Sample records for basic conservation equations

  1. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bart, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.

  2. Lectures series in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1987-01-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.

  3. Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham-Broer-Kaup-Like Equations

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2017-03-01

    In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.

  4. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  5. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  6. Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

    NASA Astrophysics Data System (ADS)

    Zlotnik, A. A.

    2017-04-01

    The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier-Stokes equations of a viscous compressible heat-conducting gas.

  7. Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2011-10-01

    Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.

  8. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    ERIC Educational Resources Information Center

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  9. A conservation law for virus infection kinetics in vitro.

    PubMed

    Kakizoe, Yusuke; Morita, Satoru; Nakaoka, Shinji; Takeuchi, Yasuhiro; Sato, Kei; Miura, Tomoyuki; Beauchemin, Catherine A A; Iwami, Shingo

    2015-07-07

    Conservation laws are among the most important properties of a physical system, but are not commonplace in biology. We derived a conservation law from the basic model for viral infections which consists in a small set of ordinary differential equations. We challenged the conservation law experimentally for the case of a virus infection in a cell culture. We found that the derived, conserved quantity remained almost constant throughout the infection period, implying that the derived conservation law holds in this biological system. We also suggest a potential use for the conservation law in evaluating the accuracy of experimental measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stability: Conservation laws, Painlevé analysis and exact solutions for S-KP equation in coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.; Moawad, S. M.; Wael, Shrouk

    The propagation of nonlinear waves in unmagnetized strongly coupled dusty plasma with Boltzmann distributed electrons, iso-nonthermal distributed ions and negatively charged dust grains is considered. The basic set of fluid equations is reduced to the Schamel Kadomtsev-Petviashvili (S-KP) equation by using the reductive perturbation method. The variational principle and conservation laws of S-KP equation are obtained. It is shown that the S-KP equation is non-integrable using Painlevé analysis. A set of new exact solutions are obtained by auto-Bäcklund transformations. The stability analysis is discussed for the existence of dust acoustic solitary waves (DASWs) and it is found that the physical parameters have strong effects on the stability criterion. In additional to, the electric field and the true Mach number of this solution are investigated. Finally, we will study the physical meanings of solutions.

  11. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1984-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are given explicitly. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, is derived by solving the system of master equations accounting for the multiple-level transitions.

  12. Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1985-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are explicitly given. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, are derived by solving the system of master equations accounting for the multiple-level transitions.

  13. Conservation of wave action. [in discrete oscillating system

    NASA Technical Reports Server (NTRS)

    Hayes, W. D.

    1974-01-01

    It is pointed out that two basic principles appear in the theory of wave propagation, including the existence of a phase variable and a law governing the intensity, in terms of a conservation law. The concepts underlying such a conservation law are explored. The waves treated are conservative in the sense that they obey equations derivable from a variational principle applied to a Lagrangian functional. A discrete oscillating system is considered. The approach employed also permits in a natural way the definition of a local action density and flux in problems in which the waves are modal or general.

  14. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  15. Basic Theory of Fractional Conformal Invariance of Mei Symmetry and its Applications to Physics

    NASA Astrophysics Data System (ADS)

    Luo, Shao-Kai; Dai, Yun; Yang, Ming-Jing; Zhang, Xiao-Tian

    2018-04-01

    In this paper, we present a basic theory of fractional dynamics, i.e., the fractional conformal invariance of Mei symmetry, and find a new kind of conserved quantity led by fractional conformal invariance. For a dynamical system that can be transformed into fractional generalized Hamiltonian representation, we introduce a more general kind of single-parameter fractional infinitesimal transformation of Lie group, the definition and determining equation of fractional conformal invariance are given. And then, we reveal the fractional conformal invariance of Mei symmetry, and the necessary and sufficient condition whether the fractional conformal invariance would be the fractional Mei symmetry is found. In particular, we present the basic theory of fractional conformal invariance of Mei symmetry and it is found that, using the new approach, we can find a new kind of conserved quantity; as a special case, we find that an autonomous fractional generalized Hamiltonian system possesses more conserved quantities. Also, as the new method's applications, we, respectively, find the conserved quantities of a fractional general relativistic Buchduhl model and a fractional Duffing oscillator led by fractional conformal invariance of Mei symmetry.

  16. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  17. Theory of light transfer in food and biological materials

    USDA-ARS?s Scientific Manuscript database

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  18. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software - Case study of Baraolt River, Romania

    NASA Astrophysics Data System (ADS)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.

  19. Development of monitoring system of helium leakage from canister

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriu, D.; Ushijima, S.; Takeda, H.

    2013-07-01

    This paper presents a computational method for the helium leakage from a canister. The governing equations for compressible fluids consist of mass conservation equation in Eulerian description, momentum equations and energy equation. The numerical procedures are divided into three phases, advection, diffusion and acoustic phases, and the equations of compressible fluids are discretized with a finite volume method. Thus, the mass conservation law is sufficiently satisfied in the calculation region. In particular, our computational method enables us to predict the change of the temperature distributions around the canister boundaries by calculating the governing equations for the compressible gas flows, whichmore » are leaked out from a slight crack on the canister boundary. In order to confirm the validity of our method, it was applied to the basic problem, 2-dimensional natural convection flows in a rectangular cavity. As a result, it was shown that the naturally convected flows can be reasonably simulated by our method. Furthermore, numerical experiments were conducted for the helium leakage from canister and we derived a close relationship between the inner pressure and the boundary temperature distributions.« less

  20. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  1. Summer Study Program in Geophysical Fluid Dynamics 1989. General Circulation of the Oceans

    DTIC Science & Technology

    1989-11-01

    Description of the Surface Circulation 2.2 A Description of the Interior Circulation 2.3 Formation Sites and Circulation of Deepwater Masses 2.4 Mode...and atmosphere, we have to follow basic laws of physics which lead us to try to solve a series of conservation equations, Mass : Dp*+ P() Du. - , ’ O.j...r~--~)(18) where,= vorticity 0 - 1 Vertically integrated mass conservation gives which leads to T.3) (19) Using the fact that Ro, ;<<I, the lowest

  2. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  3. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  4. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  5. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  6. On hydrostatic flows in isentropic coordinates

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno

    2000-01-01

    The hydrostatic primitive equations of motion which have been used in large-scale weather prediction and climate modelling over the last few decades are analysed with variational methods in an isentropic Eulerian framework. The use of material isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct conceptual advantages since fluid motion is, under inviscid and statically stable circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an Eulerian isentropic Hamilton's principle, expressed in terms of fluid parcel variables, is therefore derived by transformation of a Lagrangian Hamilton's principle to an Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of the time-dependent domain in terms of advection of boundary isentropes sB; these are the values the isentropes have at their intersection with the (lower) boundary. A partial Legendre transform for only the interior variables yields an Eulerian ‘action’ principle. Secondly, Noether's theorem is used to derive energy and potential vorticity conservation from the Eulerian Hamilton's principle. Thirdly, these conservation laws are used to derive a wave-activity invariant which is second-order in terms of small-amplitude disturbances relative to a resting or moving basic state. Linear stability criteria are derived but only for resting basic states. In mid-latitudes a time- scale separation between gravity and vortical modes occurs. Finally, this time-scale separation suggests that conservative geostrophic and ageostrophic approximations can be made to the Eulerian action principle for hydrostatic flows. Approximations to Eulerian variational principles may be more advantageous than approximations to Lagrangian ones because non-dimensionalization and scaling tend to be based on Eulerian estimates of the characteristic scales involved. These approximations to the stratified hydrostatic formulation extend previous approximations to the shallow- water equations. An explicit variational derivation is given of an isentropic version of Hoskins & Bretherton's model for atmospheric fronts.

  7. Further analytical study of hybrid rocket combustion

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.

  8. Reconstruction of Twist Torque in Main Parachute Risers

    NASA Technical Reports Server (NTRS)

    Day, Joshua D.

    2015-01-01

    The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.

  9. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  10. A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1971-01-01

    An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.

  11. Application of a Near-Field Water Quality Model.

    DTIC Science & Technology

    1979-07-01

    VERIFICATION 45 CENTERLINE TEMPERATURE DECRF~A7F 46 LATERAL VARIATION OF CONSTITUENTS 46 VARIATIOtN OF PLUME WIDTH 49 GENERAL ON VERIFICATION 49...40 4 SOME RESULTS OF VARYING THE ENTRAINMENT COEFFICIENT 4’ 5 RESULTS OF VARYING OTHER COEFFICEINT 42 6 GENERAL PLUME CHARACTERISITICS FOR VARIATION... plume ) axis. These profile forms are then integrated within the basic conservation equations. This integration reduces the problem to a one

  12. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  13. Integrating occupancy models and structural equation models to understand species occurrence

    PubMed Central

    Joseph, Maxwell B.; Preston, Daniel L.; Johnson, Pieter T. J.

    2016-01-01

    Understanding the drivers of species occurrence is a fundamental goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambystoma californiense), and the California red-legged frog (Rana draytonii). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions. PMID:27197402

  14. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    1997-01-01

    Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.

  15. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

  16. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  17. On the application of ENO scheme with subcell resolution to conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung

    1991-01-01

    Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.

  18. The computation of standard solar models

    NASA Technical Reports Server (NTRS)

    Ulrich, Roger K.; Cox, Arthur N.

    1991-01-01

    Procedures for calculating standard solar models with the usual simplifying approximations of spherical symmetry, no mixing except in the surface convection zone, no mass loss or gain during the solar lifetime, and no separation of elements by diffusion are described. The standard network of nuclear reactions among the light elements is discussed including rates, energy production and abundance changes. Several of the equation of state and opacity formulations required for the basic equations of mass, momentum and energy conservation are presented. The usual mixing-length convection theory is used for these results. Numerical procedures for calculating the solar evolution, and current evolution and oscillation frequency results for the present sun by some recent authors are given.

  19. Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.

    PubMed

    Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S

    2009-05-01

    We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.

  20. Discussion: Numerical study on the entrainment of bed material into rapid landslides

    USGS Publications Warehouse

    Iverson, Richard M.

    2013-01-01

    A paper recently published in this journal (Pirulli & Pastor, 2012) uses numerical modelling to study the important problem of entrainment of bed material by landslides. Unfortunately, some of the basic equations employed in the study are flawed, because they violate the principle of linear momentum conservation. Similar errors exist in some other studies of entrainment, and the errors appear to stem from confusion about the role of bed-sediment inertia in differing frames of reference.

  1. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    NASA Astrophysics Data System (ADS)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  2. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  3. Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Carvalho, Cindy; Harley, Charis

    2017-05-01

    Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.

  4. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  5. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  6. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. If numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999) numerical dissipation is employed. The Yee et al. schemes fit in the Olsson and Oliger framework.

  7. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  8. On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    San, Sait; Yaşar, Emrullah

    2015-05-01

    In this study, the nonlocal conservation theorem and multiplier approach are performed on the 1 + 1 dimensional Derrida-Lebowitz-Speer-Spohn (DLSS) equation which arises in quantum semi conductor theory. We obtain local conservation laws by using the both methods. Furthermore by utilizing the relationship between conservation laws and Lie point symmetries, the DLSS equation is reduced to third order ordinary differential equation.

  9. A B-B-G-K-Y framework for fluid turbulence

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1975-01-01

    A kinetic theory for fluid turbulence is developed from the Liouville equation and the associated BBGKY hierarchy. Real and imaginary parts of Fourier coefficients of fluid variables play the roles of particles. Closure is achieved by the assumption of negligible five-coefficient correlation functions and probability distributions of Fourier coefficients are the basic variables of the theory. An additional approximation leads to a closed-moment description similar to the so-called eddy-damped Markovian approximation. A kinetic equation is derived for which conservation laws and an H-theorem can be rigorously established, the H-theorem implying relaxation of the absolute equilibrium of Kraichnan. The equation can be cast in the Fokker-Planck form, and relaxation times estimated from its friction and diffusion coefficients. An undetermined parameter in the theory is the free decay time for triplet correlations. Some attention is given to the inclusion of viscous damping and external driving forces.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca

    Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less

  11. Conservation form of the equations of fluid dynamics in general nonsteady coordinates

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Camarero, R.; Kahawita, R.

    1985-11-01

    Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.

  12. Conservation properties of numerical integration methods for systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  13. Boundary Conditions for Infinite Conservation Laws

    NASA Astrophysics Data System (ADS)

    Rosenhaus, V.; Bruzón, M. S.; Gandarias, M. L.

    2016-12-01

    Regular soliton equations (KdV, sine-Gordon, NLS) are known to possess infinite sets of local conservation laws. Some other classes of nonlinear PDE possess infinite-dimensional symmetries parametrized by arbitrary functions of independent or dependent variables; among them are Zabolotskaya-Khokhlov, Kadomtsev-Petviashvili, Davey-Stewartson equations and Born-Infeld equation. Boundary conditions were shown to play an important role for the existence of local conservation laws associated with infinite-dimensional symmetries. In this paper, we analyze boundary conditions for the infinite conserved densities of regular soliton equations: KdV, potential KdV, Sine-Gordon equation, and nonlinear Schrödinger equation, and compare them with boundary conditions for the conserved densities obtained from infinite-dimensional symmetries with arbitrary functions of independent and dependent variables.

  14. Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Rui, Wenjuan; Zhang, Xiangzhi

    2016-05-01

    This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.

  15. Conservation-form equations of unsteady open-channel flow

    USGS Publications Warehouse

    Lai, C.; Baltzer, R.A.; Schaffranek, R.W.

    2002-01-01

    The unsteady open-channel flow equations are typically expressed in a variety of forms due to the imposition of differing assumptions, use of varied dependent variables, and inclusion of different source/sink terms. Questions often arise as to whether a particular equation set is expressed in a form consistent with the conservation-law definition. The concept of conservation form is developed to clarify the meaning mathematically. Six sets of unsteady-flow equations typically used in engineering practice are presented and their conservation properties are identified and discussed. Results of the theoretical development and analysis of the equations are substantiated in a set of numerical experiments conducted using alternate equation forms. Findings of these analytical and numerical efforts demonstrate that the choice of dependent variable is the fundamental factor determining the nature of the conservation properties of any particular equation form.

  16. This Is Rocket Science!

    NASA Astrophysics Data System (ADS)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  17. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  18. Some aspects of steam-water flow simulation in geothermal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulyupin, Alexander N.

    1996-01-24

    Actual aspects of steam-water simulation in geothermal wells are considered: necessary quality of a simulator, flow regimes, mass conservation equation, momentum conservation equation, energy conservation equation and condition equations. Shortcomings of traditional hydraulic approach are noted. Main questions of simulator development by the hydraulic approach are considered. New possibilities of a simulation with the structure approach employment are noted.

  19. On a new class of completely integrable nonlinear wave equations. I. Infinitely many conservation laws

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1985-06-01

    We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.

  20. Conservation laws and symmetries of a generalized Kawahara equation

    NASA Astrophysics Data System (ADS)

    Gandarias, Maria Luz; Rosa, Maria; Recio, Elena; Anco, Stephen

    2017-06-01

    The generalized Kawahara equation ut = a(t)uxxxxx + b(t)uxxx + c(t) f (u)ux appears in many physical applications. A complete classification of low-order conservation laws and point symmetries is obtained for this equation, which includes as a special case the usual Kawahara equation ut = αuux + βu2ux + γuxxx + μuxxxxx. A general connection between conservation laws and symmetries for the generalized Kawahara equation is derived through the Hamiltonian structure of this equation and its relationship to Noether's theorem using a potential formulation.

  1. Comparison of Quasi-Conservative Pressure-Based and Fully-Conservative Formulations for the Simulation of Transcritical Flows

    NASA Astrophysics Data System (ADS)

    Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.

  2. Pulsational mode fluctuations and their basic conservation laws

    NASA Astrophysics Data System (ADS)

    Borah, B.; Karmakar, P. K.

    2015-01-01

    We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.

  3. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Kenamond, Mack; Bement, Matthew; Shashkov, Mikhail

    2014-07-01

    We present a new discretization for 2D arbitrary Lagrangian-Eulerian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, total energy conserving and symmetry preserving. In the first part of the paper, we describe the discretization of the basic Lagrangian hydrodynamics equations in axisymmetric 2D rz geometry on general polygonal meshes. It exactly preserves planar, cylindrical and spherical symmetry of the flow on meshes aligned with the flow. In particular, spherical symmetry is preserved on polar equiangular meshes. The discretization conserves total energy exactly up to machine round-off on any mesh. It has a consistent definition of kinetic energy in the zone that is exact for a velocity field with constant magnitude. The method for discretization of the Lagrangian equations is based on ideas presented in [2,3,7], where the authors use a special procedure to distribute zonal mass to corners of the zone (subzonal masses). The momentum equation is discretized in its “Cartesian” form with a special definition of “planar” masses (area-weighted). The principal contributions of this part of the paper are as follows: a definition of “planar” subzonal mass for nodes on the z axis (r=0) that does not require a special procedure for movement of these nodes; proof of conservation of the total energy; formulated for general polygonal meshes. We present numerical examples that demonstrate the robustness of the new method for Lagrangian equations on a variety of grids and test problems including polygonal meshes. In particular, we demonstrate the importance of conservation of total energy for correctly modeling shock waves. In the second part of the paper we describe the remapping stage of the arbitrary Lagrangian-Eulerian algorithm. The general idea is based on the following papers [25-28], where it was described for Cartesian coordinates. We describe a distribution-based algorithm for the definition of remapped subzonal densities and a local constrained-optimization-based approach for each zone to find the subzonal mass fluxes. In this paper we give a systematic and complete description of the algorithm for the axisymmetric case and provide justification for our approach. The ALE algorithm conserves total energy on arbitrary meshes and preserves symmetry when remapping from one equiangular polar mesh to another. The principal contributions of this part of the paper are the extension of this algorithm to general polygonal meshes and 2D rz geometry with requirement of symmetry preservation on special meshes. We present numerical examples that demonstrate the robustness of the new ALE method on a variety of grids and test problems including polygonal meshes and some realistic experiments. We confirm the importance of conservation of total energy for correctly modeling shock waves.

  5. Vehicle energy conservation indicating device and process for use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crump, J.M.

    A vehicle energy conservation indicating device comprises an integrated instrument cluster functioning basically as a nomographic computing mechanism. The odometer distance traveled indicator computing mechanism is linked with the fuel indicating gauge mechanism such that a three variable equation computing mechanism is obtained. The three variables are distance traveled, quantity of fuel consumed and distance traveled per unit of fuel consumed. Energy conservation is achieved by operating the vehicle under such performance conditions as to produce the highest possible value for distance traveled per unit of fuel consumed. The instrument panel cluster brings the operator's attention to focus upon andmore » continuously stimulated to conserving energy. Furthermore, the vehicle energy conservation indicating device can be adapted for recording these performance variables on tape type print out. The speedometer advises the vehicle operator when he is obeying or breaking the speed laws which are enforced and monitored by the police with specific punishment prescribed for violations of the law. At this time there is no comparable procedure for enforcing vehicle energy conservation. Thus, this direct read out of distance traveled per unit of energy will moderate the operation in an analogous manner similar to subliminal advertising. This device becomes the focal point of the instrument panel along with the speedometer, thereby providing constant motivation to obey both the speed and energy conservation laws.« less

  6. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method

    NASA Astrophysics Data System (ADS)

    Rasin, Alexander G.

    2010-06-01

    The application of the Gardner method for the generation of conservation laws to all the ABS equations is considered. It is shown that all the necessary information for the application of the Gardner method, namely Bäcklund transformations and initial conservation laws, follows from the multidimensional consistency of ABS equations. We also apply the Gardner method to an asymmetric equation which is not included in the ABS classification. An analog of the Gardner method for the generation of symmetries is developed and applied to the discrete Korteweg-de Vries equation. It can also be applied to all the other ABS equations.

  7. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  8. A poroelastic medium saturated by a two-phase capillary fluid

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.

    2014-09-01

    By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.

  9. Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation

    NASA Astrophysics Data System (ADS)

    de la Rosa, R.; Gandarias, M. L.; Bruzón, M. S.

    2016-11-01

    In this paper we study the generalized variable-coefficient Gardner equations of the form ut + A(t) unux + C(t) u2nux + B(t) uxxx + Q(t) u = 0 . This class broadens out many other equations previously considered: Johnpillai and Khalique (2010), Molati and Ramollo (2012) and Vaneeva et al. (2015). The use of the equivalence group of this class allows us to perform an exhaustive study and a simple and clear formulation of the results. Some conservation laws are derived for the nonlinearly self-adjoint equations by using a general theorem on conservation laws. We also construct conservation laws by applying the multipliers method.

  10. Properties of finite difference models of non-linear conservative oscillators

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  11. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-06-01

    In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.

  12. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  13. Thermophysical Fluid Dynamics: the Key to the Structures of Fluid Objects

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2013-12-01

    It has become customary to model the hydrodynamics of fluid planets like Jupiter and Saturn by spinning up general circulation models until they reach a statistical steady state. This approach is physically sound, based on the thermodynamic expectation that the system will eventually achieve a state of maximum entropy, but the models have not been specifically designed for this purpose. Over the course of long integrations, numerical artifacts can drive the system to a state that does not correspond to the physically realistic end state. A different formulation of the governing equations promises better results. The equations of motion are recast as scalar conservation laws in which the diabatic and irreversible terms (both entropy-changing) are clearly identified. The balance between these terms defines the steady state of the system analytically, without the need for any temporal integrations. The conservation of mass in this system is trivial. Conservation of angular momentum replaces the zonal momentum equation and determines the zonal wind from a balance between the tidal torque and frictional dissipation. The principle of wave-mean flow non-interaction is preserved. Bernoulli's Theorem replaces the energy equation. The potential temperature structure is determined by the balance between work done against friction and heat transfer by convection and radiation. An equation of state and the traditional momentum equations in the meridional plane are sufficient to complete the model. Based on the assumption that the final state vertical and meridional winds are small compared to the zonal wind (in any case they are impossible to predict ab initio as they are driven by wave flux convergences), these last equations determine the pressure and density (and hence gravity) fields of the basic state. The thermal wind relation (in its most general form with the axial derivative of the zonal wind balancing the baroclinicity) is preserved. The model is not hydrostatic (in the sense used in planetary modeling) and the zonal wind is not constant on cylinders. Rather, the zonal wind falls off more rapidly with depth --- at least as fast as r3. A similar reformulation of the equations of magnetohydrodynamics is possible. It is found that wave-mean flow non-interaction extends to Alfven waves. Bernoulli's Theorem is augmented by the Poynting Theorem. The components of the traditional dynamo equation can be written as conservation laws. Only a single element of the alpha tensor contributes to the generation of axisymmetric magnetic fields and the mean meridional circulation provides a significant feedback, quenching the omega effect and limiting the amplitudes of non-axisymmetric fields. Thus analytic models are available for all the state variables of Jupiter and Saturn. The unknown independent variables are terms in the equation of state, the eddy viscosity and heat transport coefficients, the magnetic resistivity, and the strength of the tidal torques (which are dependent on the vertical structure of the planet's troposphere). By making new measurements of the atmospheric structure and higher order gravitational moments of Jupiter, JUNO has the potential to constrain these unknowns and contribute greatly to our understanding of the interior of that planet.

  14. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  15. A Novel Blast-mitigation Concept for Light Tactical Vehicles

    DTIC Science & Technology

    2013-01-01

    analysis which utilizes the mass and energy (but not linear momentum ) conservation equations is provided. It should be noted that the identical final...results could be obtained using an analogous analysis which combines the mass and the linear momentum conservation equations. For a calorically...governing mass, linear momentum and energy conservation and heat conduction equations are solved within ABAQUS/ Explicit with a second-order accurate

  16. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  17. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  18. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  19. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  20. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  1. Approche Kaluza-Klein et Supersymetrie de Jauge

    NASA Astrophysics Data System (ADS)

    Pare, Jean-Pierre

    This thesis presents a non-Abelian gauge-supersymmetric Kaluza-Klein approach for charged spinning particles and strings in a background of gravitational and Yang-Mills fields. In the classical Kaluza-Klein approach, the basic mathematical structure is a principal bundle of which the base manifold is space-time. This principal bundle is endowed with a pseudo-Riemannian metric, invariant under the action of the structural group of the bundle, and a connection. Geodesic equations on the bundle lead to the Maxwell-Lorentz equation for curved space-time and Yang -Mills fields, and to a conservation law of a non-Abelian (bosonic) charge. This conservation law originates from the invariance of the free-particle action on the bundle under the action of the structural group of the bundle (gauge group). Firstly, we generalize this approach for a spinning particle. The spin of the particle is described by Grassmannian variables added to the principal bundle. This supersymmetrization gives rise, in addition to the bosonic non-Abelian charge, a fermionic one. This leads to a search for a supergroup action on the superprincipal bundle which leaves invariant the action of the spinning particle. The invariance of this action would lead to the conservation of a non-Abelian super-charge, generalizing the conservation law obtained for particles without spin. We present Lagrangian and Hamiltonian formulations, both invariant under a super -group action. The equations of motion are derived and discussed. Different terms in these equations are well known in the literature. The invariance of these formulations under a supergroup action leads to a conservation law of a non-Abelian supercharge. The bosonic part of this supercharge corresponds to the non-Abelian (bosonic) charge obtained for a particle without spin. The fermionic part is a non -physical charge. It turns out in the supersymmetric case that this decouples from all other dynamical variables, and hence it does not influence trajectories of spinning particles. It is interesting to mention how this gauge -supersymmetry is introduced in the dynamics. It arises by choosing the unique metric connection on the principal bundle with torsion given by the Chern-Simons 3-form. We then proceed to extend these formulations for spinning strings. We present Lagrangian and Hamiltonian gauge-supersymmetric formulations in a superloop space setting. The same connection corresponding to the Chern -Simons 3-form is used here. Equations of motion are derived and discussed. In the appendix, we discuss the effect of using this connection in a non-Abelian Kaluza-Klein field theory. Using the same connection, we present a non-Abelian Kaluza-Klein approach leading to a zero cosmological constant.

  2. On conservation laws for a generalized Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Anco, S.; Rosa, M.; Gandarias, M. L.

    2017-07-01

    In this work, we study a Boussinesq equation with a strong damping term from the point of view of the Lie theory. By using the low order conservation laws we apply the conservation laws multiplier method to the associated potential systems.

  3. New knotted solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Sircar, Nilanjan; Sonnenschein, Jacob

    2015-06-01

    In this paper we have further developed the study of topologically non-trivial solutions of vacuum electrodynamics. We have discovered a novel method of generating such solutions by applying conformal transformations with complex parameters on known solutions expressed in terms of Bateman's variables. This has enabled us to obtain a wide class of solutions from the basic configuration, such as constant electromagnetic fields and plane-waves. We have introduced a covariant formulation of Bateman's construction and discussed the conserved charges associated with the conformal group as well as a set of four types of conserved helicities. We have also given a formulation in terms of quaternions. This led to a simple map between the electromagnetic knotted and linked solutions into flat connections of SU(2) gauge theory. We have computed the corresponding Chern-Simons charge in a class of solutions and the charge takes integer values.

  4. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  5. Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Simbanefayi, Innocent; Khalique, Chaudry Masood

    2018-03-01

    In this work we study the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) equation, which describes the two-way propagation of waves. Using Lie symmetry method together with Jacobi elliptic function expansion and Kudryashov methods we construct its travelling wave solutions. Also, we derive conservation laws of the KdV-BBM equation using the variational derivative approach. In this method, we begin by computing second-order multipliers for the KdV-BBM equation followed by a derivation of the respective conservation laws for each multiplier.

  6. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  7. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  8. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  9. Variational symmetries, conserved quantities and identities for several equations of mathematical physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Veliko, E-mail: velikod@ie.bas.bg

    2014-03-15

    We find variational symmetries, conserved quantities and identities for several equations: envelope equation, Böcher equation, the propagation of sound waves with losses, flow of a gas with losses, and the nonlinear Schrödinger equation with losses or gains, and an electro-magnetic interaction. Most of these equations do not have a variational description with the classical variational principle and we find such a description with the generalized variational principle of Herglotz.

  10. Analyzing Lie symmetry and constructing conservation laws for time-fractional Benny-Lin equation

    NASA Astrophysics Data System (ADS)

    Rashidi, Saeede; Hejazi, S. Reza

    This paper investigates the invariance properties of the time fractional Benny-Lin equation with Riemann-Liouville and Caputo derivatives. This equation can be reduced to the Kawahara equation, fifth-order Kdv equation, the Kuramoto-Sivashinsky equation and Navier-Stokes equation. By using the Lie group analysis method of fractional differential equations (FDEs), we derive Lie symmetries for the Benny-Lin equation. Conservation laws for this equation are obtained with the aid of the concept of nonlinear self-adjointness and the fractional generalization of the Noether’s operators. Furthermore, by means of the invariant subspace method, exact solutions of the equation are also constructed.

  11. The basics of thiols and cysteines in redox biology and chemistry.

    PubMed

    Poole, Leslie B

    2015-03-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  13. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  14. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  15. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation

    PubMed Central

    Bridges, Thomas J.

    2016-01-01

    Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically. PMID:28119546

  16. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  17. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, J.; Ristorcelli, J. R.

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  18. Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.

  19. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  20. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Balsara, Dinshaw S., E-mail: dbalsara@nd.edu

    In this paper a new, simple and universal formulation of the HLLEM Riemann solver (RS) is proposed that works for general conservative and non-conservative systems of hyperbolic equations. For non-conservative PDE, a path-conservative formulation of the HLLEM RS is presented for the first time in this paper. The HLLEM Riemann solver is built on top of a novel and very robust path-conservative HLL method. It thus naturally inherits the positivity properties and the entropy enforcement of the underlying HLL scheme. However, with just the slight additional cost of evaluating eigenvectors and eigenvalues of intermediate characteristic fields, we can represent linearlymore » degenerate intermediate waves with a minimum of smearing. For conservative systems, our paper provides the easiest and most seamless path for taking a pre-existing HLL RS and quickly and effortlessly converting it to a RS that provides improved results, comparable with those of an HLLC, HLLD, Osher or Roe-type RS. This is done with minimal additional computational complexity, making our variant of the HLLEM RS also a very fast RS that can accurately represent linearly degenerate discontinuities. Our present HLLEM RS also transparently extends these advantages to non-conservative systems. For shallow water-type systems, the resulting method is proven to be well-balanced. Several test problems are presented for shallow water-type equations and two-phase flow models, as well as for gas dynamics with real equation of state, magnetohydrodynamics (MHD & RMHD), and nonlinear elasticity. Since our new formulation accommodates multiple intermediate waves and has a broader applicability than the original HLLEM method, it could alternatively be called the HLLI Riemann solver, where the “I” stands for the intermediate characteristic fields that can be accounted for. -- Highlights: •New simple and general path-conservative formulation of the HLLEM Riemann solver. •Application to general conservative and non-conservative hyperbolic systems. •Inclusion of sub-structure and resolution of intermediate characteristic fields. •Well-balanced for single- and two-layer shallow water equations and multi-phase flows. •Euler equations with real equation of state, MHD equations, nonlinear elasticity.« less

  2. Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1990-01-01

    An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.

  3. Breakdown of the conservative potential equation

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Gumbert, C. R.

    1986-01-01

    The conservative full-potential equation is used to study transonic flow over five airfoil sections. The results of the study indicate that once shock are present in the flow, the qualitative approximation is different from that observed with the Euler equations. The difference in behavior of the potential eventually leads to multiple solutions.

  4. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  5. General Navier–Stokes-like momentum and mass-energy equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Jorge, E-mail: jmonreal@mail.usf.edu

    2015-03-15

    A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.

  6. On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1987-11-01

    The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.

  7. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  8. Geometry of Conservation Laws for a Class of Parabolic Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Clelland, Jeanne Nielsen

    1996-08-01

    I consider the problem of computing the space of conservation laws for a second-order, parabolic partial differential equation for one function of three independent variables. The PDE is formulated as an exterior differential system {cal I} on a 12 -manifold M, and its conservation laws are identified with the vector space of closed 3-forms in the infinite prolongation of {cal I} modulo the so -called "trivial" conservation laws. I use the tools of exterior differential systems and Cartan's method of equivalence to study the structure of the space of conservation laws. My main result is:. Theorem. Any conservation law for a second-order, parabolic PDE for one function of three independent variables can be represented by a closed 3-form in the differential ideal {cal I} on the original 12-manifold M. I show that if a nontrivial conservation law exists, then {cal I} has a deprolongation to an equivalent system {cal J} on a 7-manifold N, and any conservation law for {cal I} can be expressed as a closed 3-form on N which lies in {cal J}. Furthermore, any such system in the real analytic category is locally equivalent to a system generated by a (parabolic) equation of the formA(u _{xx}u_{yy}-u_sp {xy}{2}) + B_1u_{xx }+2B_2u_{xy} +B_3u_ {yy}+C=0crwhere A, B_{i}, C are functions of x, y, t, u, u_{x}, u _{y}, u_{t}. I compute the space of conservation laws for several examples, and I begin the process of analyzing the general case using Cartan's method of equivalence. I show that the non-linearizable equation u_{t} = {1over2}e ^{-u}(u_{xx}+u_ {yy})has an infinite-dimensional space of conservation laws. This stands in contrast to the two-variable case, for which Bryant and Griffiths showed that any equation whose space of conservation laws has dimension 4 or more is locally equivalent to a linear equation, i.e., is linearizable.

  9. A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry

    NASA Astrophysics Data System (ADS)

    Jaouen, Stéphane

    2007-07-01

    In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.

  10. Nonlocal conservation laws of the constant astigmatism equation

    NASA Astrophysics Data System (ADS)

    Hlaváč, Adam; Marvan, Michal

    2017-03-01

    For the constant astigmatism equation, we construct a system of nonlocal conservation laws (an abelian covering) closed under the reciprocal transformations. The corresponding potentials are functionally independent modulo a Wronskian type relation.

  11. Basic Concepts and Conservation Skill Training in Kindergarten Chilren.

    ERIC Educational Resources Information Center

    Wasik, Barbara H.; And Others

    1980-01-01

    The study investigated the effects of basic concepts training on conservation acquisition in 41 kindergarten children (17 White boys, 15 White girls, 6 Black girls, and 5 Black boys). Only the conservation training program resulted in significant effects, and that was for the White students alone. (Author)

  12. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  13. 18 CFR 701.2 - Creation and basic authority.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Creation and basic authority. 701.2 Section 701.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.2 Creation and basic authority. The Water Resources Council was established by...

  14. 18 CFR 701.2 - Creation and basic authority.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Creation and basic authority. 701.2 Section 701.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.2 Creation and basic authority. The Water Resources Council was established by...

  15. 18 CFR 701.2 - Creation and basic authority.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Creation and basic authority. 701.2 Section 701.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.2 Creation and basic authority. The Water Resources Council was established by...

  16. 18 CFR 701.2 - Creation and basic authority.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Creation and basic authority. 701.2 Section 701.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.2 Creation and basic authority. The Water Resources Council was established by...

  17. 18 CFR 701.2 - Creation and basic authority.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Creation and basic authority. 701.2 Section 701.2 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.2 Creation and basic authority. The Water Resources Council was established by...

  18. On the Conservation of Cross Helicity and Wave Action in Solar-wind Models with Non-WKB Alfvén Wave Reflection

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.; Perez, Jean C.; Verscharen, Daniel; Klein, Kristopher G.; Mallet, Alfred

    2015-09-01

    The interaction between Alfvén-wave turbulence and the background solar wind affects the cross helicity (\\int {d}3x {\\boldsymbol{v}}\\cdot {\\boldsymbol{B}}) in two ways. Non-WKB reflection converts outward-propagating Alfvén waves into inward-propagating Alfvén waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.

  19. Extension of lattice Boltzmann flux solver for simulation of compressible multi-component flows

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ming; Shu, Chang; Yang, Wen-Ming; Wang, Yan

    2018-05-01

    The lattice Boltzmann flux solver (LBFS), which was presented by Shu and his coworkers for solving compressible fluid flow problems, is extended to simulate compressible multi-component flows in this work. To solve the two-phase gas-liquid problems, the model equations with stiffened gas equation of state are adopted. In this model, two additional non-conservative equations are introduced to represent the material interfaces, apart from the classical Euler equations. We first convert the interface equations into the full conservative form by applying the mass equation. After that, we calculate the numerical fluxes of the classical Euler equations by the existing LBFS and the numerical fluxes of the interface equations by the passive scalar approach. Once all the numerical fluxes at the cell interface are obtained, the conservative variables at cell centers can be updated by marching the equations in time and the material interfaces can be identified via the distributions of the additional variables. The numerical accuracy and stability of present scheme are validated by its application to several compressible multi-component fluid flow problems.

  20. A comparative study of the nonuniqueness problem of the potential equation

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Jameson, A.; Melnik, R. E.

    1985-01-01

    The nonuniqueness problem occurring at transonic speeds with the conservative potential equation is investigated numerically. The study indicates that the problem is not an inviscid phenomenon, but results from approximate treatment of shock waves inherent in the conservative potential model. A new bound on the limit of validity of the conservative potential model is proposed.

  1. Braneworld gravity within non-conservative gravitational theory

    NASA Astrophysics Data System (ADS)

    Fabris, J. C.; Caramês, Thiago R. P.; da Silva, J. M. Hoff

    2018-05-01

    We investigate the braneworld gravity starting from the non-conservative gravitational field equations in a five-dimensional bulk. The approach is based on the Gauss-Codazzi formalism along with the study of the braneworld consistency conditions. The effective gravitational equations on the brane are obtained and the constraint leading to a brane energy-momentum conservation is analyzed.

  2. A semi-Lagrangian approach to the shallow water equation

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Mccormick, Stephen F.; Ruge, John; Sholl, David S.; Yavneh, Irad

    1993-01-01

    We present a formulation of the shallow water equations that emphasizes the conservation of potential vorticity. A locally conservative semi-Lagrangian time-stepping scheme is developed, which leads to a system of three coupled PDE's to be solved at each time level. We describe a smoothing analysis of these equations, on which an effective multigrid solver is constructed. Some results from applying this solver to the static version of these equations are presented.

  3. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  4. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE PAGES

    Cardall, Christian Y.

    2017-12-15

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  5. Conservational PDF Equations of Turbulence

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2010-01-01

    Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application

  6. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less

  7. Modelica buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  8. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  9. Modelica buildings library

    DOE PAGES

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; ...

    2013-03-13

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  10. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  11. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  12. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less

  14. Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits: Commentary.

    PubMed

    Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino

    2017-07-01

    This commentary evaluates two sets of guidelines for human exposure to radiofrequency (RF) energy, focusing on the frequency range above the "transition" frequency at 3-10 GHz where the guidelines change their basic restrictions from specific absorption rate to incident power density, through the end of the RF band at 300 GHz. The analysis is based on a simple thermal model based on Pennes' bioheat equation (BHTE) (Pennes 1948) assuming purely surface heating; an Appendix provides more details about the model and its range of applicability. This analysis suggests that present limits are highly conservative relative to their stated goals of limiting temperature increase in tissue. As applied to transmitting devices used against the body, they are much more conservative than product safety standards for touch temperature for personal electronics equipment that are used in contact with the body. Provisions in the current guidelines for "averaging time" and "averaging area" are not consistent with scaling characteristics of the bioheat equation and should be refined. The authors suggest the need for additional limits on fluence for protection against brief, high intensity pulses at millimeter wave frequencies. This commentary considers only thermal hazards, which form the basis of the current guidelines, and excludes considerations of reported "non-thermal" effects of exposure that would have to be evaluated in the process of updating the guidelines.

  15. Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies

    NASA Astrophysics Data System (ADS)

    Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.

    2015-12-01

    An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.

  16. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface

    NASA Astrophysics Data System (ADS)

    Shao, Songdong; Lo, Edmond Y. M.

    An incompressible smoothed particle hydrodynamics (SPH) method is presented to simulate Newtonian and non-Newtonian flows with free surfaces. The basic equations solved are the incompressible mass conservation and Navier-Stokes equations. The method uses prediction-correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting deviation of particle density is then implicitly projected onto a divergence-free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. Various SPH formulations are employed in the discretization of the relevant gradient, divergence and Laplacian terms. Free surfaces are identified by the particles whose density is below a set point. Wall boundaries are represented by particles whose positions are fixed. The SPH formulation is also extended to non-Newtonian flows and demonstrated using the Cross rheological model. The incompressible SPH method is tested by typical 2-D dam-break problems in which both water and fluid mud are considered. The computations are in good agreement with available experimental data. The different flow features between Newtonian and non-Newtonian flows after the dam-break are discussed.

  17. The fundamental equation of eddy covariance and its application in flux measurements

    Treesearch

    Lianhong Gu; William J. Massman; Ray Leuning; Stephen G. Pallardy; Tilden Meyers; Paul J. Hanson; Jeffery S. Riggs; Kevin P. Hosman; Bai Yang

    2012-01-01

    A fundamental equation of eddy covariance (FQEC) is derived that allows the net ecosystem exchange (NEE) Ns of a specified atmospheric constituent s to be measured with the constraint of conservation of any other atmospheric constituent (e.g. N2, argon, or dry air). It is shown that if the condition [equation, see PDF] is true, the conservation of mass can be applied...

  18. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    NASA Astrophysics Data System (ADS)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  19. Fradkin-Bacry-Ruegg-Souriau perihelion vector for Gorringe-Leach equations

    NASA Astrophysics Data System (ADS)

    Grandati, Yves; Bérard, Alain; Mohrbach, Hervé

    2010-02-01

    We show that every generalized Gorringe-Leach equation admits an associated Fradkin-Bacry-Ruegg-Souriau’s vector which, in general, is only a piecewise conserved quantity. In the case of dualizable generalized Gorringe-Leach equations, which include the case of conservative motions in central power law potentials, the image sets of the FBRS vectors for dual classes are dual images of each other.

  20. BMS3 invariant fluid dynamics at null infinity

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.

    2018-02-01

    We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \

  1. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  2. Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, W.L.; Monahan, S.P.

    It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less

  3. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  4. Austerity and geometric structure of field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheyfets, A.

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for themore » source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories.« less

  5. Hamiltonian structures for systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Olver, Peter J.; Nutku, Yavuz

    1988-07-01

    The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.

  6. Infinite Conservation Laws, Continuous Symmetries and Invariant Solutions of Some Discrete Integrable Equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Zhang, Xiang-Zhi; Dong, Huan-He

    2017-12-01

    Two new shift operators are introduced for which a few differential-difference equations are generated by applying the R-matrix method. These equations can be reduced to the standard Toda lattice equation and (1+1)-dimensional and (2+1)-dimensional Toda-type equations which have important applications in hydrodynamics, plasma physics, and so on. Based on these consequences, we deduce the Hamiltonian structures of two discrete systems. Finally, we obtain some new infinite conservation laws of two discrete equations and employ Lie-point transformation group to obtain some continuous symmetries and part of invariant solutions for the (1+1) and (2+1)-dimensional Toda-type equations. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11

  7. The a(4) Scheme-A High Order Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2009-01-01

    The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3

  8. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  9. How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  10. Similarity considerations and conservation laws for magneto-static atmospheres

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1986-01-01

    The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential. Similarity solutions of the elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field. The solutions are obtained from a consideration of the invariance group of the elliptic equation. The importance of symmetries of the elliptic equation also appears in the determination of conservation laws. It turns out that the elliptic equation can be written as a variational principle, and the symmetries of the variational functional lead (via Noether's theorem) to conservation laws for the equation. As an example of the application of the similarity solutions, a model magnetostatic atmosphere is constructed in which the current density J is proportional to the cube of the magnetic potential, and falls off exponentially with distance vertical to the base, with an 'e-folding' distance equal to the gravitational scale height. The solutions show the interplay between the gravitational force, the J x B force (B, magnetic field induction) and the gas pressure gradient.

  11. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Toro, Eleuterio F.; Castro, Cristóbal E.; Nikiforakis, Nikolaos

    2013-08-01

    For the numerical simulation of detonation of condensed phase explosives, a complex equation of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Cochran-Chan (C-C) EOS, are widely used. However, when a conservative scheme is used for solving the Euler equations with such equations of state, a spurious solution across the contact discontinuity, a well known phenomenon in multi-fluid systems, arises even for single materials. In this work, we develop a generalised Osher-type scheme in an adaptive primitive-conservative framework to overcome the aforementioned difficulties. Resulting numerical solutions are compared with the exact solutions and with the numerical solutions from the Godunov method in conjunction with the exact Riemann solver for the Euler equations with Mie-Grüneisen form of equations of state, such as the JWL and the C-C equations of state. The adaptive scheme is extended to second order and its empirical convergence rates are presented, verifying second order accuracy for smooth solutions. Through a suite of several tests problems in one and two space dimensions we illustrate the failure of conservative schemes and the capability of the methods of this paper to overcome the difficulties.

  12. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    DOE PAGES

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less

  13. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Dun; Center for Interdisciplinary Studies, Lanzhou University, Lanzhou 730000; Zhang Yujuan

    2011-04-15

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLSmore » systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.« less

  14. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  15. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows

    NASA Astrophysics Data System (ADS)

    Sjögreen, Björn; Yee, H. C.

    2018-07-01

    The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.

  16. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  17. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  18. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  19. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  20. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  1. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  2. Uniqueness of Mass-Conserving Self-similar Solutions to Smoluchowski's Coagulation Equation with Inverse Power Law Kernels

    NASA Astrophysics Data System (ADS)

    Laurençot, Philippe

    2018-03-01

    Uniqueness of mass-conserving self-similar solutions to Smoluchowski's coagulation equation is shown when the coagulation kernel K is given by K(x,x_*)=2(x x_*)^{-α } , (x,x_*)\\in (0,∞)^2 , for some α >0.

  3. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has been made to focus on multidimensional studies, directing the interested reader to earlier versions of the review for discussions on one-dimensional works. Supplementary material is available for this article at 10.12942/lrr-2008-7.

  4. A Model for coupled heat and moisture transfer in permafrost regions of three rivers source areas, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.

    2012-04-01

    Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).

  5. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    NASA Astrophysics Data System (ADS)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  6. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.

  7. Generalized simulation technique for turbojet engine system analysis

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Mihaloew, J. R.; Blaha, R. J.

    1972-01-01

    A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.

  8. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  9. Generalized Maxwell equations and charge conservation censorship

    NASA Astrophysics Data System (ADS)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  10. A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.

    2014-09-01

    In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach

  11. A minimum entropy principle in the gas dynamics equations

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.

  12. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  13. Restoration of the contact surface in FORCE-type centred schemes I: Homogeneous two-dimensional shallow water equations

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Toro, Eleuterio F.

    2012-10-01

    Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.

  14. A kinetic equation with kinetic entropy functions for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Perthame, Benoit; Tadmor, Eitan

    1990-01-01

    A nonlinear kinetic equation is constructed and proved to be well-adapted to describe general multidimensional scalar conservation laws. In particular, it is proved to be well-posed uniformly in epsilon - the microscopic scale. It is also shown that the proposed kinetic equation is equipped with a family of kinetic entropy functions - analogous to Boltzmann's microscopic H-function, such that they recover Krushkov-type entropy inequality on the macroscopic scale. Finally, it is proved by both - BV compactness arguments in the one-dimensional case, that the local density of kinetic particles admits a continuum limit, as it converges strongly with epsilon below 0 to the unique entropy solution of the corresponding conservation law.

  15. Scale-Invariant Forms of Conservation Equations in Reactive Fields and a Modified Hydro-Thermo-Diffusive Theory of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    A scale-invariant model of statistical mechanics is applied to present invariant forms of mass, energy, linear, and angular momentum conservation equations in reactive fields. The resulting conservation equations at molecular-dynamic scale are solved by the method of large activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar premixed flames. The predicted temperature and velocity profiles are in agreement with the observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters for a single-step overall combustion of stoichiometric methane-air premixed flame, the laminar flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value.

  16. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    NASA Astrophysics Data System (ADS)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  17. Collections Care: A Basic Reference Shelflist.

    ERIC Educational Resources Information Center

    de Torres, Amparo R., Ed.

    This is an extensive bibliography of reference sources--i.e., books and articles--that relate to the care and conservation of library, archival, and museum collections. Bibliographies are presented under the following headings: (1) General Information; (2) Basic Collections Care; (3) Architectural Conservation; (4) Collections Management: Law,…

  18. Generalized continuity equations from two-field Schrödinger Lagrangians

    NASA Astrophysics Data System (ADS)

    Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-11-01

    A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.

  19. Students' Understanding of Conservation of Matter, Stoichiometry and Balancing Equations in Indonesia

    ERIC Educational Resources Information Center

    Agung, Salamah; Schwartz, Marc S.

    2007-01-01

    This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…

  20. Spin-Orbit Coupling and the Conservation of Angular Momentum

    ERIC Educational Resources Information Center

    Hnizdo, V.

    2012-01-01

    In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…

  1. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  2. An energy and potential enstrophy conserving scheme for the shallow water equations. [orography effects on atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1979-01-01

    A three-dimensional finite difference scheme for the solution of the shallow water momentum equations which accounts for the conservation of potential enstrophy in the flow of a homogeneous incompressible shallow atmosphere over steep topography as well as for total energy conservation is presented. The scheme is derived to be consistent with a reasonable scheme for potential vorticity advection in a long-term integration for a general flow with divergent mass flux. Numerical comparisons of the characteristics of the present potential enstrophy-conserving scheme with those of a scheme that conserves potential enstrophy only for purely horizontal nondivergent flow are presented which demonstrate the reduction of computational noise in the wind field with the enstrophy-conserving scheme and its convergence even in relatively coarse grids.

  3. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  4. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  5. A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1993-01-01

    A new numerical method is developed for the solution of the two-dimensional, steady Navier-Stokes equations. The method that is presented differs in significant ways from the established numerical methods for solving the Navier-Stokes equations. The major differences are described. First, the focus of the present method is on satisfying flux conservation in an integral formulation, rather than on simulating conservation laws in their differential form. Second, the present approach provides a unified treatment of the dependent variables and their unknown derivatives. All are treated as unknowns together to be solved for through simulating local and global flux conservation. Third, fluxes are balanced at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation is achieved through the use of discrete regions known as conservation elements and solution elements. These elements are not the same as the standard control volumes used in the finite volume method. Fifth, the discrete approximation obtained on each solution element is a functional solution of both the integral and differential form of the Navier-Stokes equations. Finally, the method that is presented is a highly localized approach in which the coupling to nearby cells is only in one direction for each spatial coordinate, and involves only the immediately adjacent cells. A general third-order formulation for the steady, compressible Navier-Stokes equations is presented, and then a Newton's method scheme is developed for the solution of incompressible, low Reynolds number channel flow. It is shown that the Jacobian matrix is nearly block diagonal if the nonlinear system of discrete equations is arranged approximately and a proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of 100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing channel flow boundary layer using as few as six to ten cells per channel width, depending on the Reynolds number.

  6. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  7. Ion-Conserving Modified Poisson-Boltzmann Theory Considering a Steric Effect in an Electrolyte

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-12-01

    The modified Poisson-Nernst-Planck (MPNP) and modified Poisson-Boltzmann (MPB) equations are well known as fundamental equations that consider a steric effect, which prevents unphysical ion concentrations. However, it is unclear whether they are equivalent or not. To clarify this problem, we propose an improved free energy formulation that considers a steric limit with an ion-conserving condition and successfully derive the ion-conserving modified Poisson-Boltzmann (IC-MPB) equations that are equivalent to the MPNP equations. Furthermore, we numerically examine the equivalence by comparing between the IC-MPB solutions obtained by the Newton method and the steady MPNP solutions obtained by the finite-element finite-volume method. A surprising aspect of our finding is that the MPB solutions are much different from the MPNP (IC-MPB) solutions in a confined space. We consider that our findings will significantly contribute to understanding the surface science between solids and liquids.

  8. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  9. Governing equations for electro-conjugate fluid flow

    NASA Astrophysics Data System (ADS)

    Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.

    2013-12-01

    An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.

  10. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  11. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  12. Dissipation-preserving spectral element method for damped seismic wave equations

    NASA Astrophysics Data System (ADS)

    Cai, Wenjun; Zhang, Huai; Wang, Yushun

    2017-12-01

    This article describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems, which has superior behaviors in long-time stability and dissipation preservation. To reveal the intrinsic dissipative properties of the model equations, we first reformulate the original systems in their equivalent conformal multi-symplectic structures and derive the corresponding conformal symplectic conservation laws. We thereafter separate each system into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed conformal symplectic method. A relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh wave in elastic wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic methods in both the attenuating homogeneous and heterogeneous media.

  13. Statistical Equilibria of Turbulence on Surfaces of Different Symmetry

    NASA Astrophysics Data System (ADS)

    Qi, Wanming; Marston, Brad

    2012-02-01

    We test the validity of statistical descriptions of freely decaying 2D turbulence by performing direct numerical simulations (DNS) of the Euler equation with hyperviscosity on a square torus and on a sphere. DNS shows, at long times, a dipolar coherent structure in the vorticity field on the torus but a quadrapole on the sphereootnotetextJ. Y-K. Cho and L. Polvani, Phys. Fluids 8, 1531 (1996).. A truncated Miller-Robert-Sommeria theoryootnotetextA. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, 2006). can explain the difference. The theory conserves up to the second-order Casimir, while also respecting conservation laws that reflect the symmetry of the domain. We further show that it is equivalent to the phenomenological minimum-enstrophy principle by generalizing the work by Naso et al.ootnotetextA. Naso, P. H. Chavanis, and B. Dubrulle, Eur. Phys. J. B 77, 284 (2010). to the sphere. To explain finer structures of the coherent states seen in DNS, especially the phenomenon of confinement, we investigate the perturbative inclusion of the higher Casimir constraints.

  14. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations: A New Approach Based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Shang-Tao

    2003-01-01

    This paper reports on a significant advance in the area of non-reflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of the development of the space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics-based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains their unique robustness and accuracy in terms of the conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  15. Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Scott, R. K.

    1972-01-01

    A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.

  16. Mathematical modeling of a process the rolling delivery

    NASA Astrophysics Data System (ADS)

    Stepanov, Mikhail A.; Korolev, Andrey A.

    2018-03-01

    An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.

  17. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    NASA Astrophysics Data System (ADS)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  18. Integrating population genetics and conservation biology in the era of genomics.

    PubMed

    Ouborg, N Joop

    2010-02-23

    As one of the final activities of the ESF-CONGEN Networking programme, a conference entitled 'Integrating Population Genetics and Conservation Biology' was held at Trondheim, Norway, from 23 to 26 May 2009. Conference speakers and poster presenters gave a display of the state-of-the-art developments in the field of conservation genetics. Over the five-year running period of the successful ESF-CONGEN Networking programme, much progress has been made in theoretical approaches, basic research on inbreeding depression and other genetic processes associated with habitat fragmentation and conservation issues, and with applying principles of conservation genetics in the conservation of many species. Future perspectives were also discussed in the conference, and it was concluded that conservation genetics is evolving into conservation genomics, while at the same time basic and applied research on threatened species and populations from a population genetic point of view continues to be emphasized.

  19. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  20. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    PubMed Central

    Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884

  1. Correlation of transonic-cone Preston-tube data and skin friction. [characterizing the flow quality of a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Reed, T. D.

    1981-01-01

    The distribution of Preston tube pressures within turbulent boundary layers along the surface of a sharp-nosed, ten degree cone was correlated with theoretical values of turbulent skin friction for freestream Mach numbers less than one. The mini-basic computer code, the Wu and Lock computer code, and the STAN-5 computer code were used to analyze the data and to solve the boundary layer conservation equations. The skin friction which results from using Preston tube pressures in the correlation equation, has a rms error of 1.125 percent. It was found that the effective center of the probe is not a constant but increases as the surface distance increases. For a specified unit Reynolds number, the effective center of the probe decreases as the Mach number increases. The variation of the fluid (air) properties across the face of the probe may be neglected for subsonic flows. The possible transverse errors caused by the use of the concept of a virtual origin for the turbulent boundary layer were investigated and found to be negligible.

  2. A (2+1)-dimensional Korteweg-de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid

    2016-05-01

    We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.

  3. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  4. Flux-vector splitting algorithm for chain-rule conservation-law form

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.

    1991-01-01

    A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.

  5. Evading the non-continuity equation in the f( R, T) cosmology

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Correa, R. A. C.; Ribeiro, G.

    2018-03-01

    We present a new approach for the f( R, T) gravity formalism, by thoroughly exploring the extra terms of its effective energy-momentum tensor T_{μ ν }^eff, which we name \\tilde{T}_{μ ν }, so that T_{μ ν }^eff=T_{μ ν }+\\tilde{T}_{μ ν }, with T_{μ ν } being the usual energy-momentum tensor of matter. Purely from the Bianchi identities, we obtain the conservation of both parts of the effective energy-momentum tensor, rather than the non-conservation of T_{μ ν }, originally occurring in the f( R, T) theories. In this way, the intriguing scenario of matter creation, which still lacks observational evidence, is evaded. One is left, then, with two sets of cosmological equations to be solved: the Friedmann-like equations along with the conservation of T_{μ ν } and along with the conservation of \\tilde{T}_{μ ν }. We present a physical interpretation for the conservation of \\tilde{T}_{μ ν }, which can be related to the presence of stiff matter in the universe. The cosmological consequences of this approach are presented and discussed as well as the benefits of evading the matter energy-momentum tensor non-conservation.

  6. Slip and barodiffusion phenomena in slow flows of a gas mixture

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.

    2017-03-01

    The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.

  7. Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.

    2016-01-01

    Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.

  8. Relations for estimating unit-hydrograph parameters in New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2001-01-01

    Data collected from 20 U.S. Geological Survey streamflow-gaging stations, most of which were operated in New Mexico between about 1969 and 1977, were used to define hydrograph characteristics for small New Mexico streams. Drainage areas for the gaging stations ranged from 0.23 to 18.2 square miles. Observed values for the hydrograph characteristics were determined for 87 of the most significant rainfall-runoff events at these gaging stations and were used to define regional regression relations with basin characteristics. Regional relations defined lag time (tl), time of concentration (tc), and time to peak (tp) as functions of stream length and basin shape. The regional equation developed for time of concentration for New Mexico agrees well with the Kirpich equation developed for Tennessee. The Kirpich equation is based on stream length and channel slope, whereas the New Mexico equation is based on stream length and basin shape. Both equations, however, underestimate tc when applied to larger basins where tc is greater than about 2 hours. The median ratio between tp and tc for the observed data was 0.66, which equals the value (0.67) recommended by the Natural Resources Conservation Service (formerly the Soil Conservation Service). However, the median ratio between tl and tc was only 0.42, whereas the commonly used ratio is 0.60. A relation also was developed between unit-peak discharge (qu) and time of concentration. The unit-peak discharge relation is similar in slope to the Natural Resources Conservation Service equation, but the equation developed for New Mexico in this study produces estimates of qu that range from two to three times as large as those estimated from the Natural Resources Conservation Service equation. An average value of 833 was determined for the empirical constant Kp. A default value of 484 has been used by the Natural Resources Conservation Service when site-specific data are not available. The use of a lower value of Kp in calculations generally results in a lower peak discharge. A relation between the empirical constant Kp and average channel slope was defined in this study. The predicted Kp values from the equation ranged from 530 to 964 for the 20 flood-hydrograph gaging stations. The standard error of estimate for the equation is 36 percent.

  9. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Das, Joydip; Mondal, Shrabani; Bag, Bidhan Chandra

    2017-10-01

    In the present study, we have proposed the Fokker-Planck equation in a simple way for a Langevin equation of motion having ordinary derivative (OD), the Gaussian random force and a generalized frictional memory kernel. The equation may be associated with or without conservative force field from harmonic potential. We extend this method for a charged Brownian particle in the presence of a magnetic field. Thus, the present method is applicable for a Langevin equation of motion with OD, the Gaussian colored thermal noise and any kind of linear force field that may be conservative or not. It is also simple to apply this method for the colored Gaussian noise that is not related to the damping strength.

  10. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  11. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field.

    PubMed

    Das, Joydip; Mondal, Shrabani; Bag, Bidhan Chandra

    2017-10-28

    In the present study, we have proposed the Fokker-Planck equation in a simple way for a Langevin equation of motion having ordinary derivative (OD), the Gaussian random force and a generalized frictional memory kernel. The equation may be associated with or without conservative force field from harmonic potential. We extend this method for a charged Brownian particle in the presence of a magnetic field. Thus, the present method is applicable for a Langevin equation of motion with OD, the Gaussian colored thermal noise and any kind of linear force field that may be conservative or not. It is also simple to apply this method for the colored Gaussian noise that is not related to the damping strength.

  12. Conservative DEC Discretization of Incompressible Navier-Stokes Equations on Arbitrary Surface Simplicial Meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh; Hirani, Anil; Samtaney, Ravi

    2017-11-01

    A conservative discretization of incompressible Navier-Stokes equations over surfaces is developed using discrete exterior calculus (DEC). The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of signed diagonal Hodge star operators, while using the circumcentric dual defined on arbitrary meshes, is shown to produce correct solutions even when many non-Delaunay triangles pairs exist. This allows the DEC discretization to admit arbitrary surface simplicial meshes, in contrast to the previously held notion that DEC was limited only to Delaunay meshes. The discretization scheme is presented along with several numerical test cases demonstrating its numerical convergence and conservation properties. Recent developments regarding the extension to conservative higher order methods are also presented. KAUST Baseline Research Funds of R. Samtaney.

  13. Saving Energy around the House = Tien Tan Trong Viec Tieu Thu Nang Luc Trong Nha.

    ERIC Educational Resources Information Center

    Noyes, Marilyn; Jarrett, Von

    This bilingual booklet is intended to help Vietnamese refugees learn basic energy conservation skills. Included in the booklet are Vietnamese and English translations of basic energy conservation practices related to the following areas: heating, cooling, cooking, using refrigerators and freezers, lighting, water heating, doing laundry, pursuing…

  14. Basic Visual Disciplines in Heritage Conservation: Outline of Selected Perspectives in Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Lobovikov-Katz, A.

    2017-08-01

    Acknowledgement of the value of a basic freehand sketch by the information and communication community of researchers and developers brought about the advanced developments for the use of sketches as free input to complicated processes of computerized visualization, so as to make them more widely accessible. However, a sharp reduction and even exclusion of this and other basic visual disciplines from education in sciences, technology, engineering and architecture dramatically reduces the number of future users of such applications. The unique needs of conservation of cultural heritage pose specific challenges as well as encourage the formulation of innovative development tasks in related areas of information and communication technologies (ICT). This paper claims that the introduction of basic visual disciplines to both communities is essential to the effectiveness of integration of heritage conservation needs and the advanced ICT development of conservation value, and beyond. It provides an insight into the challenges and advantages of introducing these subjects in a relevant educational context, presents some examples of their teaching and learning in the modern environment, including e-learning, and sketches perspectives to their application.

  15. Turbulent fluid motion 3: Basic continuum equations

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.

  16. A compact model for electroosmotic flows in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2002-09-01

    A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.

  17. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  18. Two-level schemes for the advection equation

    NASA Astrophysics Data System (ADS)

    Vabishchevich, Petr N.

    2018-06-01

    The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.

  19. Two-Layer Viscous Shallow-Water Equations and Conservation Laws

    NASA Astrophysics Data System (ADS)

    Kanayama, Hiroshi; Dan, Hiroshi

    In our previous papers, the two-layer viscous shallow-water equations were derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. Also, it was noted that the combination of upper and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. Then, the two-layer equations were approximated by a finite element method which followed our numerical scheme established for the one-layer model in 1978. Also, it was numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference. In this paper, we newly show that conservation laws are still valid in the two-layer model. Also, we show results of a new physical experiment for the interfacial instability.

  20. A discrete model on Sierpinski gasket substrate for a conserved current equation with a conservative noise

    NASA Astrophysics Data System (ADS)

    Kim, Dae Ho; Kim, Jin Min

    2012-09-01

    A conserved discrete model on the Sierpinski gasket substrate is studied. The interface width W in the model follows the Family-Vicsek dynamic scaling form with growth exponent β ≈ 0.0542, roughness exponent α ≈ 0.240 and dynamic exponent z ≈ 4.42. They satisfy a scaling relation α + z = 2zrw, where zrw is the random walk exponent of the fractal substrate. Also, they are in a good agreement with the predicted values of a fractional Langevin equation \\frac{\\partial h}{\\partial t}={\

  1. L1-Based Approximations of PDEs and Applications

    DTIC Science & Technology

    2012-09-05

    the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems

  2. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  3. Multi-Hamiltonian structure of the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.

    1989-06-01

    The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.

  4. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  5. Dynamic renormalization-group analysis of the d+1 dimensional Kuramoto-Sivashinsky equation with both conservative and nonconservative noises

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tang, G.; Xun, Z.; Han, K.; Chen, H.; Hu, B.

    2008-05-01

    The long-wavelength properties of the (d + 1)-dimensional Kuramoto-Sivashinsky (KS) equation with both conservative and nonconservative noises are investigated by use of the dynamic renormalization-group (DRG) theory. The dynamic exponent z and roughness exponent α are calculated for substrate dimensions d = 1 and d = 2, respectively. In the case of d = 1, we arrive at the critical exponents z = 1.5 and α = 0.5 , which are consistent with the results obtained by Ueno et al. in the discussion of the same noisy KS equation in 1+1 dimensions [Phys. Rev. E 71, 046138 (2005)] and are believed to be identical with the dynamic scaling of the Kardar-Parisi-Zhang (KPZ) in 1+1 dimensions. In the case of d = 2, we find a fixed point with the dynamic exponents z = 2.866 and α = -0.866 , which show that, as in the 1 + 1 dimensions situation, the existence of the conservative noise in 2 + 1 or higher dimensional KS equation can also lead to new fixed points with different dynamic scaling exponents. In addition, since a higher order approximation is adopted, our calculations in this paper have improved the results obtained previously by Cuerno and Lauritsen [Phys. Rev. E 52, 4853 (1995)] in the DRG analysis of the noisy KS equation, where the conservative noise is not taken into account.

  6. 10 CFR 430.73 - Remedies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...

  7. 10 CFR 430.73 - Remedies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Certification and Enforcement § 430.73 Remedies. If DOE determines that a basic model of a covered product does not comply with an applicable energy conservation standard or water conservation standard (in the case of faucets...

  8. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  9. Discrete Variational Approach for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, J. Paxon; Shadwick, B. A.

    2014-10-01

    The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.

  10. Periodic motions of generalized conservative mechanical systems whose equations of motion contain a large parameter

    NASA Astrophysics Data System (ADS)

    Sazonov, V. V.

    An analysis is made of a generalized conservative mechanical system whose equations of motion contain a large parameter characterizing local forces acting along certain generalized coordinates. It is shown that the equations have periodic solutions which are close to periodic solutions to the corresponding degenerate equations. As an example, the periodic motions of a satellite with respect to its center of mass due to gravitational and restoring aerodynamic moments are examined for the case where the aerodynamic moment is much larger than the gravitational moment. Such motions can be treated as nominal unperturbed motions of a satellite under conditions of single-axis aerodynamic attitude control.

  11. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.

    2014-08-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less

  12. Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy-Gibbons Equation

    NASA Astrophysics Data System (ADS)

    Feng, Lian-Li; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian

    2016-09-01

    In this paper, the time fractional Fordy-Gibbons equation is investigated with Riemann-Liouville derivative. The equation can be reduced to the Caudrey-Dodd-Gibbon equation, Savada-Kotera equation and the Kaup-Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No. XZD201602, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527

  13. A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco; Delzanno, Gian Luca; Vencels, Juris

    In this study, we present the design and implementation of an L 2-stable spectral method for the discretization of the Vlasov–Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank–Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations ismore » iteratively solved at any time cycle by a Jacobian-Free Newton–Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre–Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L 2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.« less

  14. A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system

    DOE PAGES

    Manzini, Gianmarco; Delzanno, Gian Luca; Vencels, Juris; ...

    2016-04-22

    In this study, we present the design and implementation of an L 2-stable spectral method for the discretization of the Vlasov–Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank–Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations ismore » iteratively solved at any time cycle by a Jacobian-Free Newton–Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre–Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L 2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.« less

  15. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less

  16. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  17. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  18. A new flux-conserving numerical scheme for the steady, incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1994-01-01

    This paper is concerned with the continued development of a new numerical method, the space-time solution element (STS) method, for solving conservation laws. The present work focuses on the two-dimensional, steady, incompressible Navier-Stokes equations. Using first an integral approach, and then a differential approach, the discrete flux conservation equations presented in a recent paper are rederived. Here a simpler method for determining the flux expressions at cell interfaces is given; a systematic and rigorous derivation of the conditions used to simulate the differential form of the governing conservation law(s) is provided; necessary and sufficient conditions for a discrete approximation to satisfy a conservation law in E2 are derived; and an estimate of the local truncation error is given. A specific scheme is then constructed for the solution of the thin airfoil boundary layer problem. Numerical results are presented which demonstrate the ability of the scheme to accurately resolve the developing boundary layer and wake regions using grids which are much coarser than those employed by other numerical methods. It is shown that ten cells in the cross-stream direction are sufficient to accurately resolve the developing airfoil boundary layer.

  19. Couplings of gravitational currents with Chern-Simons gravities

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit; Açık, Özgür

    2013-02-01

    The coupling of conserved p-brane currents with non-Abelian gauge theories is done consistently by using Chern-Simons forms. Conserved currents localized on p-branes that have a gravitational origin can be constructed from Killing-Yano forms of the underlying spacetime. We propose a generalization of the coupling procedure with Chern-Simons gravities to the case of gravitational conserved currents. In odd dimensions, the field equations of coupled Chern-Simons gravities that describe the local curvature on p-branes are obtained. In special cases of three and five dimensions, the field equations are investigated in detail.

  20. Divergent conservation laws in hyperbolic thermoelasticity

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present study is devoted to the problem of formulation of conservation laws in divergent form for hyperbolic thermoelastic continua. The field formalism is applied to study the problem. A natural density of thermoelastic action and the corresponding variational least action principle are formulated. A special form of the first variation of the action is employed to obtain 4-covariant divergent conservation laws. Differential field equations and constitutive laws are derived from a special form of the first variation of the action integral. The objectivity of constitutive equations is provided by the rotationally invariant forms of the Lagrangian employed.

  1. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  2. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  3. Applications of a Property of the Schrödinger Equation to the Modeling of Conservative Discrete Systems

    NASA Astrophysics Data System (ADS)

    Popa, Alexandru

    1998-08-01

    Recently we have demonstrated in a mathematical paper the following property: The energy which results from the Schrödinger equation can be rigorously calculated by line integrals of analytical functions, if the Hamilton-Jacobi equation, written for the same system, is satisfied in the space of coordinates by a periodical trajectory. We present now an accurate analysis model of the conservative discrete systems, that is based on this property. The theory is checked for a lot of atomic systems. The experimental data, which are ionization energies, are taken from well known books.

  4. Energy conservation and H theorem for the Enskog-Vlasov equation

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Benilov, M. S.

    2018-06-01

    The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

  5. A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1994-01-01

    The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.

  6. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  7. Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity

    NASA Astrophysics Data System (ADS)

    Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.

    2015-12-01

    We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.

  8. An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2014-10-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation to Maxwell's equations, which avoids radiative noise issues by ordering out the light wave. An implicit, orbit-averaged, time-space-centered finite difference scheme is employed in both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. We have developed a simple preconditioner that targets electrostatic waves and skin currents, and allows us to employ time steps O(√{mi /me } c /veT) larger than the explicit CFL. Several 1D numerical experiments demonstrate the accuracy, performance, and conservation properties of the algorithm. In particular, the scheme is shown to be second-order accurate, and CPU speedups of more than three orders of magnitude vs. an explicit Vlasov-Maxwell solver are demonstrated in the "cold" plasma regime (where kλD ≪ 1).

  9. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  10. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  11. Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Zhang, Tian-Tian

    2017-01-01

    Under investigation in this paper is a generalized (2 + 1)-dimensional coupled Burger equation with variable coefficients, which describes lots of nonlinear physical phenomena in geophysical fluid dynamics, condense matter physics and lattice dynamics. By employing the Lie group method, the symmetry reductions and exact explicit solutions are obtained, respectively. Based on a direct method, the conservations laws of the equation are also derived. Furthermore, by virtue of the Painlevé analysis, we successfully obtain the integrable condition on the variable coefficients, which plays an important role in further studying the integrability of the equation. Finally, its auto-Bäcklund transformation as well as some new analytic solutions including solitary and periodic waves are also presented via algebraic and differential manipulation.

  12. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  13. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    PubMed

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  14. The nature of the sunspot phenomenon. I - Solutions of the heat transport equation

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.

  15. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less

  16. A computational study of the discretization error in the solution of the Spencer-Lewis equation by doubling applied to the upwind finite-difference approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.; Seth, D.L.; Ray, A.K.

    A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.

  17. The alpha(3) Scheme - A Fourth-Order Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2007-01-01

    The conservation element and solution element (CESE) development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new 4th-order neutrally stable CESE solver of the advection equation Theta u/Theta + alpha Theta u/Theta x = 0. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables u(sup n) (sub j), (u(sub x))(sup n) (sub j) , and (uxz)(sup n) (sub j) (the numerical analogues of u, Theta u/Theta x, and Theta(exp 2)u/Theta x(exp 2), respectively) and four equations per mesh point, the new scheme is referred to as the alpha(3) scheme. As in the case of other similar CESE neutrally stable solvers, the alpha(3) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. These forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove that the alpha(3) scheme must be neutrally stable when it is stable. Moreover it is proved rigorously that all three amplification factors of the alpha(3) scheme are of unit magnitude for all phase angles if |v| <= 1/2 (v = alpha delta t/delta x). This theoretical result is consistent with the numerical stability condition |v| <= 1/2. Through numerical experiments, it is established that the alpha(3) scheme generally is (i) 4th-order accurate for the mesh variables u(sup n) (sub j) and (ux)(sup n) (sub j); and 2nd-order accurate for (uxx)(sup n) (sub j). However, in some exceptional cases, the scheme can achieve perfect accuracy aside from round-off errors.

  18. A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric

    2015-01-01

    Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.

  19. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations - A New Approach based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, S.-C.; Himansu, A.; Loh, C.-Y.; Wang, X.-Y.; Yu, S.-T.J.

    2005-01-01

    This paper reports on a significant advance in the area of nonreflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of t he development of t he space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics- based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains t heir unique robustness and accuracy in terms of t he conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  20. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  1. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  2. Discrete conservation laws and the convergence of long time simulations of the mkdv equation

    NASA Astrophysics Data System (ADS)

    Gorria, C.; Alejo, M. A.; Vega, L.

    2013-02-01

    Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.

  3. Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    A method of minimizing numerical errors, and improving nonlinear stability and accuracy associated with low Mach number computational aeroacoustics (CAA) is proposed. The method consists of two levels. From the governing equation level, we condition the Euler equations in two steps. The first step is to split the inviscid flux derivatives into a conservative and a non-conservative portion that satisfies a so called generalized energy estimate. This involves the symmetrization of the Euler equations via a transformation of variables that are functions of the physical entropy. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the second step is to reformulate the split Euler equations in perturbation form with the new unknowns as the small changes of the conservative variables with respect to their large stagnation values. From the numerical scheme level, a stable sixth-order central interior scheme with a third-order boundary schemes that satisfies the discrete analogue of the integration-by-parts procedure used in the continuous energy estimate (summation-by-parts property) is employed.

  4. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  5. Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Brandt, Achi; Thomas, James L.; Diskin, Boris

    2001-01-01

    Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the basis of this approach. Because the governing equations are a set of coupled nonlinear conservation equations with discontinuities (shocks, slip lines, etc.) and singularities (flow- or grid-induced), the difficulties are many. This paper summarizes recent progress towards the attainment of TME in basic CFD simulations.

  6. f(R)-gravity from Killing tensors

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos

    2016-04-01

    We consider f(R)-gravity in a Friedmann-Lemaître-Robertson-Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of f(R) and for the field equations to be invariant under Lie-Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable f(R)-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.

  7. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  8. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    PubMed

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Structure-preserving operators for thermal-nonequilibrium hydrodynamics

    NASA Astrophysics Data System (ADS)

    Shiroto, Takashi; Kawai, Soshi; Ohnishi, Naofumi

    2018-07-01

    Radiation hydrodynamics simulations based on a single fluid two-temperature model may violate the law of energy conservation, because the governing equations are expressed in a nonconservative formulation. In this study, we maintain the important physical requirements by employing a strategy based on the key concept that mathematical structures associated with conservative and nonconservative equations are preserved, even at the discrete level. To this end, we discretize the conservation laws and transform them using exact algebraic operations. The proposed scheme maintains global conservation errors within the round-off level. In addition, a numerical experiment concerning the shock tube problem suggests that the proposed scheme agrees well with the jump conditions at the discontinuities regulated by the Rankine-Hugoniot relationship. The generalized derivation allows us to employ arbitrary central difference, artificial dissipation, and Runge-Kutta methods.

  10. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  11. A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Li, Haochen; Sun, Jianqiang

    2012-09-01

    We propose a new scheme for the generalized Kadomtsev-Petviashvili (KP) equation. The multi-symplectic conservation property of the new scheme is proved. Back error analysis shows that the new multi-symplectic scheme has second order accuracy in space and time. Numerical application on studying the KPI equation and the KPII equation are presented in detail.

  12. Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure

    NASA Technical Reports Server (NTRS)

    Magnus, R.; Yoshihara, H.

    1973-01-01

    A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.

  13. Multigrid Relaxation of a Factorizable, Conservative Discretization of the Compressible Flow Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.

    2000-01-01

    The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.

  14. Relativistic fluid dynamics with spin

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  15. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  16. Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations

    NASA Technical Reports Server (NTRS)

    Gordnier, R. E.; Rubin, S. G.

    1986-01-01

    Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.

  17. Variational principles for relativistic smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Monaghan, J. J.; Price, D. J.

    2001-12-01

    In this paper we show how the equations of motion for the smoothed particle hydrodynamics (SPH) method may be derived from a variational principle for both non-relativistic and relativistic motion when there is no dissipation. Because the SPH density is a function of the coordinates the derivation of the equations of motion through variational principles is simpler than in the continuum case where the density is defined through the continuity equation. In particular, the derivation of the general relativistic equations is more direct and simpler than that of Fock. The symmetry properties of the Lagrangian lead immediately to the familiar additive conservation laws of linear and angular momentum and energy. In addition, we show that there is an approximately conserved quantity which, in the continuum limit, is the circulation.

  18. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  19. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods $-$ Part 1: Derivation and properties

    DOE PAGES

    Eldred, Christopher; Randall, David

    2017-02-17

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less

  20. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  1. Comparing the IRT Pre-equating and Section Pre-equating: A Simulation Study.

    ERIC Educational Resources Information Center

    Hwang, Chi-en; Cleary, T. Anne

    The results obtained from two basic types of pre-equatings of tests were compared: the item response theory (IRT) pre-equating and section pre-equating (SPE). The simulated data were generated from a modified three-parameter logistic model with a constant guessing parameter. Responses of two replication samples of 3000 examinees on two 72-item…

  2. Residential energy conservation measures: a penny saved is a penny earned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finklea, E.A.; Treiber, M.P.

    The authors are not suggesting that conservation alone will end our dependence on foreign oil. The focus is on basic household energy-conservation measures because they are technically simple, inexpensive, and available compared to more advanced energy-efficiency technologies (e.g., architectural designs and passive solar devices), or to alternative production technologies (e.g., photovoltaics and synthetic fuels). The social, institutional, and economic obstacles to implementing these basic measures are analyzed, and suggestions offered for overcoming these obstacles. During the Carter Administration, Congress enacted four laws to encourage the installation of household energy conservation measures. The laws provide: (1) tax credits for energy conservationmore » expenditures; (2) conservation investment subsidies for low income homeowners; and require: (3) natural gas and electric utilities to implement residential energy conservation programs for their customers; and (4) the federal government to provide loan subsidies for household energy-conservation investments through a conservation bank. The potential effectiveness of these federal programs are analyzed. President Reagan's advisers have indicated that the new administration will place greater emphasis on energy production and less emphasis on conservation. Consequently, the effectiveness of these programs may depend on the priority given them by the Reagan administration.« less

  3. Variational objective analysis for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1989-01-01

    Significant accomplishments during 1987 to 1988 are summarized with regard to each of the major project components. Model 1 requires satisfaction of two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. Model 2 requires satisfaction of model 1 plus the thermodynamic equation for a dry atmosphere. Model 3 requires satisfaction of model 2 plus the radiative transfer equation. Model 4 requires satisfaction of model 3 plus a moisture conservation equation and a parameterization for moist processes.

  4. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  5. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    NASA Astrophysics Data System (ADS)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  6. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.

  7. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).

  8. Catmull-Rom Curve Fitting and Interpolation Equations

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2010-01-01

    Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…

  9. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  10. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  11. Noether symmetries and stability of ideal gas solutions in Galileon cosmology

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Jamal, Sameerah; Leon, Genly; Paliathanasis, Andronikos

    2017-03-01

    A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian, is considered in order to utilize Noether's theorem to determine conservation laws for the field equations. In the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law indicates the integrability of the field equations. Because of the complexity of the latter, we apply the differential invariants approach in order to construct special power-law solutions and study their stability.

  12. Research in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.

  13. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  14. A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    Two sets of coupled-mode equations for multiwaveguide systems are derived using a generalized reciprocity relation; one set for a lossless system, and the other for a general lossy or lossless system. The second set of equations also reduces to those of the first set in the lossless case under the condition that the transverse field components are chosen to be real. Analytical relations between the coupling coefficients are shown and applied to the coupling of mode equations. It is shown analytically that these results satisfy exactly both the reciprocity theorem and power conservation. New orthogonal relations between the supermodes are derived in matrix form, with the overlap integrals taken into account.

  15. Geometry of Lax pairs: Particle motion and Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-01-01

    A geometric formulation of the Lax pair equation on a curved manifold is studied using the phase-space formalism. The corresponding (covariantly conserved) Lax tensor is defined and the method of generation of constants of motion from it is discussed. It is shown that when the Hamilton equations of motion are used, the conservation of the Lax tensor translates directly to the well-known Lax pair equation, with one matrix identified with components of the Lax tensor and the other matrix constructed from the (metric) connection. A generalization to Clifford objects is also discussed. Nontrivial examples of Lax tensors for geodesic and charged particle motion are found in spacetimes admitting a hidden symmetry of Killing-Yano tensors.

  16. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    PubMed

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  17. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle

    PubMed Central

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined. PMID:26997886

  18. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1990-01-01

    Presented is an approach to solving oxidation-reduction reactions. The advantage of this procedure for both acidic and basic equations is stressed and emphasizes the electrical nature of redox equations. (KR)

  19. Magnetically driven jets and winds

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  20. Natural thermodynamics

    NASA Astrophysics Data System (ADS)

    Annila, Arto

    2016-02-01

    The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

  1. [Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].

    PubMed

    Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu

    2011-08-01

    To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.

  2. A structural equation modeling analysis of students' understanding in basic mathematics

    NASA Astrophysics Data System (ADS)

    Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus

    2017-11-01

    This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.

  3. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  4. Development of a fractional-step method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel

    1992-01-01

    A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.

  5. Numerical viscosity and the entropy condition for conservative difference schemes

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1983-01-01

    Consider a scalar, nonlinear conservative difference scheme satisfying the entropy condition. It is shown that difference schemes containing more numerical viscosity will necessarily converge to the unique, physically relevant weak solution of the approximated conservation equation. In particular, entropy satisfying convergence follows for E schemes - those containing more numerical viscosity than Godunov's scheme.

  6. Comparison of theoretical proteomes: identification of COGs with conserved and variable pI within the multimodal pI distribution.

    PubMed

    Nandi, Soumyadeep; Mehra, Nipun; Lynn, Andrew M; Bhattacharya, Alok

    2005-09-09

    Theoretical proteome analysis, generated by plotting theoretical isoelectric points (pI) against molecular masses of all proteins encoded by the genome show a multimodal distribution for pI. This multimodal distribution is an effect of allowed combinations of the charged amino acids, and not due to evolutionary causes. The variation in this distribution can be correlated to the organisms ecological niche. Contributions to this variation maybe mapped to individual proteins by studying the variation in pI of orthologs across microorganism genomes. The distribution of ortholog pI values showed trimodal distributions for all prokaryotic genomes analyzed, similar to whole proteome plots. Pairwise analysis of pI variation show that a few COGs are conserved within, but most vary between, the acidic and basic regions of the distribution, while molecular mass is more highly conserved. At the level of functional grouping of orthologs, five groups vary significantly from the population of orthologs, which is attributed to either conservation at the level of sequences or a bias for either positively or negatively charged residues contributing to the function. Individual COGs conserved in both the acidic and basic regions of the trimodal distribution are identified, and orthologs that best represent the variation in levels of the acidic and basic regions are listed. The analysis of pI distribution by using orthologs provides a basis for resolution of theoretical proteome comparison at the level of individual proteins. Orthologs identified that significantly vary between the major acidic and basic regions maybe used as representative of the variation of the entire proteome.

  7. Liberals and conservatives can show similarities in negativity bias.

    PubMed

    Brandt, Mark J; Wetherell, Geoffrey; Reyna, Christine

    2014-06-01

    Negativity bias may underlie the development of political ideologies, but liberals and conservatives are likely to respond to threats similarly. We review evidence from research on intolerance, motivated reasoning, and basic psychological threats that suggest liberals and conservatives are more similar than different when confronting threatening groups, situations, and information.

  8. A Nuclear Reactions Primer with Computers.

    ERIC Educational Resources Information Center

    Calle, Carlos I.; Roach, Jennifer A.

    1987-01-01

    Described is a microcomputer software program NUCLEAR REACTIONS designed for college level students and in use at Sweet Briar College (Sweet Briar, VA). The program is written in Microsoft Basic Version 2.1 for the Apple Macintosh Microcomputer. It introduces two conservation principles: (1) conservation of charge; and (2) conservation of nucleon…

  9. 76 FR 24761 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and...) Certification. Each manufacturer, before distributing in commerce any basic model of a covered product or.... EERE-2010-BT-CE-0014] RIN 1904-AC23 Energy Conservation Program: Certification, Compliance, and...

  10. Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.

    ERIC Educational Resources Information Center

    Giesguth, John, Ed.; Scheingold, Edward, Ed.

    Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…

  11. Quantum asymmetry between time and space

    PubMed Central

    2016-01-01

    An asymmetry exists between time and space in the sense that physical systems inevitably evolve over time, whereas there is no corresponding ubiquitous translation over space. The asymmetry, which is presumed to be elemental, is represented by equations of motion and conservation laws that operate differently over time and space. If, however, the asymmetry was found to be due to deeper causes, this conventional view of time evolution would need reworking. Here we show, using a sum-over-paths formalism, that a violation of time reversal (T) symmetry might be such a cause. If T symmetry is obeyed, then the formalism treats time and space symmetrically such that states of matter are localized both in space and in time. In this case, equations of motion and conservation laws are undefined or inapplicable. However, if T symmetry is violated, then the same sum over paths formalism yields states that are localized in space and distributed without bound over time, creating an asymmetry between time and space. Moreover, the states satisfy an equation of motion (the Schrödinger equation) and conservation laws apply. This suggests that the time–space asymmetry is not elemental as currently presumed, and that T violation may have a deep connection with time evolution. PMID:26997899

  12. Effects of Nonequilibrium Chemistry and Darcy-Forchheimer Pyrolysis Flow for Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2013-01-01

    The fully implicit ablation and thermal response code simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid.This work describes new modeling capabilities that are added to a special version of code. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Two groups of parametric studies of the phenolic impregnated carbon ablator are performed. In the first group, an Orion flight environment for a proposed lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results indicate that the presence of chemical nonequilibrium pyrolysis gas flow does not significantly alter the in-depth thermal response performance predicted using the chemical equilibrium gas model.

  13. libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

    NASA Astrophysics Data System (ADS)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2015-04-01

    This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  14. libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations

    NASA Astrophysics Data System (ADS)

    Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.

    2014-11-01

    This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include: homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.

  15. Austerity and Geometric Structure of Field Theories

    NASA Astrophysics Data System (ADS)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  16. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  17. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  18. Numerical Simulation of a Solar Domestic Hot Water System

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  19. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  20. Simulations of incompressible Navier Stokes equations on curved surfaces using discrete exterior calculus

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil

    2015-11-01

    We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, H.; Nunami, M.; Department of Fusion Science, SOKENDAI

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novelmore » gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.« less

  2. A third-order computational method for numerical fluxes to guarantee nonnegative difference coefficients for advection-diffusion equations in a semi-conservative form

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.

    2012-10-01

    According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.

  3. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  4. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  5. Central Upwind Scheme for a Compressible Two-Phase Flow Model

    PubMed Central

    Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242

  6. Central upwind scheme for a compressible two-phase flow model.

    PubMed

    Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  7. A mass-conserving mixed Fourier-Galerkin B-Spline-collocation method for Direct Numerical Simulation of the variable-density Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert

    2017-11-01

    We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.

  8. Structure-preserving spectral element method in attenuating seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Cai, Wenjun; Zhang, Huai

    2016-04-01

    This work describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems which has superior behaviors in long-time stability and dissipation preservation. To construct the conformal symplectic method, we first reformulate the damped acoustic wave equation and the elastic wave equations in their equivalent conformal multi-symplectic structures, which naturally reveal the intrinsic properties of the original systems, especially, the dissipation laws. We thereafter separate each structures into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed numerical scheme, which is conformal symplectic and can therefore guarantee the numerical stability and dissipation preservation after a large time modeling. Additionally, a relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh-wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic method in both the attenuating homogeneous and heterogeneous mediums.

  9. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios

    2016-10-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.

  10. Laminar flamelets, conserved scalars, and non-unity Lewis numbers: What does this have to do with chemistry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H.J.; Marro, M.A.T.; Smooke, M.

    1994-12-31

    In general, computation of laminar flame structure involves the simultaneous solution of the conservation equations for mass, energy, momentum, and chemical species. It has been proposed and confirmed in numerous experiments that flame species concentrations can be considered as functions of a conserved scalar (a quantity such as elemental mass fraction, that has no chemical source term). One such conserved scalar is the mixture fraction which is normalized to be zero in the air stream and one in the fuel stream. This allows the species conservation equations to be rewritten as a function of the mixture fraction (itself a conservedmore » scalar) which significantly simplifies the calculation of flame structure. Despite the widespread acceptance that the conserved scalar description of diffusion flame structure has found in the combustion community, there has been surprisingly little effort expended in the development of a detailed evaluation of how well it actually works. In this presentation we compare the results of a {open_quotes}full{close_quotes} transport and chemical calculation performed by Smooke with the predictions of the conserved scalar approach. Our results show that the conserved scalar approach works because some species` concentrations are not dependent only on mixture fraction.« less

  11. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  12. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  13. Equations as Guides to Thinking and Problem Solving

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2011-01-01

    Science is the study of nature's rules. The most basic of these are the laws of physics, most of which are expressed in equation form. Physics equations show how concepts connect to one another. But does a study of these equations enhance student understanding? Not always, for too often in an introductory course students are tempted (or even…

  14. Foundations of radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  15. 78 FR 23335 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...

  16. Conservation laws with coinciding smooth solutions but different conserved variables

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Guerra, Graziano

    2018-04-01

    Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.

  17. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Dust Acoustic Solitary Waves in Saturn F-ring's Region

    NASA Astrophysics Data System (ADS)

    E. K., El-Shewy; M. I. Abo el, Maaty; H. G., Abdelwahed; M. A., Elmessary

    2011-01-01

    Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nh0, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nh0, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.

  18. Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1980-01-01

    A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.

  19. The dynamics of oceanic fronts. Part 1: The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1970-01-01

    The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.

  20. The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Kozelkov, A. S.

    2017-12-01

    The paper presents an integral technique simulating all phases of a landslide-driven tsunami. The technique is based on the numerical solution of the system of Navier-Stokes equations for multiphase flows. The numerical algorithm uses a fully implicit approximation method, in which the equations of continuity and momentum conservation are coupled through implicit summands of pressure gradient and mass flow. The method we propose removes severe restrictions on the time step and allows simulation of tsunami propagation to arbitrarily large distances. The landslide origin is simulated as an individual phase being a Newtonian fluid with its own density and viscosity and separated from the water and air phases by an interface. The basic formulas of equation discretization and expressions for coefficients are presented, and the main steps of the computation procedure are described in the paper. To enable simulations of tsunami propagation across wide water areas, we propose a parallel algorithm of the technique implementation, which employs an algebraic multigrid method. The implementation of the multigrid method is based on the global level and cascade collection algorithms that impose no limitations on the paralleling scale and make this technique applicable to petascale systems. We demonstrate the possibility of simulating all phases of a landslide-driven tsunami, including its generation, propagation and uprush. The technique has been verified against the problems supported by experimental data. The paper describes the mechanism of incorporating bathymetric data to simulate tsunamis in real water areas of the world ocean. Results of comparison with the nonlinear dispersion theory, which has demonstrated good agreement, are presented for the case of a historical tsunami of volcanic origin on the Montserrat Island in the Caribbean Sea.

  1. Optical solitons, nonlinear self-adjointness and conservation laws for the cubic nonlinear Shrödinger's equation with repulsive delta potential

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-11-01

    In this paper, the complex envelope function ansatz method is used to acquire the optical solitons to the cubic nonlinear Shrödinger's equation with repulsive delta potential (δ-NLSE). The method reveals dark and bright optical solitons. The necessary constraint conditions which guarantee the existence of the solitons are also presented. We studied the δ-NLSE by analyzing a system of partial differential equations (PDEs) obtained by decomposing the equation into real and imaginary components. We derive the Lie point symmetry generators of the system and prove that the system is nonlinearly self-adjoint with an explicit form of a differential substitution satisfying the nonlinear self-adjoint condition. Then we use these facts to establish a set of conserved vectors for the system using the general Cls theorem presented by Ibragimov. Some interesting figures for the acquired solutions are also presented.

  2. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  3. Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation

    NASA Astrophysics Data System (ADS)

    Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu

    2016-07-01

    In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527

  4. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  5. Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1979-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.

  6. Material point method modeling in oil and gas reservoirs

    DOEpatents

    Vanderheyden, William Brian; Zhang, Duan

    2016-06-28

    A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.

  7. Dynamic sealing principles

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained.

  8. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  9. Pair correlation function and nonlinear kinetic equation for a spatially uniform polarizable nonideal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyi, V.V.; Kukharenko, Y.A.; Wallenborn, J.

    Taking into account the first non-Markovian correction to the Balescu-Lenard equation, we have derived an expression for the pair correlation function and a nonlinear kinetic equation valid for a nonideal polarized classical plasma. This last equation allows for the description of the correlational energy evolution and shows the global conservation of energy with dynamical polarization. {copyright} {ital 1996 The American Physical Society.}

  10. Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-05-01

    This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.

  11. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  12. Basic Energy Conservation and Management Part 1: Looking at Lighting

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…

  13. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  14. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  15. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Băloi, Mihaela-Andreea, E-mail: mihaela.baloi88@e-uvt.ro; Crucean, Cosmin

    The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.

  17. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  18. Comparison of theoretical proteomes: Identification of COGs with conserved and variable pI within the multimodal pI distribution

    PubMed Central

    Nandi, Soumyadeep; Mehra, Nipun; Lynn, Andrew M; Bhattacharya, Alok

    2005-01-01

    Background Theoretical proteome analysis, generated by plotting theoretical isoelectric points (pI) against molecular masses of all proteins encoded by the genome show a multimodal distribution for pI. This multimodal distribution is an effect of allowed combinations of the charged amino acids, and not due to evolutionary causes. The variation in this distribution can be correlated to the organisms ecological niche. Contributions to this variation maybe mapped to individual proteins by studying the variation in pI of orthologs across microorganism genomes. Results The distribution of ortholog pI values showed trimodal distributions for all prokaryotic genomes analyzed, similar to whole proteome plots. Pairwise analysis of pI variation show that a few COGs are conserved within, but most vary between, the acidic and basic regions of the distribution, while molecular mass is more highly conserved. At the level of functional grouping of orthologs, five groups vary significantly from the population of orthologs, which is attributed to either conservation at the level of sequences or a bias for either positively or negatively charged residues contributing to the function. Individual COGs conserved in both the acidic and basic regions of the trimodal distribution are identified, and orthologs that best represent the variation in levels of the acidic and basic regions are listed. Conclusion The analysis of pI distribution by using orthologs provides a basis for resolution of theoretical proteome comparison at the level of individual proteins. Orthologs identified that significantly vary between the major acidic and basic regions maybe used as representative of the variation of the entire proteome. PMID:16150155

  19. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  20. A research on wave equation on inclined channel and observation for intermittent debris flow

    NASA Astrophysics Data System (ADS)

    Arai, Muneyuki

    2014-05-01

    Phenomenon of intermittent surges is known a debris flow called viscous debris flow in China, and recently is observed in the European Alps and other mountains region. A purpose of this research is to obtain a wave equation for wave motion of intermittent surges with sediment on inclined channel, especially to evaluate influence of momentum correction factor on flow mechanism. Using non-dimensional basic equations as Laplace equation, δ2φ'/δx'2 + δ2φ'/δy'2 = 0 , boundary condition at bottom of flow, δφ'/δy' = 0, (y' = -1; at bottom of mean depth h0 ), surface condition ( conservation condition of flow surface ), ' ' ' ' - δφ-+ δη- + δφ-δη-= 0 (y' = 0;atsurfaceofmean depth h0 ), δy' δt' δt'δx' and momentum equation, ' ( ')2 '2 δφ-+ 1 (2β - 1) δφ- - c0'2 tanθx ' +c0'2 (1+ η')+ tan θ c0-φ' δt' 2 δx' u0' δ« ( δφ')2 δη' ' ' u0 ' c0 + (β - 1) δx' δx'dx = 0, here,u0 = v-, c0 = v- p0 p0 where, x : coordinate axis of flow direction, x' = x/h0, y : coordinate axis of depth direction, y' = y/h0, h : depth of flow, h0 : mean depth, t : time, t' = tvp0/h0, u0 : mean velocity, vp0 : velocity parameter in G-M transfer, φ = φ(x,y,t) : potential function, φ' = φ/(h0 vp0), g : acceleration due to gravity, θ : slope angle of the channel, c0 = ---- gh0cosθ. From these basic equation, a wave equation is obtained as follow by perturbation method, here neglecting the term of φ' with tanθ ≪ 1, δη' 1 '2 ' δη' 1 c0'2 δ2η' 1( 1 ) δ3η' δτ' + 2 (2β + 1) c0 η δξ' - 2 tanθ u-'-δξ'2-+ 2 c-'2- 1-δξ'3 = 0, 0 0 where η : deflection from h0 (h = h0 + η), η' = η/h0, ξ = ɛ1/2(x - vp0t), ξ' = ξ/h0, τ = ɛ3/2t, τ' = tvp0/h0, ɛ: parameter of perturbation method. In this equation, second term of left side is non-linear term which generates waves of various periods, third is dissipation term which disappear high frequency wave and forth is dispersion term which has a characteristic of a soliton on KdV equation. In a case using vp0 = c0, above equation is expressed as δη' 1 ' δη' 1tanθ-δ2η' δτ' + 2 (2β + 1) η δξ' - 2 u0' δξ'2 = 0. Usually β varies from 1 to 1.2, then it is expected that the influence of β for wave formation η' is small by above equation. For observation on wave characteristic of intermittent surges, it is indicated to measure phase velocity of wave, mean velocity of the flow, depth fluctuation and other usual terms.

  1. Dominant height-based height-diameter equations for trees in southern Indiana

    Treesearch

    John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter

    2008-01-01

    Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...

  2. The method of averages applied to the KS differential equations

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.; Starke, S. E.

    1977-01-01

    A new approach for the solution of artificial satellite trajectory problems is proposed. The basic idea is to apply an analytical solution method (the method of averages) to an appropriate formulation of the orbital mechanics equations of motion (the KS-element differential equations). The result is a set of transformed equations of motion that are more amenable to numerical solution.

  3. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    NASA Astrophysics Data System (ADS)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  4. HAM2D: 2D Shearing Box Model

    NASA Astrophysics Data System (ADS)

    Gammie, Charles F.; Guan, Xiaoyue

    2012-10-01

    HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.

  5. Using Theoretical Descriptors in Structural Activity Relationships: 4. Molecular Orbital Basicity and Electrostatic Basicity

    DTIC Science & Technology

    1988-11-01

    rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction

  6. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    NASA Astrophysics Data System (ADS)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  7. Gap solitons in Ginzburg-Landau media.

    PubMed

    Sakaguchi, Hidetsugu; Malomed, Boris A

    2008-05-01

    We introduce a model combining basic elements of conservative systems which give rise to gap solitons, i.e., a periodic potential and self-defocusing cubic nonlinearity, and dissipative terms corresponding to the complex Ginzburg-Landau (CGL) equation of the cubic-quintic type. The model may be realized in optical cavities with a periodic transverse modulation of the refractive index, self-defocusing nonlinearity, linear gain, and saturable absorption. By means of systematic simulations and analytical approximations, we find three species of stable dissipative gap solitons (DGSs), and also dark solitons. They are located in the first finite band gap, very close to the border of the Bloch band separating the finite and the semi-infinite gaps. Two species represent loosely and tightly bound solitons, in cases when the underlying Bloch band is, respectively, relatively broad or very narrow. These two families of stationary solitons are separated by a region of breathers. The loosely bound DGSs are accurately described by means of two approximations, which rely on the product of a carrier Bloch function and a slowly varying envelope, or reduce the model to CGL-Bragg equations. The former approximation also applies to dark solitons. Another method, based on the variational approximation, accurately describes tightly bound solitons. The loosely bound DGSs, as well as dark solitons, are mobile, and their collisions are quasielastic.

  8. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  9. Estimation of CT-derived abdominal visceral and subcutaneous adipose tissue depots from anthropometry in Europeans, South Asians and African Caribbeans.

    PubMed

    Eastwood, Sophie V; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F; Forouhi, Nita; Whincup, Peter; Hughes, Alun D; Chaturvedi, Nishi

    2013-01-01

    South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. 669 Europeans, 514 South Asians and 227 African Caribbeans (70 ± 7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R(2) range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R(2) 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R(2) was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available.

  10. BASIC INVESTIGATIONS IN PHOTOPOTENTIOMETRY.

    DTIC Science & Technology

    favorably with potentials calculated from the Nernst equation . The potentials are produced by a mechanism resembling a concentration cell with...transference. The effects of temperature and concentration are well defined by the Nernst equation . The observed potential at any time during the irradiation...is approximated by a potential calculated from the Nernst equation . (Author)

  11. 7 CFR 1781.6 - Loan purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... conservation and water control facilities such as dikes, terraces, detention reservoirs, stream channels... vegetative measures to stabilize stream channels and gullies. (iv) Basic farm conservation practices to control runoff, erosion, and sedimentation. (6) Installing, repairing, and improving water storage...

  12. A finite-volume Eulerian-Lagrangian Localized Adjoint Method for solution of the advection-dispersion equation

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1993-01-01

    A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.

  13. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  14. Multiple Scale Analysis of the Dynamic State Index (DSI)

    NASA Astrophysics Data System (ADS)

    Müller, A.; Névir, P.

    2016-12-01

    The Dynamic State Index (DSI) is a novel parameter that indicates local deviations of the atmospheric flow field from a stationary, inviscid and adiabatic solution of the primitive equations of fluid mechanics. This is in contrast to classical methods, which often diagnose deviations from temporal or spatial mean states. We show some applications of the DSI to atmospheric flow phenomena on different scales. The DSI is derived from the Energy-Vorticity-Theory (EVT) which is based on two global conserved quantities, the total energy and Ertel's potential enstrophy. Locally, these global quantities lead to the Bernoulli function and the PV building together with the potential temperature the DSI.If the Bernoulli function and the PV are balanced, the DSI vanishes and the basic state is obtained. Deviations from the basic state provide an indication of diabatic and non-stationary weather events. Therefore, the DSI offers a tool to diagnose and even prognose different atmospheric events on different scales.On synoptic scale, the DSI can help to diagnose storms and hurricanes, where also the dipole structure of the DSI plays an important role. In the scope of the collaborative research center "Scaling Cascades in Complex Systems" we show high correlations between the DSI and precipitation on convective scale. Moreover, we compare the results with reduced models and different spatial resolutions.

  15. Plant conservation progress in the United States

    Treesearch

    Kayri Havens; Andrea Kramer; Ed. Guerrant

    2017-01-01

    Effective national plant conservation has several basic needs, including: 1) accessible, up-to-date information on species distribution and rarity; 2) research and management capacity to mitigate the impact of threats that make plants rare; 3) effective networks for conserving species in situ and ex situ; 4) education and training to make sure the right people are...

  16. Conservation and management of eastern big-eared bats: a symposium

    Treesearch

    Susan C. Loeb; Michael J. Lacki; Darren A. Miller

    2011-01-01

    Big-eared bats (genus Corynorhinus) in the Eastern United States are species of special conservation concern. These species are at risk due to many factors, including lack of knowledge about their basic biology, population numbers or trends, and distribution. This volume contains five synthesis papers on the status, ecology, and conservation of eastern big-eared bats...

  17. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  18. Physics, A Syllabus for Secondary Schools.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This is a 1971 reprint of the 1966 syllabus designed to encourage the utilization of such basic concepts as the conservation of energy, the conservation of momentum, and the conservation of charge in related areas rather than in isolation. It is presented in such a way as to show the importance of these ideas as unifying concepts which can be…

  19. Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2011-01-01

    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.

  20. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.

    PubMed

    Aguayo-Ortiz, A; Mendoza, S; Olvera, D

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.

  1. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  2. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics

    PubMed Central

    Mendoza, S.; Olvera, D.

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602

  3. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  4. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  5. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.

  6. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface using the Clausius-Clapeyron equation. The model was developed on a mass basis instead of a molar basis to be consistent with general conservation equations. It was found that vapor diffusion is not only driven by a gradient of the molar fraction but also a gradient of the mixture molecular weight at the diffusion layer.

  7. Mesoscale Modeling of LX-17 Under Isentropic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Willey, T M; Friedman, G

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less

  8. Lie-Mei symmetry and conserved quantities of the Rosenberg problem

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Wei; Li, Yuan-Cheng

    2011-07-01

    The Rosenberg problem is a typical but not too complicated problem of nonholonomic mechanical systems. The Lie—Mei symmetry and the conserved quantities of the Rosenberg problem are studied. For the Rosenberg problem, the Lie and the Mei symmetries for the equation are obtained, the conserved quantities are deduced from them and then the definition and the criterion for the Lie—Mei symmetry of the Rosenberg problem are derived. Finally, the Hojman conserved quantity and the Mei conserved quantity are deduced from the Lie—Mei symmetry.

  9. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  10. Wave equations on anti self dual (ASD) manifolds

    NASA Astrophysics Data System (ADS)

    Bashingwa, Jean-Juste; Kara, A. H.

    2017-11-01

    In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.

  11. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  12. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  13. Coincidence degree and periodic solutions of neutral equations

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Mawhin, J.

    1973-01-01

    The problem of existence of periodic solutions for some nonautonomous neutral functional differential equations is examined. It is an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations and of a generalized Leray-Schauder theory. Although proofs are simple, the results are nontrivial extensions to the neutral case of existence theorems for periodic solutions of functional differential equations.

  14. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  15. Space-Plane Spreadsheet Program

    NASA Technical Reports Server (NTRS)

    Mackall, Dale

    1993-01-01

    Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.

  16. A Theory of Preference Reversals.

    DTIC Science & Technology

    1984-08-01

    the subject mst find sme way to transform-the basic evaluation, uCG ), into a monetary amonnt. we hypothesize that subjects do : this by a process of...the basic equations as follows; MS() = (1 - ()w 7) where, A -[C)- uCG )I/uCW)C) .. Furthermore, we can solve for ulC) by using equation (8); thus, u (a...monetary value of gambles by a method which avoids references to market -type behavior. Grether and Plott asked subjects to give Othe exact dollar

  17. Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K. (Inventor)

    2009-01-01

    A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.

  18. Numerical investigation of shock induced bubble collapse in water

    NASA Astrophysics Data System (ADS)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  19. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less

  20. An Entropy-Based Approach to Nonlinear Stability

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1989-01-01

    Many numerical methods used in computational fluid dynamics (CFD) incorporate an artificial dissipation term to suppress spurious oscillations and control nonlinear instabilities. The same effect can be accomplished by using upwind techniques, sometimes augmented with limiters to form Total Variation Diminishing (TVD) schemes. An analysis based on numerical satisfaction of the second law of thermodynamics allows many such methods to be compared and improved upon. A nonlinear stability proof is given for discrete scalar equations arising from a conservation law. Solutions to such equations are bounded in the L sub 2 norm if the second law of thermodynamics is satisfied in a global sense over a periodic domain. It is conjectured that an analogous statement is true for discrete equations arising from systems of conservation laws. Analysis and numerical experiments suggest that a more restrictive condition, a positive entropy production rate in each cell, is sufficient to exclude unphysical phenomena such as oscillations and expansion shocks. Construction of schemes which satisfy this condition is demonstrated for linear and nonlinear wave equations and for the one-dimensional Euler equations.

  1. Brownian microhydrodynamics of active filaments.

    PubMed

    Laskar, Abhrajit; Adhikari, R

    2015-12-21

    Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.

  2. On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation

    NASA Astrophysics Data System (ADS)

    Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong

    2017-01-01

    The Kuramoto model is a prototype phase model describing the synchronous behavior of weakly coupled limit-cycle oscillators. When the number of oscillators is sufficiently large, the dynamics of Kuramoto ensemble can be effectively approximated by the corresponding mean-field equation, namely "the Kuramoto-Sakaguchi (KS) equation". This KS equation is a kind of scalar conservation law with a nonlocal flux function due to the mean-field interactions among oscillators. In this paper, we provide a unique global solvability of bounded variation (BV) weak solutions to the kinetic KS equation for identical oscillators using the method of front-tracking in hyperbolic conservation laws. Moreover, we also show that our BV weak solutions satisfy local-in-time L1-stability with respect to BV-initial data. For the ensemble of identical Kuramoto oscillators, we explicitly construct an exponentially growing BV weak solution generated from BV perturbation of incoherent state for any positive coupling strength. This implies the nonlinear instability of incoherent state in a positive coupling strength regime. We provide several numerical examples and compare them with our analytical results.

  3. A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration

    NASA Astrophysics Data System (ADS)

    Nonaka, Andrew; Day, Marcus S.; Bell, John B.

    2018-01-01

    We present a numerical approach for low Mach number combustion that conserves both mass and energy while remaining on the equation of state to a desired tolerance. We present both unconfined and confined cases, where in the latter the ambient pressure changes over time. Our overall scheme is a projection method for the velocity coupled to a multi-implicit spectral deferred corrections (SDC) approach to integrate the mass and energy equations. The iterative nature of SDC methods allows us to incorporate a series of pressure discrepancy corrections naturally that lead to additional mass and energy influx/outflux in each finite volume cell in order to satisfy the equation of state. The method is second order, and satisfies the equation of state to a desired tolerance with increasing iterations. Motivated by experimental results, we test our algorithm on hydrogen flames with detailed kinetics. We examine the morphology of thermodiffusively unstable cylindrical premixed flames in high-pressure environments for confined and unconfined cases. We also demonstrate that our algorithm maintains the equation of state for premixed methane flames and non-premixed dimethyl ether jet flames.

  4. Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.; Mozzhilkin, Vladimir V.

    2006-05-01

    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.

  5. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  6. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  7. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  8. Mathematical modeling of impact of two metal plates using two-fluid approach

    NASA Astrophysics Data System (ADS)

    Utkin, P. S.; Fortova, S. V.

    2018-01-01

    The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.

  9. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  10. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  11. 10 CFR 431.172 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.172... conservation standard for that product. Basic model means, with respect to a commercial HVAC & WH product, all...

  12. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  13. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  14. Initialization and assimilation of cloud and rainwater in a regional model

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.

    1990-01-01

    The initialization and assimilation of cloud and rainwater quantities in a mesoscale regional model was examined. Forecasts of explicit cloud and rainwater are made using conservation equations. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. These physical processes, some of which are parameterized, represent source and sink in terms in the conservation equations. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed.

  15. Symmetrization of conservation laws with entropy for high-temperature hypersonic computations

    NASA Technical Reports Server (NTRS)

    Chalot, F.; Hughes, T. J. R.; Shakib, F.

    1990-01-01

    Results of Hughes, France, and Mallet are generalized to conservation law systems taking into account high-temperature effects. Symmetric forms of different equation sets are derived in terms of entropy variables. First, the case of a general divariant gas is studied; it can be specialized to the usual Navier-Stokes equations, as well as to situations where the gas is vibrationally excited, and undergoes equilibrium chemical reactions. The case of gas in thermochemical nonequilibrium is considered next. Transport phenomena, and in particular mass diffusion, are examined in the framework of symmetric advective-diffusive systems.

  16. An approximation of herd effect due to vaccinating children against seasonal influenza - a potential solution to the incorporation of indirect effects into static models.

    PubMed

    Van Vlaenderen, Ilse; Van Bellinghen, Laure-Anne; Meier, Genevieve; Nautrup, Barbara Poulsen

    2013-01-22

    Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses.

  17. Equating Two Forms of a Criterion-Referenced Test by Using Norm Referenced Data: An Illustration of Two Methods.

    ERIC Educational Resources Information Center

    Garcia-Quintana, Roan A.; Johnson, Lynne M.

    Three different computational procedures for equating two forms of a test were applied to a pair of mathematics tests to compare the results of the three procedures. The tests that were being equated were two forms of the SRA Mastery Mathematics Tests. The common, linking test used for equating was the Comprehensive Tests of Basic Skills, Form S,…

  18. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  19. Some new solutions for the Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Ramírez, J.; Romero, J. L.; Tracinà, R.

    2013-09-01

    The well-known Derrida-Lebowitz-Speer-Spohn equation is investigated. By using specific ansätze and the classical symmetries of the equation, several families of new exact solutions have been found. In particular, there appear traveling waves that include compactons and soliton-compactons. Some other solutions conserve the mass and exhibit diffusion and convection processes from an instantaneous source and localized peakons.

  20. Numerical Solution for Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Weed, R. A.; Thompson, J. F.

    1982-01-01

    Carefully selected blend of computational techniques solves complete set of equations for viscous, unsteady, hypersonic flow in general curvilinear coordinates. New algorithm has tested computation of axially directed flow about blunt body having shape similar to that of such practical bodies as wide-body aircraft or artillery shells. Method offers significant computational advantages because of conservation-law form of equations and because it reduces amount of metric data required.

  1. The ion-acoustic soliton: A gas-dynamic viewpoint

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2002-03-01

    The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1

  2. A geometric viewpoint on generalized hydrodynamics

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Spohn, Herbert; Yoshimura, Takato

    2018-01-01

    Generalized hydrodynamics (GHD) is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective ("dressed") velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles; in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, Sara; Montecchio, Meri; Lemak, Alexander

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundlemore » (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.« less

  4. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  5. The turbulent mean-flow, Reynolds-stress, and heat flux equations in mass-averaged dependent variables

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Rose, W. C.

    1973-01-01

    The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.

  6. Total energy management for nursing homes and other long-term care institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less

  7. 7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...

  8. 7 CFR 610.11 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...

  9. 7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...

  10. 7 CFR 610.11 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...

  11. 7 CFR 610.11 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...

  12. 7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...

  13. 7 CFR 610.11 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...

  14. 7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...

  15. 7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...

  16. 7 CFR 610.11 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...

  17. A new continuum model for suspensions of gyrotactic micro-organisms

    NASA Technical Reports Server (NTRS)

    Pedley, T. J.; Kessler, J. O.

    1990-01-01

    A new continuum model is formulated for dilute suspensions of swimming micro-organisms with asymmetric mass distributions. Account is taken of randomness in a cell's swimming direction, p, by postulating that the probability density function for p satisfies a Fokker-Planck equation analogous to that obtained for colloid suspensions in the presence of rotational Brownian motion. The deterministic torques on a cell, viscous and gravitational, are balanced by diffusion, represented by an isotropic rotary diffusivity Dr, which is unknown a priori, but presumably reflects stochastic influences on the cell's internal workings. When the Fokker-Planck equation is solved, macroscopic quantities such as the average cell velocity Vc, the particle diffusivity tensor D and the effective stress tensor sigma can be computed; Vc and D are required in the cell conservation equation, and sigma in the momentum equation. The Fokker-Planck equation contains two dimensionless parameters, lambda and epsilon; lambda is the ratio of the rotary diffusion time Dr-1 to the torque relaxation time B (balancing gravitational and viscous torques), while epsilon is a scale for the local vorticity or strain rate made dimensionless with B. In this paper we solve the Fokker-Planck equation exactly for epsilon = 0 (lambda arbitrary) and also obtain the first-order solution for small epsilon. Using experimental data on Vc and D obtained with the swimming alga, Chlamydomonas nivalis, in the absence of bulk flow, the epsilon = 0 results can be used to estimate the value of lambda for that species (lambda approximately 2.2; Dr approximately 0.13 s-1). The continuum model for small epsilon is then used to reanalyse the instability of a uniform suspension, previously investigated by Pedley, Hill & Kessler (1988). The only qualitatively different result is that there no longer seem to be circumstances in which disturbances with a non-zero vertical wavenumber are more unstable than purely horizontal disturbances. On the way, it is demonstrated that the only significant contribution to sigma, other than the basic Newtonian stress, is that derived from the stresslets associated with the cells' intrinsic swimming motions.

  18. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE PAGES

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    2016-12-02

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  19. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  20. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  1. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  2. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  3. Conservation Awareness Guide.

    ERIC Educational Resources Information Center

    Santa Rosa County Board of Public Instruction, Milton, FL.

    Recommendations for incorporating conservation education into the K-5 curriculum comprise this teacher's guide. Examined are eight natural resources: air, energy, forests and plant life, human resources, minerals, soil, water, and wildlife. Each of these topics is considered in two ways: (1) a chart depicts concepts basic to understanding the…

  4. Energy Management in Schools.

    ERIC Educational Resources Information Center

    Canadian School Trustees Association, Ottawa (Ontario).

    This booklet provides the basic information for starting an energy conservation program. Guidelines for involving all school personnel and promoting energy conservation throughout the entire Canadian education system are provided. Outlined in the booklet are methods for climate proofing the building envelope and making the system air tight,…

  5. Linearization of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.

    2009-01-01

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…

  6. E = Mc(super 2) for the Chemist: When is Mass Conserved?

    ERIC Educational Resources Information Center

    Treptow. Richard S.

    2005-01-01

    An equation derived by Albert Einstein in 1905 that expresses a relationship between mass and energy, formulated as E = mc(super 2) is discussed with reference to the extent mass is conserved. This query can be used to challenge students and develop their language and critical thinking skills.

  7. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  8. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  9. Symmetries of the quantum damped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.

    2012-11-01

    For the non-conservative Caldirola-Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg-Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola-Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes.

  10. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  11. The azimuthal component of Poynting's vector and the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.

    2015-12-01

    The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.

  12. Statistical Extremes of Turbulence and a Cascade Generalisation of Euler's Gyroscope Equation

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Scherzer, Daniel

    2016-04-01

    Turbulence refers to a rather well defined hydrodynamical phenomenon uncovered by Reynolds. Nowadays, the word turbulence is used to designate the loss of order in many different geophysical fields and the related fundamental extreme variability of environmental data over a wide range of scales. Classical statistical techniques for estimating the extremes, being largely limited to statistical distributions, do not take into account the mechanisms generating such extreme variability. An alternative approaches to nonlinear variability are based on a fundamental property of the non-linear equations: scale invariance, which means that these equations are formally invariant under given scale transforms. Its specific framework is that of multifractals. In this framework extreme variability builds up scale by scale leading to non-classical statistics. Although multifractals are increasingly understood as a basic framework for handling such variability, there is still a gap between their potential and their actual use. In this presentation we discuss how to dealt with highly theoretical problems of mathematical physics together with a wide range of geophysical applications. We use Euler's gyroscope equation as a basic element in constructing a complex deterministic system that preserves not only the scale symmetry of the Navier-Stokes equations, but some more of their symmetries. Euler's equation has been not only the object of many theoretical investigations of the gyroscope device, but also generalised enough to become the basic equation of fluid mechanics. Therefore, there is no surprise that a cascade generalisation of this equation can be used to characterise the intermittency of turbulence, to better understand the links between the multifractal exponents and the structure of a simplified, but not simplistic, version of the Navier-Stokes equations. In a given way, this approach is similar to that of Lorenz, who studied how the flap of a butterfly wing could generate a cyclone with the help of a 3D ordinary differential system. Being well supported by the extensive numerical results, the cascade generalisation of Euler's gyroscope equation opens new horizons for predictability and predictions of processes having long-range dependences.

  13. Estimation of CT-Derived Abdominal Visceral and Subcutaneous Adipose Tissue Depots from Anthropometry in Europeans, South Asians and African Caribbeans

    PubMed Central

    Eastwood, Sophie V.; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F.; Forouhi, Nita; Whincup, Peter; Hughes, Alun D.; Chaturvedi, Nishi

    2013-01-01

    Background South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. Objective We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. Design 669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. Results South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. Conclusion We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available. PMID:24069381

  14. Titration Calculations with Computer Algebra Software

    ERIC Educational Resources Information Center

    Lachance, Russ; Biaglow, Andrew

    2012-01-01

    This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

  15. Semiannual Report October 1, 1999 through March 31, 2000

    DTIC Science & Technology

    2000-04-01

    Mark Carpenter (NASA Langley). Textbook Multigrid Efficiency for the Navier-Stokes Equations Boris Diskin A typical modern Reynolds-Averaged...defined as textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work...basic elements of the barriers to be overcome in extending textbook efficiencies to the compressible RANS equations, namely entering flows, far wake

  16. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    NASA Astrophysics Data System (ADS)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  17. Energy Stable Flux Formulas For The Discontinuous Galerkin Discretization Of First Order Nonlinear Conservation Laws

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.

  18. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  19. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    NASA Astrophysics Data System (ADS)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  20. The method of space-time and conservation element and solution element: A new approach for solving the Navier-Stokes and Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1995-01-01

    A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.

  1. Lateral Load Capacity of Piles: A Comparative Study Between Indian Standards and Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Jayasree, P. K.; Arun, K. V.; Oormila, R.; Sreelakshmi, H.

    2018-05-01

    As per Indian Standards, laterally loaded piles are usually analysed using the method adopted by IS 2911-2010 (Part 1/Section 2). But the practising engineers are of the opinion that the IS method is very conservative in design. This work aims at determining the extent to which the conventional IS design approach is conservative. This is done through a comparative study between IS approach and the theoretical model based on Vesic's equation. Bore log details for six different bridges were collected from the Kerala Public Works Department. Cast in situ fixed head piles embedded in three soil conditions both end bearing as well as friction piles were considered and analyzed separately. Piles were also modelled in STAAD.Pro software based on IS approach and the results were validated using Matlock and Reese (In Proceedings of fifth international conference on soil mechanics and foundation engineering, 1961) equation. The results were presented as the percentage variation in values of bending moment and deflection obtained by different methods. The results obtained from the mathematical model based on Vesic's equation and that obtained as per the IS approach were compared and the IS method was found to be uneconomical and conservative.

  2. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  3. Integrated watershed management for saturation excess generated runoff, erosion and nutrient control

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...

  4. RESOURCES CONSERVATIONS COMPANY - B.E.S.T. SOLVENT EXTRACTION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...

  5. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    PubMed

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.

  6. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  7. Soliton evolution and radiation loss for the sine-Gordon equation.

    PubMed

    Smyth, N F; Worthy, A L

    1999-08-01

    An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized sine-Gordon equation and loss terms are added to the variational equations derived from the averaged Lagrangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions of the resulting approximate equations, which include loss, are found to be in good agreement with full numerical solutions of the sine-Gordon equation.

  8. Energy and maximum norm estimates for nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle; Oliger, Joseph

    1994-01-01

    We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.

  9. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Thiele, Uwe; Archer, Andrew J.; Robbins, Mark J.; Gomez, Hector; Knobloch, Edgar

    2013-04-01

    The conserved Swift-Hohenberg equation with cubic nonlinearity provides the simplest microscopic description of the thermodynamic transition from a fluid state to a crystalline state. The resulting phase field crystal model describes a variety of spatially localized structures, in addition to different spatially extended periodic structures. The location of these structures in the temperature versus mean order parameter plane is determined using a combination of numerical continuation in one dimension and direct numerical simulation in two and three dimensions. Localized states are found in the region of thermodynamic coexistence between the homogeneous and structured phases, and may lie outside of the binodal for these states. The results are related to the phenomenon of slanted snaking but take the form of standard homoclinic snaking when the mean order parameter is plotted as a function of the chemical potential, and are expected to carry over to related models with a conserved order parameter.

  10. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  11. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  12. Is quantum theory a form of statistical mechanics?

    NASA Astrophysics Data System (ADS)

    Adler, S. L.

    2007-05-01

    We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.

  13. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.

    PubMed

    Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki

    2015-03-01

    This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.

  15. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.

  16. Elementary Hemodynamic Principles Based on Modified Bernoulli's Equation.

    ERIC Educational Resources Information Center

    Badeer, Henry S.

    1985-01-01

    Develops and expands basic concepts of Bernoulli's equation as it applies to vascular hemodynamics. Simple models are used to illustrate gravitational potential energy, steady nonturbulent flow, pump-driven streamline flow, and other areas. Relationships to the circulatory system are also discussed. (DH)

  17. Conservative 3 + 1 general relativistic variable Eddington tensor radiation transport equations

    DOE PAGES

    Cardall, Christian Y.; Endeve, Eirik; Mezzacappa, Anthony

    2013-05-07

    We present conservative 3+1 general relativistic variable Eddington tensor radiation transport equations, including greater elaboration of the momentum space divergence (that is, the energy derivative term) than in previous work. These equations are intended for use in simulations involving numerical relativity, particularly in the absence of spherical symmetry. The independent variables are the lab frame coordinate basis spacetime position coordinates and the particle energy measured in the comoving frame. With an eye towards astrophysical applications—such as core-collapse supernovae and compact object mergers—in which the fluid includes nuclei and/or nuclear matter at finite temperature, and in which the transported particles aremore » neutrinos, we pay special attention to the consistency of four-momentum and lepton number exchange between neutrinos and the fluid, showing the term-by-term cancellations that must occur for this consistency to be achieved.« less

  18. A spectral mimetic least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochev, Pavel; Gerritsma, Marc

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  19. A spectral mimetic least-squares method

    DOE PAGES

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  20. Lax pair, conservation laws and solitons for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong

    2015-11-01

    Energy transfer through a (2+1)-dimensional α-helical protein can be described by a (2+1)-dimensional fourth-order nonlinear Schrödinger equation. For such an equation, a Lax pair and the infinitely-many conservation laws are derived. Using an auxiliary function and a bilinear formulation, we get the one-, two-, three- and N-soliton solutions via the Hirota method. The soliton velocity is linearly related to the lattice parameter γ, while the soliton' direction and amplitude do not depend on γ. Interactions between the two solitons are elastic, while those among the three solitons are pairwise elastic. Oblique, head-on and overtaking interactions between the two solitons are displayed. Oblique interaction among the three solitons and interactions among the two parallel solitons and a single one are presented as well.

  1. Pinching solutions of slender cylindrical jets

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Orellana, Oscar

    1993-01-01

    Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.

  2. A Runge-Kutta discontinuous finite element method for high speed flows

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Oden, J. T.

    1991-01-01

    A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.

  3. Quantitative Compactness Estimates for Hamilton-Jacobi Equations

    NASA Astrophysics Data System (ADS)

    Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.

    2016-02-01

    We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.

  4. Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes

    NASA Astrophysics Data System (ADS)

    Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan

    2018-04-01

    We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.

  5. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  6. Electromagnetic energy momentum in dispersive media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields aremore » monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.« less

  7. Measuring the equations of state in a relaxed magnetohydrodynamic plasma.

    PubMed

    Kaur, M; Barbano, L J; Suen-Lewis, E M; Shrock, J E; Light, A D; Brown, M R; Schaffner, D A

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  8. On the various forms of the energy equation for a dilute, monatomic mixture of nonreacting gases

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.

    1994-01-01

    In the case of gas mixtures, the governing equations become rather formidable and a complete listing of the equations in their various forms and methods to evaluate the transport coefficients is difficult to find. This paper seeks to compile common, as well as less well known, results in a single document. Various relationships between equations describing conservation of energy for a dilute, monatomic, nonreacting gas in local equilibrium are provided. The gas is treated as nonrelativistic, not subject to magnetic or electric fields, or radiative effects.

  9. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  10. Bootstrapping quarks and gluons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges thatmore » lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.« less

  11. Multi-scale Eulerian model within the new National Environmental Modeling System

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko

    2010-05-01

    The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.

  12. 18 CFR 725.5 - Council studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Council studies. 725.5 Section 725.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL IMPLEMENTATION OF... Management Guidelines (43 FR 6030), E.O. 11988 and E.O. 11990 provide the basic evaluation tools for these...

  13. 18 CFR 725.5 - Council studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Council studies. 725.5 Section 725.5 Conservation of Power and Water Resources WATER RESOURCES COUNCIL IMPLEMENTATION OF... Management Guidelines (43 FR 6030), E.O. 11988 and E.O. 11990 provide the basic evaluation tools for these...

  14. Conservatism in America--What Does it Mean for Teacher Education?

    ERIC Educational Resources Information Center

    Dolce, Carl J.

    The current conflict among opposing sets of cultural ideals is illustrated by several interrelated conditions. The conservative phenomenon is more complex than the traditional liberal-conservative dichotomy would suggest. Changes in societal conditions invite a reexamination of basic assumptions across the broad spectrum of political ideology.…

  15. Some Basics for Teaching and Evaluating Energy Conservation in the Home

    ERIC Educational Resources Information Center

    McColl, Robert W.

    1978-01-01

    Examines methods for determining thermal efficiency and measuring heat loss in the home. Suggests ways to conserve energy based upon (1) climatic environment and its impact on a structure, (2) physical location of buildings and their microclimate, and (3) behavior modification of the inhabitants. (Author)

  16. Rancher participation in conservation easements: Survey results from California

    USDA-ARS?s Scientific Manuscript database

    The increasing role of conservation easements on rangelands in the western US makes it especially important to understand the drivers and/or barriers to rancher participation. A commonly held perception is that basic social values like views on private property rights and trust in government will in...

  17. 76 FR 20089 - Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... = high output. ** The proposed standards are based on an equation that is a function of the natural... High estimate Discount rate (emerging (existing Primary estimate technologies, roll- technologies, up...$) is the average of the low and high values used in DOE's analysis. [dagger] Total Benefits for both...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Christopher; Randall, David

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restrictedmore » to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Lastly, detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.« less

  19. An adaptive, conservative 0D-2V multispecies Rosenbluth–Fokker–Planck solver for arbitrarily disparate mass and temperature regimes

    DOE PAGES

    Taitano, William; Chacon, Luis; Simakov, Andrei Nikolaevich

    2016-04-25

    In this paper, we propose an adaptive velocity-space discretization scheme for the multi-species, multidimensional Rosenbluth–Fokker–Planck (RFP) equation, which is exactly mass-, momentum-, and energy-conserving. Unlike most earlier studies, our approach normalizes the velocity-space coordinate to the temporally varying individual plasma species' local thermal velocity, v th (t), and explicitly considers the resulting inertial terms in the Fokker–Planck equation. Our conservation strategy employs nonlinear constraints to enforce discretely the conservation properties of these inertial terms and the Fokker–Planck collision operator. To deal with situations of extreme thermal velocity disparities among different species, we employ an asymptotic v th -ratio-based expansion ofmore » the Rosenbluth potentials that only requires the computation of several velocity-space integrals. Numerical examples demonstrate the favorable efficiency and accuracy properties of the scheme. Specifically, we show that the combined use of the velocity-grid adaptivity and asymptotic expansions delivers many orders-of-magnitude savings in mesh resolution requirements compared to a single, static uniform mesh.« less

  20. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

Top