Sample records for basic differential equations

  1. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  2. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  3. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  4. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  5. The method of averages applied to the KS differential equations

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.; Starke, S. E.

    1977-01-01

    A new approach for the solution of artificial satellite trajectory problems is proposed. The basic idea is to apply an analytical solution method (the method of averages) to an appropriate formulation of the orbital mechanics equations of motion (the KS-element differential equations). The result is a set of transformed equations of motion that are more amenable to numerical solution.

  6. A result on differential inequalities and its application to higher order trajectory derivatives

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.

    1973-01-01

    A result on differential inequalities is obtained by considering the adjoint differential equation of the variational equation of the right side of the inequality. The main theorem is proved using basic results on differentiability of solutions with respect to initial conditions. The result is then applied to the problem of determining solution behavior using comparison techniques.

  7. Coincidence degree and periodic solutions of neutral equations

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Mawhin, J.

    1973-01-01

    The problem of existence of periodic solutions for some nonautonomous neutral functional differential equations is examined. It is an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations and of a generalized Leray-Schauder theory. Although proofs are simple, the results are nontrivial extensions to the neutral case of existence theorems for periodic solutions of functional differential equations.

  8. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  9. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  10. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  11. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  12. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  13. Determining Dissolved Oxygen Levels

    ERIC Educational Resources Information Center

    Boucher, Randy

    2010-01-01

    This project was used in a mathematical modeling and introduction to differential equations course for first-year college students. The students worked in two-person groups and were given three weeks to complete the project. Students were given this project three weeks into the course, after basic first order linear differential equation and…

  14. Climate Modeling in the Calculus and Differential Equations Classroom

    ERIC Educational Resources Information Center

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  15. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  16. A note on the solutions of some nonlinear equations arising in third-grade fluid flows: an exact approach.

    PubMed

    Aziz, Taha; Mahomed, F M

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed.

  17. A Note on the Solutions of Some Nonlinear Equations Arising in Third-Grade Fluid Flows: An Exact Approach

    PubMed Central

    Mahomed, F. M.

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed. PMID:25143962

  18. Stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobczyk, K.

    1990-01-01

    This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less

  19. Fractional vector calculus and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.

    2017-04-01

    Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.

  20. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    PubMed

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  1. LORENE: Spectral methods differential equations solver

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke

    2016-08-01

    LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.

  2. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

  3. Differential geometric methods in system theory.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.

    1971-01-01

    Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.

  4. Influence of human behavior on cholera dynamics

    PubMed Central

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-01-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). PMID:26119824

  5. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  6. Numerical methods for stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kloeden, Peter; Platen, Eckhard

    1991-06-01

    The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations due to the peculiarities of stochastic calculus. This book provides an introduction to stochastic calculus and stochastic differential equations, both theory and applications. The main emphasise is placed on the numerical methods needed to solve such equations. It assumes an undergraduate background in mathematical methods typical of engineers and physicists, through many chapters begin with a descriptive summary which may be accessible to others who only require numerical recipes. To help the reader develop an intuitive understanding of the underlying mathematicals and hand-on numerical skills exercises and over 100 PC Exercises (PC-personal computer) are included. The stochastic Taylor expansion provides the key tool for the systematic derivation and investigation of discrete time numerical methods for stochastic differential equations. The book presents many new results on higher order methods for strong sample path approximations and for weak functional approximations, including implicit, predictor-corrector, extrapolation and variance-reduction methods. Besides serving as a basic text on such methods. the book offers the reader ready access to a large number of potential research problems in a field that is just beginning to expand rapidly and is widely applicable.

  7. Stabilizing a Bicycle: A Modeling Project

    ERIC Educational Resources Information Center

    Pennings, Timothy J.; Williams, Blair R.

    2010-01-01

    This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…

  8. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  9. A review of spectral methods

    NASA Technical Reports Server (NTRS)

    Lustman, L.

    1984-01-01

    An outline for spectral methods for partial differential equations is presented. The basic spectral algorithm is defined, collocation are emphasized and the main advantage of the method, the infinite order of accuracy in problems with smooth solutions are discussed. Examples of theoretical numerical analysis of spectral calculations are presented. An application of spectral methods to transonic flow is presented. The full potential transonic equation is among the best understood among nonlinear equations.

  10. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  11. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  12. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.

  13. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  14. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  15. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  16. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    ERIC Educational Resources Information Center

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  17. Gender Differentials in Returns to Education in Spain

    ERIC Educational Resources Information Center

    Arrazola, Maria; De Hevia, Jose

    2006-01-01

    In this article, rates of return to education for men and women have been estimated for the Spanish case, controlling for the biases appearing in the least squares estimation of the basic Mincerian equation. The results show that the returns for women are greater than those for men. The gender differential increases when taking into account the…

  18. Synchronization with propagation - The functional differential equations

    NASA Astrophysics Data System (ADS)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  19. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  20. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations.

    DTIC Science & Technology

    1984-05-01

    The analysis also applies to higher order equations. The basic method is due to N. Meyers and A. blcrat ( HYE ] (U-l). The equations considered are...220 14. MONITORING aGENCY NAME A AODRESS(lldI1n.Mhnt &m COnt* won * 011066) 1S. SECURITY CLASS. (of h1 rpMRt) UNCLASSIFIED I1. DECL ASSI FICATION...20550 Research Triangle Park North Carolina 27709 ,B. KEY WORDS (C@Wth mu Mgo, *do it Ma0oMr O IdMf& y Nok ftwb.) degenerate equation, elliptic partial

  1. Equations of condition for high order Runge-Kutta-Nystrom formulae

    NASA Technical Reports Server (NTRS)

    Bettis, D. G.

    1974-01-01

    Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.

  2. A delay differential equation model for dengue transmission with regular visits to a mosquito breeding site

    NASA Astrophysics Data System (ADS)

    Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.

    2015-03-01

    Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.

  3. A differential equation model of HIV infection of CD4+ T-cells with cure rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xueyong; Song, Xinyu; Shi, Xiangyun

    2008-06-01

    A differential equation model of HIV infection of CD4+ T-cells with cure rate is studied. We prove that if the basic reproduction number R0<1, the HIV infection is cleared from the T-cell population and the disease dies out; if R0>1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0>1. Furthermore, we also obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.

  4. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  5. Test particle propagation in magnetostatic turbulence. 2: The local approximation method

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.

  6. Use of hyperbolic partial differential equations to generate body fitted coordinates

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Sorenson, R. L.

    1980-01-01

    The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.

  7. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bart, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.

  8. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  9. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. N.; Krivtsov, A. M.; Tsvetkov, D. V.

    2018-05-01

    We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.

  10. Quantum Computer Circuit Analysis and Design

    DTIC Science & Technology

    2009-02-01

    is a first order nonlinear differential matrix equation of the Lax type. This report gives derivations of the Levi - Civita connection, Riemann...directions on the manifold not easily simulated by local gates. In this way, basic differential geometric concepts such as the Levi - Civita connection...and two - body terms, and Q(H) contains more than two - body terms. Thus ),()( HQHPH  (1) in which P and Q are superoperators (matrices) acting on

  11. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  12. Global differential geometry: An introduction for control engineers

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.; Martin, C. F.

    1982-01-01

    The basic concepts and terminology of modern global differential geometry are discussed as an introduction to the Lie theory of differential equations and to the role of Grassmannians in control systems analysis. To reach these topics, the fundamental notions of manifolds, tangent spaces, vector fields, and Lie algebras are discussed and exemplified. An appendix reviews such concepts needed for vector calculus as open and closed sets, compactness, continuity, and derivative. Although the content is mathematical, this is not a mathematical treatise but rather a text for engineers to understand geometric and nonlinear control.

  13. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  14. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  15. A Simple Interactive Software Package for Plotting, Animating, and Calculating

    ERIC Educational Resources Information Center

    Engelhardt, Larry

    2012-01-01

    We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…

  16. Understanding the Damped SHM without ODEs

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2016-01-01

    Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…

  17. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  18. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    PubMed

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  19. BOOK REVIEW: Partial Differential Equations in General Relativity

    NASA Astrophysics Data System (ADS)

    Halburd, Rodney G.

    2008-11-01

    Although many books on general relativity contain an overview of the relevant background material from differential geometry, very little attention is usually paid to background material from the theory of differential equations. This is understandable in a first course on relativity but it often limits the kinds of problems that can be studied rigorously. Einstein's field equations lie at the heart of general relativity. They are a system of partial differential equations (PDEs) relating the curvature of spacetime to properties of matter. A central part of most problems in general relativity is to extract information about solutions of these equations. Most standard texts achieve this by studying exact solutions or numerical and analytical approximations. In the book under review, Alan Rendall emphasises the role of rigorous qualitative methods in general relativity. There has long been a need for such a book, giving a broad overview of the relevant background from the theory of partial differential equations, and not just from differential geometry. It should be noted that the book also covers the basic theory of ordinary differential equations. Although there are many good books on the rigorous theory of PDEs, methods related to the Einstein equations deserve special attention, not only because of the complexity and importance of these equations, but because these equations do not fit into any of the standard classes of equations (elliptic, parabolic, hyperbolic) that one typically encounters in a course on PDEs. Even specifying exactly what ones means by a Cauchy problem in general relativity requires considerable care. The main problem here is that the manifold on which the solution is defined is determined by the solution itself. This means that one does not simply define data on a submanifold. Rendall's book gives a good overview of applications and results from the qualitative theory of PDEs to general relativity. It would be impossible to give detailed proofs of the main results in a self-contained book of reasonable length. Instead, the author concentrates on providing key definitions together with their motivations and explaining the main results, tools and difficulties for each topic. There is a section at the end of each chapter which points the reader to appropriate literature for further details. In this way, Rendall manages to describe the central issues concerning many subjects. Each of the twelve chapters (except for one on functional analysis) contains an important application to general relativity. For example, the chapter on ODEs discusses Bianchi spacetimes and the Einstein constraint equations are discussed in the chapter on elliptic equations. In the chapter on hyperbolic equations, the Einstein dust system is considered in the context of Leray hyperbolicity and Gowdy spacetimes are analysed in the section on Fuchsian methods. The book concludes with four chapters purely on applications to general relativity, namely The Cauchy problem for the Einstein equations, Global results, The Einstein-Vlasov system and The Einstein-scalar field systems. On reading this book, someone with a basic understanding of relativity could rapidly develop a picture, painted in broad brush strokes, of the main problems and tools in the area. It would be particularly useful for someone, such as a graduate student, just entering the field, or for someone who wants a general idea of the main issues. For those who want to go further, a lot more reading will be necessary but the author has sign-posted appropriate entry points to the literature throughout the book. Ultimately, this is a very technical subject and this book can only provide an overview. I believe that Alan Rendall's book is a valuable contribution to the field of mathematical relativity.

  20. Equation-free modeling unravels the behavior of complex ecological systems

    USGS Publications Warehouse

    DeAngelis, Donald L.; Yurek, Simeon

    2015-01-01

    Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.

  1. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    PubMed

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  2. On differential transformations between Cartesian and curvilinear (geodetic) coordinates

    NASA Technical Reports Server (NTRS)

    Soler, T.

    1976-01-01

    Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established.

  3. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  4. Some examples of exact and approximate solutions in small particle scattering - A progress report

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The formulation of basic equations from which the scattering of radiation by a localized variation in a medium is discussed. These equations are developed in both the differential and the integral form. Primary interest is in the scattering of electromagnetic waves for which the solution of the vector wave equation with appropriate boundary conditions must be considered. Scalar scattering by an infinite homogeneous isotropic circular cylinder, and scattering of electromagnetic waves by infinite circular cylinders are treated, and the case of the finite circular cylinder is considered. A procedure is given for obtaining angular scattering distributions from spheroids.

  5. Arbitrarily Curved and Twisted Space Beams. Ph.D. Thesis - Va. Polytech. Inst. and State Univ.; [Elastic Deformation, Stress Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.

    1974-01-01

    A derivation of the equations which govern the deformation of an arbitrarily curved and twisted space beam is presented. These equations differ from those of the classical theory in that (1) extensional effects are included; (2) the strain-displacement relations are derived; and (3) the expressions for the stress resultants are developed from the strain displacement relations. It is shown that the torsional stress resultant obtained by the classical approach is basically incorrect except when the cross-section is circular. The governing equations are given in the form of first-order differential equations. A numerical algorithm is given for obtaining the natural vibration characteristics and example problems are presented.

  6. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  7. Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Chaves, M.; Preto, M.

    2013-06-01

    A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.

  8. A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method.

    PubMed

    Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie

    2014-01-01

    It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.

  9. An approach to get thermodynamic properties from speed of sound

    NASA Astrophysics Data System (ADS)

    Núñez, M. A.; Medina, L. A.

    2017-01-01

    An approach for estimating thermodynamic properties of gases from the speed of sound u, is proposed. The square u2, the compression factor Z and the molar heat capacity at constant volume C V are connected by two coupled nonlinear partial differential equations. Previous approaches to solving this system differ in the conditions used on the range of temperature values [Tmin,Tmax]. In this work we propose the use of Dirichlet boundary conditions at Tmin, Tmax. The virial series of the compression factor Z = 1+Bρ+Cρ2+… and other properties leads the problem to the solution of a recursive set of linear ordinary differential equations for the B, C. Analytic solutions of the B equation for Argon are used to study the stability of our approach and previous ones under perturbation errors of the input data. The results show that the approach yields B with a relative error bounded basically by that of the boundary values and the error of other approaches can be some orders of magnitude lager.

  10. Multiscale Multiphysics and Multidomain Models I: Basic Theory

    PubMed Central

    Wei, Guo-Wei

    2013-01-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field. PMID:25382892

  11. Multiscale Multiphysics and Multidomain Models I: Basic Theory.

    PubMed

    Wei, Guo-Wei

    2013-12-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

  12. PKPD model of interleukin-21 effects on thermoregulation in monkeys--application and evaluation of stochastic differential equations.

    PubMed

    Overgaard, Rune Viig; Holford, Nick; Rytved, Klaus A; Madsen, Henrik

    2007-02-01

    To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.

  13. On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation

    NASA Astrophysics Data System (ADS)

    Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei

    2018-06-01

    In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.

  14. Spectral methods for partial differential equations

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Streett, C. L.; Zang, T. A.

    1983-01-01

    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized.

  15. Teaching cardiovascular physiology with equivalent electronic circuits in a practically oriented teaching module.

    PubMed

    Ribaric, Samo; Kordas, Marjan

    2011-06-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.

  16. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  17. The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak

    NASA Astrophysics Data System (ADS)

    Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.

    2017-10-01

    The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.

  18. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  19. Use of the Wigner representation in scattering problems

    NASA Technical Reports Server (NTRS)

    Bemler, E. A.

    1975-01-01

    The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.

  20. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  1. Analysis of SI models with multiple interacting populations using subpopulations.

    PubMed

    Thomas, Evelyn K; Gurski, Katharine F; Hoffman, Kathleen A

    2015-02-01

    Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures the interactions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.

  2. Statistical Extremes of Turbulence and a Cascade Generalisation of Euler's Gyroscope Equation

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Scherzer, Daniel

    2016-04-01

    Turbulence refers to a rather well defined hydrodynamical phenomenon uncovered by Reynolds. Nowadays, the word turbulence is used to designate the loss of order in many different geophysical fields and the related fundamental extreme variability of environmental data over a wide range of scales. Classical statistical techniques for estimating the extremes, being largely limited to statistical distributions, do not take into account the mechanisms generating such extreme variability. An alternative approaches to nonlinear variability are based on a fundamental property of the non-linear equations: scale invariance, which means that these equations are formally invariant under given scale transforms. Its specific framework is that of multifractals. In this framework extreme variability builds up scale by scale leading to non-classical statistics. Although multifractals are increasingly understood as a basic framework for handling such variability, there is still a gap between their potential and their actual use. In this presentation we discuss how to dealt with highly theoretical problems of mathematical physics together with a wide range of geophysical applications. We use Euler's gyroscope equation as a basic element in constructing a complex deterministic system that preserves not only the scale symmetry of the Navier-Stokes equations, but some more of their symmetries. Euler's equation has been not only the object of many theoretical investigations of the gyroscope device, but also generalised enough to become the basic equation of fluid mechanics. Therefore, there is no surprise that a cascade generalisation of this equation can be used to characterise the intermittency of turbulence, to better understand the links between the multifractal exponents and the structure of a simplified, but not simplistic, version of the Navier-Stokes equations. In a given way, this approach is similar to that of Lorenz, who studied how the flap of a butterfly wing could generate a cyclone with the help of a 3D ordinary differential system. Being well supported by the extensive numerical results, the cascade generalisation of Euler's gyroscope equation opens new horizons for predictability and predictions of processes having long-range dependences.

  3. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  4. Electron Interactions with Non-Linear Polyatomic Molecules and Their Radicals

    DTIC Science & Technology

    1993-12-01

    developed which generates SCE quantities from molecular wave functions. This progress was realized in terms of some actual calculations on some molecules...section 4.A describes the basics of the Partial Differential Equation Theory; section 4.B describes the generalization to a finite element...Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations. This technical report has been reviewed and

  5. Numerical approach to optimal portfolio in a power utility regime-switching model

    NASA Astrophysics Data System (ADS)

    Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.

    2017-12-01

    We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.

  6. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    NASA Astrophysics Data System (ADS)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  7. Refraction effects of atmosphere on geodetic measurements to celestial bodies

    NASA Technical Reports Server (NTRS)

    Joshi, C. S.

    1973-01-01

    The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.

  8. Middle atmosphere project. A semi-spectral numerical model for the large-scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Holton, J. R.; Wehrbein, W.

    1979-01-01

    The complete model is a semispectral model in which the longitudinal dependence is represented by expansion in zonal harmonics while the latitude and height dependencies are represented by a finite difference grid. The model is based on the primitive equations in the log pressure coordinate system. The lower boundary of the model domain is set at the 100 mb level (i.e., near the tropopause) and the effects of tropospheric forcing are included in the lower boundary condition. The upper boundary is at approximately 96 km, and the latitudinal extent is either global or hemispheric. The basic differential equations and boundary conditions are outlined. The finite difference equations are described. The initial conditions are discussed and a sample calculation is presented. The FORTRAN code is given in the appendix.

  9. The Jeffcott equations in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1987-01-01

    The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.

  10. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  11. Mathematical model for HIV spreads control program with ART treatment

    NASA Astrophysics Data System (ADS)

    Maimunah; Aldila, Dipo

    2018-03-01

    In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.

  12. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2006-10-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  13. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  14. [Thermodynamic analysis of water adsorption and desorption process of Chinese herbal decoction pieces].

    PubMed

    Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan

    2016-09-01

    Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.

  15. Fundamentals of continuum mechanics – classical approaches and new trends

    NASA Astrophysics Data System (ADS)

    Altenbach, H.

    2018-04-01

    Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

  16. Dichotomies for generalized ordinary differential equations and applications

    NASA Astrophysics Data System (ADS)

    Bonotto, E. M.; Federson, M.; Santos, F. L.

    2018-03-01

    In this work we establish the theory of dichotomies for generalized ordinary differential equations, introducing the concepts of dichotomies for these equations, investigating their properties and proposing new results. We establish conditions for the existence of exponential dichotomies and bounded solutions. Using the correspondences between generalized ordinary differential equations and other equations, we translate our results to measure differential equations and impulsive differential equations. The fact that we work in the framework of generalized ordinary differential equations allows us to manage functions with many discontinuities and of unbounded variation.

  17. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

    NASA Astrophysics Data System (ADS)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-03-01

    In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.

  18. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  19. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  20. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  1. Effect of the Environment and Environmental Uncertainty on Ship Routes

    DTIC Science & Technology

    2012-06-01

    models consisting of basic differential equations simulating the fluid dynamic process and physics of the environment. Based on Newton’s second law of...Charles and Hazel Hall, for their unconditional love and support. They were there for me during this entire process , as they have been throughout...A simple transit across the Atlantic Ocean can easily become a rough voyage if the ship encounters high winds, which in turn will cause a high sea

  2. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  3. The explicit computation of integration algorithms and first integrals for ordinary differential equations with polynomials coefficients using trees

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Grossman, Robert

    1992-01-01

    This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.

  4. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-12-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  5. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangdong; Li, Qingze; Pan, Jianxin

    2018-06-01

    Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.

  6. Electron-pair-production cross section in the tip region of the positron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, K.K.; Sharma, D.K.

    1984-11-01

    The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less

  7. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].

    PubMed

    Murase, Kenya

    2015-01-01

    In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.

  8. State transformations and Hamiltonian structures for optimal control in discrete systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  9. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  10. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.

    PubMed

    English, L Q; Mertens, David; Abdoulkary, Saidou; Fritz, C B; Skowronski, K; Kevrekidis, P G

    2016-12-01

    We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.

  11. Study on low intensity aeration oxygenation model and optimization for shallow water

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  12. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  13. On the integration of a class of nonlinear systems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Talyshev, Aleksandr A.

    2017-11-01

    For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.

  14. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  15. The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.

    2012-02-01

    From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.

  16. Modelling the radiotherapy effect in the reaction-diffusion equation.

    PubMed

    Borasi, Giovanni; Nahum, Alan

    2016-09-01

    In recent years, the reaction-diffusion (Fisher-Kolmogorov) equation has received much attention from the oncology research community due to its ability to describe the infiltrating nature of glioblastoma multiforme and its extraordinary resistance to any type of therapy. However, in a number of previous papers in the literature on applications of this equation, the term (R) expressing the 'External Radiotherapy effect' was incorrectly derived. In this note we derive an analytical expression for this term in the correct form to be included in the reaction-diffusion equation. The R term has been derived starting from the Linear-Quadratic theory of cell killing by ionizing radiation. The correct definition of R was adopted and the basic principles of differential calculus applied. The compatibility of the R term derived here with the reaction-diffusion equation was demonstrated. Referring to a typical glioblastoma tumour, we have compared the results obtained using our expression for the R term with the 'incorrect' expression proposed by other authors. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Tong, P.

    1972-01-01

    Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.

  18. The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,

    DTIC Science & Technology

    1987-06-11

    Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1

  19. Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods

    DTIC Science & Technology

    1993-01-18

    nonlinear theory such as questions of existence of solutions and global behavior have been carried out by Antman (1976). His basic work entitled "The...Aerosp. Ens. Q017/018 16 REFERENCES Antman , S.S., "Ordinary Differential Equations of Non-Linear ElastIcity 1: Foundatious of the Theories of Non-Linearly...Elutic rods and Shells," A.R.M.A. 61 (1976), 307-351. Antman , S.S., "The Theory of Rods", Handbuch der Physik, Vol. Vla/2, Springer-Verlq, Berlin

  20. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  1. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  2. Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation.

    PubMed

    Getto, Philipp; Marciniak-Czochra, Anna

    2015-01-01

    Mathematical modeling is a powerful technique to address key questions and paradigms in a variety of complex biological systems and can provide quantitative insights into cell kinetics, fate determination and development of cell populations. The chapter is devoted to a review of modeling of the dynamics of stem cell-initiated systems using mathematical methods of ordinary differential equations. Some basic concepts and tools for cell population dynamics are summarized and presented as a gentle introduction to non-mathematicians. The models take into account different plausible mechanisms regulating homeostasis. Two mathematical frameworks are proposed reflecting, respectively, a discrete (punctuated by division events) and a continuous character of transitions between differentiation stages. Advantages and constraints of the mathematical approaches are presented on examples of models of blood systems and compared to patients data on healthy hematopoiesis.

  3. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  4. Oscillation of a class of fractional differential equations with damping term.

    PubMed

    Qin, Huizeng; Zheng, Bin

    2013-01-01

    We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.

  5. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  6. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  7. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  8. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  9. Solving Differential Equations in R: Package deSolve

    EPA Science Inventory

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  10. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  11. Self-Consistent Sources Extensions of Modified Differential-Difference KP Equation

    NASA Astrophysics Data System (ADS)

    Gegenhasi; Li, Ya-Qian; Zhang, Duo-Duo

    2018-04-01

    In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the mKP equation. It is also shown that the solution of the modified differential-difference KP equation is related to the solution of the differential-difference KP equation through a Miura transformation. We first present the Grammian solution to the modified differential-difference KP equation, and then produce a coupled modified differential-difference KP system by applying the source generation procedure. The explicit N-soliton solution of the resulting coupled modified differential-difference system is expressed in compact forms by using the Grammian determinant and Casorati determinant. We also construct and solve another form of the self-consistent sources extension of the modified differential-difference KP equation, which constitutes a Bäcklund transformation for the differential-difference KP equation with self-consistent sources. Supported by the National Natural Science Foundation of China under Grant Nos. 11601247 and 11605096, the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant Nos. 2016MS0115 and 2015MS0116 and the Innovation Fund Programme of Inner Mongolia University No. 20161115

  12. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  13. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  14. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  15. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    PubMed

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  16. The existence of solutions of q-difference-differential equations.

    PubMed

    Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan

    2016-01-01

    By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).

  17. Asymptotic modeling of flows of a mixture of two monoatomic gases in a coplanar microchannel

    NASA Astrophysics Data System (ADS)

    Gatignol, Renée; Croizet, Cédric

    2016-11-01

    Gas mixtures are present in a number of microsystems, such as heat exchangers, propulsion systems, and so on. This paper aims to describe some basic physical phenomena of flows of a mixture of two monoatomic gases in a coplanar microchannel. Gas flows are described by the Navier-Stokes-Fourier equations with coupling terms, and with first order boundary conditions for the velocities and the temperatures on the microchannel walls. With the small parameter equal to the ratio of the transverse and longitudinal lengths, an asymptotic model was presented at the 29th Symposium on Rarefied Gas Dynamics. It corresponds to a low Mach number and a low to moderate Knudsen number. First-order differential equations for mass, momentum and energy have been written. For each species, the pressure depends only on the longitudinal variable and the temperature is equal to the wall temperature (the two walls have the same temperature). Both pressures are solutions of ordinary differential equations. Results are given on the longitudinal profile of both pressures and on the longitudinal velocities, for different binary mixtures, and for the cases of isothermal and thermal regimes. Asymptotic solutions are compared to DSMC simulations in the same configuration: they are roughly in agreement.

  18. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  19. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  20. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  1. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  2. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  3. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  4. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  5. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1987-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  6. A Generalized Model for Transport of Contaminants in Soil by Electric Fields

    PubMed Central

    Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884

  7. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  8. Darboux transformation and solitons for an integrable nonautonomous nonlinear integro-differential Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Yong, Xuelin; Fan, Yajing; Huang, Yehui; Ma, Wen-Xiu; Tian, Jing

    2017-10-01

    By modifying the scheme for an isospectral problem, the non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy is constructed via allowing the time varying spectrum. In this paper, we consider an integrable nonautonomous nonlinear integro-differential Schrödinger equation discussed before in “Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation” [Y. J. Zhang, D. Zhao and H. G. Luo, Ann. Phys. 350 (2014) 112]. We first analyze the integrability conditions and identify the model. Second, we modify the existing Darboux transformation (DT) for such a non-isospectral problem. Third, the nonautonomous soliton solutions are obtained via the resulting DT and basic properties of these solutions in the inhomogeneous media are discussed graphically to illustrate the influences of the variable coefficients. In the process, a technique by selecting appropriate spectral parameters instead of the variable inhomogeneities is employed to realize a different type of one-soliton management. Several novel optical solitons are constructed and their features are shown by some specific figures. In addition, four kinds of the special localized two-soliton solutions are obtained. The solitonic excitations localized both in space and time, which exhibit the feature of the so-called rogue waves but with a zero background, are discussed.

  9. A Tutorial Review on Fractal Spacetime and Fractional Calculus

    NASA Astrophysics Data System (ADS)

    He, Ji-Huan

    2014-11-01

    This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

  10. Minimizing Secular J2 Perturbation Effects on Satellite Formations

    DTIC Science & Technology

    2008-03-01

    linear set of differential equations describing the relative motion was established by Hill as well as Clohessy and Wiltshire , with a slightly... Wiltshire (CW) equations, and Hill- Clohessy - Wiltshire (HCW) equations. In the simplest form these differential equations can be expressed as: 2 2 2 3 2...different orientation. Because these equations are much alike, the differential equations established are referred to as Hill’s equations, Clohessy

  11. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  12. Dynamic characteristics of a variable-mass flexible missile

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1970-01-01

    The general motion of a variable mass flexible missile with internal flow and aerodynamic forces is considered. The resulting formulation comprises six ordinary differential equations for rigid body motion and three partial differential equations for elastic motion. The simultaneous differential equations are nonlinear and possess time-dependent coefficients. The differential equations are solved by a semi-analytical method leading to a set of purely ordinary differential equations which are then solved numerically. A computer program was developed for the numerical solution and results are presented for a given set of initial conditions.

  13. Peridynamic Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less

  14. Derivation and application of the reciprocity relations for radiative transfer with internal illumination

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.

    1975-01-01

    A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.

  15. Differential Equations Course Module for the Superior Student - Curriculum Development

    DTIC Science & Technology

    1987-04-01

    13,14 25 Numerical 39 Explore 12 15 26 Project Lab 40 40 13 18 27 Explore 41 41 14 17 28 29 42 42 Table 3. Corresponding Lessons From Basic Math 245...for Math 245". USAFA/DFMS Letter, June 1986. Other Sources 12 . Cass, John R., MaJ, USAF. Assistant Professor of Mathematical Sciences, Department of...39 Exploration Work: 40 4.6 Convolution Integral Work: 1, 3, 12 41 GRADED REVIEW III REVIEW 42 Review/Critique 25 -’." .. ~ MATH 245A HANDOUT FALL

  16. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    PubMed

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  17. Kinetics of Heterogeneous Chemical Reactions: A Theoretical Model for the Accumulation of Pesticides in Soil

    PubMed Central

    Lin, S. H.; Sahai, R.; Eyring, H.

    1971-01-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method. PMID:5279519

  18. Automatic Generation of Taylor Series in Pascal-SC: Basic Operations and Applications to Ordinary Differential Equations.

    DTIC Science & Technology

    1983-03-01

    facilities built into the language compiler itself can be used to generate _imanchAe-C-d, for the evaluatiomn la ’ fficients.) Examples of such languages...Dy mtt ss. I I I I I I I I I,ase.TC11) - 0 1 I =- M 3 (SM) By Mse rede a• I RA IQ BZ yrcrec Table 4.1. Resolution of Cases for e. Consider a series...von Gudenberg. Gesmte Arithmetik des PASCAL-SC Rechners: Benutzerhandbuch. Institute for Applied Mathematics, University of Karlsruhe, 1981. -33- 4

  19. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  20. A Discrete Probability Function Method for the Equation of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the PDF of intensities leaving desired radiation paths including turbulence-radiation interactions without the use of computer intensive stochastic methods. The DPF method has a distinct advantage over conventional PDF methods since the creation of a partial differential equation from the equation of transfer is avoided. Further, convergence of all moments of intensity is guaranteed at the basic level of simulation unlike the stochastic method where the number of realizations for convergence of higher order moments increases rapidly. The DPF method is described for a representative path with approximately integral-length scale-sized spatial discretization. The results show good agreement with measurements in a propylene/air flame except for the effects of intermittency resulting from highly correlated realizations. The method can be extended to the treatment of spatial correlations as described in the Appendix. However, information regarding spatial correlations in turbulent flames is needed prior to the execution of this extension.

  1. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  2. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  3. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Derivation of kinetic equations from non-Wiener stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2013-12-01

    Kinetic differential-difference equations containing terms with fractional derivatives and describing α -stable Levy processes with 0 < α < 1 have been derived in a unified manner in terms of one-dimensional stochastic differential equations controlled merely by the Poisson processes.

  5. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.

  6. Analytical solution of the time-dependent Bloch NMR flow equations: a translational mechanical analysis

    NASA Astrophysics Data System (ADS)

    Awojoyogbe, O. B.

    2004-08-01

    Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete motion of the system consists of two parts. The first part describes the motion of the transverse magnetization My in the absence of RF B( t) field. The second part of the motion described by the particular integral of the derived differential equation does not decay with time but continues its periodic behavior indefinitely. The complete motion of the NMR flow system is then quantitatively and qualitatively described.

  7. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  8. Modular Expression Language for Ordinary Differential Equation Editing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Robert C.

    MELODEEis a system for describing systems of initial value problem ordinary differential equations, and a compiler for the language that produces optimized code to integrate the differential equations. Features include rational polynomial approximation for expensive functions and automatic differentiation for symbolic jacobians

  9. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  10. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).

    PubMed

    Murase, Kenya

    2016-01-01

    In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.

  11. On implicit abstract neutral nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  12. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  13. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    ERIC Educational Resources Information Center

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  14. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  15. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1994-01-01

    The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.

  16. A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1988-01-01

    The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.

  17. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  18. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  19. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  20. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    NASA Astrophysics Data System (ADS)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  1. Photochemistry of Pluto's Atmosphere

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.

    1999-01-01

    This work include studies of two problems: (1) Modeling thermal balance, structure. and escape processes in Pluto's upper atmosphere. This study has been completed in full. A new method, of analytic solution for the equation of hydrodynamic flow from in atmosphere been developed. It was found that the ultraviolet absorption by methane which was previously ignored is even more important in Pluto's thermal balance than the extreme ultraviolet absorption by nitrogen. Two basic models of the lower atmosphere have been suggested, with a tropopause and a planetary surface at the bottom of the stellar occultation lightcurve, respectively, Vertical profiles, of temperature, density, gas velocity, and the CH4 mixing ratio have been calculated for these two models at low, mean, and high solar activity (six models). We prove that Pluto' " s atmosphere is restricted to 3060-4500 km, which makes possible a close flyby of future spacecraft. Implication for Pluto's evolution have also been discussed. and (2) Modeling of Pluto's photochemistry. Based on the results of (1), we have made some changes in the basic continuity equation and in the boundary conditions which reflect a unique can of hydrodynamic escape and therefore have not been used in modeling of other planetary atmospheres. We model photochemistry of 44 neutral and 23 ion species. This work required solution of a set of 67 second-order nonlinear ordinary differential equations. Two models have been developed. Each model consists of the vertical profiles for 67 species, their escape and precipitation rates. These models predict the chemical structure and basic chemical processes in the current atmosphere and possible implication of these processes for evolution. This study has also been completed in full.

  2. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  3. Chaotic attractors in tumor growth and decay: a differential equation model.

    PubMed

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  4. Analytical Solutions of the Gravitational Field Equations in de Sitter and Anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Da Rocha, R.; Capelas Oliveira, E.

    2009-01-01

    The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of generalized Laguerre polynomials and hypergeometric confluent functions.

  5. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    PubMed

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  6. A new approach to Catalan numbers using differential equations

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Kim, T.

    2017-10-01

    In this paper, we introduce two differential equations arising from the generating function of the Catalan numbers which are `inverses' to each other in a certain sense. From these differential equations, we obtain some new and explicit identities for Catalan and higher-order Catalan numbers. In addition, by other means than differential equations, we also derive some interesting identities involving Catalan numbers which are of arithmetic and combinatorial nature.

  7. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  8. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    ERIC Educational Resources Information Center

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  9. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    NASA Astrophysics Data System (ADS)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  10. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals

    NASA Astrophysics Data System (ADS)

    Lesiuk, Michał; Moszynski, Robert

    2014-12-01

    In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.

  11. Composing Models of Geographic Physical Processes

    NASA Astrophysics Data System (ADS)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  12. Thin-film Faraday patterns in three dimensions

    NASA Astrophysics Data System (ADS)

    Richter, Sebastian; Bestehorn, Michael

    2017-04-01

    We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.

  13. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  14. From differential to difference equations for first order ODEs

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.

  15. Nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis ismore » on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.« less

  16. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning.

    PubMed

    Rosenberg, Hannah; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick; McDonald, Skye

    2015-07-01

    Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative emotions that is vulnerable to brain injury. However, studies typically do not equate for differential difficulty between emotions. We aimed to examine whether emotion recognition deficits in people with TBI were specific to negative emotions, while equating task difficulty, and to determine whether perception deficits might be accounted for by other cognitive processes. Twenty-seven people with TBI and 28 matched control participants identified 6 basic emotions at 2 levels of intensity (a) the conventional 100% intensity and (b) "equated intensity"-that is, an intensity that yielded comparable accuracy rates across emotions in controls. (a) At 100% intensity, the TBI group was impaired in recognizing anger, fear, and disgust but not happiness, surprise, or sadness and performed worse on negative than positive emotions. (b) At equated intensity, the TBI group was poorer than controls overall but not differentially poorer in recognizing negative emotions. Although processing speed and nonverbal reasoning were associated with emotion accuracy, injury severity by itself was a unique predictor. When task difficulty is taken into account, individuals with TBI show impairment in recognizing all facial emotions. There was no evidence for a specific impairment for negative emotions or any particular emotion. Impairment was accounted for by injury severity rather than being a secondary effect of reduced neuropsychological functioning. (c) 2015 APA, all rights reserved).

  17. Learning climate and feedback as predictors of dental students' self-determined motivation: The mediating role of basic psychological needs satisfaction.

    PubMed

    Orsini, C; Binnie, V; Wilson, S; Villegas, M J

    2018-05-01

    The aim of this study was to test the mediating role of the satisfaction of dental students' basic psychological needs of autonomy, competence and relatedness on the association between learning climate, feedback and student motivation. The latter was based on the self-determination theory's concepts of differentiation of autonomous motivation, controlled motivation and amotivation. A cross-sectional correlational study was conducted where 924 students completed self-reported questionnaires measuring motivation, perception of the learning climate, feedback and basic psychological needs satisfaction. Descriptive statistics, Cronbach's alpha scores and bivariate correlations were computed. Mediation of basic needs on each predictor-outcome association was tested based on a series of regression analyses. Finally, all variables were integrated into one structural equation model, controlling for the effects of age, gender and year of study. Cronbach's alpha scores were acceptable (.655 to .905). Correlation analyses showed positive and significant associations between both an autonomy-supportive learning climate and the quantity and quality of feedback received, and students' autonomous motivation, which decreased and became negative when correlated with controlled motivation and amotivation, respectively. Regression analyses revealed that these associations were indirect and mediated by how these predictors satisfied students' basic psychological needs. These results were corroborated by the structural equation analysis, in which data fit the model well and regression paths were in the expected direction. An autonomy-supportive learning climate and the quantity and quality of feedback were positive predictors of students' autonomous motivation and negative predictors of amotivation. However, this was an indirect association mediated by the satisfaction of students' basic psychological needs. Consequently, supporting students' needs of autonomy, competence and relatedness might lead to optimal types of motivation, which has an important influence on dental education. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Differential equations driven by rough paths with jumps

    NASA Astrophysics Data System (ADS)

    Friz, Peter K.; Zhang, Huilin

    2018-05-01

    We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.

  19. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  20. On the hierarchy of partially invariant submodels of differential equations

    NASA Astrophysics Data System (ADS)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  1. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  2. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  3. On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order

    NASA Astrophysics Data System (ADS)

    Tu, Jin; Yi, Cai-Feng

    2008-04-01

    In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].

  4. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  5. Weighted cubic and biharmonic splines

    NASA Astrophysics Data System (ADS)

    Kvasov, Boris; Kim, Tae-Wan

    2017-01-01

    In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

  6. Benefits of detailed models of muscle activation and mechanics

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.

  7. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  8. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.

    PubMed

    Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E

    2007-02-15

    Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.

  9. Predicting seizure by modeling synaptic plasticity based on EEG signals - a case study of inherited epilepsy

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Su, Jianzhong; Wang, Qingyun; Liu, Yueming; Good, Levi; Pascual, Juan M.

    2018-03-01

    This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited seizures through a differential equation model. First, driven by a set of clinical inherited electroencephalogram data recorded from a patient with diagnosed Glucose Transporter Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. The model was reduced in complexity after considering and removing redundancy of each EEG channel. Then we verified that the proposed model produces qualitatively relevant behavior which matches the basic experimental observations of inherited seizure, including synchronization index and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling process was verified. Further, through varying the threshold condition and excitation strength of synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results suggest that synaptic plasticity has great effect on the duration of seizure activities, which support the plausibility of therapeutic interventions for seizure control.

  10. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  11. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  12. Periodicity and positivity of a class of fractional differential equations.

    PubMed

    Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim

    2016-01-01

    Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.

  13. Stochastic Evolution Equations Driven by Fractional Noises

    DTIC Science & Technology

    2016-11-28

    rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian

  14. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  15. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  16. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  17. Outcomes of a service teaching module on ODEs for physics students

    NASA Astrophysics Data System (ADS)

    Hyland, Diarmaid; van Kampen, Paul; Nolan, Brien C.

    2018-07-01

    This paper reports on the first part of a multiphase research project that seeks to identify and address the difficulties encountered by physics students when studying differential equations. Differential equations are used extensively by undergraduate physics students, particularly in the advanced modules of their degree. It is, therefore, necessary that students develop conceptual understanding of differential equations in addition to procedural skills. We have investigated the difficulties encountered by third-year students at Dublin City University in an introductory differential equations module. We developed a survey to identify these difficulties and administered it to students who had recently completed the module. We found that students' mathematical ability in relation to procedural competence is an issue in their study of differential equations, but not as severe an issue as their conceptual understanding. Mathematical competence alone is insufficient if we expect our students to be able to recognize the need for differential equations in a physical context and to be able to set up, solve and interpret the solutions of such equations. We discuss the implications of these results for the next stages of the research project.

  18. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  19. The method of Ritz applied to the equation of Hamilton. [for pendulum systems

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1976-01-01

    Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.

  20. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Demina, Maria V.; Kudryashov, Nikolay A.

    2011-03-01

    Meromorphic solutions of autonomous nonlinear ordinary differential equations are studied. An algorithm for constructing meromorphic solutions in explicit form is presented. General expressions for meromorphic solutions (including rational, periodic, elliptic) are found for a wide class of autonomous nonlinear ordinary differential equations.

  1. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback

    NASA Astrophysics Data System (ADS)

    Razgulin, A. V.; Sazonova, S. V.

    2017-09-01

    A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.

  2. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  3. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  4. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  5. Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching.

    PubMed

    Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S

    2018-06-01

    A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

  6. On the systematic approach to the classification of differential equations by group theoretical methods

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Dimas, S.; Leach, P. G. L.; Tsoubelis, D.

    2009-08-01

    Complete symmetry groups enable one to characterise fully a given differential equation. By considering the reversal of an approach based upon complete symmetry groups we construct new classes of differential equations which have the equations of Bateman, Monge-Ampère and Born-Infeld as special cases. We develop a symbolic algorithm to decrease the complexity of the calculations involved.

  7. Solving Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  8. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  9. A representation of solution of stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Tae; Jeon, Jong Woo

    2006-03-01

    We prove that the logarithm of the formal power series, obtained from a stochastic differential equation, is an element in the closure of the Lie algebra generated by vector fields being coefficients of equations. By using this result, we obtain a representation of the solution of stochastic differential equations in terms of Lie brackets and iterated Stratonovich integrals in the algebra of formal power series.

  10. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  11. Generalized Lie symmetry approach for fractional order systems of differential equations. III

    NASA Astrophysics Data System (ADS)

    Singla, Komal; Gupta, R. K.

    2017-06-01

    The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.

  12. Structure of Lie point and variational symmetry algebras for a class of odes

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2018-04-01

    It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.

  13. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  14. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  15. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  16. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  17. Ordinary differential equation for local accumulation time.

    PubMed

    Berezhkovskii, Alexander M

    2011-08-21

    Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

  18. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    PubMed

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  19. General existence principles for Stieltjes differential equations with applications to mathematical biology

    NASA Astrophysics Data System (ADS)

    López Pouso, Rodrigo; Márquez Albés, Ignacio

    2018-04-01

    Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.

  20. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl

    NASA Astrophysics Data System (ADS)

    Frewer, M.; Oberlack, M.; Guenther, S.

    2007-08-01

    We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.

  1. Electrowetting-actuated zoom lens with spherical-interface liquid lenses.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhuang, Songlin

    2008-11-01

    The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  2. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity

    PubMed Central

    Mallik, Sadek Hossain; Kanoria, M.

    2014-01-01

    A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210

  3. A Study of the Relation Between Crop Growth and Spectra Reflectance Parameters

    NASA Technical Reports Server (NTRS)

    Badhwar, G.

    1984-01-01

    A differential equation describing the temporal behavior of greenness, G(t), with time was developed. The basic equation, dG(t)/dt=k(t)(1-G/G sub m) where G sub m is the saturation value of greenness at time, t sub p. It demonstrated that k(t) is linearly proportional to the rate of change of leaf area index. It was also demonstrated that G sub m, t sub p and profile width, are the key to vegetation identification and that the inflection points of the profile are related to the ontogenic state of the plant. These profile features were shown to hold not only throughout the United States corn/soybean growing area, but for the first time in Argentina. A mathematical technique that maximizes the sensitivity of spectral transformation to Leaf Area Index and simultaneously minimizes the sensitivity to all other variables was formulated. Initial results on corn and wheat were obtained.

  4. Analysis of the irreversible process of proton transport in the purple membrane of Halobacterium halobium.

    PubMed

    Hong, T; Manqi, T

    1980-04-01

    The proton transport across biological membrane, accompanied by energy transformation, is closely related with many basic processes involved in the maintenance of life. Active researches are carried out in this field, but so far we have not known a complete calculation. This paper presents a model of an open and closed photon-controlled ion pore with a quantitative analysis of the irreversible process of the proton transport across the purple membrane. Upon absorbing photon by the purple membrane, the deprotonation of the Schiff base causes the ion pore to open, but it will close when it returns to bR570. A set of nonlinear differential equations describing this model is given. The stability of the equations is discussed. The results of the numerical calculation for steady state are found in good agreement with the experimental data of Bakker.

  5. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  6. MACSYMA's symbolic ordinary differential equation solver

    NASA Technical Reports Server (NTRS)

    Golden, J. P.

    1977-01-01

    The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.

  7. Undergraduate Students' Mental Operations in Systems of Differential Equations

    ERIC Educational Resources Information Center

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  8. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  9. Variable-mesh method of solving differential equations

    NASA Technical Reports Server (NTRS)

    Van Wyk, R.

    1969-01-01

    Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.

  10. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

    NASA Technical Reports Server (NTRS)

    Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.

  11. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  12. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  13. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  14. Teaching Computational Geophysics Classes using Active Learning Techniques

    NASA Astrophysics Data System (ADS)

    Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.

    2016-12-01

    We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.

  15. Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Volkmer, Hans

    2008-04-01

    Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.

  16. On the Solution of Elliptic Partial Differential Equations on Regions with Corners

    DTIC Science & Technology

    2015-07-09

    In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on

  17. State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities.

    PubMed

    Korayem, M H; Nekoo, S R

    2015-07-01

    This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  19. Sparse dynamics for partial differential equations

    PubMed Central

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley

    2013-01-01

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273

  20. Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar

    This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.

  1. Sparse dynamics for partial differential equations.

    PubMed

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  2. Selected topics of fluid mechanics

    USGS Publications Warehouse

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.

  3. Preventing Superinfection in Malaria Spreads with Repellent and Medical Treatment Policy

    NASA Astrophysics Data System (ADS)

    Fitri, Fanny; Aldila, Dipo

    2018-03-01

    Malaria is a kind of a vector-borne disease. That means this disease needs a vector (in this case, the anopheles mosquito) to spread. In this article, a mathematical model for malaria disease spread will be discussed. The model is constructed as a seven-dimensional of a non-linear ordinary differential equation. The interventions of treatment for infected humans and use of repellent are included in the model to see how these interventions could be considered as alternative ways to control the spread of malaria. Analysis will be made of the disease-free equilibrium point along with its local stability criteria, construction of the next generation matrix which followed with the sensitivity analysis of basic reproduction number. We found that both medical treatment and repellent intervention succeeded in reducing the basic reproduction number as the endemic indicator of the model. Finally, some numerical simulations are given to give a better interpretation of the analytical results.

  4. Lattice Boltzmann model for high-order nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  5. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    PubMed

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  6. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  7. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  8. The Topology of Symmetric Tensor Fields

    NASA Technical Reports Server (NTRS)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  9. Mathematics for Physics

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Goldbart, Paul

    2009-07-01

    Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.

  10. An Estimation Theory for Differential Equations and other Problems, with Applications.

    DTIC Science & Technology

    1981-11-01

    order differential -8- operators and M-operators, in particular, the Perron - Frobenius theory and generalizations. Convergence theory for iterative... THEORY FOR DIFFERENTIAL 0EQUATIONS AND OTHER FROBLEMS, WITH APPLICATIONS 0 ,Final Technical Report by Johann Schr6der November, 1981 EUROPEAN RESEARCH...COVERED An estimation theory for differential equations Final Report and other problrms, with app)lications A981 6. PERFORMING ORG. RN,-ORT NUMfFR 7

  11. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  12. The differential equation of an arbitrary reflecting surface

    NASA Astrophysics Data System (ADS)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  13. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  14. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.M.; Ryskin, N.M.; Won, J.H.

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/{pi} modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillatormore » shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, {approx}3.5I{sub st}, compared to typical vacuum tube oscillators (10-100I{sub st}), where I{sub st} is a start-oscillation current.« less

  15. DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Daniele, C. J.

    1975-01-01

    The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.

  16. Analysis of an age structured model for tick populations subject to seasonal effects

    NASA Astrophysics Data System (ADS)

    Liu, Kaihui; Lou, Yijun; Wu, Jianhong

    2017-08-01

    We investigate an age-structured hyperbolic equation model by allowing the birth and death functions to be density dependent and periodic in time with the consideration of seasonal effects. By studying the integral form solution of this general hyperbolic equation obtained through the method of integration along characteristics, we give a detailed proof of the uniqueness and existence of the solution in light of the contraction mapping theorem. With additional biologically natural assumptions, using the tick population growth as a motivating example, we derive an age-structured model with time-dependent periodic maturation delays, which is quite different from the existing population models with time-independent maturation delays. For this periodic differential system with seasonal delays, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the tick population tends to die out when R0 < 1 while remains persistent if R0 > 1. When there is no intra-specific competition among immature individuals due to the sufficient availability of immature tick hosts, the global stability of the positive periodic state for the whole model system of four delay differential equations can be obtained with the observation that a scalar subsystem for the adult stage size can be decoupled. The challenge for the proof of such a global stability result can be overcome by introducing a new phase space, based on which, a periodic solution semiflow can be defined which is eventually strongly monotone and strictly subhomogeneous.

  17. Sourcing for Parameter Estimation and Study of Logistic Differential Equation

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…

  18. Differential equations for loop integrals in Baikov representation

    NASA Astrophysics Data System (ADS)

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  19. Remarks on the Non-Linear Differential Equation the Second Derivative of Theta Plus A Sine Theta Equals 0.

    ERIC Educational Resources Information Center

    Fay, Temple H.; O'Neal, Elizabeth A.

    1985-01-01

    The authors draw together a variety of facts concerning a nonlinear differential equation and compare the exact solution with approximate solutions. Then they provide an expository introduction to the elliptic sine function suitable for presentation in undergraduate courses on differential equations. (MNS)

  20. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  1. Monograph - The Numerical Integration of Ordinary Differential Equations.

    ERIC Educational Resources Information Center

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  2. The Local Brewery: A Project for Use in Differential Equations Courses

    ERIC Educational Resources Information Center

    Starling, James K.; Povich, Timothy J.; Findlay, Michael

    2016-01-01

    We describe a modeling project designed for an ordinary differential equations (ODEs) course using first-order and systems of first-order differential equations to model the fermentation process in beer. The project aims to expose the students to the modeling process by creating and solving a mathematical model and effectively communicating their…

  3. An Engineering-Oriented Approach to the Introductory Differential Equations Course

    ERIC Educational Resources Information Center

    Pennell, S.; Avitabile, P.; White, J.

    2009-01-01

    The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…

  4. Dynamics of the Pin Pallet Runaway Escapement

    DTIC Science & Technology

    1978-06-01

    for Continued Work 29 References 32 I Appendixes A Kinematics of Coupled Motion 34 B Differential Equation of Coupled Motion 38 f C Moment Arms 42 D...Expressions for these quantities are derived in appendix D. The differential equations for the free motion of the pallet and the escape-wheel are...Coupled Motion (location 100) To solve the differential equation of coupled motion (see equation .B (-10) of appendix B)- the main program calls on

  5. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  6. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granita, E-mail: granitafc@gmail.com; Bahar, A.

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  7. Liouvillian propagators, Riccati equation and differential Galois theory

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo; Suazo, Erwin

    2013-11-01

    In this paper a Galoisian approach to building propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schrödinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation. As the main application of this approach we solve Ince’s differential equation through the Hamiltonian algebrization procedure and the Kovacic algorithm to find the propagator for a generalized harmonic oscillator. This propagator has applications which describe the process of degenerate parametric amplification in quantum optics and light propagation in a nonlinear anisotropic waveguide. Toy models of propagators inspired by integrable Riccati equations and integrable characteristic equations are also presented.

  8. Application of the Green's function method for 2- and 3-dimensional steady transonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.

    1984-01-01

    A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.

  9. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  10. Modelling the evaporation of a tear film over a contact lens.

    PubMed

    Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan

    2015-06-01

    A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    NASA Astrophysics Data System (ADS)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  12. Differential Equations Models to Study Quorum Sensing.

    PubMed

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  13. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  14. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheong R.

    The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less

  16. Correcting the initialization of models with fractional derivatives via history-dependent conditions

    NASA Astrophysics Data System (ADS)

    Du, Maolin; Wang, Zaihua

    2016-04-01

    Fractional differential equations are more and more used in modeling memory (history-dependent, non-local, or hereditary) phenomena. Conventional initial values of fractional differential equations are defined at a point, while recent works define initial conditions over histories. We prove that the conventional initialization of fractional differential equations with a Riemann-Liouville derivative is wrong with a simple counter-example. The initial values were assumed to be arbitrarily given for a typical fractional differential equation, but we find one of these values can only be zero. We show that fractional differential equations are of infinite dimensions, and the initial conditions, initial histories, are defined as functions over intervals. We obtain the equivalent integral equation for Caputo case. With a simple fractional model of materials, we illustrate that the recovery behavior is correct with the initial creep history, but is wrong with initial values at the starting point of the recovery. We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.

  17. Non-autonomous equations with unpredictable solutions

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2018-06-01

    To make research of chaos more amenable to investigating differential and discrete equations, we introduce the concepts of an unpredictable function and sequence. The topology of uniform convergence on compact sets is applied to define unpredictable functions [1,2]. The unpredictable sequence is defined as a specific unpredictable function on the set of integers. The definitions are convenient to be verified as solutions of differential and discrete equations. The topology is metrizable and easy for applications with integral operators. To demonstrate the effectiveness of the approach, the existence and uniqueness of the unpredictable solution for a delay differential equation are proved as well as for quasilinear discrete systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary differential equation is formulated. The results are demonstrated numerically, and an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.

  18. 1/f Noise from nonlinear stochastic differential equations.

    PubMed

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  19. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  20. Auto-Bäcklund transformations for a matrix partial differential equation

    NASA Astrophysics Data System (ADS)

    Gordoa, P. R.; Pickering, A.

    2018-07-01

    We derive auto-Bäcklund transformations, analogous to those of the matrix second Painlevé equation, for a matrix partial differential equation. We also then use these auto-Bäcklund transformations to derive matrix equations involving shifts in a discrete variable, a process analogous to the use of the auto-Bäcklund transformations of the matrix second Painlevé equation to derive a discrete matrix first Painlevé equation. The equations thus derived then include amongst other examples a semidiscrete matrix equation which can be considered to be an extension of this discrete matrix first Painlevé equation. The application of this technique to the auto-Bäcklund transformations of the scalar case of our partial differential equation has not been considered before, and so the results obtained here in this scalar case are also new. Other equations obtained here using this technique include a scalar semidiscrete equation which arises in the case of the second Painlevé equation, and which does not seem to have been thus derived previously.

  1. Long-Term Dynamics of Autonomous Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  2. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  3. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations

    NASA Astrophysics Data System (ADS)

    Huang, Ding-jiang; Ivanova, Nataliya M.

    2016-02-01

    In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.

  4. Some problems in fractal differential equations

    NASA Astrophysics Data System (ADS)

    Su, Weiyi

    2016-06-01

    Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.

  5. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  6. Factors Affecting Differential Equation Problem Solving Ability of Students at Pre-University Level: A Conceptual Model

    ERIC Educational Resources Information Center

    Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen

    2017-01-01

    In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…

  7. Nonstandard Topics for Student Presentations in Differential Equations

    ERIC Educational Resources Information Center

    LeMasurier, Michelle

    2006-01-01

    An interesting and effective way to showcase the wide variety of fields to which differential equations can be applied is to have students give short oral presentations on a specific application. These talks, which have been presented by 30-40 students per year in our differential equations classes, provide exposure to a diverse array of topics…

  8. Existence of anti-periodic (differentiable) mild solutions to semilinear differential equations with nondense domain.

    PubMed

    Liu, Jinghuai; Zhang, Litao

    2016-01-01

    In this paper, we investigate the existence of anti-periodic (or anti-periodic differentiable) mild solutions to the semilinear differential equation [Formula: see text] with nondense domain. Furthermore, an example is given to illustrate our results.

  9. Laplace and the era of differential equations

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2012-11-01

    Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.

  10. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  11. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  12. An analysis of the DuPage County Regional Office of Education physics exam

    NASA Astrophysics Data System (ADS)

    Muehsler, Hans

    In 2009, the DuPage County Regional Office of Education (ROE) tasked volunteer physics teachers with creating a basic skills physics exam reflecting what the participants valued and shared in common across curricula. Mechanics, electricity & magnetism (E&M), and wave phenomena emerged as the primary constructs. The resulting exam was intended for first-exposure physics students. The most recently completed version was psychometrically assessed for unidimensionality within the constructs using a robust WLS structural equation model and for reliability. An item analysis using a 3-PL IRT model was performed on the mechanics items and a 2-PL IRT model was performed on the E&M and waves items; a distractor analysis was also performed on all items. Lastly, differential item functioning (DIF) and differential test functioning (DTF) analyses, using the Mantel-Haenszel procedure, were performed using gender, ethnicity, year in school, ELL, physics level, and math level as groupings.

  13. Theory of biaxial graded-index optical fiber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.

    1990-01-01

    A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

  14. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  15. Understanding resistant effect of mosquito on fumigation strategy in dengue control program

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Situngkir, N.; Nareswari, K.

    2018-01-01

    A mathematical model of dengue disease transmission will be introduced in this talk with involving fumigation intervention into mosquito population. Worsening effect of uncontrolled fumigation in the form of resistance of mosquito to fumigation chemicals will also be included into the model to capture the reality in the field. Deterministic approach in a 9 dimensional of ordinary differential equation will be used. Analytical result about the existence and local stability of the equilibrium points followed with the basic reproduction number will be discussed. Some numerical result will be performed for some scenario to give a better interpretation for the analytical results.

  16. Introduction to multigrid methods

    NASA Technical Reports Server (NTRS)

    Wesseling, P.

    1995-01-01

    These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.

  17. A conservation law for virus infection kinetics in vitro.

    PubMed

    Kakizoe, Yusuke; Morita, Satoru; Nakaoka, Shinji; Takeuchi, Yasuhiro; Sato, Kei; Miura, Tomoyuki; Beauchemin, Catherine A A; Iwami, Shingo

    2015-07-07

    Conservation laws are among the most important properties of a physical system, but are not commonplace in biology. We derived a conservation law from the basic model for viral infections which consists in a small set of ordinary differential equations. We challenged the conservation law experimentally for the case of a virus infection in a cell culture. We found that the derived, conserved quantity remained almost constant throughout the infection period, implying that the derived conservation law holds in this biological system. We also suggest a potential use for the conservation law in evaluating the accuracy of experimental measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  19. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  20. The Pendulum and the Calculus.

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…

  1. W-transform for exponential stability of second order delay differential equations without damping terms.

    PubMed

    Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid

    2017-01-01

    In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

  2. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  3. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  4. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  5. Symmetries of the Gas Dynamics Equations using the Differential Form Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Baty, Roy S.

    Here, a brief review of the theory of exterior differential systems and isovector symmetry analysis methods is presented in the context of the one-dimensional inviscid compressible flow equations. These equations are formulated as an exterior differential system with equation of state (EOS) closure provided in terms of an adiabatic bulk modulus. The scaling symmetry generators—and corresponding EOS constraints—otherwise appearing in the existing literature are recovered through the application and invariance under Lie derivative dragging operations.

  6. Symmetries of the Gas Dynamics Equations using the Differential Form Method

    DOE PAGES

    Ramsey, Scott D.; Baty, Roy S.

    2017-11-21

    Here, a brief review of the theory of exterior differential systems and isovector symmetry analysis methods is presented in the context of the one-dimensional inviscid compressible flow equations. These equations are formulated as an exterior differential system with equation of state (EOS) closure provided in terms of an adiabatic bulk modulus. The scaling symmetry generators—and corresponding EOS constraints—otherwise appearing in the existing literature are recovered through the application and invariance under Lie derivative dragging operations.

  7. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  8. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  9. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    ERIC Educational Resources Information Center

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  10. Differential geometry techniques for sets of nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  11. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  12. A neuro approach to solve fuzzy Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan

    2015-10-01

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  13. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  14. A neuro approach to solve fuzzy Riccati differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  15. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    PubMed

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  16. a Non-Overlapping Discretization Method for Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Rosas-Medina, A.; Herrera, I.

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Engineering and Science, lead to a great variety of partial differential equations whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by engineering and scientific applications. The emergence of parallel computing prompted on the part of the computational-modeling community a continued and systematic effort with the purpose of harnessing it for the endeavor of solving boundary-value problems (BVPs) of partial differential equations. Very early after such an effort began, it was recognized that domain decomposition methods (DDM) were the most effective technique for applying parallel computing to the solution of partial differential equations, since such an approach drastically simplifies the coordination of the many processors that carry out the different tasks and also reduces very much the requirements of information-transmission between them. Ideally, DDMs intend producing algorithms that fulfill the DDM-paradigm; i.e., such that "the global solution is obtained by solving local problems defined separately in each subdomain of the coarse-mesh -or domain-decomposition-". Stated in a simplistic manner, the basic idea is that, when the DDM-paradigm is satisfied, full parallelization can be achieved by assigning each subdomain to a different processor. When intensive DDM research began much attention was given to overlapping DDMs, but soon after attention shifted to non-overlapping DDMs. This evolution seems natural when the DDM-paradigm is taken into account: it is easier to uncouple the local problems when the subdomains are separated. However, an important limitation of non-overlapping domain decompositions, as that concept is usually understood today, is that interface nodes are shared by two or more subdomains of the coarse-mesh and, therefore, even non-overlapping DDMs are actually overlapping when seen from the perspective of the nodes used in the discretization. In this talk we present and discuss a discretization method in which the nodes used are non-overlapping, in the sense that each one of them belongs to one and only one subdomain of the coarse-mesh.

  17. Reverse engineering of aircraft wing data using a partial differential equation surface model

    NASA Astrophysics Data System (ADS)

    Huband, Jacalyn Mann

    Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other generates a PDE surface model with spline boundary functions from an arbitrary set of grid points. Our numerical tests show that the reverse PDE surface model and the reverse PDE surface algorithms can be used for the reverse engineering of aircraft wing data.

  18. A three operator split-step method covering a larger set of non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  19. A numerical study of coarsening in the two-dimensional complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Liu, Weigang; Tauber, Uwe

    The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose-Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate the coarsening dynamics following a quench from a strongly fluctuating defect turbulence phase to a long-range ordered phase. We start from a simplified amplitude equation, solve it numerically, and then study the spatio-temporal behavior characterized by the spontaneous creation and annihilation of topological defects (spiral waves). We check our simulation results against the known dynamical phase diagram in this non-equilibrium system, tentatively analyze the coarsening kinetics following sudden quenches, and characterize the ensuing aging scaling behavior. In addition, we aim to use Voronoi triangulation to study the cellular structure in the phase turbulence and frozen states. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-09ER46613.

  20. On the origins of generalized fractional calculus

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2015-11-01

    In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.

  1. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  2. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  3. Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Rui, Wenjuan; Zhang, Xiangzhi

    2016-05-01

    This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.

  4. From the big five to the general factor of personality: a dynamic approach.

    PubMed

    Micó, Joan C; Amigó, Salvador; Caselles, Antonio

    2014-10-28

    An integrating and dynamic model of personality that allows predicting the response of the basic factors of personality, such as the Big Five Factors (B5F) or the general factor of personality (GFP) to acute doses of drug is presented in this paper. Personality has a dynamic nature, i.e., as a consequence of a stimulus, the GFP dynamics as well as each one of the B5F of personality dynamics can be explained by the same model (a system of three coupled differential equations). From this invariance hypothesis, a partial differential equation, whose solution relates the GFP with each one of the B5F, is deduced. From this dynamic approach, a co-evolution of the GFP and each one of the B5F occurs, rather than an unconnected evolution, as a consequence of the same stimulus. The hypotheses and deductions are validated through an experimental design centered on the individual, where caffeine is the considered stimulus. Thus, as much from a theoretical point of view as from an applied one, the models here proposed open a new perspective in the understanding and study of personality like a global system that interacts intimately with the environment, being a clear bet for the high level inter-disciplinary research.

  5. Solving constant-coefficient differential equations with dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Weixuan; Qu, Che; Zhang, Xiangdong

    2016-07-01

    Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.

  6. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    PubMed

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  7. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression

    PubMed Central

    Ding, A. Adam; Wu, Hulin

    2015-01-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093

  8. Modelling with Difference Equations Supported by GeoGebra: Exploring the Kepler Problem

    ERIC Educational Resources Information Center

    Kovacs, Zoltan

    2010-01-01

    The use of difference and differential equations in the modelling is a topic usually studied by advanced students in mathematics. However difference and differential equations appear in the school curriculum in many direct or hidden ways. Difference equations first enter in the curriculum when studying arithmetic sequences. Moreover Newtonian…

  9. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  10. Intuitive Understanding of Solutions of Partially Differential Equations

    ERIC Educational Resources Information Center

    Kobayashi, Y.

    2008-01-01

    This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…

  11. Analysis of backward differentiation formula for nonlinear differential-algebraic equations with 2 delays.

    PubMed

    Sun, Leping

    2016-01-01

    This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.

  12. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems.

    PubMed

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-21

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  13. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  14. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems

    NASA Astrophysics Data System (ADS)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-01

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  15. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation

    PubMed Central

    Müller, Eike H.; Scheichl, Rob; Shardlow, Tony

    2015-01-01

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075

  16. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    PubMed

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  17. Differential Equation Models for Sharp Threshold Dynamics

    DTIC Science & Technology

    2012-08-01

    dynamics, and the Lanchester model of armed conflict, where the loss of a key capability drastically changes dynamics. We derive and demonstrate a step...dynamics using differential equations. 15. SUBJECT TERMS Differential Equations, Markov Population Process, S-I-R Epidemic, Lanchester Model 16...infection, where a detection event drastically changes dynamics, and the Lanchester model of armed conflict, where the loss of a key capability

  18. A Simple Method to Find out when an Ordinary Differential Equation Is Separable

    ERIC Educational Resources Information Center

    Cid, Jose Angel

    2009-01-01

    We present an alternative method to that of Scott (D. Scott, "When is an ordinary differential equation separable?", "Amer. Math. Monthly" 92 (1985), pp. 422-423) to teach the students how to discover whether a differential equation y[prime] = f(x,y) is separable or not when the nonlinearity f(x, y) is not explicitly factorized. Our approach is…

  19. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  20. Discovery and Optimization of Low-Storage Runge-Kutta Methods

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DISCOVERY AND OPTIMIZATION OF LOW-STORAGE RUNGE-KUTTA METHODS by Matthew T. Fletcher June 2015... methods are an important family of iterative methods for approximating the solutions of ordinary differential equations (ODEs) and differential...algebraic equations (DAEs). It is common to use an RK method to discretize in time when solving time dependent partial differential equations (PDEs) with a

  1. Asymptotic analysis of the local potential approximation to the Wetterich equation

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Sarkar, Sarben

    2018-06-01

    This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D  <  2, one obtains a forward heat equation whose initial-value problem is well-posed. However, for D  >  2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D  =  1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g  >  0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.

  2. A Mathematical Model Of Dengue-Chikungunya Co-Infection In A Closed Population

    NASA Astrophysics Data System (ADS)

    Aldila, Dipo; Ria Agustin, Maya

    2018-03-01

    Dengue disease has been a major health problem in many tropical and sub-tropical countries since the early 1900s. On the other hand, according to a 2017 WHO fact sheet, Chikungunya was detected in the first outbreak in 1952 in Tanzania and has continued increasing until now in many tropical and sub-tropical countries. Both these diseases are vector-borne diseases which are spread by the same mosquito, i.e. the female Aedes aegypti. According to the WHO report, there is a great possibility that humans and mosquitos might be infected by dengue and chikungunya at the same time. Here in this article, a mathematical model approach will be used to understand the spread of dengue and chikungunya in a closed population. A model is developed as a nine-dimensional deterministic ordinary differential equation. Equilibrium points and their local stability are analyzed analytically and numerically. We find that the basic reproduction number, the endemic indicator, is given by the maximum of three different basic reproduction numbers of a complete system, i.e. basic reproduction numbers for dengue, chikungunya and for co-infection between dengue and chikungunya. We find that the basic reproduction number for the co-infection sub-system dominates other basic reproduction numbers whenever it is larger than one. Some numerical simulations are provided to confirm these analytical results.

  3. Group foliation of finite difference equations

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  4. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  5. Rogue waves and unbounded solutions of the NLSE

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2017-04-01

    Since the pioneering work of Zakharov has been generally admitted that rogue waves can be studied in the framework of the Nonlinear Schrödinger Equation (NLSE). Many researchers, Akhmediev, Peregrine, Matveev among others gave different solutions to this equation that, in some way, could be linked to rogue waves and also to its more important characteristic: its unexpectedness. Janssen (2003, 2004), Onorato (2004, 2006) and Waseda (2006) linked the coefficient of the nonlinear term of the Schrödinger equation with the Benjamin-Feir index (BFI) that, we know, is a measure of the modulational instability of the waves. From this point of view the value of this coefficient of the NLSE could be known from statistics. Thus the relationship between sea states and the mechanism of generation of rogue waves could be found out. Following the well-known Lie group theory researchers have been studying the Lie point symmetries of the NLSE: the scaling transformations, Galilean transformations and phase transformations. Basically these transformations turn the NLSE into a nonlinear ordinary differential equation called Duffing equation (also called eikonal equation). There are different ways to do this, but in most of them the independent variable that could be seen as a space variable is a kind of moving frame with the time incorporated in this way. The main aim of this work is to classify solutions of the Duffing equation (periodic and nonperiodic waves and also bounded and unbounded waves) bearing in mind that the coefficient of the nonlinear term in the NLSE is left unaltered in the process of the transformation.

  6. Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Leksin, Vladimir P.

    2011-02-01

    This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.

  7. Razumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.

    PubMed

    Wang, Qing; Zhu, Quanxin

    2013-01-01

    This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.

  8. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.

    PubMed

    Kleinert, H; Zatloukal, V

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  9. A New Factorisation of a General Second Order Differential Equation

    ERIC Educational Resources Information Center

    Clegg, Janet

    2006-01-01

    A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…

  10. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  11. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  12. Dynamically orthogonal field equations for stochastic flows and particle dynamics

    DTIC Science & Technology

    2011-02-01

    where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new

  13. Non-invertible transformations of differential-difference equations

    NASA Astrophysics Data System (ADS)

    Garifullin, R. N.; Yamilov, R. I.; Levi, D.

    2016-09-01

    We discuss aspects of the theory of non-invertible transformations of differential-difference equations and, in particular, the notion of Miura type transformation. We introduce the concept of non-Miura type linearizable transformation and we present techniques that allow one to construct simple linearizable transformations and might help one to solve classification problems. This theory is illustrated by the example of a new integrable differential-difference equation depending on five lattice points, interesting from the viewpoint of the non-invertible transformation, which relate it to an Itoh-Narita-Bogoyavlensky equation.

  14. Discrete virus infection model of hepatitis B virus.

    PubMed

    Zhang, Pengfei; Min, Lequan; Pian, Jianwei

    2015-01-01

    In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.

  15. Dynamic characteristics of a two-stage variable-mass flexible missile with internal flow

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1972-01-01

    A general formulation of the dynamical problems associated with powered flight of a two stage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, 3n ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation.

  16. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  17. A new numerical approximation of the fractal ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  18. Turbulent fluid motion 3: Basic continuum equations

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.

  19. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  20. A one-step method for modelling longitudinal data with differential equations.

    PubMed

    Hu, Yueqin; Treinen, Raymond

    2018-04-06

    Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.

  1. The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph W.

    2001-04-01

    The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations Joseph W. Rudmin (Physics Dept, James Madison University) A new system of solving systems of differential equations will be presented, which has been developed by J. Edgar Parker and James Sochacki, of the James Madison University Mathematics Department. The method produces MacClaurin Series solutions to systems of differential equations, with the coefficients in either algebraic or numerical form. The method yields high-degree solutions: 20th degree is easily obtainable. It is conceptually simple, fast, and extremely general. It has been applied to over a hundred systems of differential equations, some of which were previously unsolved, and has yet to fail to solve any system for which the MacClaurin series converges. The method is non-recursive: each coefficient in the series is calculated just once, in closed form, and its accuracy is limited only by the digital accuracy of the computer. Although the original differential equations may include any mathematical functions, the computational method includes ONLY the operations of addition, subtraction, and multiplication. Furthermore, it is perfectly suited to parallel -processing computer languages. Those who learn this system will never use Runge-Kutta or predictor-corrector methods again. Examples will be presented, including the classical many-body problem.

  2. Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.

    2018-03-01

    In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.

  3. Evaluation of Uncertainty in Runoff Analysis Incorporating Theory of Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshimi, Kazuhiro; Wang, Chao-Wen; Yamada, Tadashi

    2015-04-01

    The aim of this paper is to provide a theoretical framework of uncertainty estimate on rainfall-runoff analysis based on theory of stochastic process. SDE (stochastic differential equation) based on this theory has been widely used in the field of mathematical finance due to predict stock price movement. Meanwhile, some researchers in the field of civil engineering have investigated by using this knowledge about SDE (stochastic differential equation) (e.g. Kurino et.al, 1999; Higashino and Kanda, 2001). However, there have been no studies about evaluation of uncertainty in runoff phenomenon based on comparisons between SDE (stochastic differential equation) and Fokker-Planck equation. The Fokker-Planck equation is a partial differential equation that describes the temporal variation of PDF (probability density function), and there is evidence to suggest that SDEs and Fokker-Planck equations are equivalent mathematically. In this paper, therefore, the uncertainty of discharge on the uncertainty of rainfall is explained theoretically and mathematically by introduction of theory of stochastic process. The lumped rainfall-runoff model is represented by SDE (stochastic differential equation) due to describe it as difference formula, because the temporal variation of rainfall is expressed by its average plus deviation, which is approximated by Gaussian distribution. This is attributed to the observed rainfall by rain-gauge station and radar rain-gauge system. As a result, this paper has shown that it is possible to evaluate the uncertainty of discharge by using the relationship between SDE (stochastic differential equation) and Fokker-Planck equation. Moreover, the results of this study show that the uncertainty of discharge increases as rainfall intensity rises and non-linearity about resistance grows strong. These results are clarified by PDFs (probability density function) that satisfy Fokker-Planck equation about discharge. It means the reasonable discharge can be estimated based on the theory of stochastic processes, and it can be applied to the probabilistic risk of flood management.

  4. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.

    2018-06-01

    In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.

  5. Symmetry classification of time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Naeem, I.; Khan, M. D.

    2017-01-01

    In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.

  6. The numerical solution of ordinary differential equations by the Taylor series method

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Sullivan, E.

    1973-01-01

    A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.

  7. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    PubMed

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  8. Laplace and Z Transform Solutions of Differential and Difference Equations With the HP-41C.

    ERIC Educational Resources Information Center

    Harden, Richard C.; Simons, Fred O., Jr.

    1983-01-01

    A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)

  9. Local algebraic analysis of differential systems

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2015-06-01

    We propose a new approach for studying the compatibility of partial differential equations. This approach is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As applications, we consider systems including the wave equation and the sine-Gordon equation.

  10. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  11. Concatenons as the solutions for non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Volkov, A. K.

    2017-07-01

    New class of solutions for nonlinear partial differential equations is introduced. We call them the concaten solutions. As an example we consider equations for the description of wave processes in the Fermi-Pasta-Ulam mass chain and construct the concatenon solutions for these equation. Stability of the concatenon-type solutions is investigated numerically. Interaction between the concatenon and solitons is discussed.

  12. Program for solution of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Sloate, H.

    1973-01-01

    A program for the solution of linear and nonlinear first order ordinary differential equations is described and user instructions are included. The program contains a new integration algorithm for the solution of initial value problems which is particularly efficient for the solution of differential equations with a wide range of eigenvalues. The program in its present form handles up to ten state variables, but expansion to handle up to fifty state variables is being investigated.

  13. q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2010-12-01

    This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.

  14. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    PubMed

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  15. Modelica buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  16. Nonlinear water waves generated by impulsive motion of submerged obstacle

    NASA Astrophysics Data System (ADS)

    Makarenko, N.; Kostikov, V.

    2012-04-01

    The fully nonlinear problem on generation of unsteady water waves by impulsively moving obstacle is studied analytically. The method involves the reduction of basic Euler equations to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Exact model equations are derived in explicit form when the isolated obstacle is presented by totally submerged circular- or elliptic cylinder. Small-time asymptotic solution is constructed for the cylinder which starts moving with constant acceleration from rest. It is demonstrated that the leading-order solution terms describe several wave regimes such as the formation of non-stationary splash jets by vertical rising or vertical submersion of the obstacle, as well as the generation of diverging waves by horizontal- and combined motion of the obstacle under free surface. This work was supported by RFBR (grant No 10-01-00447) and by Research Program of the Russian Government (grant No 11.G34.31.0035).

  17. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  18. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  19. Modelica buildings library

    DOE PAGES

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; ...

    2013-03-13

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  20. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags

    NASA Astrophysics Data System (ADS)

    Karmakar, R.; Sur, A.; Kanoria, M.

    2016-07-01

    The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord-Shulman and dual-phase-lag models.

  1. On the application of ENO scheme with subcell resolution to conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung

    1991-01-01

    Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.

  2. Onset of Turbulence in a Pipe

    NASA Astrophysics Data System (ADS)

    Böberg, L.; Brösa, U.

    1988-09-01

    Turbulence in a pipe is derived directly from the Navier-Stokes equation. Analysis of numerical simulations revealed that small disturbances called 'mothers' induce other much stronger disturbances called 'daughters'. Daughters determine the look of turbulence, while mothers control the transfer of energy from the basic flow to the turbulent motion. From a practical point of view, ruling mothers means ruling turbulence. For theory, the mother-daughter process represents a mechanism permitting chaotic motion in a linearly stable system. The mechanism relies on a property of the linearized problem according to which the eigenfunctions become more and more collinear as the Reynolds number increases. The mathematical methods are described, comparisons with experiments are made, mothers and daughters are analyzed, also graphically, with full particulars, and the systematic construction of small systems of differential equations to mimic the non-linear process by means as simple as possible is explained. We suggest that more then 20 but less than 180 essential degrees of freedom take part in the onset of turbulence.

  3. Three-dimensional baroclinic instability of a Hadley cell for small Richardson number

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Fowlis, W. W.

    1985-01-01

    A three-dimensional, linear stability analysis of a baroclinic flow for Richardson number, Ri, of order unity is presented. The model considered is a thin horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the complete set of governing, nonlinear equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in a closed form. The stability analysis is also based on the complete set of equations; and perturbation possessing zonal, meridional, and vertical structures were considered. Numerical methods were developed for the stability problem which results in a stiff, eighth-order, ordinary differential eigenvalue problem. The previous work on three-dimensional baroclinic instability for small Ri was extended to a more realistic model involving the Prandtl number, sigma, and the Ekman number, E, and to finite growth rates and a wider range of the zonal wavenumber.

  4. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE PAGES

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...

    2017-12-20

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  5. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  6. Modeling animal movements using stochastic differential equations

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  7. Noncommutative differential geometry related to the Young-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurevich, D.; Radul, A.; Rubtsov, V.

    1995-11-10

    An analogue of the differential calculus associated with a unitary solution of the quantum Young-Baxter equation is constructed. An example of a ring sheaf Z`s considered in which local solutions of the Young-Baxter quantum equation are defined but there is no global section.

  8. Austerity and geometric structure of field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheyfets, A.

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for themore » source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories.« less

  9. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  10. Relationship Between Integro-Differential Schrodinger Equation with a Symmetric Kernel and Position-Dependent Effective Mass

    NASA Astrophysics Data System (ADS)

    Khosropour, B.; Moayedi, S. K.; Sabzali, R.

    2018-07-01

    The solution of integro-differential Schrodinger equation (IDSE) which was introduced by physicists has a great role in the fields of science. The purpose of this paper comes in two parts. First, studying the relationship between integro-differential Schrodinger equation with a symmetric non-local potential and one-dimensional Schrodinger equation with a position-dependent effective mass. Second, we show that the quantum Hamiltonian for a particle with position-dependent mass after applying Liouville-Green transformations will be converted to a quantum Hamiltonian for a particle with constant mass.

  11. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  12. Crystallization kinetics of the Cu{sub 50}Zr{sub 50} metallic glass under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qian; Jian, Zengyun, E-mail: jianzengyun@xatu.edu.cn; Xu, Junfeng

    2016-12-15

    Amorphous structure of the melt-spun Cu{sub 50}Zr{sub 50} amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E{sub α} decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E{sub α} is basically constant at 0.1

  13. Construction of normal-regular decisions of Bessel typed special system

    NASA Astrophysics Data System (ADS)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  14. A cost-constrained model of strategic service quality emphasis in nursing homes.

    PubMed

    Davis, M A; Provan, K G

    1996-02-01

    This study employed structural equation modeling to test the relationship between three aspects of the environmental context of nursing homes; Medicaid dependence, ownership status, and market demand, and two basic strategic orientations: low cost and differentiation based on service quality emphasis. Hypotheses were proposed and tested against data collected from a sample of nursing homes operating in a single state. Because of the overwhelming importance of cost control in the nursing home industry, a cost constrained strategy perspective was supported. Specifically, while the three contextual variables had no direct effect on service quality emphasis, the entire model was supported when cost control orientation was introduced as a mediating variable.

  15. A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Li, Wenliang

    2018-04-01

    We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.

  16. Impact of seasonality upon the dynamics of a novel pathogen in a seabird colony

    NASA Astrophysics Data System (ADS)

    O'Regan, S. M.

    2008-11-01

    A seasonally perturbed variant of the basic Susceptible-Infected-Recovered (SIR) model in epidemiology is considered in this paper. The effect of seasonality on an IR system of ordinary differential equations describing the dynamics of a novel pathogen, e.g., highly pathogenic avian influenza, in a seabird colony is investigated. The method of Lyapunov functions is used to determine the long-term behaviour of this system. Numerical simulations of the seasonally perturbed IR system indicate that the system exhibits complex dynamics as the amplitude of the seasonal perturbation term is increased. These findings suggest that seasonality may exert a considerable effect on the dynamics of epidemics in a seabird colony.

  17. A mathematical model for the deformation of the eyeball by an elastic band.

    PubMed

    Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner

    2009-06-01

    In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.

  18. Modeling malware propagation using a carrier compartment

    NASA Astrophysics Data System (ADS)

    Hernández Guillén, J. D.; Martín del Rey, A.

    2018-03-01

    The great majority of mathematical models proposed to simulate malware spreading are based on systems of ordinary differential equations. These are compartmental models where the devices are classified according to some types: susceptible, exposed, infectious, recovered, etc. As far as we know, there is not any model considering the special class of carrier devices. This type is constituted by the devices whose operative systems is not targeted by the malware (for example, iOS devices for Android malware). In this work a novel mathematical model considering this new compartment is considered. Its qualitative study is presented and a detailed analysis of the efficient control measures is shown by studying the basic reproductive number.

  19. Navier-Stokes dynamics on a differential one-form

    NASA Astrophysics Data System (ADS)

    Story, Troy L.

    2006-11-01

    After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.

  20. Modeling the Relations Among Morphological Awareness Dimensions, Vocabulary Knowledge, and Reading Comprehension in Adult Basic Education Students

    PubMed Central

    Tighe, Elizabeth L.; Schatschneider, Christopher

    2016-01-01

    This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of real word morphological awareness, pseudoword morphological awareness, and vocabulary knowledge emerged as the best fit and accounted for 79% of the reading comprehension variance. The results indicated that the constructs contributed jointly to reading comprehension; however, vocabulary knowledge was the only potentially unique predictor (p = 0.052), accounting for an additional 5.6% of the variance. This study demonstrates the feasibility of applying a latent variable modeling approach to examine individual differences in the reading comprehension skills of ABE students. Further, this study replicates the findings of Tighe and Schatschneider (2015) on the importance of differentiating among dimensions of morphological awareness in this population. PMID:26869981

  1. A Malaria Transmission Model with Temperature-Dependent Incubation Period.

    PubMed

    Wang, Xiunan; Zhao, Xiao-Qiang

    2017-05-01

    Malaria is an infectious disease caused by Plasmodium parasites and is transmitted among humans by female Anopheles mosquitoes. Climate factors have significant impact on both mosquito life cycle and parasite development. To consider the temperature sensitivity of the extrinsic incubation period (EIP) of malaria parasites, we formulate a delay differential equations model with a periodic time delay. We derive the basic reproduction ratio [Formula: see text] and establish a threshold type result on the global dynamics in terms of [Formula: see text], that is, the unique disease-free periodic solution is globally asymptotically stable if [Formula: see text]; and the model system admits a unique positive periodic solution which is globally asymptotically stable if [Formula: see text]. Numerically, we parameterize the model with data from Maputo Province, Mozambique, and simulate the long-term behavior of solutions. The simulation result is consistent with the obtained analytic result. In addition, we find that using the time-averaged EIP may underestimate the basic reproduction ratio.

  2. Modeling the Relations Among Morphological Awareness Dimensions, Vocabulary Knowledge, and Reading Comprehension in Adult Basic Education Students.

    PubMed

    Tighe, Elizabeth L; Schatschneider, Christopher

    2016-01-01

    This study extended the findings of Tighe and Schatschneider (2015) by investigating the predictive utility of separate dimensions of morphological awareness as well as vocabulary knowledge to reading comprehension in adult basic education (ABE) students. We competed two- and three-factor structural equation models of reading comprehension. A three-factor model of real word morphological awareness, pseudoword morphological awareness, and vocabulary knowledge emerged as the best fit and accounted for 79% of the reading comprehension variance. The results indicated that the constructs contributed jointly to reading comprehension; however, vocabulary knowledge was the only potentially unique predictor (p = 0.052), accounting for an additional 5.6% of the variance. This study demonstrates the feasibility of applying a latent variable modeling approach to examine individual differences in the reading comprehension skills of ABE students. Further, this study replicates the findings of Tighe and Schatschneider (2015) on the importance of differentiating among dimensions of morphological awareness in this population.

  3. Miura-type transformations for lattice equations and Lie group actions associated with Darboux-Lax representations

    NASA Astrophysics Data System (ADS)

    Berkeley, George; Igonin, Sergei

    2016-07-01

    Miura-type transformations (MTs) are an essential tool in the theory of integrable nonlinear partial differential and difference equations. We present a geometric method to construct MTs for differential-difference (lattice) equations from Darboux-Lax representations (DLRs) of such equations. The method is applicable to parameter-dependent DLRs satisfying certain conditions. We construct MTs and modified lattice equations from invariants of some Lie group actions on manifolds associated with such DLRs. Using this construction, from a given suitable DLR one can obtain many MTs of different orders. The main idea behind this method is closely related to the results of Drinfeld and Sokolov on MTs for the partial differential KdV equation. Considered examples include the Volterra, Narita-Itoh-Bogoyavlensky, Toda, and Adler-Postnikov lattices. Some of the constructed MTs and modified lattice equations seem to be new.

  4. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.

  5. Exp-function method for solving fractional partial differential equations.

    PubMed

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  6. Variation of Parameters in Differential Equations (A Variation in Making Sense of Variation of Parameters)

    ERIC Educational Resources Information Center

    Quinn, Terry; Rai, Sanjay

    2012-01-01

    The method of variation of parameters can be found in most undergraduate textbooks on differential equations. The method leads to solutions of the non-homogeneous equation of the form y = u[subscript 1]y[subscript 1] + u[subscript 2]y[subscript 2], a sum of function products using solutions to the homogeneous equation y[subscript 1] and…

  7. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  8. Mathematical model for Dengue with three states of infection

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  9. Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach

    ERIC Educational Resources Information Center

    Tolle, John

    2011-01-01

    When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…

  10. Effect of Differential Item Functioning on Test Equating

    ERIC Educational Resources Information Center

    Kabasakal, Kübra Atalay; Kelecioglu, Hülya

    2015-01-01

    This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…

  11. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  12. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern (and future) satellite tracking measurements.

  13. Asymptotic (h tending to infinity) absolute stability for BDFs applied to stiff differential equations. [Backward Differentiation Formulas

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Stewart, K.

    1984-01-01

    Methods based on backward differentiation formulas (BDFs) for solving stiff differential equations require iterating to approximate the solution of the corrector equation on each step. One hope for reducing the cost of this is to make do with iteration matrices that are known to have errors and to do no more iterations than are necessary to maintain the stability of the method. This paper, following work by Klopfenstein, examines the effect of errors in the iteration matrix on the stability of the method. Application of the results to an algorithm is discussed briefly.

  14. On the Number of Periodic Solutions of Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Han, Maoan; Xu, Bing; Tian, Huanhuan; Bai, Yuzhen

    In this paper, we consider the existence and number of periodic solutions for a class of delay differential equations of the form ẋ(t) = bx(t ‑ 1) + 𝜀f(x(t),x(t ‑ 1),𝜀), based on the Kaplan-Yorke method. Especially, we consider a kind of delay differential equations with f as a polynomial having parameters and find the number of periodic solutions with period 4 4k+1 or 4 4k+3.

  15. Illness-death model: statistical perspective and differential equations.

    PubMed

    Brinks, Ralph; Hoyer, Annika

    2018-01-27

    The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.

  16. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  17. Design of TIR collimating lens for ordinary differential equation of extended light source

    NASA Astrophysics Data System (ADS)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  18. Reflecting Solutions of High Order Elliptic Differential Equations in Two Independent Variables Across Analytic Arcs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Carleton, O.

    1972-01-01

    Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.

  19. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  20. The discrete adjoint method for parameter identification in multibody system dynamics.

    PubMed

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  1. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    PubMed

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  2. Tori and chaos in a simple C1-system

    NASA Astrophysics Data System (ADS)

    Roessler, O. E.; Kahiert, C.; Ughleke, B.

    A piecewise-linear autonomous 3-variable ordinary differential equation is presented which permits analytical modeling of chaotic attractors. A once-differentiable system of equations is defined which consists of two linear half-systems which meet along a threshold plane. The trajectories described by each equation is thereby continuous along the divide, forming a one-parameter family of invariant tori. The addition of a damping term produces a system of equations for various chaotic attractors. Extension of the system by means of a 4-variable generalization yields hypertori and hyperchaos. It is noted that the hierarchy established is amenable to analysis by the use of Poincare half-maps. Applications of the systems of ordinary differential equations to modeling turbulent flows are discussed.

  3. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  4. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  5. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  6. Polynomial mixture method of solving ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Nallasamy, Kumaresan; Ratnavelu, Kuru; Kamali, M. Z. M.

    2017-11-01

    In this paper, a numerical solution of fuzzy quadratic Riccati differential equation is estimated using a proposed new approach that provides mixture of polynomials where iteratively the right mixture will be generated. This mixture provide a generalized formalism of traditional Neural Networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). This can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that Polynomial Mixture Method (PMM) shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over Mabood et al, RK-4, Multi-Agent NN and Neuro Method (NM).

  7. Xcas as a Programming Environment for Stability Conditions for a Class of Differential Equation Models in Economics

    NASA Astrophysics Data System (ADS)

    Halkos, George E.; Tsilika, Kyriaki D.

    2011-09-01

    In this paper we examine the property of asymptotic stability in several dynamic economic systems, modeled in ordinary differential equation formulations of time parameter t. Asymptotic stability ensures intertemporal equilibrium for the economic quantity the solution stands for, regardless of what the initial conditions happen to be. Existence of economic equilibrium in continuous time models is checked via a Symbolic language, the Xcas program editor. Using stability theorems of differential equations as background a brief overview of symbolic capabilities of free software Xcas is given. We present computational experience with a programming style for stability results of ordinary linear and nonlinear differential equations. Numerical experiments on traditional applications of economic dynamics exhibit the simplicity clarity and brevity of input and output of our computer codes.

  8. A Unified Introduction to Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Lutzer, Carl V.

    2006-01-01

    This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)

  9. Transduction of NeuroD2 protein induced neural cell differentiation.

    PubMed

    Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry

    2006-11-01

    NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.

  10. Introduction to the Difference Calculus through the Fibonacci Numbers

    ERIC Educational Resources Information Center

    Shannon, A. G.; Atanassov, K. T.

    2002-01-01

    This note explores ways in which the Fibonacci numbers can be used to introduce difference equations as a prelude to differential equations. The rationale is that the formal aspects of discrete mathematics can provide a concrete introduction to the mechanisms of solving difference and differential equations without the distractions of the analytic…

  11. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  12. Quasi-generalized variables

    NASA Technical Reports Server (NTRS)

    Baumgarten, J.; Ostermeyer, G. P.

    1986-01-01

    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.

  13. The Use of Kruskal-Newton Diagrams for Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Fishaleck and R.B. White

    2008-02-19

    The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.

  14. Proceedings of the Dundee Conference (10th) Held in Dundee, Scotland on July 1988. Ordinary and Partial Differential Equations. Volume 2

    DTIC Science & Technology

    1988-07-01

    a priori inequalities with applications to R J Knops boundary value problems 40 Singular systems of differential equations V G Sigiilito S L...Stochastic functional differential equations S E A Mohammed 100 Optimal control of variational inequalities 125 Ennio de Giorgi Colloquium V Barbu P Kr e...location of the period-doubled bifurcation point varies slightly with Zc [ 3 ]. In addition, no significant effect is found if a smoother functional

  15. Formulation and application of optimal homotopty asymptotic method to coupled differential-difference equations.

    PubMed

    Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen

    2015-01-01

    In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.

  16. Formulation and Application of Optimal Homotopty Asymptotic Method to Coupled Differential - Difference Equations

    PubMed Central

    Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen

    2015-01-01

    In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential- difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit. PMID:25874457

  17. A homotopy analysis method for the nonlinear partial differential equations arising in engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, G.

    2017-05-01

    In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.

  18. Sensitivity of rough differential equations: An approach through the Omega lemma

    NASA Astrophysics Data System (ADS)

    Coutin, Laure; Lejay, Antoine

    2018-03-01

    The Itô map gives the solution of a Rough Differential Equation, a generalization of an Ordinary Differential Equation driven by an irregular path, when existence and uniqueness hold. By studying how a path is transformed through the vector field which is integrated, we prove that the Itô map is Hölder or Lipschitz continuous with respect to all its parameters. This result unifies and weakens the hypotheses of the regularity results already established in the literature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isa, Sharena Mohamad; Ali, Anati

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  20. Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style

    NASA Astrophysics Data System (ADS)

    Hillston, Jane; Duguid, Adam

    The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.

  1. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  2. Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.

    PubMed

    Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan

    2013-01-01

    This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.

  3. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  4. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    NASA Astrophysics Data System (ADS)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  5. Spatial complexity of solutions of higher order partial differential equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor

    2004-03-01

    We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .

  6. New stability conditions for mixed linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Tien

    2013-08-01

    For the mixed Levin-Nohel integro-differential equation, we obtain new necessary and sufficient conditions of asymptotic stability. These results improve those obtained by Becker and Burton ["Stability, fixed points and inverse of delays," Proc. - R. Soc. Edinburgh, Sect. A 136, 245-275 (2006)], 10.1017/S0308210500004546 and Jin and Luo ["Stability of an integro-differential equation," Comput. Math. Appl. 57(7), 1080-1088 (2009)], 10.1016/j.camwa.2009.01.006 when b(t) = 0 and supplement the 3/2-stability theorem when a(t, s) = 0. In addition, the case of the equations with several delays is discussed as well.

  7. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  8. Solitary waves in shallow water hydrodynamics and magnetohydrodynamics in rotating spherical coordinates

    NASA Astrophysics Data System (ADS)

    London, Steven D.

    2018-01-01

    In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.

  9. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  10. Ideological principles of Neo-Byurakan Cosmogony

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    There exists an insurmountable antagonism between the Classical and the Byurakan approaches on the origins of celestial bodies. The Classical approach states that celestial bodies arise from the condensation of gases, gravitational compression; and according to the Byurakan conception, they come into existence due to the explosions, differentiation of compact, superdense bodies. Rejecting each other, the supporters of these two polarized views do not accept that those two trends, differentiation and integration, dispersion and unity are interconnected and mutually conditioned processes: there are always cases of dispersion and differentiation in integration and unity and vice versa. Neo-Byurakan theory distinguishes two types of physical symmetries: substantial and relational symmetries. The types of substantial symmetry are: Symmetry of positive and negative gravitational charges (masses), Symmetry of particles and antiparticles (matter and antimatter). The types of relational symmetry are: Symmetry of differentiation and integration, Symmetry of homogeneity and inhomogeneity, Symmetry of statics (or stationarity) and dynamics, Symmetry of great unity, of strong and electroweak forces and interactions, Symmetry of electroweak unity, of weak and electromagnetic forces. As the above mentioned examples show, substantial symmetries are related to the basic types of matter; and relational symmetries to the interactions of these types. Both types can be explicit and implicit. Neo-Byurakan cosmogony puts forward a range of new ideas: 1.Being a part of Gc?? Cosmology, it differentiates and identifies the concepts of "Eternal Universe", "our Universe" and "Metagalaxy". Viewing Metagalaxy as a subsystem of our universe, as a unity of all galaxies and their clusters, it defines the basic equations which express the basic physical parameters of Metagalaxy, describes its structure, giving a physical explanation to the homogeneity of the large-scale structure of Metagalaxy, mentioning the laws and peculiarities of its origination and evolution. 2.Admitting the fact of its expansion, Neo-Byurakan theory considers that during evolution all physical parameters of Metagalaxy change, including not only the volume and average density but also the mass of Metagalaxy. And it means that the Friedman-Gamow theory of Fireball cannot be ascribed to Metagalaxy, especially to our Universe. A hypothesis is put forward, according to which the concept of Fireball or Big Bang refers to and accurately describes the differentiation and evaluation of compact, superdense superclusters of galaxies through explosion. The immediate components of the large-scale homogeneity of Metagalaxy are superclusters of galaxies. They are similar physical systems belonging to the same class, which have similar structures, and though they arise at different times, they undergo similar phases of evolution.

  11. Modeling the Solar Convective Dynamo and Emerging Flux

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  12. Solving Nonlinear Differential Equations in the Engineering Curriculum

    ERIC Educational Resources Information Center

    Auslander, David M.

    1977-01-01

    Described is the Dynamic System Simulation Language (SIM) mini-computer system utilized at the University of California, Los Angeles. It is used by engineering students for solving nonlinear differential equations. (SL)

  13. Numerical integration of ordinary differential equations of various orders

    NASA Technical Reports Server (NTRS)

    Gear, C. W.

    1969-01-01

    Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.

  14. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  15. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    PubMed

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  16. The nature of the sunspot phenomenon. I - Solutions of the heat transport equation

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.

  17. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  18. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    NASA Astrophysics Data System (ADS)

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  19. Complete factorisation and analytic solutions of generalized Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Brenig, L.

    1988-11-01

    It is shown that many systems of nonlinear differential equations of interest in various fields are naturally imbedded in a new family of differential equations. This family is invariant under nonlinear transformations based on the concept of matrix power of a vector. Each equation belonging to that family can be brought into a factorized canonical form for which integrable cases can be easily identified and solutions can be found by quadratures.

  20. Singular Hopf bifurcation in a differential equation with large state-dependent delay

    PubMed Central

    Kozyreff, G.; Erneux, T.

    2014-01-01

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255

  1. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    PubMed

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  2. Properties of Solutions to the Irving-Mullineux Oscillator Equation

    NASA Astrophysics Data System (ADS)

    Mickens, Ronald E.

    2002-10-01

    A nonlinear differential equation is given in the book by Irving and Mullineux to model certain oscillatory phenomena.^1 They use a regular perturbation method^2 to obtain a first-approximation to the assumed periodic solution. However, their result is not uniformly valid and this means that the obtained solution is not periodic because of the presence of secular terms. We show their way of proceeding is not only incorrect, but that in fact the actual solution to this differential equation is a damped oscillatory function. Our proof uses the method of averaging^2,3 and the qualitative theory of differential equations for 2-dim systems. A nonstandard finite-difference scheme is used to calculate numerical solutions for the trajectories in phase-space. References: ^1J. Irving and N. Mullineux, Mathematics in Physics and Engineering (Academic, 1959); section 14.1. ^2R. E. Mickens, Nonlinear Oscillations (Cambridge University Press, 1981). ^3D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations (Oxford, 1987).

  3. Perturbations of linear delay differential equations at the verge of instability.

    PubMed

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  4. Alternate solution to generalized Bernoulli equations via an integrating factor: an exact differential equation approach

    NASA Astrophysics Data System (ADS)

    Tisdell, C. C.

    2017-08-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.

  5. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  6. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    PubMed

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  7. A computational study of the discretization error in the solution of the Spencer-Lewis equation by doubling applied to the upwind finite-difference approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.; Seth, D.L.; Ray, A.K.

    A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.

  8. Oscillation theorems for second order nonlinear forced differential equations.

    PubMed

    Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md

    2014-01-01

    In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

  9. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  10. Stabilisation of time-varying linear systems via Lyapunov differential equations

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren

    2013-02-01

    This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.

  11. A perturbative solution to metadynamics ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; Dama, James F.; Parrinello, Michele

    2015-12-01

    Metadynamics is a popular enhanced sampling scheme wherein by periodic application of a repulsive bias, one can surmount high free energy barriers and explore complex landscapes. Recently, metadynamics was shown to be mathematically well founded, in the sense that the biasing procedure is guaranteed to converge to the true free energy surface in the long time limit irrespective of the precise choice of biasing parameters. A differential equation governing the post-transient convergence behavior of metadynamics was also derived. In this short communication, we revisit this differential equation, expressing it in a convenient and elegant Riccati-like form. A perturbative solution scheme is then developed for solving this differential equation, which is valid for any generic biasing kernel. The solution clearly demonstrates the robustness of metadynamics to choice of biasing parameters and gives further confidence in the widely used method.

  12. A perturbative solution to metadynamics ordinary differential equation.

    PubMed

    Tiwary, Pratyush; Dama, James F; Parrinello, Michele

    2015-12-21

    Metadynamics is a popular enhanced sampling scheme wherein by periodic application of a repulsive bias, one can surmount high free energy barriers and explore complex landscapes. Recently, metadynamics was shown to be mathematically well founded, in the sense that the biasing procedure is guaranteed to converge to the true free energy surface in the long time limit irrespective of the precise choice of biasing parameters. A differential equation governing the post-transient convergence behavior of metadynamics was also derived. In this short communication, we revisit this differential equation, expressing it in a convenient and elegant Riccati-like form. A perturbative solution scheme is then developed for solving this differential equation, which is valid for any generic biasing kernel. The solution clearly demonstrates the robustness of metadynamics to choice of biasing parameters and gives further confidence in the widely used method.

  13. Entire solutions of nonlinear differential-difference equations.

    PubMed

    Li, Cuiping; Lü, Feng; Xu, Junfeng

    2016-01-01

    In this paper, we describe the properties of entire solutions of a nonlinear differential-difference equation and a Fermat type equation, and improve several previous theorems greatly. In addition, we also deduce a uniqueness result for an entire function f(z) that shares a set with its shift [Formula: see text], which is a generalization of a result of Liu.

  14. Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions

    ERIC Educational Resources Information Center

    Aliev, Nihan; Jahanshahi, Mohammad

    2002-01-01

    Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the…

  15. A neutral functional differential equation of Lurie type. [on asymptotic stability of feedback control

    NASA Technical Reports Server (NTRS)

    Chukwu, E. N.

    1980-01-01

    The problem of Lurie is posed for systems described by a functional differential equation of neutral type. Sufficient conditions are obtained for absolute stability for the controlled system if it is assumed that the uncontrolled plant equation is uniformly asymptotically stable. Both the direct and indirect control cases are treated.

  16. META 2f: Probabilistic, Compositional, Multi-dimension Model-Based Verification (PROMISE)

    DTIC Science & Technology

    2011-10-01

    Equational Logic, Rewriting Logic, and Maude ................................................ 52  5.3  Results and Discussion...and its discrete transitions are left unchanged. However, the differential equations describing the continuous dynamics (in each mode) are replaced by...by replacing hard-to-analyze differential equations by discrete transitions. In principle, predicate and qualitative abstraction can be used on a

  17. An electric-analog simulation of elliptic partial differential equations using finite element theory

    USGS Publications Warehouse

    Franke, O.L.; Pinder, G.F.; Patten, E.P.

    1982-01-01

    Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.

  18. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  19. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  20. Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals

    NASA Astrophysics Data System (ADS)

    Schwalm, William A.

    2015-12-01

    This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

Top