature base to inform their own research, though they were rarely exposed to this in the classrooms. In all settings, conflicts occurred when student under or over-estimated their role in the learning environment. While faculty moved effortlessly between settings, students had difficulty adjusting to new roles in different settings. The findings suggest that one beneficial way of bringing apprenticeship into the classroom, would be to expose students to scientific literature early, emphasizing the community of practice and the roles that learners, faculty and scientists play within it.

  19. Teaching microbiology to undergraduate students in the humanities and the social sciences.

    PubMed

    Oren, Aharon

    2015-10-01

    This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    PubMed

    Južnič, Stanislav

    2016-12-01

    One of the most important Mid-European professor with more than six thousand academic descendants was the leading Slovenian erudite Jurij Vega. In broader sense, Vega's and other applied sciences of the south of Holy Roman Empire of German Nationality were connected with the mercury mine of Idrija during the last half of millennia. The Idrija Mine used to be one of the two top European producers of mercury, the basic substance of atomistic alchemists. Idrija Mine contributions to the history of techniques, their examinations and approbations is comparable to the other Mid-European achievements. The peculiarities of Idrija mining environment where people valued mostly the applicative knowhow is put into the limelight. The applicative abilities of Idrija employers affected the broader surroundings including Vega's Jesuit teachers in nearby Ljubljana and the phenomena of comparatively many China-Based Jesuits connected with the area of modern Slovenia. The Jesuits' Mid-European education and networks are put into the limelight, as well as their adopted Chinese networks used for their bridging between Eastern and Western Sciences. The Western origin of the scientific-technologic-industrial revolution(s) with causes for their apparent nonexistence in Chinese frames is discussed as another Eurocentric rhetorical racist question which presumes the scientific-technologic-industrial revolution(s) as something good, positive, and therefore predominantly European. The Chinese ways into progress without those troublemaking revolutions is focused for the first time in historiography from combined scientific, moral, religious, and economic viewpoints. The Chinese contributions to particular areas of research in chemistry and physics is focused to find out the preferences and most frequent stages of (European) paradigms involved in the Chinese networks. Some predictions of future interests of Chinese chemistry and physics are provided. The Chinese Holistic Confucian distrust in atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  1. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    PubMed

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  2. Chemical kinetics as a contract sport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, C.E.

    1990-01-01

    Earlier in this century chemical kinetics was a basic physical chemistry research topic widely pursued in leading academic chemistry departments. Chemical kinetics now appears to be a discipline practiced chiefly for its applications to societal problems. The chemical kinetics activities directed by D.M. Golden at SRI International are strikingly successful in generating data for key applied problems while at the same time advancing our understanding of chemical kinetics as a scientific discipline. In this talk, the author will contrast the chemical kinetics activities in two contract R D laboratories, one on the right side of the U.S. (ARI) and themore » other on the left (SRI). Their approach to common applied problems ranging from stratospheric heterogeneous kinetics to plasma etching systems for semiconductor processing will be compared and contrasted. Empirically discovered Golden Rules for the pursuit of quality chemical kinetics research in a contract R D environment will be presented and discussed.« less

  3. 1976 annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.

  4. Computer Series, 101: Accurate Equations of State in Computational Chemistry Projects.

    ERIC Educational Resources Information Center

    Albee, David; Jones, Edward

    1989-01-01

    Discusses the use of computers in chemistry courses at the United States Military Academy. Provides two examples of computer projects: (1) equations of state, and (2) solving for molar volume. Presents BASIC and PASCAL listings for the second project. Lists 10 applications for physical chemistry. (MVL)

  5. Critical Thinking in the Chemistry Classroom and Beyond

    ERIC Educational Resources Information Center

    Jacob, Claus

    2004-01-01

    The feasibility and practical use of teaching philosophy-based critical thinking to undergraduate chemistry students are investigated. The successful outcome of teaching basic logical concepts in chemistry, as measured by students' ability to assess the validity of chemical reasoning on one hand and student satisfaction on the other, is reported.

  6. The Chemistry of a Mini

    ERIC Educational Resources Information Center

    Jones, C. E.

    1972-01-01

    Describes various parts of a mini car and their chemical composition. Useful information is included for science teachers to relate basic chemistry concepts and techniques with their application in automobile industry. (PS)

  7. The First-Day Quiz as a Teaching Technique

    NASA Astrophysics Data System (ADS)

    Ochs, Raymond S.

    1998-04-01

    The problem with chemical education today is not merely that the students are inattentive, that our instructors are incompetent, or that the subject is intrinsically difficult. I believe the problem is that the fundamentals of the subject are not imparted. As students emerge from the basic courses in chemistry, despite exposure to a range of specific topics, they are commonly unclear on the basic ideas and how they might apply to more advanced topics. In this contribution, I describe a first-day quiz for students in an advanced chemistry class, presented to them ostensibly as a test of basic knowledge. While this approach is not unprecedented, it is apparently rare, as it comes as a surprise to those colleagues I have discussed it with. The important objective of the exercise is to allow students to realize what they don't know about fundamental chemistry, which I have found makes them more receptive to chemical education.

  8. Social Media, Peer Review, and Responsible Conduct of Research (RCR) in Chemistry: Trends, Pitfalls, and Promises

    PubMed Central

    Jogalekar, Ashutosh S.

    2015-01-01

    Over the last two decades, various themes inherent in the responsible conduct of research (RCR) in chemistry have been brought to light through prominent cases of research misconduct. This article will describe a few of these cases especially through the lens of social media such as blogs and Twitter. A case will be made that these wholly novel modalities of online discussion are now complementing, and in some cases even circumventing some of the limitations of traditional peer review in chemistry. We present in detail our evaluation of three recent cases of RCR along with several other social media illustrations. These cases have been selected to be representative and showcase several of the most prominent issues at the intersection of traditional and social-media based peer review. In each case, basic details are presented along with a brief discussion of the underlying issues—readers interested in deeper analysis of each subject are referred to a collection of relevant articles and websites. This perspective focuses on the most important RCR issues that have arisen in the past decade, a time which we believe coincides with the serious participation of the scientific community in general, and the chemistry community in particular, in social media-based, citizen-enabled peer-review. A discussion of important trends in RCR in the age of social media, outstanding developments in this area, and questions of enduring interest for the near future concludes the article. PMID:26155733

  9. Development and Application of Computational/In Vitro Toxicological Methods for Chemical Hazard Risk Reduction of New Materials for Advanced Weapon Systems

    NASA Technical Reports Server (NTRS)

    Frazier, John M.; Mattie, D. R.; Hussain, Saber; Pachter, Ruth; Boatz, Jerry; Hawkins, T. W.

    2000-01-01

    The development of quantitative structure-activity relationship (QSAR) is essential for reducing the chemical hazards of new weapon systems. The current collaboration between HEST (toxicology research and testing), MLPJ (computational chemistry) and PRS (computational chemistry, new propellant synthesis) is focusing R&D efforts on basic research goals that will rapidly transition to useful products for propellant development. Computational methods are being investigated that will assist in forecasting cellular toxicological end-points. Models developed from these chemical structure-toxicity relationships are useful for the prediction of the toxicological endpoints of new related compounds. Research is focusing on the evaluation tools to be used for the discovery of such relationships and the development of models of the mechanisms of action. Combinations of computational chemistry techniques, in vitro toxicity methods, and statistical correlations, will be employed to develop and explore potential predictive relationships; results for series of molecular systems that demonstrate the viability of this approach are reported. A number of hydrazine salts have been synthesized for evaluation. Computational chemistry methods are being used to elucidate the mechanism of action of these salts. Toxicity endpoints such as viability (LDH) and changes in enzyme activity (glutahoione peroxidase and catalase) are being experimentally measured as indicators of cellular damage. Extrapolation from computational/in vitro studies to human toxicity, is the ultimate goal. The product of this program will be a predictive tool to assist in the development of new, less toxic propellants.

  10. Social Media, Peer Review, and Responsible Conduct of Research (RCR) in Chemistry: Trends, Pitfalls, and Promises.

    PubMed

    Jogalekar, Ashutosh S

    2015-01-01

    Over the last two decades, various themes inherent in the responsible conduct of research (RCR) in chemistry have been brought to light through prominent cases of research misconduct. This article will describe a few of these cases especially through the lens of social media such as blogs and Twitter. A case will be made that these wholly novel modalities of online discussion are now complementing, and in some cases even circumventing some of the limitations of traditional peer review in chemistry. We present in detail our evaluation of three recent cases of RCR along with several other social media illustrations. These cases have been selected to be representative and showcase several of the most prominent issues at the intersection of traditional and social-media based peer review. In each case, basic details are presented along with a brief discussion of the underlying issues-readers interested in deeper analysis of each subject are referred to a collection of relevant articles and websites. This perspective focuses on the most important RCR issues that have arisen in the past decade, a time which we believe coincides with the serious participation of the scientific community in general, and the chemistry community in particular, in social media-based, citizen-enabled peer-review. A discussion of important trends in RCR in the age of social media, outstanding developments in this area, and questions of enduring interest for the near future concludes the article.

  11. Student- and faculty-reported importance of science prerequisites for osteopathic medical school: a survey-based study.

    PubMed

    Binstock, Judith; Junsanto-Bahri, Tipsuda

    2014-04-01

    The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.

  12. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    NASA Astrophysics Data System (ADS)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  13. Integrating Character Education Model With Spiral System In Chemistry Subject

    NASA Astrophysics Data System (ADS)

    Hartutik; Rusdarti; Sumaryanto; Supartono

    2017-04-01

    Integrating character education is the responsibility of all subject teachers including chemistry teacher. The integration of character education is just administrative requirements so that the character changes are not measurable. The research objective 1) describing the actual conditions giving character education, 2) mapping the character integration of chemistry syllabus with a spiral system, and 3) producing syllabus and guide system integrating character education in chemistry lessons. Of the eighteen value character, each character is mapped to the material chemistry value concepts of class X and repeated the system in class XI and class XII. Spiral system integration means integrating the character values of chemistry subjects in steps from class X to XII repeatedly at different depth levels. Besides developing the syllabus, also made the integration of characters in a learning guide. This research was designed with research and development [3] with the scope of 20 chemistry teachers in Semarang. The focus of the activities is the existence of the current character study, mapping the character values in the syllabus, and assessment of the integration guides of character education. The validity test of Syllabus and Lesson Plans by experts in FGD. The data were taken with questionnaire and interviews, then processed by descriptive analysis. The result shows 1) The factual condition, in general, the teachers designed learning one-time face-to-face with the integration of more than four characters so that behaviour changes and depth of character is poorly controlled, 2) Mapping each character values focused in the syllabus. Meaning, on one or two basic competence in four or five times, face to face, enough integrated with the value of one character. In this way, there are more noticeable changes in students behaviour. Guidance is needed to facilitate the integration of character education for teachers integrating systems. Product syllabus and guidelines validated by experts and the syllabus results averaging 4.37; guidebooks integrating character education in chemistry learning 4.36 with a maximum score of 5. Thus the device is declared valid. Through focus group discussions, each expert gave input for the improvement of learning modules of character education.

  14. The evolving war on cancer.

    PubMed

    Haber, Daniel A; Gray, Nathanael S; Baselga, Jose

    2011-04-01

    Building on years of basic scientific discovery, recent advances in the fields of cancer genetics and medicinal chemistry are now converging to revolutionize the treatment of cancer. Starting with serendipitous observations in rare subsets of cancer, a paradigm shift in clinical research is poised to ensure that new molecular insights are rapidly applied to shape emerging cancer therapies. Could this mark a turning point in the "War on Cancer"? Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A Chemistry Lesson at Three Mile Island.

    ERIC Educational Resources Information Center

    Mammano, Nicholas J.

    1980-01-01

    Details the procedures used in utilizing the hydrogen bubble incident at Three Mile Island to relate these basic chemical principles to nuclear chemistry: gas laws, Le Chatelier's principle and equilibrium, and stoichiometry. (CS)

  16. Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry

    ERIC Educational Resources Information Center

    Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.

    2017-01-01

    With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…

  17. Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…

  18. Go Chemistry: A Card Game to Help Students Learn Chemical Formulas

    ERIC Educational Resources Information Center

    Morris, Todd A.

    2011-01-01

    For beginning chemistry students, the basic tasks of writing chemical formulas and naming covalent and ionic compounds often pose difficulties and are only sufficiently grasped after extensive practice with homework sets. An enjoyable card game that can replace or, at least, complement nomenclature homework sets is described. "Go Chemistry" is…

  19. Chemistry, A Syllabus for Secondary Schools.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Presented is a modern view of chemistry suitable for pupils with a wide range of skills and abilities. The outline of topics provides the unifying principles of chemistry together with related facts. The principles included in the outline are basic to man's understanding of his environment. The topical outline is divided into nine major units:…

  20. Bioinformatics by Example: From Sequence to Target

    NASA Astrophysics Data System (ADS)

    Kossida, Sophia; Tahri, Nadia; Daizadeh, Iraj

    2002-12-01

    With the completion of the human genome, and the imminent completion of other large-scale sequencing and structure-determination projects, computer-assisted bioscience is aimed to become the new paradigm for conducting basic and applied research. The presence of these additional bioinformatics tools stirs great anxiety for experimental researchers (as well as for pedagogues), since they are now faced with a wider and deeper knowledge of differing disciplines (biology, chemistry, physics, mathematics, and computer science). This review targets those individuals who are interested in using computational methods in their teaching or research. By analyzing a real-life, pharmaceutical, multicomponent, target-based example the reader will experience this fascinating new discipline.

  1. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  2. 4th Penn State Bioinorganic Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Carsten

    The research area of biological inorganic chemistry encompasses a wide variety of subfields, including molecular biology, biochemistry, biophysics, inorganic chemistry, analytical chemistry, physical chemistry, and theoretical chemistry, as well as many different methods, such as biochemical characterization of enzymes, reaction kinetics, a plethora of spectroscopic techniques, and computational methods. The above methods are combined to understand the formation, function, and regulation of the many metallo-cofactors found in Nature as well as to identify novel metallo-cofactors. Many metalloenzyme-catalyzed reactions are extremely complex, but are of fundamental importance to science and society. Examples include (i) the reduction of the chemically inert molecule,more » dinitrogen, to ammonia by the enzyme nitrogenase (this reaction is fundamental for the production of nitrogen fertilizers); (ii) the oxidation of water to dioxygen by the Mn4Ca cluster found in photosystem II; and (iii) myriad reactions in which aliphatic, inert C-H bonds are cleaved for subsequent functionalization of the carbon atoms (the latter reactions are important in the biosynthesis of many natural products). Because of the broad range of areas and techniques employed in this field, research in bioinorganic chemistry is typically carried out collaboratively between two or more research groups. It is of paramount importance that researchers working in this field have a good, basic, working knowledge of many methods and approaches employed in the field, in order to design and discuss experiments with collaborators. Therefore, the training of students working in bioinorganic chemistry is an important aspect of this field. Hugely successful “bioinorganic workshops” were offered in the 1990s at The University of Georgia. These workshops laid the foundation for many of the extant collaborative research efforts in this area today. The large and diverse group of bioinorganic chemists at The Pennsylvania State University and our unique laboratory space are well suited for the continuation of such training workshops. The co-principal investigators of this award lead these efforts. After a smaller “trial workshop” in 2010, the Penn State bioinorganic group, led by the co-PIs, offers these workshops biennially. The 2012, 2014, and 2016 workshops provided training to 123, 162, and 153 participants, respectively, by offering (i) a series of lectures given by faculty experts on the given topic, (ii) hands-on training in small groups by experts in the various methods, and (iii) sharing research results of the participants by oral and poster presentations. The centerpiece of the workshops is the hands-on training, in which approximately half of the participants from all ranks (undergraduate students to faculty) served as teachers. In this section, the traditional roles of teachers and students were sometimes reversed to the extent that undergraduate students taught faculty in the students' areas of specialty. We anticipate that these workshops will facilitate research in bioinorganic chemistry and will help establish future collaborations among “workshop alumni” to carry out cutting-edge research in bioinorganic chemistry that will address many important topics relevant to our society.« less

  3. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less

  4. Providing Relevance in Chemistry for Nursing Students

    ERIC Educational Resources Information Center

    Jones, Theodore H. D.

    1976-01-01

    Describes an introductory chemistry course for nurses in which students learn basic chemical principles by performing 12 chemical analyses that are routinely conducted on body fluids and listed on a patient's clinical laboratory chart. (MLH)

  5. Greener is Cleaner, and Safer

    ERIC Educational Resources Information Center

    Science Scope, 2005

    2005-01-01

    One easy way to reduce the number of accidents in the lab is to go "green." Green chemistry, or sustainable chemistry, emerged about a decade ago, but the concept has been practiced for centuries by indigenous people of many continents. The basic principles of green chemistry are that you should use only what you need and recycle what you can.…

  6. Learning about Chemistry Concepts. Superific Science Book VIII. A Good Apple Science Activity Book for Grades 5-8+.

    ERIC Educational Resources Information Center

    Conway, Lorraine

    Based on the idea that active participation stimulates the processes by which learning takes place, this document provides teachers and students with a variety of information and learning activities dealing with chemistry. Basic concepts about chemistry are presented through the use of laboratory experiments, demonstrations, worksheet exercises…

  7. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  8. New Trends in Chemistry Teaching. Volume V. The Teaching of Basic Sciences: Chemistry.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of articles, originally published in national and international journals, is fifth in a series devoted to trends in teaching chemistry. The volume is divided into nine sections, each with an introduction explaining why papers have been selected and outlining their particular interest. Section I provides a list of atomic masses,…

  9. Past, Present and Future of General Chemistry in the PUC-Rio.

    ERIC Educational Resources Information Center

    Farias, Percio A. M.; Goulart, Mauricio S.; de Mello, Paulo Correa

    This manuscript describes the role of chemistry as a vehicle for understanding many other basic sciences and engineering based on the experience acquired in the General Chemistry course at the "Center Technical-Scientific" at the Pontific Catholic University of Rio de Janeiro (CTC-PUC-Rio). A description of the history of the General…

  10. A new approach to the analysis of radiopharmaceuticals. Final technical report, January 15, 1987--June 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.G.; Davison, A.; Costello, C.E.

    The objective of this research was to investigate analytical techniques that could be used in the study of both the basic chemistry and the radiopharmaceutical chemistry of {sup 99m}Tc. First funded in 1981, the work focused initially upon the use of high performance liquid chromatography (HPLC) and various forms of mass spectrometry for the identification of technetium species. This funding allowed the authors to combine HPLC and mass spectrometry to identify radiopharmaceuticals which, although in clinical use, had not previously been characterized. Other techniques that have been examined include resonance Raman spectroscopy and, more significantly, {sup 99}Tc nuclear magnetic resonancemore » spectroscopy (NMR), with the latter not only being used in purely chemical experiments but also in biologic studies. In 1985 a grant to the Department of Chemistry at MIT from DOE allowed the purchase of an X-ray diffractometer and access to this instrument has enabled them to broaden the analytical base with routine structural determinations.« less

  11. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    PubMed

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Introducing Proper Chemical Hygiene and Safety in the General Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Gordon J.; Heideman, Stephen A.; Greenbowe, Thomas J.

    2000-09-01

    Chemical safety is an important component of science education for everyone, not just for chemistry majors. Developing a responsible and knowledgeable attitude towards chemical safety best starts at the early stages of a student's career. In many colleges and universities, safety education in undergraduate chemistry has been relegated primarily to a few regulatory documents at the beginning of a laboratory course, or an occasional warning in the description of a specific experiment in a prelaboratory lecture. Safety issues are seldom raised in general chemistry or organic chemistry lecture-based chemistry courses. At Iowa State University we have begun to implement a program, Chemical Hygiene and Safety in the Laboratory, into the undergraduate chemistry curriculum. This program is designed to increase the awareness and knowledge of proper chemical hygiene and laboratory safety issues among all students taking general chemistry and organic chemistry courses. Laboratory protocol, use of safety equipment, familiarity with MSD sheets, basics of first aid, some specific terminology surrounding chemical hygiene, EPA and OSHA requirements, and the use of the World Wide Web to search and locate chemical safety information are topics that are applied throughout the chemistry curriculum. The novelty of this approach is to incorporate MSD sheets and safety information that can be located on the World Wide Web in a series of safety problems and assignments, all related to the chemistry experiments students are about to perform. The fundamental idea of our approach is not only to teach students what is required for appropriate safety measures, but also to involve them in the enforcement of basic prudent practices.

  13. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less

  14. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  15. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  16. Exploring the Mastery of French Students in Using Basic Notions of the Language of Chemistry

    ERIC Educational Resources Information Center

    Canac, Sophie; Kermen, Isabelle

    2016-01-01

    Learning chemistry includes learning the language of chemistry (names, formulae, symbols, and chemical equations) which has to be done in connection with the other areas of chemical knowledge. In this study we investigate how French students understand and use names (of chemical species and common mixtures) and chemical formulae. We set a paper…

  17. Lessons in Effective Practical Chemistry at Tertiary Level: Case Studies from a Chemistry Outreach Program

    ERIC Educational Resources Information Center

    Shallcross, D. E.; Harrison, T. G.; Shaw, A. J.; Shallcross, K. L.; Croker, S. J.; Norman, N. C.

    2013-01-01

    Two summer schools focused on practical chemistry, one involving secondary school students and one involving visually impaired adults (i.e., not involving undergraduates) have produced students that appeared to be on the way to achieving the basic criteria set out by Buckley and Kempa (1971) in terms of practical skills. These criteria being that…

  18. Case Studies in Systems Chemistry. Final Report. [Includes Complete Case Study, Carboxylic Acid Equilibria

    ERIC Educational Resources Information Center

    Fleck, George

    This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…

  19. Using PARSEL Modules to Contextualizing the States-of-Matter Approach (SOMA) to Introductory Chemistry

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2008-01-01

    SOMA (States-Of-Matter Approach) is an introductory chemistry program for all students in the tenth or eleventh grade (age 16-17), which introduces chemistry through the separate study of the three states of matter. SOMA is basically a formalistic approach. In this paper, we discuss the use of PARSEL modules in providing a teaching approach to…

  20. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    NASA Astrophysics Data System (ADS)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  1. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  2. Aura Science and Validation

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Schoeberl, M.; Douglass, A.; Anderson, J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The EOS-Aura Mission is designed to answer three basic questions concerning the Earth's atmosphere: 1) Is ozone recovering as predicted, 2) is air quality getting worse, and 3) how is climate changing? Aura's four instruments work synergistically and are dedicated to answering these questions. These questions relate to NASA Earth Science Enterprise's overall strategic questions, which seek to understand the consequences of climate change for human civilization and determine if these changes can be predicted. NASA supports an ongoing research and analysis program, which is conducted independently and in support of satellite missions. The research program conducts several on-going field campaigns employing aircraft, balloons, and ground based systems. These campaigns have focused on exploring processes in the tropics, high latitudes, and continental outflow to explain the chemistry and transport in the troposphere and stratosphere and how these regions interact. NASA is now studying how the Aura mission and requirements of the research and analysis program might be merged to achieve its strategic goals related to global atmospheric chemistry changes. In addition, NASA field campaign resources will be folded into Aura's validation requirements. Aura validation requires correlative measurements throughout the troposphere and stratosphere under a range of observing and geophysical conditions. Because of the recent launches of Envisat and other smaller international chemistry satellites, the NASA program plans to collaborate with European space agencies in developing a series of campaigns that will provide continuity between those satellites missions and Aura.

  3. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  4. Programs for Fundamentals of Chemistry.

    ERIC Educational Resources Information Center

    Gallardo, Julio; Delgado, Steven

    This document provides computer programs, written in BASIC PLUS, for presenting fundamental or remedial college chemistry students with chemical problems in a computer assisted instructional program. Programs include instructions, a sample run, and 14 separate practice sessions covering: mathematical operations, using decimals, solving…

  5. Commentary: Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2013-01-01

    Most biochemistry, genetics, cell biology, and molecular biology classes have extensive prerequisite or co-requisite requirements, often including introductory chemistry, introductory biology, and organic chemistry coursework. But what is the function of these prerequisites? While it seems logical that a basic understanding of biological and…

  6. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures andmore » Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.« less

  7. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.

    PubMed

    Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya

    2013-07-01

    The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Antimicrobial Photodynamic Inactivation and Antitumor Photodynamic Therapy with Fullerenes

    NASA Astrophysics Data System (ADS)

    de Freitas, Lucas F.

    2016-04-01

    This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.

  9. Symposium on Molecular Spectroscopy (39th) Held in Columbus, Ohio on 11-15 Jun 84.

    DTIC Science & Technology

    1984-06-15

    measured infrared absorbances to Gaussian and Voigt profiles. This work was supported by the Director, Office of Energy Research, Office of Basic Energy ...molecules) 7l) Liquid state (12 Solid 0 ate (electroriic) 3) Elect ronic theory IS Mat rix spectra 113) Solid state (i nfraredl 14) Energy transfer q) Mi...Y. CHOW CHIU, Department of Chemistry, Howard University, Washington, D.C., 20059. ME9. CALCULATION OF POTENTIAL ENERGY CURVES & FRANCK CONDON FACTORS

  10. Complete Blood Count (For Parents)

    MedlinePlus

    ... Test: Basic Metabolic Panel (BMP) Blood Test: Hemoglobin Basic Blood Chemistry Tests Word! Complete Blood Count (CBC) Medical Tests and Procedures (Video Landing Page) Getting a Blood Test (Video) Medical Tests: What to Expect ... View more About Us Contact Us ...

  11. Interactive Chemistry Journey (by Steven D. Gammon, Lynn Hunsberger, Sharon Hutchison)

    NASA Astrophysics Data System (ADS)

    McCool, Debra J.

    1998-05-01

    Prentice Hall: Upper Saddle River, NJ, 1997. CD-ROM (Hybrid, MAC and WIN). ISBN 013 548116-3. 26.25 purchased separately; 10.00 when purchased with Prentice Hall Textbook. Interactive Chemistry Journey is a single CD-ROM packed with excellent chemistry content. Every topic that would be covered in high school chemistry and first-year college chemistry is well represented: basic skills, energy and matter, atomic structure, molecular structure, gases, kinetics, and equilibrium. Each content unit has interactive lessons and problems, including MCAT review questions. Several units have simulations that the student can manipulate to better understand the concepts.

  12. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  13. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  14. Chem I Supplement: Emphasis on Acids and Bases

    ERIC Educational Resources Information Center

    Journal of Chemical Education Staff

    1977-01-01

    Provides supplementary notes on acids and bases suitable for secondary school chemistry instruction, including acidity in solid and natural waters, acidity balance in body chemistry, acid and basic foods, pH values of common fluids, examples of drugs, and commercial preparation of nitric acid. (SL)

  15. Radiation Chemistry in Organized Assemblies.

    ERIC Educational Resources Information Center

    Thomas, J. K.; Chen, T. S.

    1981-01-01

    Expands the basic concepts regarding the radiation chemistry of simple aqueous systems to more complex, but well defined, organized assemblies. Discusses the differences in behavior in comparison to simple systems. Reviews these techniques: pulse radiolysis, laser flash, photolysis, and steady state irradiation by gamma rays or light. (CS)

  16. Chemistry and Warfare: A General Studies Course

    NASA Astrophysics Data System (ADS)

    Gooch, E. Eugene

    2002-07-01

    Liberal arts courses with a science focus have been welcome in college curricula for a number of years. A course for nonmajors that blends basic chemistry with military history is described. It includes a regional conflict simulation involving the development and use of chemical weapons.

  17. Cigarette smoking. Health effects and cessation strategies.

    PubMed

    Sachs, D P

    1986-05-01

    During the last 15 years substantial advances in the fields of analytical chemistry, behavioral pharmacology, neurologic sciences, and the behavioral sciences have produced new understanding and insight into why people smoke and how they can stop. These fundamental research efforts have now produced treatment strategies that have objectively documented success rates and that the physician can now implement in his office. Impressive as current results can be, when the physician is willing to spend appropriate and necessary time, effort, and energy, current research indicates that our basic neurochemical understanding of cigarette smoking should improve substantially and lead to even more effective treatment interventions in the next 10 years.

  18. [Practical chemistry education provided by team-based learning (TBL) and peer evaluation].

    PubMed

    Yasuhara, Tomohisa; Konishi, Motomi; Nishida, Takahiro; Kushihata, Taro; Sone, Tomomichi; Kurio, Wasako; Yamamoto, Yumi; Nishikawa, Tomoe; Yanada, Kazuo; Nakamura, Mitsutaka

    2014-01-01

    Learning chemistry is cumulative: basic knowledge and chemical calculation skills are required to gain understanding of higher content. However, we often suffer from students' lack of learning skills to acquire these concepts. One of the reasons is the lack of adequate training in the knowledge and skills of chemistry, and one of the reasons for this lack is the lack of adequate evaluation of training procedures and content. Team-based learning (TBL) is a strong method for providing training in the knowledge and skills of chemistry and reaffirms the knowledge and skills of students of various levels. In our faculty, TBL exercises are provided for first-year students concurrently with lectures in physical chemistry and analytical chemistry. In this study, we researched the adoption of a peer evaluation process for this participatory learning model. Questionnaires taken after TBL exercises in the previous year showed a positive response to TBL. Further, a questionnaire taken after TBL exercises in the spring semester of the current year also yielded a positive response not only to TBL but also to peer evaluation. In addition, a significant correlation was observed between the improvement of students' grades in chemistry classes and the feeling the percentage (20%) of peer evaluation in overall evaluation low (logistic regression analysis, p=0.022). On the basis of the findings, we argue that TBL provides a generic, practical learning environment including an effective focus on learning strategy and evaluation of knowledge, skills, and attitudes, and studies on the educational effects of TBL and peer evaluation.

  19. Report of Workshop on Repetitive Opening Switches

    DTIC Science & Technology

    1981-06-01

    needed. This work must also pay close attention to the poorly understood plasma chemistry in these switches and develop models for discharges and dis...circuit model. Inclusion of plasma chemistry . 2. Compile and measure (when need- ed) fundamental data such as rate coefficients, cross-sec- tions, etc...Include plasma chemistry effects in the code. Conduct literature search. Carry out basic measurements for gas- es and gas mixtures under con

  20. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  1. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  2. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions.

    PubMed

    Chieregato, Alessandro; Velasquez Ochoa, Juliana; Bandinelli, Claudia; Fornasari, Giuseppe; Cavani, Fabrizio; Mella, Massimo

    2015-01-01

    A common way to convert ethanol into chemicals is by upgrading it over oxide catalysts with basic features; this method makes it possible to obtain important chemicals such as 1-butanol (Guerbet reaction) and 1,3-butadiene (Lebedev reaction). Despite their long history in chemistry, the details of the close inter-relationship of these reactions have yet to be discussed properly. Our present study focuses on reactivity tests, in situ diffuse reflectance infrared Fourier transform spectroscopy, MS analysis, and theoretical modeling. We used MgO as a reference catalyst with pure basic features to explore ethanol conversion from its very early stages. Based on the obtained results, we formulate a new mechanistic theory able to explain not only our results but also most of the scientific literature on Lebedev and Guerbet chemistry. This provides a rational description of the intermediates shared by the two reaction pathways as well as an innovative perspective on the catalyst requirements to direct the reaction pathway toward 1-butanol or butadiene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, W. C.; Easter, Richard C.

    2013-02-22

    A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed andmore » repeatability of Ros- 2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.« less

  4. Reviews.

    ERIC Educational Resources Information Center

    Newland, Robert J.; And Others

    1988-01-01

    Reviews four organic chemistry computer programs and three books. Software includes: (1) NMR Simulator 7--for IBM or Macintosh, (2) Nucleic Acid Structure and Synthesis--for IBM, (3) Molecular Design Editor--for Apple II, and (4) Synthetic Adventure--for Apple II and IBM. Book topics include physical chemistry, polymer pioneers, and the basics of…

  5. Chemistry Students' Erroneous Conceptions of Limiting Reagent.

    ERIC Educational Resources Information Center

    Mammen, K. J.

    1996-01-01

    Describes a study of 32 University of Transkei (South Africa) freshmen's conceptualization of "limiting reagent," a basic concept in chemistry, based on student responses to two written test questions and clinical interviews. Results indicated that a high percentage of students had misconceptions and could not apply the concept…

  6. Astronomy Matters for Chemistry Teachers.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; And Others

    1996-01-01

    Describes basic misconceptions about the origin of elements and forms of matter found in chemistry texts that need modification in light of modern observational data and interpretations given in astronomy. Notes that there are forms of matter other than elements and compounds. Confounding examples from astronomy include white dwarfs, neutron…

  7. Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy

    ERIC Educational Resources Information Center

    Dionisio, Madalena S. C.; Diogo, Herminio P.; Farinha, J. P. S.; Ramos, Joaquim J. Moura

    2005-01-01

    A laboratory experiment for undergraduate physical chemistry courses that uses the experimental technique of dielectric relaxation spectroscopy to study molecular mobility in a crystal is proposed. An experiment provides an excellent opportunity for dealing with a wide diversity of important basic concepts in physical chemistry.

  8. 76 FR 372 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Oncology 1--Basic..., Bethesda, MD 20892, 301-495- 1718, [email protected] . Name of Committee: Biological Chemistry and Macromolecular Biophysics Integrated Review Group; Synthetic and Biological Chemistry B Study Section. Date...

  9. The problem of polysemy in the first thousand words of the General Service List: A corpus study of secondary chemistry texts

    NASA Astrophysics Data System (ADS)

    Clemmons, Karina

    Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.

  10. The Mathematics of Garlic

    ERIC Educational Resources Information Center

    Moore, Nathan T.; Deming, John C.

    2010-01-01

    The garlic problem presented in this article develops several themes related to dimensional analysis and also introduces students to a few basic statistical ideas. This garlic problem was used in a university preparatory chemistry class, designed for students with no chemistry background. However, this course is unique because one of the primary…

  11. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  12. A Comprehensive General Chemistry Demonstration

    ERIC Educational Resources Information Center

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  13. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    ERIC Educational Resources Information Center

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  14. General Chemistry, 1970 Edition.

    ERIC Educational Resources Information Center

    Dunham, Orson W.; Franke, Douglas C.

    This publication is a syllabus for a senior high school chemistry course designed for the average ability, nonscience major. The content of the syllabus is divided into three basic core areas: Area I: Similarities and Dissimilarities of Matter (9 weeks); Area II: Preparation and Separation of Substances (10 weeks); Area III: Structure and…

  15. Cycles for Science: Curriculum Supplement for Chemistry (Grades 9-12).

    ERIC Educational Resources Information Center

    Rogers, Diana, Ed.

    This document was developed in cooperation with secondary teachers and solid waste management professionals. The goal is to integrate steel recycling, natural resource conservation, and solid waste management into science learning. Basic concepts from the following chemistry units have been used to design the lessons and activities: transition…

  16. Introductory Linear Regression Programs in Undergraduate Chemistry.

    ERIC Educational Resources Information Center

    Gale, Robert J.

    1982-01-01

    Presented are simple programs in BASIC and FORTRAN to apply the method of least squares. They calculate gradients and intercepts and express errors as standard deviations. An introduction of undergraduate students to such programs in a chemistry class is reviewed, and issues instructors should be aware of are noted. (MP)

  17. Sudoku Puzzles as Chemistry Learning Tools

    ERIC Educational Resources Information Center

    Crute, Thomas D.; Myers, Stephanie A.

    2007-01-01

    A sudoku puzzle was designed that incorporated lists of chemistry terms like polyatomic ions, organic functional groups or strong nucleophiles that students need to learn. It was found that students enjoyed solving such puzzles and also such puzzles made the boring tasks of memorizing basic chemical terms an exciting one.

  18. Vesicle encapsulation of a nonbiological photochemical system capable of reducing NAD(+) to NADH.

    PubMed

    Summers, David P; Rodoni, David

    2015-10-06

    One of the fundamental structures of a cell is the membrane. Self-assembling lipid bilayer vesicles can form the membrane of an artificial cell and could also have plausibly assembled prebiotically for the origin of life. Such cell-like structures, that encapsulate some basic subset of the functions of living cells, are important for research to infer the minimum chemistry necessary for a cell, to help understand the origin of life, and to allow the production of useful species in microscopic containers. We show that the encapsulation of TiO2 particles has the potential to provide the basis for an energy transduction system inside vesicles which can be used to drive subsequent chemistry. TiO2 encapsulated in vesicles can be used to produce biochemical species such as NADH. The NADH is formed from NAD(+) reduction and is produced in a form that is able to drive further enzymatic chemistry. This allows us to link a mineral-based, nonbiological photosystem to biochemical reactions. This is a fundamental step toward being able to use this mineral photosystem in a protocell/artificial cell.

  19. Basic Blood Tests (For Parents)

    MedlinePlus

    ... how well the kidneys are working and how well the body is absorbing sugars. Tests for Electrolytes Typically, tests for electrolytes measure levels ... blood substances measured in the basic blood chemistry test include blood ... tell how well the kidneys are functioning, and glucose, which indicates ...

  20. Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation

    NASA Astrophysics Data System (ADS)

    Camparo, James

    2005-03-01

    The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.

  1. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  2. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darlene Roth

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high ratesmore » of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The two main purchases are an atomic force microscope (AFM) and a scanning tunneling microscope (STM). These two devices allow us to view surfaces at much higher resolution than ever before, even to the level of individual atoms. Already the AFM has been incorporated into courses for advanced physics and biology students, allowing them to view at high resolution material such as carbon nanotubes, cell structure, and proteins. These devices offer possibilities for interdisciplinary collaboration among students and faculty in various departments that have barely begun to be tapped. Additional equipment, such as software, optical tables, lasers, and other support equipment, is also strengthening our research and teaching capabilities in optics-related areas.« less

  4. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  5. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  6. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  7. Some Aspects of Rubberlike Elasticity Useful in Teaching Basic Concepts in Physical Chemistry.

    ERIC Educational Resources Information Center

    Mark, J. E.

    2002-01-01

    Explains the benefits of including polymer topics in both graduate and undergraduate physical chemistry courses. Provides examples of how to use rubberlike elasticity to demonstrate some of the general and thermodynamic concepts including equations of state, Carnot cycles and mechanochemistry, gel collapse, energy storage and hysteresis, and…

  8. The Chemical and Educational Appeal of the Orange Juice Clock.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; And Others

    1996-01-01

    Describes the recent history, chemistry, and educational uses of the Orange Juice Clock demonstration in which a galvanic cell is made from the combination of a magnesium strip, a copper strip, and juice in a beaker. Discusses the chemistry basics, extensions for more advanced students, questions for student/teacher workshop participants, and…

  9. Fighting Tuberculosis in an Undergraduate Laboratory: Synthesizing, Evaluating and Analyzing Inhibitors

    ERIC Educational Resources Information Center

    Daniels, David; Berkes, Charlotte; Nekoie, Arjan; Franco, Jimmy

    2015-01-01

    A drug discovery project has been successfully implemented in a first-year general, organic, and biochemistry (GOB) health science course and second-year organic undergraduate chemistry course. This project allows students to apply the fundamental principles of chemistry and biology to a problem of medical significance, practice basic laboratory…

  10. Poetry and Alkali Metals: Building Bridges to the Study of Atomic Radius and Ionization Energy

    ERIC Educational Resources Information Center

    Araujo, J. L.; Morais, C.; Paiva, J. C.

    2015-01-01

    Exploring chemistry through its presence in the literature in general, and poetry in particular, may increase students' curiosity, may enhance several basic skills, such as writing, reading comprehension and argumentative skills, as well as may improve the understanding of the chemistry topics covered. Nevertheless, the pedagogical potential of…

  11. New From Online: Toying With Chemistry

    ERIC Educational Resources Information Center

    Harris, Julie; Kehoe, Steven

    2005-01-01

    Toys which can help to learn the basics and more in-depth chemistry concept are investigated and explained, which are also available online on the website. Some of the examples are simple LCD clock powered by citric acid of lemon, crystal radio made from simple household materials, firework, homemade snow globe, which explains the properties of…

  12. First Report on Non-Thermal Plasma Reactor Scaling Criteria and Optimization Models

    DTIC Science & Technology

    1998-01-13

    decomposition chemistry of nitric oxide and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma ... chemistry , the target species properties, and the reactor operating parameters. System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.

  13. Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control

    DTIC Science & Technology

    1993-06-01

    electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be

  14. A Simple Mnemonic for Tautomerization Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Stephens, Chad E.

    2010-01-01

    The familiar word OREO (as in the cookie) is presented as a simple mnemonic for remembering the basic steps of the classical tautomerization mechanisms in organic chemistry. For acid-catalyzed tautomerizations, OREO stands for proton on, resonance, proton off. For base-catalyzed tautomerizations, OREO stands for proton off, resonance, proton on.…

  15. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications.

    PubMed

    Hanks, Lawrence M; Millar, Jocelyn G

    2016-07-01

    Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.

  16. The Hitchhiker's Guide to Flow Chemistry ∥.

    PubMed

    Plutschack, Matthew B; Pieber, Bartholomäus; Gilmore, Kerry; Seeberger, Peter H

    2017-09-27

    Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.

  17. Life sciences and environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less

  18. Electronic access to ONREUR/ONRAISIA S and T reports

    NASA Technical Reports Server (NTRS)

    Mccluskey, William

    1994-01-01

    The Office of Naval Research maintains two foreign field offices in London, England and in Tokyo, Japan. These offices survey world-wide findings, trends and achievements in science and technology. These offices maintain liaison between U.S. Navy and foreign scientific research and development organizations conducting programs of naval interest. Expert personnel survey foreign scientific and technical activities, identify new directions and progress of potential interest, and report their findings. Report topics cover a broad range of basic scientific thrusts in mathematics, physics, chemistry, computer science, and oceanography, as well as advances in technologies such as electronics, materials, optics, and robotics. These unclassified reports will be made available via the Internet in 1995, replacing hard-copy publication.

  19. Representing Chemistry: How Instructional Use of Symbolic, Microscopic, and Macroscopic Mode Influences Student Conceptual Understanding in Chemistry

    NASA Astrophysics Data System (ADS)

    Wood, Lorelei

    Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had differential and statistically significant achievement over the course of the semester. This research supports results of other similar studies, as well as providing some unexpected results from the students involved.

  20. Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.

    PubMed

    Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A

    2017-10-02

    The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Assessing the Impact of Aircraft Emissions on the Stratosphere

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Anderson, D. E.

    1999-01-01

    For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.

  2. A study of the factors affecting the attitudes of young female students toward chemistry at the high school level

    NASA Astrophysics Data System (ADS)

    Banya, Santonino K.

    Chemistry is a human endeavor that relies on basic human qualities like creativity, insights, reasoning, and skills. It depends on habits of the mind: skepticism, tolerance of ambiguity, openness to new ideas, intellectual honesty, curiosity, and communication. Young female students begin studying chemistry curiosity; however, when unconvinced, they become skeptical. Researches focused on gender studies have indicated that attitudes toward science education differ between males and females. A declining interest in chemistry and the under representation of females in the chemical science was found (Jacobs, 2000). This study investigated whether self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry were affecting the attitudes toward chemistry, of 183 high school young females across the United States. The young female students surveyed, had studied chemistry for at least one year prior to participating in the study during the fall semester of 2003. The schools were randomly selected represented diverse economic backgrounds and geographical locations. Data were obtained using Chemistry Attitude Influencing Factors (CAIF) instrument and from interviews with a focus group of three young female students about the effect of self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry on their decision to study chemistry. The CAIF instrument consisted of a 12-items self-confidence questionnaire (ConfiS), 12-items each of the influence of role models (RoMoS) and knowledge about usefulness of chemistry (US) questionnaire. ConfiS was adopted (with permission) from CAEQ (Coll & Dalgety, 2001), and both RoMoS and US were modified from TOSRA (Fraser, 1978), public domain document. The three young female students interviewed, gave detailed responses about their opinions regarding self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry on their attitudes toward the study of chemistry. Both quantitative (a Likert-type Scale questionnaire) and qualitative (open-ended questions) items were used to investigate the views of young female students. Results of the survey were analysed using a correlation test. Significant differences were found in the Likert-type scale scores, providing evidences supporting literature that suggests, self-confidence toward chemistry, the influence of role models, and knowledge about the usefulness of chemistry affect the decision of young female students about the study of chemistry. Interview responses corroborated the results from the survey. Strategies for addressing the problems and recommendations for further studies have been suggested.

  3. Reduced Graphene Oxide Joins Graphene Oxide to Teach Undergraduate Students Core Chemistry and Nanotechnology Concepts

    ERIC Educational Resources Information Center

    Kondratowicz, Izabela; Nadolska, Malgorzata; Z?elechowska, Kamila

    2018-01-01

    Novel carbon nanomaterials such as reduced graphene oxide (rGO) and graphene oxide (GO) can be easily incorporated into the undergraduate curriculum to discuss basic chemistry and nanotechnology concepts. This paper describes a laboratory experiment designed to study the differences between GO and rGO regarding their physicochemical properties…

  4. Teaching and Learning the Concept of Chemical Bonding

    ERIC Educational Resources Information Center

    Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.

    2010-01-01

    Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…

  5. Exploring Dominant Types of Explanations Built by General Chemistry Students

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2010-01-01

    The central goal of our study was to explore the nature of the explanations generated by science and engineering majors with basic training in chemistry to account for the colligative properties of solutions. The work was motivated by our broader interest in the characterisation of the dominant types of explanations that science college students…

  6. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  7. General Chemistry Laboratory Experiment to Demonstrate Organic Synthesis, Fluorescence, and Chemiluminescence through Production of a Biphasic Glow Stick

    ERIC Educational Resources Information Center

    Pay, Adam L.; Kovash, Curtiss; Logue, Brian A.

    2017-01-01

    A laboratory experiment is described for beginning, nonmajor chemistry students, which allows students to examine the phenomena of fluorescence and chemiluminescence, as well as gain experience in basic organic synthesis. Students synthesize fluorescein and bis(2,4,6-trichlorophenyl) oxalate (TCPO) to explore fluorescence and chemiluminescence by…

  8. 75 FR 28014 - Petitions Concerning Whether Ammonia or Urea Sold or Distributed and Used for Certain Purposes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... following assertions and arguments: As shown in the background information on the chemistry of chlorine in..., there is high organic content in the water systems which can be controlled through the generation of... each system for water treatment. The basic chemistry involving both the Nalco and Buckman products and...

  9. LEGO-Method--New Strategy for Chemistry Calculation

    ERIC Educational Resources Information Center

    Molnar, Jozsef; Molnar-Hamvas, Livia

    2011-01-01

    The presented strategy of chemistry calculation is based on mole-concept, but it uses only one fundamental relationship of the amounts of substance as a basic panel. The name of LEGO-method comes from the famous toy of LEGO[R] because solving equations by grouping formulas is similar to that. The relations of mole and the molar amounts, as small…

  10. Enhancing Students' HOTS in Laboratory Educational Activity by Using Concept Map as an Alternative Assessment Tool

    ERIC Educational Resources Information Center

    Ghani, I. B. A.; Ibrahim, N. H.; Yahaya, N. A.; Surif, J.

    2017-01-01

    Educational transformation in the 21st century demands in-depth knowledge and understanding in order to promote the development of higher-order thinking skills (HOTS). However, the most commonly reported problem with respect to developing a knowledge of chemistry is poor mastery of basic concepts. Chemistry laboratory educational activities are…

  11. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    ERIC Educational Resources Information Center

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  12. Guidelines for Measuring Changes in Seawater pH and Associated Carbonate Chemistry in Coastal Environments of the Eastern United States

    EPA Science Inventory

    This report begins with descriptions of the differences between coastal and ocean acidification, factors contributing to acidification on the US east coast, and basic characteristics of the seawater carbonate system and its parameters. A basic survey of available methods and cha...

  13. Getting Back to Basics (& Acidics)

    ERIC Educational Resources Information Center

    Rhodes, Sam

    2006-01-01

    This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…

  14. An Evaluation of the Chemical Origin of Life as a Context for Teaching Undergraduate Chemistry

    ERIC Educational Resources Information Center

    Venkataraman, Bhawani

    2011-01-01

    The chemical origin of life on earth has been used as a conceptual framework in an introductory, undergraduate chemistry course. The course explores the sequence of events through which life is believed to have emerged, from atoms to molecules to macromolecular systems, and uses this framework to teach basic chemical concepts. The results of this…

  15. Water as a Solvent for Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Pratt, Lawrence R.

    2015-01-01

    "Follow the water" is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.

  16. Using the Plan View to Teach Basic Crystallography in General Chemistry

    ERIC Educational Resources Information Center

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  17. A Cost-Effective Physical Modeling Exercise to Develop Students' Understanding of Covalent Bonding

    ERIC Educational Resources Information Center

    Turner, Kristy L.

    2016-01-01

    Chemical bonding is one of the basic concepts in chemistry, and the topic of covalent bonding forms an important core of knowledge for the high school chemistry student. For many teachers it is a challenging concept to teach, not least because it relies mainly on traditional instruction and written work. Similarly, many students find the topic…

  18. Identifying Students' Misconceptions about Nuclear Chemistry: A Study of Turkish High School Students

    ERIC Educational Resources Information Center

    Nakiboglu, Canan; Tekin, Berna Bulbul

    2006-01-01

    This study represents the first attempt to elucidate and detail the types of misconceptions high school students hold relating to basic concepts and topics of nuclear chemistry. A diagnostic multiple-choice test was administered to 157 tenth-grade students (15-16 years old) and the data were analyzed. The results show that high school students…

  19. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  20. Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.

    PubMed

    Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor

    2016-01-01

    In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.

  1. Influence of porous texture and surface chemistry on the CO₂ adsorption capacity of porous carbons: acidic and basic site interactions.

    PubMed

    Sánchez-Sánchez, Angela; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D

    2014-12-10

    Doped porous carbons exhibiting highly developed porosity and rich surface chemistry have been prepared and subsequently applied to clarify the influence of both factors on carbon dioxide capture. Nanocasting was selected as synthetic route, in which a polyaramide precursor (3-aminobenzoic acid) was thermally polymerized inside the porosity of an SBA-15 template in the presence of different H3PO4 concentrations. The surface chemistry and the porous texture of the carbons could be easily modulated by varying the H3PO4 concentration and carbonization temperature. Porous texture was found to be the determinant factor on carbon dioxide adsorption at 0 °C, while surface chemistry played an important role at higher adsorption temperatures. We proved that nitrogen functionalities acted as basic sites and oxygen and phosphorus groups as acidic ones toward adsorption of CO2 molecules. Among the nitrogen functional groups, pyrrolic groups exhibited the highest influence, while the positive effect of pyridinic and quaternary functionalities was smaller. Finally, some of these N-doped carbons exhibit CO2 heats of adsorption higher than 42 kJ/mol, which make them excellent candidates for CO2 capture.

  2. Research in bioanalysis and separations at the University of Nebraska - Lincoln.

    PubMed

    Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert

    2011-05-01

    The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.

  3. Different methods and metaphysics in early molecular genetics--a case of disparity of research?

    PubMed

    Deichmann, Ute

    2008-01-01

    The encounter between two fundamentally different approaches in seminal research in molecular biology--the problems, aims, methods and metaphysics--is delineated and analyzed. They are exemplified by the microbiologist Oswald T. Avery who, in line with the reductionist mechanistic metaphysics of Jacques Loeb, attempted to explain basic life phenomena through chemistry; and the theoretical physicist Max Delbrück who, influenced by Bohr's antimechanistic views, preferred to explain these phenomena without chemistry. Avery's and Delbrück's most important studies took place concurrently. Thus analysis of their contrasting approaches lends itself to examination of the Weltanschauungen view concerning the role of fundamental (metaphysical) assumptions in scientific change, that is, the view that empirical research cannot be neutral in regard to the worldviews of the researchers. This study shows that the initial ostensible disparity (non-integratibility) of the two approaches lasted for just a short time. Ironically it was a student of Delbrück's school, James Watson, who (with Crick) proposed a chemical model, the DNA double helix, as a solution to Delbrück's problem. The structure of DNA has not been seriously challenged over the past half century Moreover, Watson's and Crick's work did not call into question the validity of Delbrück's research, but opened it up to entirely new approaches. The case of Avery and Delbrück demonstrates that after initial obstacles were overcome the different fundamental attitudes and the resulting research practices were capable of integration.

  4. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  5. Bridging the gap: basic metabolomics methods for natural product chemistry.

    PubMed

    Jones, Oliver A H; Hügel, Helmut M

    2013-01-01

    Natural products and their derivatives often have potent physiological activities and therefore play important roles as both frontline treatments for many diseases and as the inspiration for chemically synthesized therapeutics. However, the detection and synthesis of new therapeutic compounds derived from, or inspired by natural compounds has declined in recent years due to the increased difficulty of identifying and isolating novel active compounds. A new strategy is therefore necessary to jumpstart this field of research. Metabolomics, including both targeted and global metabolite profiling strategies, has the potential to be instrumental in this effort since it allows a systematic study of complex mixtures (such as plant extracts) without the need for prior isolation of active ingredients (or mixtures thereof). Here we describe the basic steps for conducting metabolomics experiments and analyzing the results using some of the more commonly used analytical and statistical methodologies.

  6. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  7. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  8. ``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy

    NASA Astrophysics Data System (ADS)

    Mualem, Roni; Eylon, Bat-Sheva

    2007-03-01

    Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.

  9. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments.

    PubMed

    Rocha, M S

    2015-09-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.

  10. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  11. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thackeray, Michael M.

    "Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries" was submitted by the Center for Electrochemical Energy Science (CEES) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from four institutions: ANL (lead), Northwestern University, Purdue University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department ofmore » Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrochemical Energy Science (CEES) is "to create a robust fundamental understanding of the phenomena that control the reactivity of electrified oxide interfaces, films and materials relevant to lithium-ion battery chemistries". Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.« less

  12. Freely available compound data sets and software tools for chemoinformatics and computational medicinal chemistry applications

    PubMed Central

    Bajorath, Jurgen

    2012-01-01

    We have generated a number of  compound data sets and programs for different types of applications in pharmaceutical research. These data sets and programs were originally designed for our research projects and are made publicly available. Without consulting original literature sources, it is difficult to understand specific features of data sets and software tools, basic ideas underlying their design, and applicability domains. Currently, 30 different entries are available for download from our website. In this data article, we provide an overview of the data and tools we make available and designate the areas of research for which they should be useful. For selected data sets and methods/programs, detailed descriptions are given. This article should help interested readers to select data and tools for specific computational investigations. PMID:24358818

  13. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  14. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  15. Determination of Copper and Zinc in Brass: Two Basic Methods

    ERIC Educational Resources Information Center

    Fabre, Paul-Louis; Reynes, Olivier

    2010-01-01

    In this experiment, the concentrations of copper and zinc in brass are obtained by two methods. This experiment does not require advanced instrumentation, uses inexpensive chemicals, and can be easily carried out during a 3-h upper-level undergraduate laboratory. Pedagogically, the basic concepts of analytical chemistry in solutions, such as pH,…

  16. Comparative planetology - Basic concepts, terminology, and definitions

    NASA Astrophysics Data System (ADS)

    Sliuta, Evgenii N.; Ivanov, Mikhail A.; Ivanov, Andrei V.

    The book presents an alphabetical list of Russian terms, and their English equivalents, used in comparative planetology, space chemistry, and meteoritics, as well as many terms used in geology, geophysics, geochemistry, and sciences related to space studies. Besides giving the definitions of these terms, this work also contains basic information on planets, their satellites, and the largest asteroids.

  17. Using "Basic Principles" to Understand Complex Science: Nicotine Smoke Chemistry and Literature Analogies

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.

    2005-01-01

    The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…

  18. Coordinating an IPLS class with a biology curriculum: NEXUS/Physics

    NASA Astrophysics Data System (ADS)

    Redish, Edward

    2014-03-01

    A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.

  19. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    ERIC Educational Resources Information Center

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  20. Children: General Health

    MedlinePlus

    ... Syndrome (IBS) Neurofibromatosis Occupational Therapy Osgood-Schlatter Disease Physical Therapy When and Where to Get Medical Care Sick Kids Basic Blood Chemistry Tests Blood Culture Blood Test: Complete Blood Count ...

  1. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.

  2. Chemistry Education Research Trends: 2004-2013

    ERIC Educational Resources Information Center

    Teo, Tang Wee; Goh, Mei Ting; Yeo, Leck Wee

    2014-01-01

    This paper presents findings from a content analysis of 650 empirical chemistry education research papers published in two top-tiered chemistry education journals "Chemistry Education Research and Practice" and "Journal of Chemical Education," and four top-tiered science education journals "International Journal of Science…

  3. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  4. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  5. Teaching Two Basic Nanotechnology Concepts in Secondary School by Using a Variety of Teaching Methods

    ERIC Educational Resources Information Center

    Blonder, Ron; Sakhnini, Sohair

    2012-01-01

    A nanotechnology module was developed for ninth grade students in the context of teaching chemistry. Two basic concepts in nanotechnology were chosen: (1) size and scale and (2) surface-area-to-volume ratio (SA/V). A wide spectrum of instructional methods (e.g., game-based learning, learning with multimedia, learning with models, project based…

  6. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  7. Representational Competence in Chemistry: A Comparison between Students with Different Levels of Understanding of Basic Chemical Concepts and Chemical Representations

    ERIC Educational Resources Information Center

    Sim, Joong Hiong; Daniel, Esther Gnanamalar Sarojini

    2014-01-01

    Representational competence is defined as "skills in interpreting and using representations". This study attempted to compare students' of high, medium, and low levels of understanding of (1) basic chemical concepts, and (2) chemical representations, in their representational competence. A total of 411 Form 4 science students (mean age =…

  8. The Integration of Nutrition Education in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Raw, Isaias

    1977-01-01

    At the Center for Biomedical Education at the City University of New York, nutrition is integrated into the chemistry-biochemistry sequence of a six-year B.S.-M.D. program. Students perform an actual analysis of a sample of their own food, learning basic techniques and concepts, and also carry on experiments with rats on other diets. (Editor/LBH)

  9. Beginning to Teach Chemistry: How Personal and Academic Characteristics of Pre-Service Science Teachers Compare with Their Understandings of Basic Chemical Ideas

    ERIC Educational Resources Information Center

    Kind, Vanessa; Kind, Per Morten

    2011-01-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…

  10. Using the Chemistry of Fireworks to Engage Students in Learning Basic Chemical Principles: A Lesson in Eco-Friendly Pyrotechnics

    ERIC Educational Resources Information Center

    Steinhauser, Georg; Klapotke, Thomas M.

    2010-01-01

    Fascination with fireworks and pyrotechnics can be used for educational purposes. Several aspects of pyrochemistry such as redox reactions, flame colors, or the theory of combustion can be incorporated in the curriculum to illustrate some basic chemical principles, guaranteeing a lesson that will be engaging and memorable. Beyond classic…

  11. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  12. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  13. Black-and-white photographic chemistry: A reference

    NASA Technical Reports Server (NTRS)

    Walker, E. D. (Compiler)

    1986-01-01

    This work is intended as a reference of black-and-white photographic chemistry. Included is a basic history of the photographic processes and a complete description of all chemicals used, formulas for the development and fixation process, and associated formulas such as cleaners, hardeners, and toners. The work contains a complete glossary of photographic terms, a trouble-shooting section listing causes and effects regarding photographic film and papers, and various conversion charts.

  14. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  15. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  16. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  17. Cumulative reports and publications through 31 December 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    All reports for the calendar years 1975 through December 1983 are listed by author. Since ICASE reports are intended to be preprints of articles for journals and conference proceedings, the published reference is included when available. Thirteen older journal and conference proceedings references are included as well as five additional reports by ICASE personnel. Major categories of research covered include: (1) numerical methods, with particular emphasis on the development and analysis of basic algorithms; (2) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; and (3) computer systems and software, especially vector and parallel computers, microcomputers, and data management.

  18. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  19. Chemical leasing in the context of sustainable chemistry.

    PubMed

    Moser, Frank; Karavezyris, Vassilios; Blum, Christopher

    2015-05-01

    Chemical leasing is a new and innovative approach of selling chemicals. It aims at reducing the risks emanating from hazardous substances and ensuring long-term economic success within a global system of producing and using chemicals. This paper explores how, through chemical leasing, the consumption of chemicals, energy, resources and the generation of related wastes can be reduced. It also analyses the substitution of hazardous chemicals as a tool to protect environmental, health and safety and hence ensure compliance with sustainability criteria. For this, we are proposing an evaluation methodology that seeks to provide an answer to the following research questions: (1) Does the application of chemical leasing promote sustainability in comparison to an existing chemicals production and management system? 2. If various chemical leasing project types are envisaged, which is the most promising in terms of sustainability? The proposed methodology includes a number of basic goals and sub-goals to assess the sustainability for eight different chemical leasing case studies that have been implemented both at the local and the national levels. The assessment is limited to the relative assessment of specific case studies and allows the comparisons of different projects in terms of their relative contribution to sustainable chemistry. The findings of our assessment demonstrate that chemical leasing can be regarded as promoting sustainable chemistry in five case studies with certainty. However, on the grounds of our assessment, we cannot conclude with certainty that chemical leasing has equivalent contribution to sustainable chemistry in respect of three further case studies.

  20. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. What Is Huntington Disease?

    MedlinePlus

    ... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...

  2. What Is Phenylketonuria (PKU)?

    MedlinePlus

    ... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...

  3. Middle/high school students in the research laboratory: A summer internship program emphasizing the interdisciplinary nature of biology.

    PubMed

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M

    2006-03-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  4. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan.

    PubMed

    Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk

    2013-12-17

    The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller's famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller's experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O'Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102-104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.

  5. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numericalmore » methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.« less

  6. Characterization of Nanophase Materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  7. Concept cartoons for diagnosing student’s misconceptions in the topic of buffers

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, I. A.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    Student’s misconceptions have been concerned over twenty years in the chemistry education research. It influences students to learn new knowledge and gain a correct concept. The buffer solution is found as a difficult topic due to student’s misconception. However, the research related this subject are still rare. Concept cartoon has been used as one of the effective tools to diagnose misconceptions. This study aims to identify the effectiveness of concept cartoon to diagnose them. The concept cartoon consists of three concept questions. 98 students of grade 11 as respondents of this research and followed by interview for selected students. The data obtain of the study are analyzed by using a scoring key. The detected misconceptions are about what buffers do, what buffers are, and how buffers are able to do what they do. Concept cartoon is potential as a basic tool for remedial teaching.

  8. Differences in Routine Laboratory Ordering Between a Teaching Service and a Hospitalist Service at a Single Academic Medical Center.

    PubMed

    Ellenbogen, Michael I; Ma, Madeleine; Christensen, Nicholas P; Lee, Jungwha; O'Leary, Kevin J

    2017-01-01

    Studies have shown that the overutilization of laboratory tests ("labs") for hospitalized patients is common and can cause adverse health outcomes. Our objective was to compare the ordering tendencies for routine complete blood counts (CBC) and chemistry panels by internal medicine residents and hospitalists. This observational study included a survey of medicine residents and hospitalists and a retrospective analysis of labs ordering data. The retrospective data analysis comprised patients admitted to either the teaching service or nonteaching hospitalist service at a single hospital during 2014. The survey asked residents and hospitalists about their practices and preferences on labs ordering. The frequency and timing of one-time and daily CBC and basic chemistry panel ordering for teaching service and hospitalist patients were obtained from our data warehouse. The average number of CBCs per patient per day and chemistry panels per patient per day was calculated for both services and multivariate regression was performed to control for patient characteristics. Forty-four of 120 (37%) residents and 41 of 53 (77%) hospitalists responded to the survey. Forty-four (100%) residents reported ordering a daily CBC and chemistry panel rather than one-time labs at patient admission compared with 22 (54%) hospitalists ( P < 0.001). For CBCs, teaching service patients averaged 1.72/day and hospitalist service patients averaged 1.43/day ( P < 0.001). For basic chemistry panels, teaching service patients averaged 1.96/day and hospitalist service patients averaged 1.78/day ( P < 0.001). Results were similar in multivariate regression models adjusting for patient characteristics. Residents' self-reported and actual use of CBCs and chemistry panels is significantly higher than that of hospitalists in the same hospital. Our results reveal an opportunity for greater supervision and improved instruction of cost-conscious ordering practices.

  9. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  10. The Effect of Teacher Performance in Implementation of The 2013 Curriculum Toward Chemistry Learning Achievement

    NASA Astrophysics Data System (ADS)

    Dewi, L. P.; Djohar, A.

    2018-04-01

    This research is a study about implementation of the 2013 Curriculum on Chemistry subject. This study aims to determine the effect of teacher performance toward chemistry learning achievement. The research design involves the independent variable, namely the performance of Chemistry teacher, and the dependent variable that is Chemistry learning achievement which includes the achievement in knowledge and skill domain. The subject of this research are Chemistry teachers and High School students in Bandung City. The research data is obtained from questionnaire about teacher performance assessed by student and Chemistry learning achievement from the students’ report. Data were analyzed by using MANOVA test. The result of multivariate significance test shows that there is a significant effect of teacher performance toward Chemistry learning achievement in knowledge and skill domain with medium effect size.

  11. What Is Sickle Cell Disease?

    MedlinePlus

    ... have it? For more information... Acknowledgments Concept 15 : DNA and proteins are key molecules of the cell nucleus. Learn the basic chemistry of DNA and proteins. Concept 27 : Mutations are changes in ...

  12. B.S. Chemists: Experience and prospects in a changing scientific and technical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, T.; Burrelli, J.S.

    1995-12-31

    The men and women who hold a Bachelor`s degree in chemistry as their highest academic degree are an important for chemistry as their highest academic degree are an important for chemistry and science generally. {open_quotes}BS chemists{close_quotes} are the pool of U.S. residents from which future chemistry Ph.D.s (80 percent of them) and MDs (9 percent of the 1990 medical school class) are recruited and the basic pool of scientific and technical manpower for chemical and related industries. BS chemists are the most heterogeneous of all chemist groups and the most mobile: even at graduation, two-thirds of them intend to bemore » something else -- a Ph.D., MD, MBA, etc. -- in the near future. The mobility of many BS chemists is more to other careers, and hence the diffusion of chemical knowledge throughout the occupational spectrum, is primarily an outflow of BS holders utilizing their scientific training in other fields. This talk describes the past and present circumstances of BS chemists and makes some forecasts about these people about these people and those who will be the graduate of four-year chemistry programs in the future. A number of private and federal agencies collect data on chemists, but to chart the situation of the BS graduate, this paper draws on data sets maintained by the National Science Foundation and the National Research Council, both on BS and, for comparison, Ph.D. holders. For clarity, this analysis will not deal with the situation of MS chemists who, on most indicators fall as intuition would tell us, between the BS and Ph.D. groups. We also draw heavily on ACS Comprehensive Member Surveys and the Starting Salary Surveys of new graduates so identified by their academic departments.« less

  13. Students' Confidence in the Ability to Transfer Basic Math Skills in Introductory Physics and Chemistry Courses at a Community College

    ERIC Educational Resources Information Center

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month…

  14. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  15. FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraton, M.I.; Chen, X.; Gonsalves, K.E.

    1997-12-31

    A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.

  16. Experiences with a researcher-centric ELN† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02128b Click here for additional data file.

    PubMed Central

    Badiola, Katrina A.; Bird, Colin; Brocklesby, William S.; Casson, John; Chapman, Richard T.; Coles, Simon J.; Cronshaw, James R.; Fisher, Adam; Gloria, Danmar; Grossel, Martin C.; Hibbert, D. Brynn; Knight, Nicola; Mapp, Lucy K.; Marazzi, Luke; Matthews, Brian; Milsted, Andy; Minns, Russell S.; Mueller, Karl T.; Murphy, Kelly; Parkinson, Tim; Quinnell, Rosanne; Robinson, John S.; Robertson, Murray N.; Robins, Michael; Springate, Emma; Tizzard, Graham; Todd, Matthew H.; Williamson, Alice E.; Willoughby, Cerys; Yang, Erica; Ylioja, Paul M.

    2015-01-01

    Electronic Laboratory Notebooks (ELNs) are progressively replacing traditional paper books in both commercial research establishments and academic institutions. University researchers require specific features from ELNs, given the need to promote cross-institutional collaborative working, to enable the sharing of procedures and results, and to facilitate publication. The LabTrove ELN, which we use as our exemplar, was designed to be researcher-centric (i.e., not only aimed at the individual researcher's basic needs rather than to a specific institutional or subject or disciplinary agenda, but also able to be tailored because it is open source). LabTrove is being used in a heterogeneous set of academic laboratories, for a range of purposes, including analytical chemistry, X-ray studies, drug discovery and a biomaterials project. Researchers use the ELN for recording experiments, preserving data collected, and for project coordination. This perspective article describes the experiences of those researchers from several viewpoints, demonstrating how a web-based open source electronic notebook can meet the diverse needs of academic researchers. PMID:29308130

  17. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  18. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  19. 200 Years of Lithium and 100 Years of Organolithium Chemistry

    PubMed Central

    2018-01-01

    The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium‐based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air‐ and moisture‐sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents. PMID:29540939

  20. Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Tyler, David R.

    1986-01-01

    A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.

  1. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  2. Incorporation of basic research and service components in a field environmental geochemistry course

    NASA Astrophysics Data System (ADS)

    Senko, J.

    2015-12-01

    "Application-based service learning" (ABSL) refers to an approach to formal course instruction that integrates service and research components into the course. An ABSL approach was employed in a field-based environmental chemistry course, whose goal was to evaluate and monitor the aqueous geochemistry of coal mine-derived acid mine drainage (AMD) in the Appalachia basin. In this course, students conducted literature reviews on the geochemistry and environmental impacts of AMD, participated in a field sampling campaign of several AMD treatment systems, and conducted chemical analyses of the samples that they retrieved. The remainder of the course was dedicated to "lab meetings," during which data was analyzed, conclusions were drawn from the data, and a manuscript was drafted that described the findings of the field analyses, and made recommendations regarding the performance of the AMD treatment systems. The service component of the course focused on socioeconomic impacts of coal mining and the Appalachian region, with the final manuscript distributed to AMD treatment practitioners and state regulatory agencies. A comparison of pre- and post-course questionnaires that included Likert scale questions revealed that students' attitudes toward basic research improved over the period or the course. Based on the questionnaires attitudes toward service diminished, but "open-ended" questionnaires indicated an improved attitude toward both research and service, with an emphasis on the benefits of research that serves the community. Ultimately, we hope to develop approaches to compare the effectiveness of ABSL-based across disciplines.

  3. Air Force Research Laboratory (AFRL) research highlights, September--October 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    New AFOSR-sponsored research shows that exhausts from solid-fueled rocket motors have very limited impact on stratospheric ozone. The research provides the Air Force with hard data to support continued access to space using the existing fleet of rockets and rocket technology. This basic research data allows the Air Force to maintain a strongly proactive environmental stance, and to meet federal guidelines regarding environmental impacts. Long-standing conjecture within the international rocket community suggests that chlorine compounds and alumina particulates produced in solid rocket motor (SRM) exhausts could create localized, temporary ozone toss in rocket plumes following launches. The extent of amore » local depletion of ozone and its environmental impact depends on details of the composition and chemistry in these plumes. Yet direct measurements of plume composition and plume chemistry in the stratosphere had never been made. Uncertainty about these details left the Air Force and commercial space launch capability potentially vulnerable to questions about the environmental impact of rocket launches. In 1995, APOSR and the Space and Missiles Systems Center Launch Programs Office (SMC/CL) jointly began the Rocket Impacts on Stratospheric Ozone (RISO) program to make the first-ever detailed measurements of rocket exhaust plumes. These measurements were aimed at understanding how the exhaust from large rocket motors effect the Earth`s stratospheric ozone layer. The studies determined: the size distribution of alumina particles in these exhausts, the amount of reactive chlorine in SRM exhaust, and the size and duration of localized ozone toss in the rocket plumes.« less

  4. Real World of Industrial Chemistry: An Acid Can Be Basic.

    ERIC Educational Resources Information Center

    Fernelius, W. Conard, Ed.; And Others

    1979-01-01

    The uses of sulfuric acid in our technological society are given. The discussion includes sulfuric acid in the petroleum industry, construction industry, textile industry and in steel production. (SA)

  5. VIPoma

    MedlinePlus

    ... symptoms. Tests that may be done include: Blood chemistry tests (basic or comprehensive metabolic panel ) CT scan of the abdomen MRI of the abdomen Stool examination for cause of diarrhea and electrolyte levels VIP level in the blood

  6. 78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...

  7. The chemistry of TALSPEAK: A review of the science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    Here, the TALSPEAK Process (Trivalent Actinide Lanthanide Separation with Phosphorus-reagent Extraction from Aqueous Komplexes) was originally developed at Oak Ridge National Laboratory by B. Weaver and F.A. Kappelmann in the 1960s. It was envisioned initially as an alternative to the TRAMEX process (selective extraction of trivalent actinides by tertiary or quaternary amines over fission product lanthanides from concentrated LiCl solutions). TALSPEAK proposed the selective extraction of trivalent lanthanides away from the actinides, which are retained in the aqueous phase as aminopolycarboxylate complexes. After several decades of research and development, the conventional TALSPEAK process (based on di-(2-ethylhexyl) phosphoric acid (extractant) inmore » 1,4-di-isopropylbenzene (diluent) and a concentrated lactate buffer containing diethylenetriamine-N,N,N',N",N"-pentaacetic acid (actinide-selective holdback reagent)) has become a widely recognized benchmark for advanced aqueous partitioning of the trivalent 4f/5f elements. TALSPEAK chemistry has also been utilized as an actinide-selective stripping agent (Reverse TALSPEAK) with some notable success. Under ideal conditions, conventional TALSPEAK separates Am 3+ from Nd 3+ (the usual limiting pair) with a single-stage separation factor of about 100; both lighter and heavier lanthanides are more completely separated from Am 3+. Despite this apparent efficiency, TALSPEAK has not seen enthusiastic adoption for advanced partitioning of nuclear fuels at process scale for two principle reasons: 1) all adaptations of TALSPEAK chemistry to process scale applications require rigid pH control within a narrow range of pH, and 2) phase transfer kinetics are often slower than ideal. To compensate for these effects, high concentrations of the buffer (0.5-2 M H/Na lactate) are required. Acknowledgement of these complications in TALSPEAK process development has inspired significant research activities dedicated to improving understanding of the basic chemistry that controls TALSPEAK (and related processes based on the application of actinide-selective holdback reagents). In the following report, advances in understanding of the fundamental chemistry of TALSPEAK that have occurred during the past decade will be reviewed and discussed.« less

  8. The chemistry of TALSPEAK: A review of the science

    DOE PAGES

    Nash, Kenneth L.

    2014-11-13

    Here, the TALSPEAK Process (Trivalent Actinide Lanthanide Separation with Phosphorus-reagent Extraction from Aqueous Komplexes) was originally developed at Oak Ridge National Laboratory by B. Weaver and F.A. Kappelmann in the 1960s. It was envisioned initially as an alternative to the TRAMEX process (selective extraction of trivalent actinides by tertiary or quaternary amines over fission product lanthanides from concentrated LiCl solutions). TALSPEAK proposed the selective extraction of trivalent lanthanides away from the actinides, which are retained in the aqueous phase as aminopolycarboxylate complexes. After several decades of research and development, the conventional TALSPEAK process (based on di-(2-ethylhexyl) phosphoric acid (extractant) inmore » 1,4-di-isopropylbenzene (diluent) and a concentrated lactate buffer containing diethylenetriamine-N,N,N',N",N"-pentaacetic acid (actinide-selective holdback reagent)) has become a widely recognized benchmark for advanced aqueous partitioning of the trivalent 4f/5f elements. TALSPEAK chemistry has also been utilized as an actinide-selective stripping agent (Reverse TALSPEAK) with some notable success. Under ideal conditions, conventional TALSPEAK separates Am 3+ from Nd 3+ (the usual limiting pair) with a single-stage separation factor of about 100; both lighter and heavier lanthanides are more completely separated from Am 3+. Despite this apparent efficiency, TALSPEAK has not seen enthusiastic adoption for advanced partitioning of nuclear fuels at process scale for two principle reasons: 1) all adaptations of TALSPEAK chemistry to process scale applications require rigid pH control within a narrow range of pH, and 2) phase transfer kinetics are often slower than ideal. To compensate for these effects, high concentrations of the buffer (0.5-2 M H/Na lactate) are required. Acknowledgement of these complications in TALSPEAK process development has inspired significant research activities dedicated to improving understanding of the basic chemistry that controls TALSPEAK (and related processes based on the application of actinide-selective holdback reagents). In the following report, advances in understanding of the fundamental chemistry of TALSPEAK that have occurred during the past decade will be reviewed and discussed.« less

  9. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  10. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  11. Student Task Analysis for the Development of E-Learning Lectural System in Basic Chemistry Courses in FKIP UMMY Solok

    NASA Astrophysics Data System (ADS)

    Afrahamiryano, A.; Ariani, D.

    2018-04-01

    The student task analysis is one part of the define stage in development research using the 4-D development model. Analysis of this task is useful to determine the level of understanding of students on lecture materials that have been given. The results of this task analysis serve as a measuring tool to determine the level of success of learning and as a basis in the development of lecture system. Analysis of this task is done by the method of observation and documentation study of the tasks undertaken by students. The results of this analysis are then described and after that triangulation are done to draw conclusions. The results of the analysis indicate that the students' level of understanding is high for theoretical and low material for counting material. Based on the results of this task analysis, it can be concluded that e-learning lecture system developed should be able to increase students' understanding on basic chemicals that are calculated.

  12. Semiconductor Characterization: from Growth to Manufacturing

    NASA Astrophysics Data System (ADS)

    Colombo, Luigi

    The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.

  13. Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silber, Herbert B.

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio ismore » needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.« less

  14. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    PubMed

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. Effect of Reactor Design on the Plasma Treatment of NOx

    DTIC Science & Technology

    1998-10-01

    control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.

  16. Recent progress in structural biology: lessons from our research history.

    PubMed

    Nitta, Ryo; Imasaki, Tsuyoshi; Nitta, Eriko

    2018-05-16

    The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.

  17. Methods for geochemical analysis

    USGS Publications Warehouse

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  18. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  19. General Chemistry Courses That Can Affect Achievement: An Action Research Study in Developing a Plan to Improve Undergraduate Chemistry Courses

    ERIC Educational Resources Information Center

    Shweikeh, Eman

    2014-01-01

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on…

  20. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  1. Research in Chemical Kinetics: Progress Report, January 1, 1978 to September 30, 1978

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1978-01-01

    Research was conducted on the following topics: stratospheric chemistry of chlorinated molecules, atmospheric chemistry of methane, atmospheric chemistry of cosmogenic tritium, reactions of energetic and thermal radioactive atoms, methylene chemistry, and laboratory simulation of chemical reactions in Jupiter atmosphere. (DLC)

  2. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    PubMed

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  3. Paclitaxel from primary taxanes: a perspective on creative invention in organozirconium chemistry.

    PubMed

    Ganem, Bruce; Franke, Roland R

    2007-05-25

    In this Perspective, which describes the achievements recognized by the 2007 ACS Award for Creative Invention, we discuss the discovery of a new synthetic reaction and its translation into a substantially improved method for manufacturing a major pharmaceutical product--the blockbuster anticancer drug, paclitaxel. The role of creativity in the discovery and invention processes is also discussed. As is often the case, chance discovery and serendipitous findings played a role in the evolution of this work. Translation of the basic research into a commercially viable paclitaxel semisynthesis is also described. The final manufacturing process illustrates the enormous impact that the globalization of markets has had on chemical and pharmaceutical manufacturing.

  4. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs

    PubMed Central

    Shen, Xiulong; Corey, David R

    2018-01-01

    Abstract RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed. PMID:29240946

  5. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Todd D.

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less

  6. 77 FR 76055 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...: Biological Chemistry and Macromolecular Biophysics. Date: January 17-18, 2013. Time: 11:00 a.m. to 10:00 [email protected] . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group; Basic...

  7. Computer Series, 39.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1983-01-01

    Describes use of Warnier-Orr program design method for preparing general chemistry tutorial on ideal gas calculations. This program (BASIC-PLUS) is available from the author. Also describes a multipurpose computerized class record system at the University of Toledo. (JN)

  8. Christine English | NREL

    Science.gov Websites

    Hydrogenases: New Frontiers in Basic and Applied Studies for Biological and Synthetic H2 Production. Dalton Histone H3 in S-Phase. Journal of Biological Chemistry, 12, 1334-1340. English, C.M., Adkins, M.W

  9. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  10. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE PAGES

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.; ...

    2018-01-08

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  11. The relative role of "A" level chemistry, physics and biology in the medical course.

    PubMed

    Tomilson, R W; Clack, G B; Pettingale, K W; Anderson, J; Ryan, K C

    1977-03-01

    The performance of 209 students in the 2nd MBBS, first clinical year and final MBBS examinations has been compared retrospectively with their grades in chemistry, physics and biology at "A" level. The mean grade has also been determined for students from different social classes and secondary education. Significant differences in marks for biology were found between successful and not so successful students, especially in the pre-clinical part of the course. Significnat differences in marks and significant correlations were also found for physics but not to any great extent for chemistry. The relative role of these three basic sciences in the medical course is discussed. The suggestion is made that there is a need for a re-appraisal of the privleged position of chemistry and an unquestioned science requirement for entry to medical school.

  12. The Critical Role of Organic Chemistry in Drug Discovery.

    PubMed

    Rotella, David P

    2016-10-19

    Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.

  13. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    NASA Astrophysics Data System (ADS)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty. Furthermore, improving attitudes and beliefs could be a potential for bringing about successful interventions to general chemistry learning. Importantly, the role of collaboration between chemistry educators is essential to forming instructional strategies. Additionally, shifting paradigms should be given utmost attention, including differences among student engagement in general chemistry, ways in which faculty can modify practices to meet student expectations, and the role of administrators in providing the necessary tools that stimulate chemistry education and research.

  14. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  15. Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.

    2018-05-01

    The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

  16. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 1. Statistical Analysis of a Quantitative Study

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 1 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught in the twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used. The study compared performance in five questions that tested recall of knowledge or application of algorithmic procedures (type-A…

  17. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  18. Undergraduate Chemistry Education: A Workshop Summary

    ERIC Educational Resources Information Center

    Sawyer, Keegan; Alper, Joe

    2014-01-01

    "Undergraduate Chemistry Education" is the summary of a workshop convened in May 2013 by the Chemical Science Roundtable of the National Research Council to explore the current state of undergraduate chemistry education. Research and innovation in undergraduate chemistry education has been done for many years, and one goal of this…

  19. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  20. Content knowledge development in a chemistry teacher preparation program: A current potentials and challenges

    NASA Astrophysics Data System (ADS)

    Widhiyanti, Tuszie; Treagust, David F.; Mocerino, Mauro; Vishnumolakala, Venkat

    2017-08-01

    One of the essential facets in teacher education program is the development of the teachers' content knowledge and it has been suggested by many scholars that the study to analyse the process of content knowledge development in teacher education program is necessary. Regarding this, the aim of this research is to evaluate the existing program of developing pre-service chemistry teachers' content knowledge, especially in the topic about the particulate nature of matter. The curriculum of content knowledge development was analysed using the forms of the curriculum evaluation (Akker, 1998; Goodlad, Klein, and Tye (1979); Treagust, 1987). Within this framework, the curriculum was evaluated in several aspects including the vision and intention of the curriculum as mentioned in the curriculum documents (intended curriculum), the users' interpretation and perception about the curriculum (perceived curriculum), the actual process of curriculum implementation (implemented curriculum), and the outcomes of the curriculum (achieved curriculum). According to the framework used for this study, the research combined qualitative and quantitative methods of data collection and the interpretation including document analysis, classroom observation, interviews, and two-tier diagnostic test. Through this research we examined the coherence among those aspects. The results reveal that although the content knowledge development is explicitly intended in a curriculum, its implementation and lecturers' perceptions give influence in the results as appear in pre-service teachers' achievements. In general, this research provides basic information about the effectiveness of the program including the challenges and the potentials for a reconsideration of the program in the future.

  1. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-10-01

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encodingmore » the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.« less

  2. Assessment of Battery Technology for Rail Propulsion Application

    DOT National Transportation Integrated Search

    2017-08-01

    The study's authors conducted a review of various battery chemistries, including information on basic electrochemistry and the critical parameters that drive battery design and sizing. The authors examined the performance, life cycle, and safety of l...

  3. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  4. Classroom Enters the Courtroom: Stereochemistry of SN1 and SN2 Reactions in Enantiomer Patent Litigations of the Antidepressant Escitalopram.

    PubMed

    Michman, Elisheva; Agranat, Israel

    2016-01-01

    The role of elementary stereochemistry is illustrated in the patent litigations of the blockbuster antidepressant drug escitalopram oxalate. An undergraduate student of organic chemistry would recognize the stereochemical courses of the intramolecular SN 2 and SN 1 reactions of the single-enantiomer (S)-diol intermediate in the synthesis of the blockbuster antidepressant drug escitalopram oxalate: retention of configuration of the chiral carbon atom under basic conditions and racemization under acidic conditions, respectively. He/she, in searching for a stereoselective ring-closure reaction of the enantiomeric diol, will think of an SN 2 reaction in a basic medium. From these points of view, the process claim in the enantiomer patents of escitalopram is obvious/lacks an inventive step. An organic chemistry examination problem based on this scenario is offered. © 2015 Wiley Periodicals, Inc.

  5. The basics of thiols and cysteines in redox biology and chemistry.

    PubMed

    Poole, Leslie B

    2015-03-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Eco-Driven Chemical Research in the Boundary Between Academia and Industry. PhD Students' Views on Science and Society

    NASA Astrophysics Data System (ADS)

    Sjöström, Jesper

    2013-10-01

    This paper examines and discusses the views on science and society held among PhD students working in two different industrially and environmentally driven research programmes in the broad area of green chemistry. It is based on thirteen in-depth interviews. The analysis shows three main ways of handling the situation as "post-academic" PhD student: (1) the student sees the PhD work mainly as a job and does not reflect about his/her research or the research funding, (2) the student is satisfied with the post-academic situation, accepts the established innovation policy discourse and is sceptical to traditional academic research, and (3) the student sees collaborative research programmes as a way to get funding, which can be used for secretly done basic research. Most PhD students either emphasise usefulness—in line with the dominating research policy discourse—or they adopt the positivistic view of science as objective and independent of the surrounding society. However, there are only a few signs of "double problematisation", that is a critical view where both disciplinary-oriented and industry-dependent research are problematised.

  7. Robin Ganellin gives his views on medicinal chemistry and drug discovery. Interview by Stephen L. Carney.

    PubMed

    Ganellin, C Robin

    2004-02-15

    Robin Ganellin was born in East London and studied chemistry at Queen Mary College, London, receiving a PhD in 1958 under Professor Michael Dewar for his research on tropylium chemistry. He joined Smith Kline & French Laboratories (SK&F) in the UK in 1958 and was one of the co-inventors of the revolutionary drug cimetidine (Tagamet(R)) He subsequently became Vice-President for Research at the company's Welwyn facility. In 1986 he was awarded a DSc from London University for his work on the medicinal chemistry of drugs acting at histamine receptors and was also made a Fellow of the Royal Society and appointed to the SK&F Chair of Medicinal Chemistry at University College London, where he is now Emeritus Professor of Medicinal Chemistry. Professor Ganellin has been honoured extensively, including such awards as the Royal Society of Chemistry Award for Medicinal Chemistry, their Tilden Medal and Lectureship and their Adrien Albert Medal and Lectureship, Le Prix Charles Mentzer de France, the ACS Division of Medicinal Chemistry Award, the Society of Chemical Industry Messel Medal and the Society for Drug Research Award for Drug Discovery. He is a past Chairman of the Society for Drug Research, was President of the Medicinal Chemistry Section of IUPAC, and is currently Chairman of the IUPAC Subcommittee on Medicinal Chemistry and Drug Development.

  8. Putting a Human Face on Chemistry: A Project for Liberal Arts Chemistry.

    ERIC Educational Resources Information Center

    Kriz, George; Popejoy, Kate

    A collaborative project in liberal arts chemistry, involving faculty in chemistry and science education, is described. The project includes various components: an introductory test (DAST) to examine students' perceptions of scientists, a group library research exercise, oral and written presentation of the results of the library research, a…

  9. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... facility portion of the Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los...

  10. 76 FR 28222 - Extension of the Public Review and Comment Period and Announcement of an Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los Alamos National Laboratory...

  11. The Chemistry Teaching Program for Developing the Senior High School Students' Entrepreneurial Attitudes

    ERIC Educational Resources Information Center

    Susianna, Nancy

    2011-01-01

    The objectives of this research were to identify the characteristics and effectiveness of chemistry teaching programs that increase students' entrepreneurial attitudes, chemistry concepts understanding and creativity. The research design application refers to the R & D (Research and Development) Design. Seventy-three senior high school students…

  12. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  13. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty interaction, student mentoring, and original research. In the future we see the possibility of welcoming even more interdisciplinary work including rigorous studies spanning the arts and humanities.

  14. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  15. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  16. Academic pharmacy administrators' perceptions of core requirements for entry into professional pharmacy programs.

    PubMed

    Broedel-Zaugg, Kimberly; Buring, Shauna M; Shankar, Nathan; Soltis, Robert; Stamatakis, Mary K; Zaiken, Kathy; Bradberry, J Chris

    2008-06-15

    To determine which basic and social science courses academic pharmacy administrators believe should be required for entry into the professional pharmacy program and what they believe should be the required length of preprofessional study. An online survey was sent to deans of all colleges and schools of pharmacy in the United States. Survey respondents were asked to indicate their level of agreement as to whether the basic and social science courses listed in the survey instrument should be required for admission to the professional program. The survey instrument also included queries regarding the optimal length of preprofessional study, whether professional assessment testing should be part of admission requirements, and the respondents' demographic information. The majority of respondents strongly agreed that the fundamental coursework in the basic sciences (general biology, general chemistry, organic chemistry) and English composition should be required for entrance into the professional program. Most respondents also agreed that public speaking, ethics, and advanced basic science and math courses (physiology, biochemistry, calculus, statistics) should be completed prior to entering the professional program. The preprofessional requirements that respondents suggested were not necessary included many of the social science courses. Respondents were evenly divided over the ideal length for preprofessional pharmacy education programs. Although requirements for preprofessional admission have been changing, there is no consistent agreement on the content or length of the preprofessional program.

  17. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  18. G. N. Lewis and the Chemical Bond.

    ERIC Educational Resources Information Center

    Pauling, Linus

    1984-01-01

    Discusses the contributions of G. N. Lewis to chemistry, focusing on his formulation of the basic principle of the chemical bond--the idea that the chemical bond consists of a pair of electrons held jointly by two atoms. (JN)

  19. Primitive Saltmaking and Marine Science Education.

    ERIC Educational Resources Information Center

    Spence, Lundie; Copeland, B. J.

    1985-01-01

    Describes the procedures employed to make salt from seawater. Reviews the basic principles of seawater chemistry and discusses the techniques used to measure salinity. Identifies major saltworks locations and indicates the proper conditions needed for solar production of salt. (ML)

  20. 75 FR 32487 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Panel; Small Business: Biological Chemistry and Biophysics. Date: June 28-29, 2010. Time: 8 a.m. to 5 p... Emphasis Panel; ARRA: RFA-OD-10-003--Career Development Awards in the Basic Behavioral and Social Sciences...

  1. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  2. Improving preanalytic processes using the principles of lean production (Toyota Production System).

    PubMed

    Persoon, Thomas J; Zaleski, Sue; Frerichs, Janice

    2006-01-01

    The basic technologies used in preanalytic processes for chemistry tests have been mature for a long time, and improvements in preanalytic processes have lagged behind improvements in analytic and postanalytic processes. We describe our successful efforts to improve chemistry test turnaround time from a central laboratory by improving preanalytic processes, using existing resources and the principles of lean production. Our goal is to report 80% of chemistry tests in less than 1 hour and to no longer recognize a distinction between expedited and routine testing. We used principles of lean production (the Toyota Production System) to redesign preanalytic processes. The redesigned preanalytic process has fewer steps and uses 1-piece flow to move blood samples through the accessioning, centrifugation, and aliquoting processes. Median preanalytic processing time was reduced from 29 to 19 minutes, and the laboratory met the goal of reporting 80% of chemistry results in less than 1 hour for 11 consecutive months.

  3. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  4. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  5. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  6. Lutein, Zeaxanthin, and meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-based Nutritional Interventions against Ocular Disease

    PubMed Central

    Bernstein, Paul S.; Li, Binxing; Vachali, Preejith P.; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S.; Nolan, John M.

    2015-01-01

    The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. PMID:26541886

  7. Olive Oil and its Potential Effects on Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  8. The Center for the Study of Early Events in Photosynthesis. Final report, September 1, 1988--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orr, L.A.

    The ASU Center for the Study of Early Events in Photosynthesis was established in 1988 with funding through a five-year grant from the USDA/DOE/NSF Plant Science Center program and a grant from the NSF Biological Facilities program. Its scientific objective is to elucidate the basic principles that govern photosynthetic energy collection and storage. Understanding these principles is vital to mankind, as photosynthesis provides most of our food, fiber and energy needs. The Center attempts to fulfill this objective through research of the highest standard, coupled inextricably with quality education at the undergraduate, graduate and postdoctoral levels. These goals are metmore » via a network of collaborative, interdisciplinary research groups comprising 100 personnel within the Department of Chemistry and Biochemistry, the Department of Botany, and the Department of Physics and Astronomy. The work of these research groups is facilitated by the Center through a variety of important infrastructural functions.« less

  9. Chemistry Teachers' Views on Teaching "Climate Change"--An Interview Case Study from Research-Oriented Learning in Teacher Education

    ERIC Educational Resources Information Center

    Feierabend, Timo; Jokmin, Sebastian; Eilks, Ingo

    2011-01-01

    This paper presents a case study from research-oriented learning in chemistry teacher education. The study evaluates the views of twenty experienced German chemistry teachers about the teaching of climate change in chemistry education. Data was collected using semi-structured interviews about the teachers' experiences and their views about…

  10. Forging Faculty-Student Relationships at the College Level Using a First-Year Research Experience

    ERIC Educational Resources Information Center

    Forbes, David C.; Davis, Patricia M.

    2008-01-01

    Coupling the scholarly activities of the chemistry research faculty with that of the first-year honors general chemistry laboratory has resulted in additional research experience for undergraduate students and a rise of productivity within the chemistry department. For seven years, first-year university honors students enrolled in the honors…

  11. Soil and its selected properties on the example of an individual project for the grade 1 students of upper secondary school

    NASA Astrophysics Data System (ADS)

    Krzeczkowska, Małgorzata

    2014-05-01

    According to the requirements of the new core curriculum for Chemistry, students shall acquire knowledge through research and use the acquired chemical knowledge in their everyday life. However, in the recommended conditions and mode of implementation of the curriculum it is confirmed, that students' autonomous observation constitutes a basis for experiencing, inferences, analysis, and generalisations of phenomena [1]. It is obvious that teachers should create proper didactic situations, during which school students have a possibility to develop attitudes, skills and competences. More about competences we can find in the recommendations of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning [2]. The detailed content of the core curriculum for the subject of chemistry at the fourth stage of education (basic level), we read: "4. Chemistry of soil. Student: 1) explains what the sorption properties of the soil are; plans and performs .... study of the sorption properties of the soil. " In the school year 2012/2013 chemistry teachers decided to offer students of a first-class to be involved in the project "Soil in the chemist's eye." It was considered that the method of the project is known from lower secondary school level and the teacher will have an opportunity to recognize students, who in the future, will choose the class with advanced chemistry program and determine the level of their skills, in particular the research skills. What we can offer to students does not necessarily take place in a well-equipped chemical laboratory. On the contrary, this process should be based on the well-known school subjects items, articles, objects and phenomena, which students meet in everyday life. The well-chosen methodologies and ways of showing the world will be, more understandable and skills will become a permanent part of the students, knowledge. Project characterization: a) The proposed project is problem-oriented, in which students formulate a research goal, verify the hypothesis experimentally based on their own plan in relation to the research problem, b) Time duration: 7 days c) Type of project: individual project During special meetings students present their own projects (giving the teacher a complete project documentation), participate in surveys and participate in the revision meeting. The poster will be presented to show the most interesting pieces of students' work with photographic documentation, analysis of the final survey, and analysis of student records. 1. http://www.reformaprogramowa.men.gov.pl 2. Recommendation of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning (2006/962/EC). OJ L 394, 30.12.2006, p 10.

  12. The University of Houston Libraries' Chemistry Research Information Service: A Research Support Service Based on End-User Searching and Document Delivery. Final Report.

    ERIC Educational Resources Information Center

    Bailey, Charles W., Jr.

    This report on a funded project that established a chemistry research information service for researchers in the University of Houston's chemistry department provides detailed descriptions of the three objectives of the project, together with an explanation of how each objective was/is to be accomplished. These objectives were/are: (1) to document…

  13. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  14. EVALUATING METRICS FOR GREEN CHEMISTRIES: INFORMATION AND CALCULATION NEEDS

    EPA Science Inventory

    Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Ob...

  15. The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988. Interview by Klaus J. Korak.

    PubMed

    Huber, Robert

    2008-11-25

    Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis - a process fundamental to life on Earth - and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to "switching on the light" for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only "a handful" of crystallographers would meet annually in the Bavarian Alps. In the "explosion" of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field - such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an "Einstein of biology" who, he says with a twinkle in his eye, "doesn't know it yet." The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany.

  16. The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988

    PubMed Central

    Huber, Robert

    2008-01-01

    Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis – a process fundamental to life on Earth – and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to “switching on the light” for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only “a handful” of crystallographers would meet annually in the Bavarian Alps. In the “explosion” of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field – such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an “Einstein of biology” who, he says with a twinkle in his eye, “doesn’t know it yet.” The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany. PMID:19066525

  17. Normal Science Education and its Dangers: The Case of School Chemistry

    NASA Astrophysics Data System (ADS)

    Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert

    We started the Conceptual Structure of School Chemistry research project, a part of which is reported on here, with an attempt to solve the problem of the hidden structure in school chemistry. In order to solve that problem, and informed by previous research, we performed a content analysis of school chemistry textbooks and syllabi. This led us to the hypothesis that school chemistry curricula are based on an underlying, coherent structure of chemical concepts that students are supposed to learn for the purpose of explaining and predicting chemical phenomena. The elicited comments and criticisms of an International Forum of twenty-eight researchers of chemical education, though, refuted the central claims of this hypothesis. This led to a descriptive theory of the currently dominant school chemistry curriculum in terms of a rigid combination of a specific substantive structure, based on corpuscular theory, a specific philosophical structure, educational positivism, and a specific pedagogical structure, involving initiatory and preparatory training of future chemists. Secondly, it led to an explanatory theory of the structure of school chemistry - based on Kuhn's theory of normal science and scientific training - in which dominant school chemistry is interpreted as a form of normal science education. Since the former has almost all characteristics in common with the latter, dominant school chemistry must be regarded as normal chemistry education. Forum members also formulated a number of normative criticisms on dominant school chemistry, which we interpret as specific dangers of normal chemistry education, complementing Popper's discussion of the general dangers of normal science and its teaching. On the basis of these criticisms, it is argued that normal chemistry education is isolated from common sense, everyday life and society, history and philosophy of science, technology, school physics, and from chemical research.

  18. Learning beyond the Classroom: Using Text Messages to Measure General Chemistry Students' Study Habits

    ERIC Educational Resources Information Center

    Ye, Li; Oueini, Razanne; Dickerson, Austin P.; Lewis, Scott E.

    2015-01-01

    This study used a series of text message inquiries sent to General Chemistry students asking: "Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?" This method for collecting data is novel to chemistry education research so the first research goals were to investigate the feasibility of the technique…

  19. Prospective Chemistry and Science Teachers' Views and Metaphors about Chemistry and Chemical Studies

    ERIC Educational Resources Information Center

    Onen Ozturk, Fatma; Aglarci, Oya

    2017-01-01

    Purpose: The aim of this study was to examine the metaphors created by prospective chemistry and science teachers and their views about how the studies in the field of chemistry are carried out in relation to the grade level and department. Research Methods: Case study as a qualitative research design was used. Participants in the study included…

  20. Synergy between medicinal chemistry and biological research.

    PubMed

    Moncada, Salvador; Coaker, Hannah

    2014-09-01

    Salvador Moncada studied medicine at the University of El Salvador (El Salvador) before coming to the UK in 1971 to work on a PhD with Professor John Vane at the Institute of Basic Medical Sciences, Royal College of Surgeons (UK). After a short period of research at the University of Honduras (Honduras), he joined the Wellcome Research Laboratories (UK) where he became Head of the Department of Prostaglandin Research and later, Director of Research. He returned to academic life in 1996 as founder and director of the Wolfson Institute for Biomedical Research at University College London (UK). Moncada played a role in the discovery of the mechanism of action of aspirin-like drugs and later led the teams which discover prostacyclin and identified nitric oxide as a biological mediator. In his role as a Director of Research of the Wellcome Laboratories, he oversaw the discovery and development of medicines for epilepsy, migraine, malaria and cancer. Currently, he is working on the regulation of cell proliferation as Director of the Institute of Cancer Sciences at the University of Manchester (UK). Moncada has won numerous awards from the international scientific community and in 2010, he received a knighthood from Her Majesty Queen Elizabeth II for his services to science.

  1. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    PubMed Central

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  2. Minerals and design of new waste forms for conditioning nuclear waste

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  3. Microbial processing of tellurium as a tool in biotechnology.

    PubMed

    Turner, Raymond J; Borghese, Roberto; Zannoni, Davide

    2012-01-01

    Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Manufacturing methods and applications of membranes in microfluidics.

    PubMed

    Chen, Xueye; Shen, Jienan; Hu, Zengliang; Huo, Xuyao

    2016-12-01

    Applications of membranes in microfluidics solved many thorny problems for analytical chemistry and bioscience, so that the use of membranes in microfluidics has been a topic of growing interest. Many different examples have been reported, demonstrating the versatile use of membranes. This work reviews a lot of applications of membranes in microfluidics. Membranes in microfluidics for applications including chemical reagents detection, gas detection, drug screening, cell, protein, microreactor, electrokinetical fluid, pump and valve and fluid transport control and so on, have been analyzed and discussed. In addition, the definition and basic concepts of membranes are summed up. And the methods of manufacturing membranes in microfluidics are discussed. This paper will provide a helpful reference to researchers who want to study applications of membranes in microfluidics.

  5. Development of KRISS standard reference photometer (SRP) for ambient ozone measurement

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J.

    2014-12-01

    Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.

  6. Searching for the Formula: How Librarians Teach Chemistry Graduate Students Research Skills

    ERIC Educational Resources Information Center

    Fong, Bonnie L.

    2014-01-01

    An exploratory study was conducted in Summer 2012 in an effort to determine what librarians in the United States are doing to teach chemistry graduate students research skills. Chemistry librarians at ARL (Association of Research Libraries) institutions were surveyed about the content they teach; when, where, and how they present it; and what…

  7. EVOLVING FROM GREEN CHEMISTRY TO SUSTAINABLE CHEMISTRY

    EPA Science Inventory

    The twelve principles of green chemistry provide a foundation and pathway which allows researchers to incorporate greenness into existing reactions or when developing new technologies. Research from our laboratory has adopted many of these principles and utlizes them as a major c...

  8. SIMPLIFYING EVALUATIONS OF GREEN CHEMISTRIES: HOW MUCH INFORMATION DO WE NEED?

    EPA Science Inventory

    Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the Environmental Sustainability of Chemistries with a multi-Ob...

  9. Molecular and Cellular Biophysics

    NASA Astrophysics Data System (ADS)

    Jackson, Meyer B.

    2006-01-01

    Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems. Offers a unique synthesis of concepts across a wide range of biophysical topics Provides a rigorous theoretical treatment, alongside applications in biological systems Author has been teaching biophysics for nearly 25 years

  10. Chemical Education Research: Improving Chemistry Learning

    NASA Astrophysics Data System (ADS)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  11. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts To Educate High School Students about Alcohol

    PubMed Central

    2015-01-01

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional development either at a conference-based workshop (NSTA or NCSTA) or via distance learning to learn how to incorporate the APEP modules into their teaching. They field-tested the modules in their classes during the following year. Teacher knowledge of chemistry and biology concepts increased significantly following professional development, and was maintained for at least a year. Their students (n = 14 014) demonstrated significantly higher scores when assessed for knowledge of both basic and advanced chemistry and biology concepts compared to students not using APEP modules in their classes the previous year. Higher scores were achieved as the number of modules used increased. These findings are consistent with our previous studies, demonstrating higher scores in chemistry and biology after students use modules that integrate topics interesting to them, such as drugs (the Pharmacology Education Partnership). PMID:24803686

  12. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach.

    PubMed

    Gao, Ping; Sun, Lin; Zhou, Junsu; Li, Xiao; Zhan, Peng; Liu, Xinyong

    2016-09-01

    In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.

  13. Pierre-Joseph Macquer: Chemistry in the French Enlightenment.

    PubMed

    Lehman, Christine

    2014-01-01

    Despite recent studies of chemistry courses and of academic research at the beginning of the eighteenth century, the perception of chemistry in the French Enlightenment has often been overshadowed by Lavoisier's works. This article proposes three specific case studies selected from Pierre Joseph Macquer's (1718-84) rich career to show the continuous evolution of chemistry throughout the century: medicinal chemistry through the application of the Comte de La Garaye's metallic salt solutions, the emergence of industrial chemistry through a few of Macquer's evaluations at the Bureau du Commerce, and finally communal academic research through the experiments on diamonds using Tschirnhaus's lens. These examples attempt to illustrate the innovative, creative, dynamic, multicultural, and multifaceted chemistry of the Enlightenment.

  14. Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, D.L.

    1989-04-01

    The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less

  15. Development of Chemistry Game Card as an Instructional Media in the Subject of Naming Chemical Compound in Grade X

    NASA Astrophysics Data System (ADS)

    Bayharti; Iswendi, I.; Arifin, M. N.

    2018-04-01

    The purpose of this research was to produce a chemistry game card as an instructional media in the subject of naming chemical compounds and determine the degree of validity and practicality of instructional media produced. Type of this research was Research and Development (R&D) that produced a product. The development model used was4-D model which comprises four stages incuding: (1) define, (2) design, (3) develop, and (4) disseminate. This research was restricted at the development stage. Chemistry game card developed was validated by seven validators and practicality was tested to class X6 students of SMAN 5 Padang. Instrument of this research is questionnair that consist of validity sheet and practicality sheet. Technique in collection data was done by distributing questionnaire to the validators, chemistry teachers, and students. The data were analyzed by using formula Cohen’s Kappa. Based on data analysis, validity of chemistry game card was0.87 with category highly valid and practicality of chemistry game card was 0.91 with category highly practice.

  16. Ionic Liquid-Like Pharmaceutical Ingredients and Applications of Ionic Liquids in Medicinal Chemistry: Development, Status and Prospects.

    PubMed

    Tang, Jie; Song, Hang; Feng, Xueting; Yohannes, Alula; Yao, Shun

    2018-06-05

    As a new kind of green media and bioactive compounds with special structure, ionic liquids (ILs) are attracting much attention and applied widely in many fields. However, their roles and potential have not been fully recognized by many researchers of medicinal chemistry. Because of obvious differences from other traditional drugs and reagents, their uses and performance together with advantages and disadvantages need to be explored and reviewed in detail. For systematic and explicit description of the relationship between ILs and medicinal chemistry, all of the contents were elucidated and summarized in a series of independent parts. In each part, it started from the research background or a conceptual framework and then specific examples were introduced to illustrate the theme. Finally, the important conclusions were drawn and its future was outlooked after the discussion about related key problems appearing in each mentioned research. Meanwhile, methodologies such as empirical analysis, comparison and induction were applied in different sections to exposit our subject. The whole review was composed of five parts, and 148 papers were cited in total. Related basic information of ionic liquids was provided on the basis of representative references, including their concepts and important characters. Then 82 papers outlined ionic liquid-like active pharmaceutical ingredients, which unfolded with their major biological activities (antimicrobial activity, antibiofilm activity, antitumor activity, anticholinesterase activity and so on). Applications of ionic liquids in synthesis of drugs and pharmaceutical intermediates were elaborated in 92 papers to illustrate the important roles of ILs and their extraordinary properties in this field. Moreover, new technologies (such as immobilization of IL, microwave reaction, solvent-free synthesis, microreactor, etc) were introduced for further innovation. Finally, 26 papers were included to expound the status about the IL-assisted derivatization of various natural lead compounds. This review placed emphasis on chemical structures of ILs and their structure-activity relationships in a specific manner, leading to meaningful and valuable related information to some related fields and thus promotes further development and application of various ILs for medicinal chemistry. The deep exploration for key scientific problems is the driving force to propel their theoretical breakthrough and industrial production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The learning process of capita selecta based on journals review

    NASA Astrophysics Data System (ADS)

    Diniaty, Artina; Febriana, Beta Wulan; Arlianty, Widinda Normalia

    2017-03-01

    The learning process on capita selecta subject of Chemistry Education Department, Islamic University of Indonesia, was carried out based on reviewing of journals in chemistry and chemistry education scopes. The learning process procedure included planning, implementation and reflection. The purposes of learning were 1) students got an insight into the trend research in chemistry and chemistry education scopes, 2) students knew how to access and search journals, 3) increased students learning motivation on reading scientific journals, 4) students had be trained for reviewing scientific journals, and inspiring students to think about research ideas, performed research and publishing in scientific journals. The result showed that the students' responses in this learning were good.

  18. There Is Another Choice: An Exploration of Integrating Formative Assessment in a Chinese High School Chemistry Classroom through Collaborative Action Research

    ERIC Educational Resources Information Center

    Yin, Xinying; Buck, Gayle A.

    2015-01-01

    This study explored integrating formative assessment to a Chinese high school chemistry classroom, where the extremely high-stakes testing and Confucian-heritage culture constituted a particular context, through a collaborative action research. One researcher worked with a high school chemistry teacher in China to integrate formative assessment…

  19. The Tip of the Iceberg in Organic Chemistry Classes: How Do Students Deal with the Invisible?

    ERIC Educational Resources Information Center

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students' use of the arrow-pushing formalism, the investigation of students' conceptual knowledge and…

  20. Indoor chemistry: research opportunities and challenges.

    PubMed

    Nazaroff, W W; Goldstein, A H

    2015-08-01

    In this editorial, we have highlighted key research opportunities and challenges in four topical themes for indoor chemistry: human occupants as agents influencing indoor chemistry; oxidative chemistry; surface phenomena; and semivolatile organic compounds. In each case, enough prior work has been done to demonstrate the importance of the theme and to create a foundation for future studies. Extensive achievements and ongoing progress in (outdoor) atmospheric chemistry—both in the analytical methods developed and in the scientific knowledge created—also contribute to a strong foundation from which to achieve rapid research progress in this exciting new domain.

  1. THE CHEMISTRY OF NEW COPPER PLUMBING

    EPA Science Inventory

    The presence of sulfate, bicarbonate and orthophosphate can change the type of solid present in systems containing cupric ion or cupric hydroxide solids. In some cases, a short term reduction in copper solubility is realized, but over longer periods of time formation of basic cup...

  2. Science in Connecticut Classrooms.

    ERIC Educational Resources Information Center

    Bourquin, Eugene

    1985-01-01

    Outlines a science-industrial arts survey course which presents basic concepts of chemistry as applied to practical experiences. Course topics include: paints; solvents; finishes; metallurgy of iron; precious metals; calorimetry; fossil fuels; batteries; adhesives; cement; and others. The short units were designed for students with limited…

  3. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  4. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  5. Introduction to Instrumental Analysis of Water Pollutants. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This course is designed for those requiring an introduction to instruments commonly used in water pollution analyses. Examples are: pH, conductivity, dissolved oxygen meters, spectrophotometers, turbidimeters, carbon analyzer, and gas chromatographs. Students should have a basic knowledge of analytical chemistry. (CO)

  6. The Joys of Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Nolan, William T.; Gish, Thaddeus J.

    1996-01-01

    Presents 6 short experiments with liquid nitrogen that 12- and 13-year-old students can safely perform under close supervision. Helps the students in learning a number of basic chemical principles while spurring their curiosity and showing them how much fun chemistry can be. (JRH)

  7. MNA TO ACHIEVE SITE OBJECTIVES: BACK TO BASICS

    EPA Science Inventory

    The U.S. EPA recognizes a three-tiered approach to evaluate site specific data in support of monitored natural attenuation (1) historical groundwater and/or soil chemistry data that demonstrate a clean and meaningful trend of decreasing contaminant mass and/or concentration over ...

  8. The Energy Crisis: A New Chemistry Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Piraino, Marie J.

    1974-01-01

    Describes a course structured around nuclear energy, fossil fuel energy, food energy, and the population explosion. The course uses classroom discussion and laboratory sessions to stress basic chemical principles and relevance to the student. A topical outline is included. (GS)

  9. The Pythagorean Theorem and the Solid State

    ERIC Educational Resources Information Center

    Kelly, Brenda S.; Splittgerber, Allan G.

    2005-01-01

    Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.

  10. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    USGS Publications Warehouse

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  11. OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts

    ERIC Educational Resources Information Center

    Shariman, Tenku Putri Norishah; Talib, Othman

    2017-01-01

    This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…

  12. Richard J. French, Ph.D. | NREL

    Science.gov Websites

    J. French, Ph.D. Photo of Richard J. French Rick French Researcher IV-Chemistry Richard.French Laboratory equipment design and construction Computer-aided design (CAD) Education Ph.D., Chemistry, Oregon State University B.S., Chemistry, Wheaton College Professional Experience Research Scientist, National

  13. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  14. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  15. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    NASA Astrophysics Data System (ADS)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was completed by comparing lab grade averages, final exam averages, and final course grade averages between the two groups. Participant mental effort survey results showed significant positive effects of technology in reducing cognitive load for two laboratory investigations. One investigation revealed a significant difference in achievement measured by lab grade average comparisons. Although results of this study are inconclusive as to the usefulness of technology-driven investigations to affect learning, recommendations for further study are discussed.

  16. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in situ resource utilization on the Moon and Mars. In parallel, there may be commercial applications here on earth, such as new green technologies for metals extraction and for treatment of hazardous waste, e.g., fixing heavy metals.

  17. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  18. The rise of environmental analytical chemistry as an interdisciplinary activity.

    PubMed

    Brown, Richard

    2009-07-01

    Modern scientific endeavour is increasingly delivered within an interdisciplinary framework. Analytical environmental chemistry is a long-standing example of an interdisciplinary approach to scientific research where value is added by the close cooperation of different disciplines. This editorial piece discusses the rise of environmental analytical chemistry as an interdisciplinary activity and outlines the scope of the Analytical Chemistry and the Environmental Chemistry domains of TheScientificWorldJOURNAL (TSWJ), and the appropriateness of TSWJ's domain format in covering interdisciplinary research. All contributions of new data, methods, case studies, and instrumentation, or new interpretations and developments of existing data, case studies, methods, and instrumentation, relating to analytical and/or environmental chemistry, to the Analytical and Environmental Chemistry domains, are welcome and will be considered equally.

  19. A simple and fast method based on mixed hemimicelles coated magnetite nanoparticles for simultaneous extraction of acidic and basic pollutants.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira

    2016-01-01

    One of the considerable and disputable areas in analytical chemistry is a single-step simultaneous extraction of acidic and basic pollutants. In this research, a simple and fast coextraction of acidic and basic pollutants (with different polarities) with the aid of magnetic dispersive micro-solid phase extraction based on mixed hemimicelles assembly was introduced for the first time. Cetyltrimethylammonium bromide (CTAB)-coated Fe3O4 nanoparticles as an efficient sorbent was successfully applied to adsorb 4-nitrophenol and 4-chlorophenol as two acidic and chlorinated aromatic amines as basic model compounds. Using a central composite design methodology combined with desirability function approach, the optimal experimental conditions were evaluated. The opted conditions were pH = 10; concentration of CTAB = 0.86 mmol L(-1); sorbent amount = 55.5 mg; sorption time = 11.0 min; no salt addition to the sample, type, and volume of the eluent = 120 μL methanol containing 5% acetic acid and 0.01 mol L(-1) HCl; and elution time = 1.0 min. Under the optimum conditions, detection limits and linear dynamic ranges were achieved in the range of 0.05-0.1 and 0.25-500 μg L(-1), respectively. The percent of extraction recoveries and relative standard deviations (n = 5) were in the range of 71.4-98.0 and 4.5-6.5, respectively. The performance of the optimized method was certified by coextraction of other acidic and basic compounds. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the target analytes in various water samples, and satisfactory results were obtained.

  20. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  1. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  2. Block by Block: Civic Action in the Battle of Baghdad

    DTIC Science & Technology

    2007-11-01

    powdered musk and ambergris. Arts and sciences flourished— literature, music, calligraphy, philosophy, mathematics, chemistry, history. All that was...of the insur- gency, (i.e., guerrilla, underground, and auxiliary). The basic premise of civic-action operations is that the lower ech- elon of

  3. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  4. Baking Soda Science.

    ERIC Educational Resources Information Center

    Science Activities, 1994

    1994-01-01

    Discusses the basic principles of baking soda chemistry including the chemical composition of baking soda, its acid-base properties, the reaction of bicarbonate solution with calcium ions, and a description of some general types of chemical reactions. Includes a science activity that involves removing calcium ions from water. (LZ)

  5. Classification of Chemical Reactions: Stages of Expertise

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2008-01-01

    In this study we explore the strategies that undergraduate and graduate chemistry students use when engaged in classification tasks involving symbolic and microscopic (particulate) representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention when classifying…

  6. Making Difficult Things Easy and Easy Things Difficult.

    ERIC Educational Resources Information Center

    Campbell, J. Arthur; Bent, Henry A.

    1982-01-01

    Suggestions are offered to illustrate concepts and processes by using simple materials such as paper, paper clip, rubber band (bonding, entropy, endothermic processes). Also suggests using basic terminology: elementary ratios, percent, reaction chemistry for entropy function; equilibrium constants for Gibbs energies; and chemical mechanics for…

  7. Atmospheric Chemistry and Transport from Space Observations

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    This lecture will cover the basic ideas of space observations of chemical constituents, modern analysis techniques and results. I will show analysis using TOMS, UARS, SAGE, Terra. I will show some of the planned missions for the US that will launch in the next few years.

  8. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  9. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  10. The Eighth Central European Conference "Chemistry towards Biology": Snapshot.

    PubMed

    Perczel, András; Atanasov, Atanas G; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Wątły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polański, Jarosław; Jampílek, Josef

    2016-10-17

    The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.

  11. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  12. The Chemistry Teaching Fellowship Program: Developing Curricula and Graduate Student Professionalism

    ERIC Educational Resources Information Center

    Kim, Kris S.; Rackus, Darius G.; Mabury, Scott A.; Morra, Barbora; Dicks, Andrew P.

    2017-01-01

    The Chemistry Teaching Fellowship Program (CTFP) is offered to graduate students and postdoctoral researchers at the University of Toronto as an opportunity to undertake curriculum development and chemistry education research. Projects are run with faculty supervision and focus on designing new laboratory activities, lectures, tutorials,…

  13. 75 FR 60745 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos...

  14. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells

    PubMed Central

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-01-01

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research. PMID:29286412

  15. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-11-17

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research.

  16. Intermediate-energy nuclear chemistry workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  17. Gordon Research Conference on Plasma Chemistry (10th), Held in Tilton, New Hampshire on August 15-19, 1988

    DTIC Science & Technology

    1989-10-01

    The 1988 Gordon Research Conference on Plasma Chemistry was divided into nine sessions. Eight had two or three invited talks and two or three...findings in low pressure, non-equilibrium plasma chemistry , covering the topics of plasmas in device technology, and plasma enhanced processing...applications and surface-plasma interactions. Six joint sessions included sessions on future plasma chemistry , nucleation and growth, plasma modeling, one each

  18. Academic librarians at play in the field of cheminformatics: building the case for chemistry research data management

    NASA Astrophysics Data System (ADS)

    McEwen, Leah; Li, Ye

    2014-10-01

    There are compelling needs from a variety of camps for more chemistry data to be available. While there are funder and government mandates for depositing research data in the United States and Europe, this does not mean it will be done well or expediently. Chemists themselves do not appear overly engaged at this stage and chemistry librarians who work directly with chemists and their local information environments are interested in helping with this challenge. Our unique understanding of organizing data and information enables us to contribute to building necessary infrastructure and establishing standards and best practices across the full research data cycle. As not many support structures focused on chemistry currently exist, we are initiating explorations through a few case studies and focused pilot projects presented here, with an aim of identifying opportunities for increased collaboration among chemists, chemistry librarians, cheminformaticians and other chemistry professionals.

  19. Atmospheric chemistry: Description of the area of performance and a working plan

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Volker W. J. H.

    1986-11-01

    INPE's program in Atmospheric Chemistry Research is described. Research in this area is concerned with atmospheric gases and their chemical reactions, production and loss rates, and their interactions with the biosphere. Atmospheric chemistry includes concepts in Physics, Chemistry, Meteorology, and Biology, which gives it a strong interdisciplinary character. The interaction of some of the atmospheric gases with the biosphere, such as ozone, is very strong and direct. Studying atmospheric chemistry is, therefore, of direct interest to man and the quality of life. Details are described to define the objectives of study, in particular those of our research program at INPE. A working plan is proposed in order to reach the defined goals. Owing to the large anthropogenic interference in the balance of the natural atmosphere it is anticipated that a better understanding of Atmospheric Chemistry will be the great scientific challenge of the next decade.

  20. Academic librarians at play in the field of cheminformatics: building the case for chemistry research data management.

    PubMed

    McEwen, Leah; Li, Ye

    2014-10-01

    There are compelling needs from a variety of camps for more chemistry data to be available. While there are funder and government mandates for depositing research data in the United States and Europe, this does not mean it will be done well or expediently. Chemists themselves do not appear overly engaged at this stage and chemistry librarians who work directly with chemists and their local information environments are interested in helping with this challenge. Our unique understanding of organizing data and information enables us to contribute to building necessary infrastructure and establishing standards and best practices across the full research data cycle. As not many support structures focused on chemistry currently exist, we are initiating explorations through a few case studies and focused pilot projects presented here, with an aim of identifying opportunities for increased collaboration among chemists, chemistry librarians, cheminformaticians and other chemistry professionals.

  1. Environmental chemistry and ecotoxicology: in greater demand than ever.

    PubMed

    Scheringer, Martin

    2017-01-01

    Environmental chemistry and ecotoxicology have been losing support, resources, and recognition at universities for many years. What are the possible causes of this process? A first problem may be that the need for research and teaching in environmental chemistry and ecotoxicology is no longer seen because chemical pollution problems are considered as largely solved. Second, environmental chemistry and ecotoxicology may be seen as fields dominated by routine work and where there are not many interesting research questions left. A third part of the problem may be that other environmental impacts such as climate change are given higher priority than chemical pollution problems. Here, several cases are presented that illustrate the great demand for innovative research and teaching in environmental chemistry and ecotoxicology. It is crucial that environmental chemistry and ecotoxicology are rooted in academic science and are provided with sufficient equipment, resources, and prospects for development.

  2. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    PubMed

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    ERIC Educational Resources Information Center

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  4. Effect of matrix resin on the impact fracture characteristics of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Hertzberg, P. E.; Smith, B. W.; Miller, A. G.

    1982-01-01

    The effect of resin chemistry on basic impact energy absorbent mechanisms exibited by graphite-epoxy composites was investigated. Impact fracture modes and microscopic resin deformation characteristics were examined for 26 NASA-impacted graphite epoxy laminates with different resin chemistries. Discrete specimen fracture modes were identified through cross sectional examination after impact, and subsequently compared with measured glass transition temperatures, cure cycles, and residual impact capabilities. Microscopic resin deformation mechanisms and their overall relationship to impact loading conditions, voids, and resin content were also characterized through scanning electron microscopic examination of separated fracture surfaces.

  5. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of themore » workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.« less

  6. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  7. A Lemon Cell Battery for High-Power Applications

    ERIC Educational Resources Information Center

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-01-01

    The use of lemon cell battery to run an electric DC motor is demonstrated for chemistry students. This demonstration aids the students in understanding principles behind the design and construction of the lemon cell battery and principles governing the electric DC motor and other basic principles.

  8. Fire Safety Training Handbook.

    ERIC Educational Resources Information Center

    Montgomery County Dept. of Fire and Rescue Services, Rockville, MD. Div. of Fire Prevention.

    Designed for a community fire education effort, particularly in which local volunteers present general information on fire safety to their fellow citizens, this workbook contains nine lessons. Included are an overview of the household fire problem; instruction in basic chemistry and physics of fire, flammable liquids, portable fire extinguishers,…

  9. Life-Cycle Analysis and Inquiry-Based Learning in Chemistry Teaching

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The purpose of this design research is to improve the quality of environmental literacy and sustainability education in chemistry teaching through combining a socio-scientific issue, life-cycle analysis (LCA), with inquiry-based learning (IBL). This first phase of the cyclic design research involved 20 inservice trained chemistry teachers from…

  10. Stimulating Students' Intrinsic Motivation for Learning Chemistry through the Use of Context-Based Learning Modules

    ERIC Educational Resources Information Center

    Vaino, Katrin; Holbrook, Jack; Rannikmae, Miia

    2012-01-01

    This paper introduces a research project in which five chemistry teachers, working in cooperation with university researchers, implemented a new teaching approach using context-based modules specially designed to stimulate the intrinsic motivation of students. The intention was to induce change in chemistry teachers' teaching approach from more…

  11. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  12. Techniques in Chemistry: The Centerpiece of a Research-Oriented Curriculum.

    ERIC Educational Resources Information Center

    Hanks, T. W.; Wright, Laura L.

    2002-01-01

    Introduces the Techniques in Chemistry I course taught in the Furman University Department of Chemistry which focuses on organic and inorganic chemistry. Uses a problem solving approach and active learning. (Contains 17 references.) (YDS)

  13. Teaching through Research: Alignment of Core Chemistry Competencies and Skills within a Multidisciplinary Research Framework

    ERIC Educational Resources Information Center

    Ghanem, Eman; Long, S. Reid; Rodenbusch, Stacia E.; Shear, Ruth I.; Beckham, Josh T.; Procko, Kristen; DePue, Lauren; Stevenson, Keith J.; Robertus, Jon D.; Martin, Stephen; Holliday, Bradley; Jones, Richard A.; Anslyn, Eric V.; Simmons, Sarah L.

    2018-01-01

    Innovative models of teaching through research have broken the long-held paradigm that core chemistry competencies must be taught with predictable, scripted experiments. We describe here five fundamentally different, course-based undergraduate research experiences that integrate faculty research projects, accomplish ACS accreditation objectives,…

  14. Sensors, Volume 3, Part II, Chemical and Biochemical Sensors Part II

    NASA Astrophysics Data System (ADS)

    Göpel, Wolfgang; Jones, T. A.; Kleitz, Michel; Lundström, Ingemar; Seiyama, Tetsuro

    1997-06-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This is the second of two volumes focusing on chemical and biochemical sensors. It includes a detailed description of biosensors which often make use of transducer properties of the basic sensors and usually have additional biological components. This volume provides a unique overview of the applications, the possibilities and limitations of sensors in comparison with conventional instrumentation in analytical chemistry. Specific facettes of applications are presented by specialists from different fields including environmental, biotechnological, medical, or chemical process control. This book is an indispensable reference work for both specialits and newcomers, researchers and developers.

  15. The Eighth Central European Conference “Chemistry towards Biology”: Snapshot†

    PubMed Central

    Perczel, András; Atanasov, Atanas G.; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Watły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D.; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J.; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H.; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polanński, Jarosław; Jampílek, Josef

    2017-01-01

    The Eighth Central European Conference “Chemistry towards Biology” was held in Brno, Czech Republic, on 28 August–1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered “Chemistry towards Biology”, meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting. PMID:27763518

  16. Character education in perspective of chemistry pre-service teacher

    NASA Astrophysics Data System (ADS)

    Merdekawati, Krisna

    2017-12-01

    As one of the pre-service teacher education programs, Chemistry Education Department Islamic University of Indonesia (UII) is committed to providing quality education. It is an education that can produce competent and characteristic chemistry pre-service teacher. The focus of research is to describe the perception of students as a potential teacher of chemistry on character education and achievement of character education. The research instruments include questionnaires and observation sheets. Research data show that students have understood the importance of character education and committed to organizing character education later in schools. Students have understood the ways in which character education can be used. The students stated that Chemistry Education Department has tried to equip students with character education. The observation result shows that students generally have character as a pre-service teacher.

  17. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease.

    PubMed

    Bernstein, Paul S; Li, Binxing; Vachali, Preejith P; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S; Nolan, John M

    2016-01-01

    The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Preparing for a Global Scientific Workforce: Lessons Learned by the Chemistry Community

    NASA Astrophysics Data System (ADS)

    Baranovic, M.; Nameroff, T.

    2005-12-01

    Globalization has significant implications for science, science education, and the workforce. Flows of capital and knowledge are altering patterns of economic and technological development. Technology is allowing science to be conducted in real time on a global scale. International connections and mobility are increasing worldwide. At the same time science is becoming a truly global endeavor, the convergence of disciplines suggests that scientists from different backgrounds can learn from each other's experiences in addressing these challenges and opportunities. This presentation reviews some of the impacts of globalization on the chemically related sciences, students, and profession. As a result of globalization, today's practitioners of chemistry need an ever-expanding skill set to succeed. In addition to a strong command of the basic principles of chemistry, students and practitioners need to know how to work on multicultural teams, have knowledge of other languages, and be able to communicate effectively. The American Chemical Society (ACS) is coming to terms with and responding to changes in the nature of chemistry and its practice. This presentation will explore some of the innovative efforts of ACS to meet the challenges for chemistry in an era of globalization. The Earth and space sciences community may benefit from the chemistry community's "lessons learned."

  19. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    ERIC Educational Resources Information Center

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…

  20. Basic autonomy as a fundamental step in the synthesis of life.

    PubMed

    Ruiz-Mirazo, Kepa; Moreno, Alvaro

    2004-01-01

    In the search for the primary roots of autonomy (a pivotal concept in Varela's comprehensive understanding of living beings), the theory of autopoiesis provided an explicit criterion to define minimal life in universal terms, and was taken as a guideline in the research program for the artificial synthesis of biological systems. Acknowledging the invaluable contribution of the autopoietic school to present biological thinking, we offer an alternative way of conceiving the most basic forms of autonomy. We give a bottom-up account of the origins of "self-production" (or self-construction, as we propose to call it), pointing out which are the minimal material and energetic requirements for the constitution of basic autonomous systems. This account is, indeed, committed to the project of developing a general theory of biology, but well grounded in the universal laws of physics and chemistry. We consider that the autopoietic theory was formulated in highly abstract terms and, in order to advance in the implementation of minimal autonomous systems (and, at the same time, make major progress in exploring the origins of life), a more specific characterization of minimal autonomous systems is required. Such a characterization will not be drawn from a review of the autopoietic criteria and terminology (à la Fleischaker) but demands a whole reformulation of the question: a proper naturalization of the concept of autonomy. Finally, we also discuss why basic autonomy, according to our account, is necessary but not sufficient for life, in contrast with Varela's idea that autopoiesis was a necessary and sufficient condition for it.

  1. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    NASA Astrophysics Data System (ADS)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR spectroscopy suggested that covalent between HT coatings and epoxy primers may occur, but could not definitively indicate so. Present results suggest that the limited chemical interactions, as governed by substrate wetting and acid-base interactions between the epoxy and HT, have minimized the possible mechanical interactions between the resin and the conversion coating.

  2. Bioorganic Chemistry: Peptides and Proteins (edited by Sidney M. Hecht)

    NASA Astrophysics Data System (ADS)

    Anthony-Cahill, Spencer

    1999-07-01

    Sidney M. Hecht, Ed. Oxford University Press: New York, 1998. 532 pp. ISBN 0-19-508468-3. $75.00. The second volume in the Bioorganic Chemistry series edited by Sidney Hecht is an outstanding addition to the collections of all scientists who teach and/or do research in the field of protein chemistry. The coverage of current research is up to date and thus the book is of great relevance to all chemists with interest in proteins, not just to academicians. As an instructor I found numerous references to current research, which I have included in my lecture notes for the undergraduate Biochemistry course and a senior-level Protein Engineering course taught at WWU. In addition to the chapters covering a broad spectrum of protein chemistry, there are two chapters (protein structural analysis, site-directed mutagenesis) which are excellent introductions to laboratory procedures in protein chemistry and molecular biology. The first chapter is an overview of basic protein biochemistry and serves as an introduction to the rest of the book. This chapter is dispensable for readers familiar with introductory biochemistry. The chapter on chemical synthesis of peptides is an exhaustive review of solution and solid-phase methods, with numerous references. I was struck by the abundance of figures showing structures of reactants but the general lack of organic chemical mechanisms. This is true for the rest of the book as well. Presumably the chemistry is known to the intended reader (grad students, advanced undergrads); however, as a devoted pusher of electrons, I was expecting to see more mechanisms in this and subsequent chapters. Instructors will have to present this aspect of the chemistry in lecture. The relevance of peptide chemistry is underscored by accompanying chapters on peptide hormones and peptidomimetics. Taken together these three chapters provide an excellent introduction to pharmaceutical peptide chemistry. The chapter on total synthesis of proteins is one of my favorites. It outlines elegant synthetic approaches to the formidable problem of generating long peptides and is very readable. Complementing the chemical synthetic strategies is a chapter on recombinant methods for protein synthesis. Again, I found this to be an excellent review of methods that have become the sine qua non of protein structure-function studies. The application of site-directed mutagenesis to support protein biophysical studies is illustrated with relevant examples from the author's laboratory. The chapter Structural Analysis of Proteins is an informative review of lab procedures for analyzing primary sequence and posttranslational modifications. It might well serve as a lab manual, as in many cases recipes for a particular procedure are given in the text. At 70 pages the chapter on protein structure is the longest in the book. It is impressive in its level of detail while maintaining readability. This chapter not only provides an excellent introduction to protein structure in general but also highlights the interplay between computational methods (modeling, refinement) and classification of structural motifs that supports structure prediction. Four chapters further illustrate the diversity of research in the protein field. These topics include antibody catalysis, DNA-binding proteins that require zinc, the use of enzymes in organic synthesis, and protein-based materials research. Finally, two chapters deserve special mention as outstanding treatments of important theoretical concepts. The chapters on protein folding and proton transfer to and from carbon by enzymes stand out in my mind as excellent qualitative introductions to complex topics. Both are succinct, lucid presentations of the relevant theoretical considerations, with ample references to the primary literature for those seeking more quantitative development of the topics. This is an outstanding collection of reviews. If you are a peptide or protein chemist or a reader with a general interest in proteins, you will benefit from reading all or most of this book. Each chapter stands on its own, so the order of coverage during an academic term depends on the preference of the instructor. I have only minor suggestions for improvement. I found roughly a dozen typos in the figures and in the text. I prefer references at the end of each chapter rather than all together at the back of the book. The book would be enhanced by the inclusion of mechanisms for many of the cited reactions. Cofactor chemistry, metabolic pathway elucidation (xenobiotic biosynthesis), and enzyme mimics (other than antibodies) are not covered in this volume. It is debatable whether they should be. In the final analysis the editor had to make choices about what to include and he made very good ones. Perhaps some of the elegant synthetic chemistry being developed to elucidate biosynthetic pathways and enzyme mechanisms will appear in subsequent volumes. In my mind that is classical bioorganic chemistry and worthy of inclusion. In the meantime, Professor Hecht is to be congratulated for assembling yet another fine edition of readable and relevant Bioorganic Chemistry.

  3. Developing Student Presentation Skills in an Introductory-Level Chemistry Course with Audio Technology

    ERIC Educational Resources Information Center

    Fredricks, Susan M.; Tierney, John; Bodek, Matthew; Fredericks, Margaret

    2016-01-01

    The objective of this article is to explain and provide rubrics for science and communication faculty as a means to help nonscience students, in basic science classes, understand that proper communication and presentation skills are a necessity in all courses and future walks of life.

  4. Preparation of Octadecyltrichlorosilane Nanopatterns Using Particle Lithography: An Atomic Force Microscopy Laboratory

    ERIC Educational Resources Information Center

    Highland, Zachary L.; Saner, ChaMarra K.; Garno, Jayne C.

    2018-01-01

    Experiments are described that involve undergraduates learning concepts of nanoscience and chemistry. Students prepare nanopatterns of organosilane films using protocols of particle lithography. A few basic techniques are needed to prepare samples, such as centrifuging, mixing, heating, and drying. Students obtain hands-on skills with nanoscale…

  5. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    ERIC Educational Resources Information Center

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  6. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  7. Discovering More Chemical Concepts from 3D Chemical Information Searches of Crystal Structure Databases

    ERIC Educational Resources Information Center

    Rzepa, Henry S.

    2016-01-01

    Three new examples are presented illustrating three-dimensional chemical information searches of the Cambridge structure database (CSD) from which basic core concepts in organic and inorganic chemistry emerge. These include connecting the regiochemistry of aromatic electrophilic substitution with the geometrical properties of hydrogen bonding…

  8. Basic Stabilization. Training Module 2.225.2.77.

    ERIC Educational Resources Information Center

    Paulson, W. L.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with water stabilization and deposition and corrosion control in a water supply system. Included are objectives, an instructor guide, student handouts and transparency masters. The module considers water stability, water chemistry,…

  9. Starch and protein chemistry and functional properties

    USDA-ARS?s Scientific Manuscript database

    Starch and protein are the major constituents of all cereal grains and are an important source of nutrition for humans and animals. Worldwide, sorghum and the millets are basic food staples for millions of people and are important sources of animal feed, and in some cases fuel. The chemical properti...

  10. An NMR Protonation Study of Metal Diethylenetriaminepentaacetic Acid Complexes.

    ERIC Educational Resources Information Center

    Letkeman, Peter

    1979-01-01

    This experiment is suitable for an integrated laboratory course for senior chemistry majors. It introduces the student to a study of the relative basicity of different proton accepting sites. It serves as an opportunity to learn about nmr techniques and could extend to infrared, as well. (BB)

  11. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  12. Sagebrush identification, ecology, and palatability relative to sage-grouse

    Treesearch

    Roger Rosentreter

    2005-01-01

    Basic identification keys and comparison tables for 23 low and big sagebrush (Artemisia) taxa are presented. Differences in sagebrush ecology, soil temperature regimes, geographic range, palatability, mineralogy, and chemistry are discussed. Coumarin, a chemical produced in the glands of some Artemisia species, causes UV-light fluorescence of the...

  13. Facial Toner Preparation Using Distilled Fragrant Compounds of Natural Herbal Plants

    ERIC Educational Resources Information Center

    Liao, Wayne C.; Lien, Ching-Yi

    2011-01-01

    This experiment is designed to teach entry-level, nonchemistry-major students some basic organic chemistry through the procedure for making cosmetics. The experiment combines facial toner preparation with distillation techniques to create a stimulating learning environment. During the experiment, students perform a distillation to collect some…

  14. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    ERIC Educational Resources Information Center

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  15. Protein Chemistry: A Graduate Course in Pharmaceutical Biotechnology at the University of Kansas.

    ERIC Educational Resources Information Center

    Manning, Mark C.; Mitchell, James W.

    1991-01-01

    The University of Kansas course in pharmaceutical biotechnology aims at providing students with an understanding of the basic chemical and structural characteristics making protein pharmaceuticals unique and distinct. In addition, stability and analysis of proteins are emphasized. Attention given to molecular biology, drug delivery, and…

  16. Archival Stability of Microfilm.

    ERIC Educational Resources Information Center

    Materazzi, Albert R.

    This report is in response to complaints and criticism by the library community on the Superintendent of Documents' decision to furnish third generation diazo microfiche for the Depository Library program. It reviews some of the basic photographic chemistry of both silver halides and diazos which have an influence on dark stability. A review of…

  17. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  18. Graphic Arts: Book Three. The Press and Related Processes.

    ERIC Educational Resources Information Center

    Farajollahi, Karim; And Others

    The third of a three-volume set of instructional materials for a graphic arts course, this manual consists of nine instructional units dealing with presses and related processes. Covered in the units are basic press fundamentals, offset press systems, offset press operating procedures, offset inks and dampening chemistry, preventive maintenance…

  19. Data Aggregation, Curation and Modeling Approaches to Deliver Prediction Models to Support Computational Toxicology at the EPA (ACS Fall meeting)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program develops and utilizes QSAR modeling approaches across a broad range of applications. In terms of physical chemistry we have a particular interest in the prediction of basic physicochemical parameters ...

  20. Green Chemistry: Progress and Barriers

    NASA Astrophysics Data System (ADS)

    Green, Sarah A.

    2016-10-01

    Green chemistry can advance both the health of the environment and the primary objectives of the chemical enterprise: to understand the behavior of chemical substances and to use that knowledge to make useful substances. We expect chemical research and manufacturing to be done in a manner that preserves the health and safety of workers; green chemistry extends that expectation to encompass the health and safety of the planet. While green chemistry may currently be treated as an independent branch of research, it should, like safety, eventually become integral to all chemistry activities. While enormous progress has been made in shifting from "brown" to green chemistry, much more effort is needed to effect a sustainable economy. Implementation of new, greener paradigms in chemistry is slow because of lack of knowledge, ends-justify-the-means thinking, systems inertia, and lack of financial or policy incentives.

  1. A Review of Spatial Ability Literature, Its Connection to Chemistry, and Implications for Instruction

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy

    2011-01-01

    Chemists and scientists use spatial abilities as part of the way they understand and communicate their subject areas. A review of the foundational research literature in spatial ability and its connections to chemistry as a field and chemical education research allows for the formulation of implications for teaching in chemistry. (Contains 7…

  2. A Cross-Age Study of Different Perspectives in Solution Chemistry from Junior to Senior High School

    ERIC Educational Resources Information Center

    Calik, Muammer

    2005-01-01

    This study reports on research examining what students think about aspects of solution chemistry and seeks to establish what alternative conceptions they hold in this area. To achieve this aim the researchers developed a test comprising of open-ended questions that evaluated students understanding of solution chemistry. The test was administered…

  3. Development and Preliminary Impacts of the Implementation of an Authentic Research-Based Experiment in General Chemistry

    ERIC Educational Resources Information Center

    Tomasik, Janice Hall; Cottone, Katelyn E.; Heethuis, Mitchell T.; Mueller, Anja

    2013-01-01

    Incorporating research-based lab activities into general chemistry at a large university can be challenging, considering the high enrollments and costs typically associated with the courses. Performing sweeping curricular overhauls of the general chemistry laboratory can be difficult, and in some cases discouraged, as many would rather maintain…

  4. "Chemistry for All, Instead of Chemistry Just for the Elite": Lessons Learned from Detracked Chemistry Classrooms

    ERIC Educational Resources Information Center

    Watanabe, Maika; Nunes, Nicole; Mebane, Sheryl; Scalise, Kathleen; Claesgens, Jennifer

    2007-01-01

    Within the already limited literature on instructional practices in detracked classrooms, there are even fewer research-based studies of detracked science classrooms. This article attempts to address this gap in the research literature, delving into the unique challenges and instructional responses to teaching detracked science. The authors report…

  5. Chemistry Teaching: Impact of Educational Research on the Practices of Chemistry Teachers in Singapore

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Gilbert, John K.

    2014-01-01

    This paper reports the findings of a study which investigated the role that educational research plays in influencing 29 Singapore pre-university (Grades 11 and 12) and secondary (Grades 9 and 10) chemistry teachers' curricular and instructional decision-making process. Twenty-five teachers were interviewed while four preferred to submit written…

  6. Test-Retest Reliability of the Adaptive Chemistry Assessment Survey for Teachers: Measurement Error and Alternatives to Correlation

    ERIC Educational Resources Information Center

    Harshman, Jordan; Yezierski, Ellen

    2016-01-01

    Determining the error of measurement is a necessity for researchers engaged in bench chemistry, chemistry education research (CER), and a multitude of other fields. Discussions regarding what constructs measurement error entails and how to best measure them have occurred, but the critiques about traditional measures have yielded few alternatives.…

  7. An Investigation into the Relationship between Academic Risk Taking and Chemistry Laboratory Anxiety in Turkey

    ERIC Educational Resources Information Center

    Öner Sünkür, Meral

    2015-01-01

    This study evaluates the relationship between academic risk taking and chemistry laboratory anxiety using a relational scanning model. The research sample consisted of 127 undergraduate students (sophomores, juniors and seniors) in the Chemistry Teaching Department at Dicle University. This research was done in the spring semester of the 2012 to…

  8. Teaching Chemistry in Primary Science: What Does the Research Suggest?

    ERIC Educational Resources Information Center

    Skamp, Keith

    2011-01-01

    The new Australian national science curriculum includes chemistry content at the primary level. Chemistry for young students is learning about changes in material stuff (matter) and, by implication, of what stuff is made. Pedagogy in this area needs to be guided by research if stepping stones to later learning of chemical ideas are to facilitate…

  9. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  10. Development of an Advanced Training Course for Teachers and Researchers in Chemistry

    ERIC Educational Resources Information Center

    Dragisich, Vera; Keller, Valerie; Black, Rebecca; Heaps, Charles W.; Kamm, Judith M.; Olechnowicz, Frank; Raybin, Jonathan; Rombola, Michael; Zhao, Meishan

    2016-01-01

    Based on our long-standing Intensive Training Program for Effective Teaching Assistants in Chemistry, we have developed an Advanced Training Course for Teachers and Researchers in Chemistry at The University of Chicago. The topics in this course are designed to train graduate teaching assistants (GTAs) to become effective teachers and well-rounded…

  11. Perceived Autonomy-Support, Expectancy, Value, Metacognitive Strategies and Performance in Chemistry: A Structural Equation Model in Undergraduates

    ERIC Educational Resources Information Center

    González, Antonio; Paoloni, Paola-Verónica

    2015-01-01

    Research in chemistry education has highlighted a number of variables that predict learning and performance, such as teacher-student interactions, academic motivation and metacognition. Most of this chemistry research has examined these variables by identifying dyadic relationships through bivariate correlations. The main purpose of this study was…

  12. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine.

    PubMed

    Rojas-Chapana, Jose A; Giersig, Michael

    2006-02-01

    Interdisciplinary research has become a matter of paramount importance for novel applications of nanomaterials in biology and medicine. As such, many disciplines-physics, chemistry, microbiology, cell biology, and material science-all contribute to the design, synthesis and fabrication of functional and biocompatible devices at the nanometer scale. Since the most areas of cell biology and biomedicine deal with functional entities such as DNA and proteins, mimicry of these structures and function in the nanosize range offers exciting opportunities for the development of biosensors, biochips, and bioplatforms. In this report we highlight the potential benefits and challenges that arise in the manufacture of biocompatible nanoparticles and nano-networks that can be coupled with biological objects. Among the challenges facing us are those concerned with making the necessary advances in enabling affordability, innovation, and quality of manufactured nanodevices for rapid progress in the emerging field of bio-nanotechnology. The convergence of nanotechnology and biomedicine makes nanoscale research highly promising for new discoveries that can cost-effectively accelerate progress in moving from basic research to practical prototypes and products.

  13. Separated isotopes: vital tools for science and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This report summarizes the deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE). The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An Overview with three recommendations resulting from the Workshop, prepared by the Steering Committee, is followed by Chapters 1 to 4, reports of the following four Workshop panels: (1) panel on research applications in physics, chemistry and geoscience; (2) panelmore » on commercial applications; (3) panel on biomedical research applications; (4) panel on clinical applications. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They proved of great value and are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11. Selected papers have been abstracted and indexed.« less

  14. Characterization of the Inductively Heated Plasma Source IPG6-B

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.

  15. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  16. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    PubMed

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthetic CO, H2 and H I surveys of the second galactic quadrant, and the properties of molecular gas

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Acreman, D. M.; Dobbs, C. L.; Mottram, J. C.; Gibson, S. J.; Brunt, C. M.; Douglas, K. A.

    2015-03-01

    We present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.

  18. Doing the Research that Informs Practice: A Retrospective View of One Group's Attempt to Study The Teaching and Learning of Organic Chemistry.

    PubMed

    Bodner, George M; Ferguson, Rob; Çalimsiz, Selçuk

    2017-07-04

    The idea that the focus of educational research should be on results that can inform the practice of teaching has been an implicit assumption for so many years that one would be hard-pressed to trace it back to an individual source. At one time, the people doing such research in STEM disciplines were faculty in schools or colleges of education who focused on K-12 classrooms and looked for ideas, concepts, and principles that would be valid across a range of STEM disciplines. Eventually, this research was done on college- or university-level students, as well, and there was a shift toward what has been called discipline-based educational research (DBER) that looks at the problems associated with the teaching and learning of a given discipline, such as chemistry. This paper will discuss the results of research on problem-solving in chemistry that has been done in our research group, with particular emphasis on the challenges of teaching and learning organic chemistry. The goal of this paper is to show what can happen when one listens carefully to students and begins to appreciate the difference between what we think we have taught and what the students learned. The examples we will use have the potential for convincing those of us who teach chemistry to rethink what we do in our classes to find better ways of helping our students understand the material we are trying to teach. Although this paper will focus on results from the second-year organic chemistry course, similar results have been observed in both inorganic and physical chemistry, as well as biochemistry courses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On Study of New Progress and Application of Coordination Chemistry in Chemistry and Chemical Industry in Recent Years

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-12-01

    Coordination chemistry refers to a branch of chemistry, and its research results are widely used in industry and people's daily life. Many edge disciplines emerge during the development, which propels the process of disciplines and technology. This paper briefly discusses new progress of coordination chemistry and its application in chemistry and chemical industry in recent years.

  20. A Thematic Review of Studies into the Effectiveness of Context-Based Chemistry Curricula

    NASA Astrophysics Data System (ADS)

    Ültay, Neslihan; Çalık, Muammer

    2012-12-01

    Context-based chemistry education aims at making connections between real life and the scientific content of chemistry courses. The purpose of this study was to evaluate context-based chemistry studies. In looking for the context-based chemistry studies, the authors entered the keywords `context-based', `contextual learning' and `chemistry education' in well-known databases (i.e. Academic Search Complete, Education Research Complete, ERIC, Springer LINK Contemporary). Further, in case the computer search by key words may have missed a rather substantial part of the important literature in the area, the authors also conducted a hand search of the related journals. To present a detailed thematic review of context-based chemistry studies, a matrix was used to summarize the findings by focusing on insights derived from the related studies. The matrix incorporates the following themes: needs, aims, methodologies, general knowledge claims, and implications for teaching and learning, implications for curriculum development and suggestions for future research. The general knowledge claims investigated in this paper were: (a) positive effects of the context-based chemistry studies; (b) caveats, both are examined in terms of students' attitudes and students' understanding/cognition. Implications were investigated for practice in context- based chemistry studies, for future research in context- based chemistry studies, and for curriculum developers in context- based chemistry studies. Teachers of context-based courses claimed that the application of the context-based learning approach in chemistry education improved students' motivation and interest in the subject. This seems to have generated an increase in the number of the students who wish to continue chemistry education at higher levels. However, despite the fact that the majority of the studies have reported advantages of context-based chemistry studies, some of them have also referred to pitfalls, i.e. dominant structure of out-of-school learning, tough nature of some chemistry topics, and teacher anxiety of lower-ability students.

Top