ABC effect and resonance d*(2380)
NASA Astrophysics Data System (ADS)
Bashkanov, M.; Clement, H.; Doroshkevich, E.; Skorodko, T.
2017-11-01
A new state in the two-baryon system with mass 2380 MeV and width 80 MeV has been detected in the experiments at the Juelich Cooler Synchrotron (COSY). The new particle denoted now d*(2380) has quantum numbers I( J p ) = 0(3+). The total cross sections for the d and 4He fusion reactions show similar to each other resonance-like energy dependence. The resonance-like structure is sensed in the double-pionic fusion channels and polarized np scattering.
NASA Astrophysics Data System (ADS)
Zarrella, Andrew; Yennello, Sherry
2017-09-01
Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.
Production of DOUBLE-Λ Hypernuclei:. Bnl-Ags E906
NASA Astrophysics Data System (ADS)
Fukuda, T.; Nagae, T.; Outa, H.; Sekimoto, M.; Hotchi, H.; Miyachi, T.; Nakano, J.; Tamagawa, T.; Tanida, K.; Chrien, R. E.; May, M.; Meyer, E.; Pile, P.; Rusek, A.; Sutter, R.; Berdoz, A.; Carman, D.; Eugenio, P.; Franklin, G. B.; Khaustov, P.; Koran, P.; Meyer, C.; Paschke, K.; Quinn, B. P.; Schumacher, R. A.; Gan, L.; Tang, L.; Yuan, L.; Kurepin, A.; Rasin, V.; Prokhavatilov, M.; Shileev, K.; Ahn, J. K.; Akikawa, H.; Imai, K.; Ichikawa, A.; Yamamoto, K.; Yosoi, M.; Ajimura, S.; Kishimoto, T.; Kori, H.; Minami, S.; Shimizu, Y.; Meziani, Z.; Fischer, H.; Franz, J.; Schmitt, H.; Davis, C. A.; Landry, M.; Bassalleck, B.
2000-09-01
We have carried out an experiment at BNL-AGS (E906) to search for double-Λ hypernuclei by observing sequential pionic decays. We will describe the principle of the experiment and report the present status.
NASA Astrophysics Data System (ADS)
Bashkanov, M.; Skorodko, T.; Clement, H.; Watts, D. P.
Several new findings in the four, five and six quark systems reheat the interest in the field of multiquark states (beyond the trivial qq¯ and qqq). A lot of progress has recently been made in the 6q sector, on both the theoretical and experimental side. A resonance like structure observed in double-pionic fusion to the deuteron, at M = 2.38 GeV with Γ = 70 MeV and I(JP) = 0(3+) has been consistently observed in a wealth of reaction channels, supporting the existence of a resonant dibaryon state - the d∗(2380). These studies include measurement of all the principle strong decay channels in pn collisions in the quasifree mode by the WASA-at-COSY and HADES collaborations. The internal structure of the d∗(2380) is largely unknown. It can contain various ”hidden color” 6q configurations, ΔΔ molecular states with angular momentum L = 0,2,4,6 as well as meson-assisted dressed dibaryon structures. The large set of experimental data obtained to date gives some constraints on the internal structure of the d∗(2380) dibaryon, but does not settle the issue. The d∗ is the only multiquark state which can be produced copiously at current facilities, offering unique access to information beyond its basic quantum numbers, particularly its physical size and internal structure.
From CELSIUS to COSY: on the observation of a dibaryon resonance
NASA Astrophysics Data System (ADS)
Clement, H.; Bashkanov, M.; Skorodko, T.
2015-11-01
Using a high-quality beam of storage rings in combination with a pellet target and a hermetic WASA detector covering practically the full solid angle, two-pion production in nucleon-nucleon collisions has been systematically studied by exclusive and kinematically complete measurements—first at CELSIUS and subsequently at COSY. These measurements resulted in a detailed understanding of the two-pion production mechanism by t-channel meson exchange. The investigation of the ABC effect, which denotes an unusual low-mass enhancement in the ππ-invariant mass spectrum, in double-pionic fusion reactions led the trace to the observation of a narrow dibaryon resonance with I({J}P)=0({3}+) about 80 MeV below the nominal mass of the conventional Δ Δ system. New neutron-proton scattering data, taken with a polarized beam at COSY, produced a pole in the coupled {}3{D}3-3{G}3 partial waves at (2380+/- 10\\-\\i\\40+/- 5) MeV, establishing thus the first observation of a genuine s-channel dibaryon resonance.
Systematics of the low-energy pionic double charge exchange in nuclei
NASA Astrophysics Data System (ADS)
Draeger, J.; Bilger, R.; Clement, H.; Cröni, M.; Denz, H.; Gräter, J.; Meier, R.; Pätzold, J.; Schapler, D.; Wagner, G. J.; Wilhelm, O.; Föhl, K.; Schepkin, M.
2000-12-01
The experimental results for the (π+,π-) reaction on nuclei obtained in recent years reveal clear systematic features of this reaction. New data on 7Li, 12C, 16O, and 56Fe supplementing the existing data base are presented. The data on 12C are partly at variance with previous results. The dependence of the cross sections on incident energy, scattering angle, and on the target mass is discussed for transitions leading to the ground state of the final nucleus or to the double isobaric analog state.
IR properties of chiral effects in pionic matter
NASA Astrophysics Data System (ADS)
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
2018-04-01
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects. We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the 't Hooft matching condition in pionic media at finite densities.
IR properties of chiral effects in pionic matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less
IR properties of chiral effects in pionic matter
Avdoshkin, A.; Sadofyev, A. V.; Zakharov, V. I.
2018-04-27
Chiral effects exhibit peculiar universality in idealized theoretical limits. However, they are known to be infrared sensitive and get modified in more realistic settings. In this work we study how the corresponding conductivities vary with the constituent mass. We concentrate on a pionic realization of chiral effects which provides a better control over infrared properties of the theory. The pionic medium is considered at finite vector and axial isospin chemical potentials in the presence of an external magnetic field. This system supports electric and axial isospin currents along the magnetic field which correspond to chiral magnetic and chiral separation effects.more » We show that these currents are sensitive to the finite mass of the constituents but the conductivities follow a simple scaling with the corresponding charge densities as one would expect for polarization effects. It is argued that this relation can capture the dependence of chiral effects on other infrared parameters. Finally, we briefly comment on the realization of the ’t Hooft matching condition in pionic media at finite densities.« less
The pion nucleon scattering lengths from pionic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.
2001-07-01
This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
NASA Astrophysics Data System (ADS)
Ghodsi, O. N.; Khalaj, M.
By changing the neutron and nuclear matter incompressibility constant K, we investigate the isotopic behavior of the fusion barriers for the collision of large number of different isotopes with condition of 0.7 ≤ N/Z ≤ 1.36. Here, the double folding (DF) model which is accompanied by density-dependent (DD) versions of M3Y interactions is adopted as a basic heavy ion-ion potential. We show that the selected DD potentials predict a linear behavior for the calculated fusion barrier heights as a function of (N/Z - 1) for both proton- and neutron-rich systems. Moreover, the results indicate that the isotopic behavior of these values depend linearly on the change in the K constant. The isotopic studies conducted on the fusion cross-section also shows that the properties of the nuclear matter in the range of energy which is below the fusion barrier will quite affect the fusion process.
NASA Astrophysics Data System (ADS)
Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration
2018-04-01
We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.
Extracting the σ-term from low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.
2018-02-01
We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.
Spontaneous pion emission as a new natural radioactivity
NASA Astrophysics Data System (ADS)
Ion, D. B.; Ivascu, M.; Ion-Mihai, R.
1986-10-01
In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.
Thermal conductivity of hot pionic medium due to pion self-energy for πσ and πρ loops
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi
2015-07-01
The thermal conductivity of pionic medium has been evaluated with the help of its standard expression from the relaxation time approximation, where inverse of pion relaxation time or pion thermal width has been obtained from the imaginary part of pion self-energy. In the real-time formalism of thermal field theory, the finite temperature calculations of pion self-energy for πσ and πρ loops have been done. The numerical value of our thermal conductivity increases with temperature very softly, though at particular temperature, our estimation has to consider a large band of phenomenological uncertainty.
Spontaneous pion emission as a new natural radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ion, D.B.; Ivascu, M.; Ion-Mihai, R.
In this paper the pionic nuclear radioactivity or spontaneous pion emission by a nucleus from its ground state is investigated. The Q/sub ..pi../-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z>80. This new type of natural radioactivity is statistically favored especially for Z = 92-106 for which F/sub ..pi..//F/sub S//sub F/ = 40-200 (MeV)/sup 2/. Experimental detection of the neutral pion and also some possible emission mechanismsmore » are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambhir, Sanjiv; Pritha, Ray
Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.
Gambhir, Sanjiv; Pritha, Ray
2015-07-14
Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.
Automation of experiments at Dubna Gas-Filled Recoil Separator
NASA Astrophysics Data System (ADS)
Tsyganov, Yu. S.
2016-01-01
Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.
Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R
2006-03-15
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Kulkarni, Vinaya Kumar; Ragavendra, T Raju; Deshmukh, Jeevanand; Vanka, Amit; Duddu, Mahesh Kumar; Patil, Anand Kumar G
2012-04-01
Gemination and fusion are morphological dental anomalies, characterized by the formation of a clinically wide tooth. Gemination occurs when one tooth bud tries to divide, while fusion occurs if two buds unite. The terms double teeth, double formation, conjoined teeth, geminifusion, vicinifusion and dental twinning are often used to describe fusion and gemination. Double teeth are associated with clinical problems such as poor esthetics, spacing problems and caries susceptibility. Management of such cases requires a comprehensive knowledge of the clinical entity as well as the problems associated with it. This report presents a case of primary double tooth in a 6-year-old boy involving maxillary left central incisor. The anomalous tooth was carious and pulpally involved. This was treated conservatively by endodontic treatment and esthetic rehabilitation was done with direct composite restoration using a silicone buildup guide. The treated tooth was followed up until exfoliation.
Kulkarni, Vinaya Kumar; Ragavendra, T. Raju; Deshmukh, Jeevanand; Vanka, Amit; Duddu, Mahesh Kumar; Patil, Anand Kumar G.
2012-01-01
Gemination and fusion are morphological dental anomalies, characterized by the formation of a clinically wide tooth. Gemination occurs when one tooth bud tries to divide, while fusion occurs if two buds unite. The terms double teeth, double formation, conjoined teeth, geminifusion, vicinifusion and dental twinning are often used to describe fusion and gemination. Double teeth are associated with clinical problems such as poor esthetics, spacing problems and caries susceptibility. Management of such cases requires a comprehensive knowledge of the clinical entity as well as the problems associated with it. This report presents a case of primary double tooth in a 6-year-old boy involving maxillary left central incisor. The anomalous tooth was carious and pulpally involved. This was treated conservatively by endodontic treatment and esthetic rehabilitation was done with direct composite restoration using a silicone buildup guide. The treated tooth was followed up until exfoliation. PMID:22629077
QCD at finite isospin chemical potential
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian
2018-03-01
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
Determination of the pion-nucleon coupling constant and scattering lengths
NASA Astrophysics Data System (ADS)
Ericson, T. E.; Loiseau, B.; Thomas, A. W.
2002-07-01
We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.
Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H
2008-02-01
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.
Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.
Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R
2015-06-01
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.
Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells
Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.
2015-01-01
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125
Muon Physics at the Paul Scherrer Institut (psi) and at Triumf
NASA Astrophysics Data System (ADS)
Walter, Hans-Kristian
Muons can be produced abundantly at so-called pion factories. Fundamental information about todays standard model of particle physics is obtained by studying their decays. New experiments have been proposed at PSI and TRIUMF to measure the muons lifetime, the Michel parameters, describing its main decay μ+ → e+ + ve + ` vμ, as well as the decay positrons polarizations. Muon and electron number violating decays like μ+ → e+ + γ and neutrinoless muon electron conversion in nuclei μ- N → e- N are especially sensitive to new physics beyond the standard model. The moon when bound in a muonic atom or to an electron to form muonium, can also serve as a tool to investigate properties of its binding partner and the electroweak binding forces. Muonic and pionic hydrogen isotopes and Helium are mostly being studied. Finally muons can be applied to address problems in solid state and surface physics. Here cold and ultracold muons are of special interest, because of their very small phase space. Muon catalyzed fusion in addtition to offering a rich field for atomic and molecular physics could be used in technological applications like energy production (in connection with conventional breeders) or to construct a strong source of 14 MeV neutrons.
Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
Yeon, Howard B.; Weinberg, Jacob; Arlet, Vincent; Ouelett, Jean A.
2007-01-01
Fifteen skeletally immature patients with double major adolescent idiopathic scoliosis with large lumbar curves and notable L4 and L5 coronal plane obliquity were retrospectively studied. Seven patients who underwent anterior release and fusion of the lumbar curve with segmental anterior instrumentation and subsequent posterior instrumentation ending at L3 were compared with eight patients treated with anterior release and fusion without anterior instrumentation followed by posterior instrumentation to L3 or L4. At 4.5 years follow-up (range 2.5–7 years), curve correction, coronal balance and fusion rate were not statistically different between the two groups; however, the group with anterior instrumentation had improved coronal plane, near normalangulation in the distal unfused segment compared with the group without anterior instrumentation. In cases involving severe lumbar curvatures in the context of double major scoliosis, when as a first stage anterior release is chosen, the addition of instrumentation appears to restore normal coronal alignment of the distal unfused lumbar segment, and may in certain cases save a level compared with traditional fusions to L4. PMID:17464517
Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Teodorescu, L; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Hertzbach, S S; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Biesiada, J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L
2008-08-22
We report measurements of branching fractions for the decays B-->Plnu_{l}, where P are the pseudoscalar charmless mesons pi;{-}, pi;{0}, eta and eta;{'}, based on 348 fb;{-1} of data collected with the BABAR detector, using B0 and B+ mesons found in the recoil of a second B meson decaying as B-->D;{(*)}lnu_{l}. Assuming isospin symmetry, we combine pionic branching fractions to obtain B(B;{0}-->pi;{-}l;{+}nu_{l})=(1.54+/-0.17_{(stat)}+/-0.09_{(syst)})x10;{-4}; we find 3.2sigma evidence of the decay B;{+}-->etal;{+}nu_{l} and measure its branching fraction to be (0.64+/-0.20_{(stat)}+/-0.03_{(syst)})x10;{-4}, and determine B(B;{+}-->eta;{'}l;{+}nu_{l})<0.47x10;{-4} to 90% confidence level. Using partial branching fractions for the pionic decays in ranges of the momentum transfer and a variety of form factor calculation, we obtain values of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |V_{ub}| in ranging from 3.6x10;{-3} to 4.1x10;{-3}.
Roy-Steiner-equation analysis of pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-04-01
We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.
A real-time monitoring platform of myogenesis regulators using double fluorescent labeling
Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Prim, Peter M.; Criswell, Tracy L.
2018-01-01
Real-time, quantitative measurement of muscle progenitor cell (myoblast) differentiation is an important tool for skeletal muscle research and identification of drugs that support skeletal muscle regeneration. While most quantitative tools rely on sacrificial approach, we developed a double fluorescent tagging approach, which allows for dynamic monitoring of myoblast differentiation through assessment of fusion index and nuclei count. Fluorescent tagging of both the cell cytoplasm and nucleus enables monitoring of cell fusion and the formation of new myotube fibers, similar to immunostaining results. This labeling approach allowed monitoring the effects of Myf5 overexpression, TNFα, and Wnt agonist on myoblast differentiation. It also enabled testing the effects of surface coating on the fusion levels of scaffold-seeded myoblasts. The double fluorescent labeling of myoblasts is a promising technique to visualize even minor changes in myogenesis of myoblasts in order to support applications such as tissue engineering and drug screening. PMID:29444187
Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi
2014-11-01
Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y
2011-02-01
A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Ferràndez-Cañadell, Carles; Briguglio, Antonino; Hohenegger, Johann; Wöger, Julia
2015-01-01
In foraminifera, so-called “double tests” usually arise due to abnormal growth originating mainly from twinning, but may also be caused by irregularities in the early chambers and by regeneration after test injury that modifies the direction of growth. A fourth cause of double tests has only rarely been reported: the fusion of the tests of two adult individuals. We studied an early Eocene Nummulites double test consisting of two adult individuals that fused after an extended period of independent growth. The specimen was studied using computed tomography with micrometric resolution (micro-CT) that allowed bi- and three-dimensional visualization of the internal structure. Before fusion each individual test had 30–36 chambers, which, by comparison with growth rates in recent nummulitids, implies at least three months of independent growth. After fusion, the compound test grew in two spirals that fused after about one whorl and then continued in a single spiral. To fuse their tests, either adult individuals have to be forced to do so or the allorecognition (ability to distinguish between self and another individual) mechanisms must fail. A possible explanation for the merged Nummulites tests in this study is forced fusion in attached individuals after surviving ingestion and digestion by a metazoan. Alternatively, environmental stress could lead to a failure of allorecognition mechanisms and/or foraminiferal motility. Once fused, subsequent growth seems to be determined mainly by the relative orientation of individual tests. In any case, the frequency in which adult fusion occurs remains unknown. PMID:26166916
2012-01-01
Background It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. Results N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. Conclusions The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques. PMID:22935135
Pionic transitions from X(3872) to {chi}{sub cJ}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubynskiy, S.; Voloshin, M.B.; William, I.
2008-01-01
We consider transitions from the resonance X(3872) to the {chi}{sub cJ} states of charmonium with emission of one or two pions as a means of studying the structure of the X resonance. We find that the relative rates for these transitions to the final states with different J significantly depend on whether the initial state is a pure charmonium state or a four-quark/molecular state.
Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André
2016-10-18
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.
Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D.; Schulz, Stefan; Fleißner, André
2016-01-01
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion. PMID:27708165
NASA Technical Reports Server (NTRS)
Pavel, M.
1993-01-01
The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.
Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena
2015-01-01
To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.
Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach
NASA Astrophysics Data System (ADS)
Ichikawa, Takatoshi
2015-12-01
Background: At extremely low incident energies, unexpected decreases in fusion cross sections, compared to the standard coupled-channels (CC) calculations, have been observed in a wide range of fusion reactions. These significant reductions of the fusion cross sections are often referred to as the fusion hindrance. However, the physical origin of the fusion hindrance is still unclear. Purpose: To describe the fusion hindrance based on an adiabatic approach, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes, that is, the transition from the separated two-body to the united dinuclear system. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. Method: I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. This avoids double counting of the CC effects, when two colliding nuclei overlap one another. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Results: Calculated fusion cross sections for the medium-heavy mass systems of 64Ni+64Ni , 58Ni+58Ni , and 58Ni+54Fe , the medium-light mass systems of 40Ca+40Ca , 48Ca+48Ca , and 24Mg+30Si , and the mass-asymmetric systems of 48Ca+96Zr and 16O+208Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. The values obtained for the individual radius and diffuseness parameters in the damping factor, which reproduce the fusion cross sections well, are nearly equal to the average value for all the systems. Conclusions: Since the results calculated with the damping factor are in excellent agreement with the experimental data in all systems, I conclude that a coordinate-dependent coupling strength is responsible for the fusion hindrance. In all systems, the potential energies at the touching point VTouch strongly correlate with the incident threshold energies for which the fusion hindrance starts to emerge, except for the medium-light mass systems.
Post-Fusion Membrane Reorganization.
1993-01-27
diphosphoglycerate , and NEM (a crosslinking agent), and ethanol treatments all had reproducible and very specific effects on the kinetic phases and the fusion product...actually, at the ultrastructure level , a double membrane multiply perforated with fusion sites (or pores). Also, because the heat treatment was within...relationships. Moreover. 2.3- Diphosphoglycerate (2-3-DPG). a naturally occuring metabolite which is known to have a regulatory role in spectrin-cytoskeletal
NASA Astrophysics Data System (ADS)
Moussa, Jonathan; Ryan-Anderson, Ciaran
The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi
2009-05-01
Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.
SNARE-mediated membrane fusion in autophagy
Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie
2016-01-01
Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. PMID:27422330
Dhindsa, Abhishek; Garg, Shalini; Damle, S G; Opal, Shireen; Singh, Tavleen
2013-04-01
Dental anomalies of number and forms may occur in the primary and permanent dentition. Various terms have been used to describe dental twinning anomalies: Germination, fusion, concrescence, double teeth, conjoined teeth, twinned teeth, geminifusion, and vicinifusion. Fused tooth is a developmental anomaly that is seen more frequently in the primary than the permanent dentition. Double tooth involving deciduous anterior teeth is found mostly in the mandible. Very few cases of nonsyndromic double primary molar have been reported in the literature. The succeeding permanent tooth is often found missing congenitally in the same region. This article reports a very rare unilateral occurrence of an anomalous, primary mandibular first macromolar formed by fusion with a dysmorphic premolar like supernumerary tooth in deciduous dentition period. Instead of agenesis of succedaneous tooth, the double tooth has been succeeded by normally developing mandibular first premolar in the same region.
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.
2010-01-01
The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316
Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris
2004-06-29
Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.
2009-05-01
transport, and thermonuclear burn. Using FAST, three classes of shock-ignited targets were designed that achieve one-dimensional fusion - energy gains in the...MJ) G a in Figure 1: Results of one-dimensional simulations showing the fusion energy gain as a function of KrF laser energy for three classes of...rises smoothly (according to a double power (a) Spike width: 160 ps (b) Spike power: 1530 TW Figure 4: Examples of fusion - energy gain contours for a shock
[POSTERIOR LUMBAR INTERBODY FUSION FOR DOUBLE-SEGMENTAL BILATERAL ISTHMIC LUMBAR SPONDYLOLISTHESIS].
Xing, Wenhua; Huo Hongjun; Yang, Xuejun; Xiao, Yulong; Zhao, Yan; Fu, Yu; Zhu, Yong; Li, Feng; Xin, Daqi
2015-12-01
To explore the effectiveness of posterior lumbar interbody fusion in the treatment of double-segmental bilateral isthmic lumbar spondylolisthesis. Between February 2008 and December 2013, 17 patients with double-segmental bilateral isthmic lumbar spondylolisthesis were treated with posterior lumbar interbody fusion. There were 12 males and 5 females, with an age ranged 48-69 years (mean, 55.4 years). The disease duration ranged from 11 months to 17 years (median, 22 months). According to the Meyerding classification, 30 vertebrea were rated as degree I, 3 as degree II, and 1 as degree III. L₄,₅ was involved in 14 cases and L₃,₄ in 3 cases. The preoperative visual analogue scale (VAS) score was 8.6 ± 3.2. Cerebrospinal fluid leakage occurred in 2 cases because of intraoperative dural tear; primary healing of incision was obtained, with no operation related complication in the other patients. The patients were followed up 1-6 years (mean, 3.4 years). At last follow-up, VAS score was decreased significantly to 1.1 ± 0.4, showing significant difference when compared with preoperative score (t=7.652, P=0.008). X-ray films showed that slippage vertebral body obtained different degree of reduction, with a complete reduction rate of 85% (29/34) at 1 week after operation. All patients achieved bony union at 6-12 months (mean, 7.4 months). According to the Lenke classification, 13 cases were rated as grade A and 4 cases as grade B. No internal fixation loosening and fracture were observed during the follow-up. Intervertebral disc height was maintained, no loss of spondylolisthesis reduction was found. It can obtain satisfactory clinical result to use spinal canal decompression by posterior approach, and screw fixation for posterior fusion in treatment of double-segmental bilateral isthmic lumbar spondylolisthesis. The key points to successful operation include accurate insertion of screw, effective decompression, distraction before reduction, rational use of pulling screws, and interbody fusion.
Dual drive coexistence of EML4-ALK and TPM3-ROS1 fusion in advanced lung adenocarcinoma.
Zhu, You-Cai; Liao, Xing-Hui; Wang, Wen-Xian; Xu, Chun-Wei; Zhuang, Wu; Wei, Jian-Guo; Du, Kai-Qi
2018-02-01
We report a case of concomitant EML4-ALK and TPM3-ROS1 fusion in non-small cell lung cancer (NSCLC) in a 47-year-old Chinese man and review the clinical characteristics of this type double of fusion. The patient presented with a local tumor of the left upper lobe and underwent thoracoscopy. Postoperative surgical pathologic staging revealed T 1a N 0 M 0 stage IA. Histological examination of the tumor showed lung adenocarcinoma. Ventana ALK (D5F3) assay of the left lung tissue was ALK negative; however, immunohistochemical assay was positive for ROS1 protein. Using next generation sequencing, we found that the tumor had concomitant EML4-ALK and TPM3-ROS1 fusion. No recurrence was observed during seven months of follow-up. Precise diagnostic techniques allow the detection of concomitant ROS1 fusion and other driver genes, including ALK or EGFR; therefore oncologists should consider this rare double mutation in NSCLC patients. Further exploration of treatment models is required to provide additional therapeutic options. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
SNARE-mediated membrane fusion in autophagy.
Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie
2016-12-01
Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Remarks on the pion-nucleon σ-term
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-09-01
The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.
Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System.
Diana, Michele; Halvax, Peter; Mertz, Damien; Legner, Andras; Brulé, Jean-Marcel; Robinet, Eric; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques
2015-06-01
Image fusion between ultrasound (US) and computed tomography (CT) scan or magnetic resonance can increase operator accuracy in targeting liver lesions, particularly when those are undetectable with US alone. We have developed a modular gel to simulate hepatic solid lesions for educational purposes in imaging and minimally invasive ablation techniques. We aimed to assess the impact of image fusion in targeting artificial hepatic lesions during the hands-on part of 2 courses (basic and advanced) in hepatobiliary surgery. Under US guidance, 10 fake tumors of various sizes were created in the livers of 2 pigs, by percutaneous injection of a biocompatible gel engineered to be hyperdense on CT scanning and barely detectable on US. A CT scan was obtained and a CT-US image fusion was performed using the ACUSON S3000 US system (Siemens Healthcare, Germany). A total of 12 blinded course attendants, were asked in turn to perform a 10-minute liver scan with US alone followed by a 10-minute scan using image fusion. Using US alone, the expert managed to identify all lesions successfully. The true positive rate for course attendants with US alone was 14/36 and 2/24 in the advanced and basic courses, respectively. The total number of false positives identified was 26. With image fusion, the rate of true positives significantly increased to 31/36 (P < .001) in the advanced group and 16/24 in the basic group (P < .001). The total number of false positives, considering all participants, decreased to 4 (P < .001). Image fusion significantly increases accuracy in targeting hepatic lesions and might improve echo-guided procedures. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, R. C.
Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriatemore » to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.« less
Yuan, B; Ai, C-X; Yuan, L; Gao, W; Hu, J-P; Chen, J; Ren, W-Z
2014-09-12
This study aimed to prepare monoclonal antibody of feline calicivirus (FCV) and identify its basic biological characteristics. Saturated ammonium sulfate precipitation, combined differential centrifugation, and cesium chloride density gradient centrifugation were used for the purification of FCV. The purified FCV was used as antigen to immunize BALB/c mice. The hybridoma lines of anti-FCV monoclonal antibodies were established using cell fusion and hybridoma screening techniques. The subtypes of the monoclonal antibody were identified. The results showed that 3 strains of hybridoma cell lines stably secreted anti-FCV monoclonal antibody; they were named as D8, E5, and H4. The D8 and E5 were IgM subtype antibodies, and H4 was IgG2b subtype antibody. The monoclonal antibody obtained shared no cross-reactivity with feline parvovirus, canine parvovirus, and canine distemper virus. According to the different recognition sites of 2 monoclonal antibodies E5 and H4 to the FCV, they were used to coat microtiter plates and prepare 2 enzyme-labeled secondary antibodies to establish double-antibody sandwich enzyme-linked immunosorbent assay detecting method.
Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G
2014-11-21
Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
In Situ Potassium-Argon Geochronology Using Fluxed Fusion and a Double Spike
NASA Technical Reports Server (NTRS)
Hurowitz, Joel A.; Hecht, Michael H.; Zimmerman, Wayne F.; Neidholdt, Evan L.; Sinha, Mahadeva P.; Sturhahn, Wolfgang; Coleman, Max; McCleese, Daniel J.; Farley, Kenneth A.; Eiler, John M.;
2012-01-01
A document highlights an Li-based fluxing agent that enables sample fusion and quantitative Ar-release at relatively low temperatures (900-1,000 C), readily achievable with current flight resistance furnace designs. A solid, double spike containing known quantities of Ar-39 and K-41 was developed that, when added in known amounts to a sample, enables the extraction of a Ar-40/K-40 ratio for age estimation without a sample mass measurement. The use of a combination of a flux and a double spike as a means of solving the mechanical hurdles to an in situ K-Ar geochronology measurement has never been proposed before. This methodology and instrument design would provide a capability for assessing the ages of rocks and minerals on the surfaces of planets and other rocky terrestrial bodies in the solar system.
Review of 3d GIS Data Fusion Methods and Progress
NASA Astrophysics Data System (ADS)
Hua, Wei; Hou, Miaole; Hu, Yungang
2018-04-01
3D data fusion is a research hotspot in the field of computer vision and fine mapping, and plays an important role in fine measurement, risk monitoring, data display and other processes. At present, the research of 3D data fusion in the field of Surveying and mapping focuses on the 3D model fusion of terrain and ground objects. This paper summarizes the basic methods of 3D data fusion of terrain and ground objects in recent years, and classified the data structure and the establishment method of 3D model, and some of the most widely used fusion methods are analysed and commented.
Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel
2016-01-01
Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes. Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer. Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276
TRF2/RAP1 and DNA–PK mediate a double protection against joining at telomeric ends
Bombarde, Oriane; Boby, Céline; Gomez, Dennis; Frit, Philippe; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Salles, Bernard; Calsou, Patrick
2010-01-01
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA–PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA–PK end binding and activation step and (2) DNA–PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells. PMID:20407424
NASA Astrophysics Data System (ADS)
Ismail, M.; Seif, W. M.; Botros, M. M.
2016-04-01
We investigate the fusion cross-section and the fusion barrier distribution of 16O +238U at near- and sub-barrier energies. We use an interaction potential generated by the semi-microscopic double folding model-based on density dependent (DD) form of the realistic Michigan-three-Yukawa (M3Y) Reid nucleon-nucleon (NN) interaction. We studied the role of both the static and dynamic deformations of the target nucleus on the fusion process. Rotational and vibrational degrees of freedom of 238U-nucleus are considered. We found that the deformation and the octupole vibrations in 238U enhance its sub-barrier fusion cross-section. The signature of the the octupole vibrational modes of 238U appears clearly in its fusion barrier distribution profile.
Are starburst galaxies proton calorimeters?
NASA Astrophysics Data System (ADS)
Wang, Xilu; Fields, Brian D.
2018-03-01
Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.
Evaluation of Sintering Behaviors of Saprolitic Nickeliferous Laterite Based on Quaternary Basicity
NASA Astrophysics Data System (ADS)
Luo, Jun; Li, Guanghui; Rao, Mingjun; Zhang, Yuanbo; Peng, Zhiwei; Zhi, Qian; Jiang, Tao
2015-09-01
The sintering behaviors of saprolitic nickeliferous laterite with various quaternary basicities [(CaO + MgO)/(SiO2 + Al2O3) mass ratio] in a reductive atmosphere are investigated by simulative sintering and validated by sintering pot tests. The simulative sintering results show that the generation of diopside (CaMgSi2O6) with low melting point is the key reason for the decrease in characteristic fusion temperatures when the quaternary basicity increases from 0.5 to 0.8-1.0. Continuous increase of basicity leads to transformation of diopside (CaMgSi2O6) into akermanite (Ca2MgSi2O7), which adversely increases the characteristic fusion temperatures. These findings are confirmed by the sinter pot tests, which demonstrate that the sintering indexes including vertical sintering velocity (VSV), yield ( Y), and productivity ( P), can be improved by optimizing quaternary basicity. At basicity of 1.0, the VSV, Y, P, and ISO tumbling index reach 49.2 mm/min, 80.5%, 1.0 t/(h m2), and 66.5%, respectively.
A phenomenological π-p scattering length from pionic hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
2004-07-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).
A cytogenetic method for stacking gene pairs in common wheat.
Thomas, J; Riedel, E; Benabdelmouna, A; Armstrong, K
2004-10-01
The potential for non-reciprocal Robertsonian translocations of wheat (Triticum aestivum L.) to assist in the stacking of genes was assessed from a study of their cytological and genetic behaviour. To obtain translocations, a double monosomic (3B+5A; 2n=40=19ii+2i) was crossed reciprocally with a contrasting disomic. Individuals inheriting a broken monosome were identified from the loss of one arm-specific DNA marker coupled with retention of a marker for the opposite arm. No double breaks (potential translocations) were found in 180 cross progeny recovered from pollen of the double monosomic but two instances (loss of 5AL plus 3BS; loss of 5AL plus 3BL) were found in 251 progeny recovered from ovules. Meiotic pairing and multi-color genome-specific fluorescence in situ hybridization (mcGISH) showed that each plant with a double break contained one translocated chromosome between the A and B genomes that had rejoined at the centromere and that formed a trivalent (19ii+ liii) in about 83% of PMC. Most trivalents (approximately 92%) aligned at metaphase in a 'V' configuration(alternate disjunction) while the rest aligned in linear 'I'(adjacent disjunction) or ambiguous 'L' configurations. Genetic analysis of a testcross of these 'fusion monosomics' showed that this preferential co-orientation of the trivalent influenced the assortment of the chromosome arms involved. Loci that were located in the hemizygous ends of the 'V' trivalent showed strong quasi-linkage in that most ovules from the female testcross carried relevant DNA markers either from both standard chromosomes or from neither. This shows that, in most cases, the two standard chromosomes assorted to the same pole while the fused monosome segregated to the opposite pole. For heterozygous loci (present both on the fusion monosome and the standard chromosomes) assortment was either independent or showed partial linkage to the hemizygous arm depending on the reported recombination distance from centromere. Marker assortment was further distorted in male testcrosses and in doubled haploids (made from the fusion monosomics by the maize method) by the strong selective advantage of pollen or haploids that inherited the standard chromosomes rather than the deficiencies. This genetic data shows that under the combined influence of alternate disjunction and natural selection, progeny of fusion monosomics will revert to the standard disomic arrangement, fixing the gene content of both hemizygous arms in the process. Thus, any pair of genes could be targeted for joint fixation by isolating the fusion monosome that will link them temporarily in a segregating population.
Zhang, Wenyu; Zhang, Zhenjiang
2015-01-01
Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399
Laboratory Directed Research and Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogeka, G.J.; Romano, A.J.
This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein onmore » Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.« less
Laboratory Directed Research and Development Program. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogeka, G.J.; Romano, A.J.
This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein onmore » Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.« less
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.
2003-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Kuixing; Fu, Xinghu; Bi, Weihong
2013-07-01
During the fusion splicing Hollow Core Photonic Crystal Fiber (HC-PCF), the air-holes collapse easily due to the improper fusion duration time and optical power. To analyze the temperature characteristics of fusion splicing HC-PCF, a heating method by sinusoidal modulation CO2 laser has been proposed. In the sinusoidal modulation, the variation relationships among laser power, temperature difference and angular frequency are analyzed. The results show that the theoretical simulation is basically in accordance with the experimental data. Therefore, a low-loss fusion splicing can be achieved by modulating the CO2 laser frequency to avoid the air-holes collapse of HC-PCF. Further, the errors are also given.
NASA Astrophysics Data System (ADS)
Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.
2018-01-01
Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.
Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.
The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.
Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D
2013-12-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.
Inertial-confinement fusion with lasers
Betti, R.; Hurricane, O. A.
2016-05-03
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Proposal for a novel type of small scale aneutronic fusion reactor
NASA Astrophysics Data System (ADS)
Gruenwald, J.
2017-02-01
The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively. PMID:25268957
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.
Esthetic management of a primary double tooth using a silicone putty guide: a case report.
Agarwal, Ravi; Chaudhry, Kalpna; Yeluri, Ramakrishna; Munshi, Autar Krishen
2013-03-01
The term double tooth is often used to describe fusion and gemination. The development of isolated large or joined teeth is not rare, but the literature is confusing when the appropriate terminology is presented. The objective of this paper is to present a case of a primary double tooth in a 5-year-old girl with a history of trauma. The tooth was endodontically treated and esthetic management was carried out using a silicone putty guide.
Evaluation of Trinity Evolution in Patients Undergoing Foot and Ankle Fusion
2014-04-07
Tibiotalar Arthrodesis; Subtalar Arthrodesis; Calcaneocuboid Arthrodesis; Talonavicular Arthrodesis; Double Arthrodesis (i.e. Calcaneocuboid and Talonavicular); Triple Arthrodesis (i.e. Subtalar, Calcaneocuboid, and Talonavicular)
Design of a large magnetic-bearing turbomolecular pump for NET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, K.H.; Conrad, A.; Dinner, P.J.
1988-09-01
The feasibility of development of large vacuum components for operation in fusion machines have been investigated in the framework of the European Fusion Technology Programme. The requirements and the results of the feasibility study for the large turbomolecular pump units (TMP) are presented. Design parameters for single flow 50.000 l/s TMP and a double flow 15.000 and a 50.000 l/s TMP have been compared.
The first IEC fusion industrial neutron generator and developments
NASA Astrophysics Data System (ADS)
Sved, John
1999-06-01
Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 107 D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 1010 by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.
History of Nuclear Fusion Research in Japan
NASA Astrophysics Data System (ADS)
Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo
In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.
Inertial-confinement fusion with lasers
NASA Astrophysics Data System (ADS)
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
Krishnan, Kartik G; Müller, Adolf
2002-04-01
Reconstruction of the cervical spine using free vascularized bone flaps has been described in the literature. The reports involve either one level or, when multiple levels, they describe en bloc resection and reconstruction. Stabilization of different levels with a preserved intermediate segment with a single vascularized flap has not been described. We report on the case of a 55-year-old man, who had been operated several times using conventional techniques for cervical myelopathy and instability, who presented to us with severe neck pain. Diagnostic procedures showed pseudarthrosis of C3/4 and stress-overload of the C3/4 and C5/6 segments. The C4/5 fusion was adequately rigid, but avascular. We performed anterior cervical fusion at the C3/4 and C5/6 levels with a vascularized fibula flap modified as a double island. The rigidly fused C4/5 block was preserved and vascularized with the periosteum bridging the two fibular islands. The method and technique are described in detail. Fusion was adequate. Donor site morbidity was minimal and temporary. The patient is symptom free to date (25 months). The suggested method provides the possibility of vertebral fusion at different levels using a single vascularized flap. The indications for this procedure are (1) repeated failure of conventional methods, (2) established poor bone healing and bone non-union with avascular grafts and (3) a well-fused or preserved intermediate segment. The relevant literature is reviewed.
Developing one-dimensional implosions for inertial confinement fusion science
Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...
2016-12-12
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less
Kamei, Ryotaro; Watanabe, Yuji; Sagiyama, Koji; Isoda, Takuro; Togao, Osamu; Honda, Hiroshi
2018-05-23
To investigate the optimal monochromatic color combination for fusion imaging of FDG-PET and diffusion-weighted MR images (DW) regarding lesion conspicuity of each image. Six linear monochromatic color-maps of red, blue, green, cyan, magenta, and yellow were assigned to each of the FDG-PET and DW images. Total perceptual color differences of the lesions were calculated based on the lightness and chromaticity measured with the photometer. Visual lesion conspicuity was also compared among the PET-only, DW-only and PET-DW-double positive portions with mean conspicuity scores. Statistical analysis was performed with a one-way analysis of variance and Spearman's rank correlation coefficient. Among all the 12 possible monochromatic color-map combinations, the 3 combinations of red/cyan, magenta/green, and red/green produced the highest conspicuity scores. Total color differences between PET-positive and double-positive portions correlated with conspicuity scores (ρ = 0.2933, p < 0.005). Lightness differences showed a significant negative correlation with conspicuity scores between the PET-only and DWI-only positive portions. Chromaticity differences showed a marginally significant correlation with conspicuity scores between DWI-positive and double-positive portions. Monochromatic color combinations can facilitate the visual evaluation of FDG-uptake and diffusivity as well as registration accuracy on the FDG-PET/DW fusion images, when red- and green-colored elements are assigned to FDG-PET and DW images, respectively.
Lagutina, Irina V.; Valentine, Virginia; Picchione, Fabrizio; Harwood, Frank; Valentine, Marcus B.; Villarejo-Balcells, Barbara; Carvajal, Jaime J.; Grosveld, Gerard C.
2015-01-01
Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. PMID:25659124
USDA-ARS?s Scientific Manuscript database
Avian paramyxo-serotype-1 viruses (APMV1) with fusion cleavage sites containing two basic amino acids and a phenylalanine (F) at position 117 have been isolated from poultry species in two states from 2007-2009. The intracerebral pathogenicity indices for these viruses are of low virulence at 0.00 ...
Science & Technology Review September 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H B
2006-07-18
This month's article has the following articles: (1) Simulations Help Plan for Large Earthquakes--Commentary by Jane C. S. Long; (2) Re-creating the 1906 San Francisco Earthquake--Supercomputer simulations of Bay Area earthquakes are providing insight into the great 1906 quake and future temblors along several faults; (3) Decoding the Origin of a Bioagent--The microstructure of a bacterial organism can be linked to the methods used to formulate the pathogen; (4) A New Look at How Aging Bones Fracture--Livermore scientists find that the increased risk of fracture from osteoporosis may be due to a change in the physical structure of trabecular bone;more » and (5) Fusion Targets on the Double--Advances in precision manufacturing allow the production of double-shell fusion targets with submicrometer tolerances.« less
Fusion Imaging: A Novel Staging Modality in Testis Cancer
2010-01-01
the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion...imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with...incidence of testis cancer has been increasing at an annual rate of 3%, leading to a doubling in cases world-wide over the last 40 years. With the advent
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating
Rogers, Jason V.; Arlow, Tim; Inkellis, Elizabeth R.; Koo, Timothy S.; Rose, Mark D.
2013-01-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide–sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway. PMID:24152736
Reliability Modeling of Double Beam Bridge Crane
NASA Astrophysics Data System (ADS)
Han, Zhu; Tong, Yifei; Luan, Jiahui; Xiangdong, Li
2018-05-01
This paper briefly described the structure of double beam bridge crane and the basic parameters of double beam bridge crane are defined. According to the structure and system division of double beam bridge crane, the reliability architecture of double beam bridge crane system is proposed, and the reliability mathematical model is constructed.
Fusion Imaging for Procedural Guidance.
Wiley, Brandon M; Eleid, Mackram F; Thaden, Jeremy J
2018-05-01
The field of percutaneous structural heart interventions has grown tremendously in recent years. This growth has fueled the development of new imaging protocols and technologies in parallel to help facilitate these minimally-invasive procedures. Fusion imaging is an exciting new technology that combines the strength of 2 imaging modalities and has the potential to improve procedural planning and the safety of many commonly performed transcatheter procedures. In this review we discuss the basic concepts of fusion imaging along with the relative strengths and weaknesses of static vs dynamic fusion imaging modalities. This review will focus primarily on echocardiographic-fluoroscopic fusion imaging and its application in commonly performed transcatheter structural heart procedures. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Fusion Products of { s} { l} N Symmetric Power Representations and Kostka Polynomials
NASA Astrophysics Data System (ADS)
Kedem, Rinat
2004-10-01
We explain the relation between the Feigin-Loktev fusion product and the graded multiplicities of Specht modules in the integer cohomology ring of the GLN generalized flag manifold. We use only very basic notions, most notably the Schur-Weyl duality and the description of the cohomology ring as a quotient of the polynomial ring in N variables.
Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M.; Horsfield, C. J.
Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4}more » for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.« less
Structural characterization of Mumps virus fusion protein core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yueyong; Xu Yanhui; Lou Zhiyong
2006-09-29
The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less
Basic distinctions between cold- and hot-fusion reactions in the synthesis of superheavy elements
NASA Astrophysics Data System (ADS)
Nasirov, A. K.; Muminov, A. I.; Giardina, G.; Mandaglio, G.
2014-07-01
Superheavy elements (SHE) of charge number in the range of Z = 106-112 were synthesized in so-called cold-fusion reactions. The smallness of the excitation energy of compound nuclei is the main advantage of cold-fusion reactions. However, the synthesis of SHEs of charge number in the region of Z ≥ 112 is strongly complicated in cold-fusion reactions by a sharp decrease in the cross section of a compound nucleus formation in the entrance channel because of superiority of quasifission in the competition with complete fusion. Two favorable circumstances contributed to the success of the experiments aimed at the synthesis of the Z = 113-118 elements and performed at the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research: large cross sections for the production of a compound nucleus, which are characteristic of hot-fusion reactions, and an increase in the fission barrier for nuclei toward the stability island. The factor that complicates the formation of a compound nucleus in cold-fusion reactions is discussed.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory
ERIC Educational Resources Information Center
Vanko, Peter
2007-01-01
First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…
High Level Information Fusion (HLIF) with nested fusion loops
NASA Astrophysics Data System (ADS)
Woodley, Robert; Gosnell, Michael; Fischer, Amber
2013-05-01
Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki
2011-01-21
Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development. Copyright © 2010 Elsevier Inc. All rights reserved.
Limpens, Ronald W. A. L.; van der Schaar, Hilde M.; Kumar, Darshan; Koster, Abraham J.; Snijder, Eric J.; van Kuppeveld, Frank J. M.; Bárcena, Montserrat
2011-01-01
ABSTRACT All positive-strand RNA viruses induce membrane structures in their host cells which are thought to serve as suitable microenvironments for viral RNA synthesis. The structures induced by enteroviruses, which are members of the family Picornaviridae, have so far been described as either single- or double-membrane vesicles (DMVs). Aside from the number of delimiting membranes, their exact architecture has also remained elusive due to the limitations of conventional electron microscopy. In this study, we used electron tomography (ET) to solve the three-dimensional (3-D) ultrastructure of these compartments. At different time points postinfection, coxsackievirus B3-infected cells were high-pressure frozen and freeze-substituted for ET analysis. The tomograms showed that during the exponential phase of viral RNA synthesis, closed smooth single-membrane tubules constituted the predominant virus-induced membrane structure, with a minor proportion of DMVs that were either closed or connected to the cytosol in a vase-like configuration. As infection progressed, the DMV number steadily increased, while the tubular single-membrane structures gradually disappeared. Late in infection, complex multilamellar structures, previously unreported, became apparent in the cytoplasm. Serial tomography disclosed that their basic unit is a DMV, which is enwrapped by one or multiple cisternae. ET also revealed striking intermediate structures that strongly support the conversion of single-membrane tubules into double-membrane and multilamellar structures by a process of membrane apposition, enwrapping, and fusion. Collectively, our work unravels the sequential appearance of distinct enterovirus-induced replication structures, elucidates their detailed 3-D architecture, and provides the basis for a model for their transformation during the course of infection. PMID:21972238
Siribumrungwong, Koopong; Cheewakidakarn, Julin; Tangtrakulwanich, Boonsin; Nimmaanrat, Sasikaan
2015-03-18
Poor postoperative pain control is frequently associated with complications and delayed discharge from a hospital. Preemptive analgesia is one of the methods suggested for reducing postoperative pain. Opioids are effective for pain control, but there known addictive properties make physicians cautious about using them. Parecoxib and ketorolac are potent non-opioid NSAIDs that are attractive alternative drugs to opioids to avoid opioid-related side effects. However, there are no good head-to-head comparisons between these two drugs in the aspect of preemptive analgesic effects in lumbar spinal fusion surgery. This study aimed to compare the efficacy in terms of postoperative pain control and safety of parecoxib with ketorolac as preemptive analgesia in posterior lumbar spinal fusion patients. A prospective, double-blinded randomized controlled trial was carried out in patients undergoing posterior lumbar spinal fusion, who were randomized into 3 groups (n = 32). Parecoxib, ketorolac or a placebo was given to each patient via injection around 30 minutes prior to incision. The efficacy of postoperative pain control was assessed by a verbal numerical rating score (0-10). And various postoperative things were monitored for analysis, such as total opioid consumption, complications, and estimated blood loss. Both the ketorolac and parecoxib groups showed significantly better early postoperative pain reduction at the postanesthesia care unit (PACU) than the control group (p < 0.05). There were no differences between the pain scores of ketorolac and parecoxib at any time points. Complications and bleeding were not significantly different between all three groups. Preemptive analgesia using both ketorolac and parecoxib showed a significantly better early postoperative pain control in the PACU than the control group in patients undergoing lumbar spinal fusion. ClinicalTrials.gov NCT01859585. Registered 15 May 2013.
Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases.
Tulay, Emine Elif; Metin, Barış; Tarhan, Nevzat; Arıkan, Mehmet Kemal
2018-06-01
Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers-especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification-especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.
Kinetic studies of ICF implosions
Kagan, Grigory; Herrmann, H. W.; Kim, Y. -H.; ...
2016-05-26
Here, kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.
NASA Astrophysics Data System (ADS)
Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.
2016-05-01
Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.
Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang
2013-09-01
The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.
Breakup and n -transfer effects on the fusion reactions Li,76+Sn,119120 around the Coulomb barrier
NASA Astrophysics Data System (ADS)
Fisichella, M.; Shotter, A. C.; Figuera, P.; Lubian, J.; Di Pietro, A.; Fernandez-Garcia, J. P.; Ferreira, J. L.; Lattuada, M.; Lotti, P.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.
2017-03-01
This paper presents values of complete fusion cross sections deduced from activation measurements for the reactions 6Li+120Sn and 7Li+119Sn , and for a projectile energy range from 17.5 to 28 MeV in the center-of-mass system. A new deconvolution analysis technique is used to link the basic activation data to the actual fusion excitation function. The complete fusion cross sections above the barrier are suppressed by about 70 % and 85 % with respect to the universal fusion function, used as a standard reference, in the 6Li and 7Li induced reactions, respectively. From a comparison of the excitation functions of the two systems at energies below the barrier, no significant differences can be observed, despite the two systems have different n -transfer Q values. This observation is supported by the results of coupled reaction channels (CRC) calculations.
Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling.
Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi
2017-03-01
To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g -1 , approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g -1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.
Levaot, Noam; Ottolenghi, Aner; Mann, Mati; Guterman-Ram, Gali; Kam, Zvi; Geiger, Benjamin
2015-10-01
Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Tengfei; Bourgeois, Jean-Pierre; Celli, Susanna; Glacial, Fabienne; Le Sourd, Anne-Marie; Mecheri, Salah; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Rougeon, François; Lafaye, Pierre
2012-10-01
Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention.
Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M
2007-07-15
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.
Knee arthrodesis using a short locked intramedullary nail. A new technique.
Cheng, S L; Gross, A E
1995-01-01
This article reports on the use of a new intramedullary nail designed specifically for fixation of knee fusions. The nail is a short locked stainless steel nail that is inserted through a single anterior knee incision and uses an outrigger targeting rod to guide the insertion of the locking screws. The successful use of this technique is illustrated in two cases. The advantages of this nail compared with previously reported techniques of fixation for knee fusions are that the short locked nail avoids the second incision required for the insertion of long knee fusion nails, the bulkiness of the double plating technique in the relatively subcutaneous anterior knee area, and the difficulties inherent with the prolonged use of pins for external fixation.
NASA Astrophysics Data System (ADS)
Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.
2018-04-01
Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, Ph., E-mail: philippe.roche@univ-montp2.fr
We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.
Epidural Abscess: A Propensity Analysis of Surgical Treatment Strategies.
Chaker, Anisse N; Bhimani, Abhiraj D; Esfahani, Darian R; Rosinski, Clayton L; Geever, Brett W; Patel, Akash S; Hobbs, Jonathan G; Burch, Taylor G; Patel, Saavan; Mehta, Ankit I
2018-06-18
Observational analysis of retrospectively collected data. A retrospective study was performed in order to compare the surgical profile of risk factors and perioperative complications for laminectomy and laminectomy with fusion procedures in the treatment of SEA. Spinal epidural abscess (SEA) is a highly morbid condition typically presenting with back pain, fever, and neurologic deficits. Posterior fusion has been used to supplement traditional laminectomy of SEA to improve spinal stability. At present, the ideal surgical strategy - laminectomy with or without fusion - remains elusive. 30-day outcomes such as reoperation and readmission following laminectomy and laminectomy with fusion in patients with SEA were investigated utilizing the American College of Surgeons National Quality Improvement Program database. Demographics and clinical risk factors were collected, and propensity matching was performed to account for differences in risk profiles between the groups. 738 patients were studied (608 laminectomy alone, 130 fusion). The fusion population was in worse health. The fusion population experienced significantly greater rate of return to the operating room (odds ratio (OR) 1.892), with the difference primarily accounted for by cervical spine operations. Additionally, fusion patients had significantly greater rates of blood transfusion. Infection was the most common reason for reoperation in both populations. Both laminectomy and laminectomy with fusion effectively treat SEA, but addition of fusion is associated with significantly higher rates of transfusion and perioperative return to the operating room. In operative situations where either procedure is reasonable, surgeons should consider that fusion nearly doubles the odds of reoperation in the short-term, and weigh this risk against the benefit of added stability. 3.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion.
Borkowski, Piotr
2017-06-20
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship's current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion
Borkowski, Piotr
2017-01-01
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship’s current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships. PMID:28632176
Electron molecular ion recombination: product excitation and fragmentation.
Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M
2006-01-01
Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.
Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.
2011-05-01
Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.
Substrate Specificity of Human Protein Arginine Methyltransferase 7 (PRMT7)
Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G.
2014-01-01
Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-NG-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. PMID:25294873
Yu, Ai-Ping; Shi, Bing-Xing; Dong, Chun-Na; Jiang, Zhong-Hua; Wu, Zu-Ze
2005-07-01
To combine the fibrinolytic with anticoagulant activities for therapy of thrombotic deseases, a fusion protein made of tissue-type plasminogen activator (t-PA) and hirudin was constructed and expressed in chia pastoris. To improve thrombolytic properties of t-PA and reduce bleeding side effect of hirudin, FXa-recognition sequence was introduced between t-PA and hirudin molecules.The anticoagulant activity of hirudin can be target-released through cleavage of FXa at thrombus site. t-PA gene and hirudin gene with FXa-recognition sequence at its 5'-terminal were obtained by RT-PCR and PCR respectively. The fusion protein gene was cloned into plasmid pIC9K and electroporated into the genome of Pichia pastoris GS115. The expression of fusion protein was induced by methanol in shaking flask and secreted into the culture medium. Two forms of the fusion protein, single-chain and double-chain linked by a disulfide bond (due to the cleveage of t-PA at Arg275-Ile276), were obtained. The intact fusion protein retained the fibrinolytic activity but lacked any anticoagulant activity. After cleavage by FXa, the fusion protein liberated intact free hirudin to exert its anticoagulant activity. So, the fusion protein is a bifunctional molecule having good prospect to develop into a new targeted therapeutic agent with reduced bleeding side effect for thrombotic diseases.
Ureter Injury as a Complication of Oblique Lumbar Interbody Fusion.
Lee, Hyeong-Jin; Kim, Jin-Sung; Ryu, Kyeong-Sik; Park, Choon Keun
2017-06-01
Oblique lumbar interbody fusion is a commonly used surgical method of achieving lumbar interbody fusion. There have been some reports about complications of oblique lumbar interbody fusion at the L2-L3 level. However, to our knowledge, there have been no reports about ureter injury during oblique lumbar interbody fusion. We report a case of ureter injury during oblique lumbar interbody fusion to share our experience. A 78-year-old male patient presented with a history of lower back pain and neurogenic intermittent claudication. He was diagnosed with spinal stenosis at L2-L3, L4-L5 level and spondylolisthesis at L4-L5 level. Symptoms were not improved after several months of medical treatments. Then, oblique lumbar interbody fusion was performed at L2-L3, L4-L5 level. During the surgery, anesthesiologist noticed hematuria. A retrourethrogram was performed immediately by urologist, and ureter injury was found. Ureteroureterostomy and double-J catheter insertion were performed. The patient was discharged 2 weeks after surgery without urologic or neurologic complications. At 2 months after surgery, an intravenous pyelogram was performed, which showed an intact ureter. Our study shows that a low threshold of suspicion of ureter injury and careful manipulation of retroperitoneal fat can be helpful to prevent ureter injury during oblique lumbar interbody fusion at the upper level. Copyright © 2017 Elsevier Inc. All rights reserved.
Carter Revises the Science Budget
ERIC Educational Resources Information Center
Science News, 1977
1977-01-01
Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)
Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.
Ganasala, Padma; Kumar, Vinod
2016-02-01
Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.
Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management
NASA Technical Reports Server (NTRS)
Volponi, Al
2005-01-01
Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the integration of data or information from multiple sources for the achievement of improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/ information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center, NASA Dryden Flight Research Center, and Pratt & Whitney have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work accomplished under this research contract.
Z-Pinch fusion-based nuclear propulsion
NASA Astrophysics Data System (ADS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.
2013-02-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.
Application of data fusion technology based on D-S evidence theory in fire detection
NASA Astrophysics Data System (ADS)
Cai, Zhishan; Chen, Musheng
2015-12-01
Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.
NASA Astrophysics Data System (ADS)
Kumar, B. Ramesh; Gangradey, R.
2012-11-01
Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.
NASA Astrophysics Data System (ADS)
Stanic, M.; Cassibry, J. T.; Adams, R. B.
2013-05-01
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.
Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.
James, Declan J; Khodthong, Chuenchanok; Kowalchyk, Judith A; Martin, Thomas F J
2008-07-28
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Li, Yanqing; Liu, Qian; Yao, Shouzhuo
2008-05-15
The cationic double-chained surfactant didodecyldimethylammonium bromide (DDAB) was used as pseudostationary phase (PSP) in micellar electrokinetic capillary chromatography (MEKC). Its performance on the three kinds of drugs, i.e., basic, acidic, and neutral drugs, was systematically investigated. Nicotine, cotinine, caffeine, lidocaine, and procaine were selected as the model basic drugs. Good baseline separation and high efficiency were obtained under the optimal separation condition that consisted of 50mM phosphate (pH 4.0) and 0.08 mM DDAB. Three basic phenylenediamine isomers can also be well separated with DDAB in buffer. In addition, DDAB can form cationic bilayer on the capillary wall, thus the wall adsorption of basic analytes was greatly suppressed. Compared with commonly used CTAB, the separation of basic drugs was significantly improved with a much lower amount of DDAB present in the buffer. The DDAB-involved MEKC also showed superiority to CTAB upon the separation of acidic drugs, amoxicillin and ampicillin. In the case of neutral compounds, a good separation of resorcinol, 1-naphthol and 2-naphthol was achieved with 0.1mM DDAB and 30% (v/v) acetonitrile (ACN) present in buffer. Hence, it was concluded that the double-chained cationic surfactant DDAB can be a good substitute for traditional single-chained surfactant CTAB in MEKC.
Concept of DT fuel cycle for a fusion neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.
2015-03-15
A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of thismore » device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)« less
Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P
2007-06-01
Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.
Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment
2007-04-01
the original proposal, we described approaches for displaying the basic Argos and Dkk scaffolds as pIII fusions on M13 phage , so that we could...deal of effort into displaying Argos and other relevant proteins as pIII fusions on M13 phage (Task 2a). This has been technically very challenging... display function Argos on the surface of phage M13 , requiring a change in experimental strategy • To replace the phage display , we have established
Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236
Shi, Benlong; Mao, Saihu; Xu, Leilei; Sun, Xu; Liu, Zhen; Zhu, Zezhang; Lam, Tsz Ping; Cheng, Jack Cy; Ng, Bobby; Qiu, Yong
2016-07-04
Height gain is a common beneficial consequence following correction surgery in adolescent idiopathic scoliosis (AIS), yet little is known concerning factors favoring regain of the lost vertical spinal height (SH) through posterior spinal fusion. A consecutive series of AIS patients from February 2013 to August 2015 were reviewed. Surgical changes in SH (ΔSH), as well as the multiple coronal and sagittal deformity parameters were measured and correlated. Factors associated with ΔSH were identified through Pearson correlation analysis and multivariate regression analysis. A total of 172 single curve and 104 double curve patients were reviewed. The ΔSH averaged 2.5 ± 0.9 cm in single curve group and 2.9 ± 1.0 cm in double curve group. The multivariate regression analysis revealed the following pre-operative variables contributed significantly to ΔSH: pre-op Cobb angle, pre-op TK (single curve group only), pre-op GK (double curve group only) and pre-op LL (double curve group only) (p < 0.05). Thus change in height (in cm) = 0.044 × (pre-op Cobb angle) + 0.012 × (pre-op TK) (Single curve, adjusted R(2) = 0.549) or 0.923 + 0.021 × (pre-op Cobb angle1) + 0.028 × (pre-op Cobb angle2) + 0.015 × (pre-op GK)-0.012 × (pre-op LL) (Double curve, adjusted R(2) = 0.563). Severer pre-operative coronal Cobb angle and greater sagittal curves were beneficial factors favoring more contribution to the surgical lengthening effect in vertical spinal height in AIS.
Note: Readout of a micromechanical magnetometer for the ITER fusion reactor.
Rimminen, H; Kyynäräinen, J
2013-05-01
We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.
Heidarzadeh, Akbar; Saeid, Tohid
2015-12-01
Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.
Heidarzadeh, Akbar; Saeid, Tohid
2015-01-01
Conventional fusion welding of brass (Cu–Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints. PMID:26793745
Thomson scattering at general fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, W. C., E-mail: william.young@generalfusion.com; Parfeniuk, D.
2016-11-15
This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 10{sup 20} m{sup −3}. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.
Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P
2018-05-28
Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias
2016-01-01
ABSTRACT The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427
Spinal fusion-hardware construct: Basic concepts and imaging review
Nouh, Mohamed Ragab
2012-01-01
The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative options used in spinal fixation and fusion procedures, especially in his or her institute. This is critical in evaluating the position of implants and potential complications associated with the operative approaches and spinal fixation devices used. Thus, the radiologist can play an important role in patient care and outcome. This review outlines the advantages and disadvantages of commonly used imaging methods and reports on the best yield for each modality and how to overcome the problematic issues associated with the presence of metallic hardware during imaging. Baseline radiographs are essential as they are the baseline point for evaluation of future studies should patients develop symptoms suggesting possible complications. They may justify further imaging workup with computed tomography, magnetic resonance and/or nuclear medicine studies as the evaluation of a patient with a spinal implant involves a multi-modality approach. This review describes imaging features of potential complications associated with spinal fusion surgery as well as the instrumentation used. This basic knowledge aims to help radiologists approach everyday practice in clinical imaging. PMID:22761979
Ruan, Xiaosai; Robertson, Donald C.; Nataro, James P.; Clements, John D.
2014-01-01
A long-standing challenge in developing vaccines against enterotoxigenic Escherichia coli (ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14H were the top toxoids in inducing anti-STa antibodies. In vitro neutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development. PMID:24549325
Takamatsu, Daisuke; Bensing, Barbara A.; Sullam, Paul M.
2004-01-01
Platelet binding by Streptococcus gordonii strain M99 is mediated predominantly by the cell surface glycoprotein GspB. This adhesin consists of a putative N-terminal signal peptide, two serine-rich regions (SRR1 and SRR2), a basic region between SRR1 and SRR2, and a C-terminal cell wall anchoring domain. The glycosylation of GspB is mediated at least in part by Gly and Nss, which are encoded in the secY2A2 locus immediately downstream of gspB. This region also encodes two proteins (Gtf and Orf4) that are required for the expression of GspB but whose functions have not been delineated. In this study, we further characterized the roles of Gly, Nss, Gtf, and Orf4 by investigating the expression and glycosylation of a series of glutathione S-transferase-GspB fusion proteins in M99 and in gly, nss, gtf, and orf4 mutants. Compared with fusion proteins expressed in the wild-type background, fusion proteins expressed in the mutant strain backgrounds showed altered electrophoretic mobility. In addition, the fusion proteins formed insoluble aggregates in protoplasts of the gtf and orf4 mutants. Glycan detection and lectin blot analysis revealed that SRR1 and SRR2 were glycosylated but that the basic region was unmodified. When the fusion protein was expressed in Escherichia coli, glycosylation of this protein was observed only in the presence of both gtf and orf4. These results demonstrate that Gly, Nss, Gtf, and Orf4 are all involved in the intracellular glycosylation of SRRs. Moreover, Gtf and Orf4 are essential for glycosylation, which in turn is important for the solubility of GspB. PMID:15489421
Development of an Information Fusion System for Engine Diagnostics and Health Management
NASA Technical Reports Server (NTRS)
Volponi, Allan J.; Brotherton, Tom; Luppold, Robert; Simon, Donald L.
2004-01-01
Aircraft gas-turbine engine data are available from a variety of sources including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data Fusion is the integration of data or information from multiple sources, to achieve improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This paper describes a basic PHM Data Fusion architecture being developed in alignment with the NASA C17 Propulsion Health Management (PHM) Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and Pratt & Whitney (P&W) have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion as applied to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This paper will provide a broad overview of this work, discuss some of the methodologies employed and give some illustrative examples.
Robust multi-atlas label propagation by deep sparse representation
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2016-01-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods. PMID:27942077
Robust multi-atlas label propagation by deep sparse representation.
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2017-03-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods.
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
An ellipsoidal calculus based on propagation and fusion.
Ros, L; Sabater, A; Thomas, F
2002-01-01
Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.
Double Resummation for Higgs Production
NASA Astrophysics Data System (ADS)
Bonvini, Marco; Marzani, Simone
2018-05-01
We present the first double-resummed prediction of the inclusive cross section for the main Higgs production channel in proton-proton collisions, namely, gluon fusion. Our calculation incorporates to all orders in perturbation theory two distinct towers of logarithmic corrections which are enhanced, respectively, at threshold, i.e., large x , and in the high-energy limit, i.e., small x . Large-x logarithms are resummed to next-to-next-to-next-to-leading logarithmic accuracy, while small-x ones to leading logarithmic accuracy. The double-resummed cross section is furthermore matched to the state-of-the-art fixed-order prediction at next-to-next-to-next-to-leading accuracy. We find that double resummation corrects the Higgs production rate by 2% at the currently explored center-of-mass energy of 13 TeV and its impact reaches 10% at future circular colliders at 100 TeV.
LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion
Shemer, Gidi; Podbilewicz, Benjamin
2002-01-01
General mechanisms by which Hox genes establish cell fates are known. However, a few Hox effectors mediating cell behaviors have been identified. Here we found the first effector of LIN-39/HoxD4/Dfd in Caenorhabditis elegans. In specific vulval precursor cells (VPCs), LIN-39 represses early and late expression of EFF-1, a membrane protein essential for cell fusion. Repression of eff-1 is also achieved by the activity of CEH-20/Exd/Pbx, a known cofactor of Hox proteins. Unfused VPCs in lin-39(−);eff-1(−) double mutants fail to divide but migrate, executing vulval fates. Thus, lin-39 is essential for inhibition of EFF-1-dependent cell fusion and stimulation of cell proliferation during vulva formation. Supplemental material is available at http://www.genesdev.org. PMID:12502736
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive actionmore » plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'« less
Song, Deyong; Chen, Zhong; Song, Dewei; Li, Zaixue
2015-11-01
Spondylolytic defects involving multiple vertebral levels are rare. It is reported that only 1.48% of patients with back pain were diagnosed with multi-level spondylolysis. The incidence of multiple-level spondylolisthesis is even rarer, so far there have been few reports of multi-level isthmic spondylolisthesis in the literature. The aim of this study is to evaluate clinical and radiological outcomes of two different fusion techniques for treatment of double-level isthmic spondylolisthesis. Fifty-four patients who were managed surgically for treatment of double-level symptomatic isthmic spondylolisthesis were included in this study. Between May 2004 and September 2012, 29 consecutive patients underwent posterior lumbar interbody fusion (PLIF) with autogenous bone chips (group I) at Foshan Hospital of Traditional Chinese Medicine, Guangdong, China. Between March 2005 and December 2013, 25 consecutive patients underwent PLIF with cage (group II) at Zhujiang Hospital of Southern Medical University, Guangdong, China. The mean follow-up periods were 27.2 and 26.8 months, respectively. The mean VAS scores of back and leg pain significantly decreased from 7.2 to 2.2 and 5.8 to 2.1 in the group I and from 7.0 to 1.9 and 6.1 to 1.8 in the group II, respectively. In the group I, mean ODI scores improved significantly from 54% to 14.2% and, in the group II, from 60% to 12.6%. In both groups, VAS and ODI scores significantly changed from pre- to postoperatively (p<0.001), but postoperative outcome between groups was statistically not significant. Solid union was observed in 27 of 29 patients (89.6%) in the group I and in 22 of 25 patients (88%) in the group II, without statistically significant differences (p>0.05). In both groups, changes in disc height, degree of listhesis, and whole lumbar lordosis between the pre- and postoperative periods were significant. Clinical and functional outcomes demonstrate no significant differences between groups in treating back and leg pain of adult patients with double-level isthmic spondylolisthesis. Copyright © 2015 Elsevier B.V. All rights reserved.
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...
Mizuochi, Hitoshi; Matsuzaki, Hironori; Moue, Takehiko; Okazaki, Keiichi
2009-03-01
Most Liliaceae plants have the tetrasporic Fritillaria-type embryo sac and normally form diploid embryos and pentaploid endosperms derived from a 4:1 maternal-to-paternal genome ratio (4m:1p) after double fertilization. Here we characterize embryo sac and endosperm formation in Tulipa spp. of Liliaceae. Chromosome analysis using seeds derived from 2x x 2x crosses of Tulipa gesneriana (2n = 2x = 24) identified diploid chromosome number in the endosperm. Similarly, flow cytometric analysis confirmed diploid endosperm formation in T. gesneriana, T. fosteriana (2n = 2x = 24) and T. greigii (2n = 2x = 24). To further study the possible mechanism of diploid endosperm formation, we made interploidy crosses of triploid (2n = 3x = 36) x diploid in which aneuploid seeds with various chromosome numbers (2n = 25-36) were produced. Again, flow cytometric analysis confirmed the same ploidy level in both embryos and endosperms at all aneuploidy levels, suggesting that only a single haploid polar nucleus contributes to endosperm formation at fertilization. Histological observation further confirmed the physical separation of two polar nuclei by a large vacuole in the Fritillaria-type embryo sac of T. gesneriana that appeared to prevent the fusion of the two polar nuclei that originated at the micropylar and chalazal ends before fertilization. Taken together, these results indicate that diploid endosperms (1m:1p) are normally formed in Tulipa spp. by fusion of the micropylar polar nucleus (n) and a spermatid (n) but not by normal triple fusion. We also show that tulip endosperm partially overcomes the triploid block mechanism that occurs in interploidy crosses. Based on these observations, the possible role of triple nuclear fusion in double fertilization is discussed.
Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels
NASA Astrophysics Data System (ADS)
Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen
2018-02-01
The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.
Hadi, B A; Al Ramadani, R; Daas, R; Naylor, I; Zelkó, R
2010-08-01
This study is aimed at conducting a program for two different anesthetic methods used during a spinal fusion surgery to ensure better intra-operative hemodynamic stability and post-operative pain control. A prospective, randomized, double blind study in patients scheduled for spinal fusion surgery, who were randomly allocated to two groups, G1 and G2, (n = 15 per group), class I-II ASA, was carried out. Both groups received pre-operatively midazolam, followed intra-operatively by propofol, sevoflurane, atracurium, and either remifentanil infusion 0.2 microg/kg/min (G1), or the same dose of remifentanil infusion and low doses of ketamine infusion 1 microg/kg/min (G2) anesthetics, antidote medication and post-operative morphine doses. HR, MAP, vital signs, surgical bleeding, urine output, duration of surgery and duration of anesthesia were recorded. In a 24-h recovery period in a post-anesthesia care unit (PACU) the recovery time, the first pain score and analgesic requirements were measured. Intra-operative HR and arterial BP were significantly less (p < 0.05) in G1 as compared to G2. In the PACU the first pain scores were significantly less (p < 0.05) in G2 than in G1. The time for the first patient analgesia demand dose was greater in G2, as also morphine consumption which was greater in G1 than G2 (p < 0.05). Other results were the same. None of the patients had any adverse drug reaction. Adding low doses of ketamine hydrochloride could be a routine therapy to improve the hemodynamic stability and reduce the post-operative morphine consumption during spinal fusion surgery.
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred
2017-10-01
To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.
Preliminary consideration of CFETR ITER-like case diagnostic system.
Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X
2016-11-01
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
Bai, D Y; Zhang, H P; Zhong, S; Suo, W H; Gao, D H; Ding, Y; Tu, J H
2016-12-23
Objective: To investigate the clinical application value of combined detection of ALK fusion gene and c-ros oncogene 1 receptor tyrosine kinase (ROS1) fusion gene in non-small cell lung cancer (NSCLC) using real-time fluorescent PCR. Methods: A kit for combined detection of ALK fusion gene and ROS1 fusion gene based on fluorescent PCR was used to simultaneously detect the two fusion genes in 302 cases of NSCLC specimens. The results were validated through Sanger sequencing. The consistency of the two detection methods was analyzed. Results: All 302 cases of NSCLC specimens were successfully analyzed through fluorescent PCR (302/302). 12 cases (4.0%) were found to contain ALK fusion gene, including 3 cases with ALK-M1, 3 with ALK-M2, 3 with ALK-M3, 1 with ALK-M4, and 2 with ALK-M6 fusion gene.12 cases (4.0%) were found to contain ROS1 fusion gene, including 1 case with ROS1-M7, 8 cases with ROS1-M8, 1 case with ROS1-M12, 1 case with ROS1-M14, and 1 case with double-positive ROS1-M3 and ROS1-M8 fusion genes. The total detection rate of ALK fusion gene and ROS1 fusion gene was 7.9% (24/302) and 278 cases showed to be negative for ALK fusion gene and ROS1 fusion gene. The successful detection rates for Sanger DNA sequencing were also 100%. The positive, negative and total coincidence rates obtained by real-time fluorescent PCR and by Sanger DNA sequencing were all 100%. Conclusions: The results of Sanger DNA sequencing demonstrate that the real-time fluorescent PCR assay is equally effective in detecting ALK and ROS1 fusion genes in NSCLC tissues. Furthermore, real-time fluorescent PCR assay can be used to detect trace ALK and ROS1 fusion gene simultaneously in tiny samples, and can save time and avoid repeated sampling. It is worthy of recommendation as a rapid and reliable detection technique.
The effect of multispectral image fusion enhancement on human efficiency.
Bittner, Jennifer L; Schill, M Trent; Mohd-Zaid, Fairul; Blaha, Leslie M
2017-01-01
The visual system can be highly influenced by changes to visual presentation. Thus, numerous techniques have been developed to augment imagery in an attempt to improve human perception. The current paper examines the potential impact of one such enhancement, multispectral image fusion, where imagery captured in varying spectral bands (e.g., visible, thermal, night vision) is algorithmically combined to produce an output to strengthen visual perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for testing the impact of image fusion over the varying aspects surrounding its implementation (e.g., stimulus content, task) and (2) examine the effectiveness of fusion on human information processing efficiency in a basic application. We used a set of rotated Landolt C images captured with a number of individual sensor cameras and combined across seven traditional fusion algorithms (e.g., Laplacian pyramid, principal component analysis, averaging) in a 1-of-8 orientation task. We found that, contrary to the idea of fused imagery always producing a greater impact on perception, single-band imagery can be just as influential. Additionally, efficiency data were shown to fluctuate based on sensor combination instead of fusion algorithm, suggesting the need for examining multiple factors to determine the success of image fusion. Our use of ideal observer analysis, a popular technique from the vision sciences, provides not only a standard for testing fusion in direct relation to the visual system but also allows for comparable examination of fusion across its associated problem space of application.
Momeni, Saba; Pourghassem, Hossein
2014-08-01
Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.
Pionic retardation effects in two-pion-exchange three-nucleon forces
NASA Astrophysics Data System (ADS)
Coon, S. A.; Friar, J. L.
1986-09-01
Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v/c)2 relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and in the specification of the choice of ambiguity parameters in the latter potential.
Hadronic vacuum polarization in true muonium
NASA Astrophysics Data System (ADS)
Lamm, Henry
2017-01-01
In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.
Inertial Fusion Power Plant Concept of Operations and Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anklam, T.; Knutson, B.; Dunne, A. M.
2015-01-15
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less
Inertial fusion power plant concept of operations and maintenance
NASA Astrophysics Data System (ADS)
Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek
2015-02-01
Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
El-Sharkawi, Mohammad Mostafa; Said, Galal Zaki
2012-02-01
The purpose of this study was to present our experience in treating dorso-lumbar tuberculosis by one-stage posterior circumferential fusion and to compare this group with a historical group treated by anterior debridement followed by postero-lateral fusion and stabilization. Between 2003 and 2008, 32 patients with active spinal tuberculosis were treated by one-stage posterior circumferential fusion and prospectively followed for a minimum of two years. Pain severity was measured using Visual Analogue Scale (VAS). Neurological assessment was done using the Frankel scale. The operative data, clinical, radiological, and functional outcomes were also compared to a similar group of 25 patients treated with anterior debridement and fusion, followed 10-14 days later by posterior stabilization and postero-lateral fusion. The mean operative time and duration of hospital stay were significantly longer in the two-stage group. The mean estimated blood loss was also larger, though insignificantly, in the two-stage group. The incidence of complications was significantly lower in the one-stage group. At final follow-up, all 34 patients with pre-operative neurological deficits showed at least one Frankel grade of neurological improvement, all 57 patients showed significant improvement of their VAS back pain score, the mean kyphotic angle has significantly improved, all patients achieved solid fusion and 43 (75.4%) patients returned to their pre-disease activity level or work. Instrumented circumferential fusion, whether in one or two stages, is an effective treatment for dorso-lumbar tuberculosis. One-stage surgery, however, is advantageous because it has lower complication rate, shorter hospital stay, less operative time and blood loss.
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing
2015-04-23
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
NASA Astrophysics Data System (ADS)
Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.
1996-04-01
Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai
2015-01-01
To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615
Soft x-ray streak camera for laser fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stradling, G.L.
This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV aremore » also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.« less
NASA Astrophysics Data System (ADS)
Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen
2014-02-01
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.
Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert
2014-02-01
In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating
Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane
1986-04-22
Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.
Lin, Chun-Yuan; Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.
Optimization of a bundle divertor for FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rothe, K.E.; Minkoff, M.
1982-01-01
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.
Zopiclone as a preoperative night hypnotic: a double-blind comparison with temazepam and placebo.
Whitehead, C; Sanders, L; Appadurai, I; Power, I; Rosen, M; Robinson, J
1994-04-01
We have examined the hypnotic effects of zopiclone 7.5 mg and temazepam 20 mg compared with placebo in a double-blind, randomized, clinical study of 60 patients on the night before operation. Evaluation was both subjective (visual analogue scales and a sleep questionnaire), to measure the quality of sleep, and objective (critical flicker fusion, object recall and paired associates tasks), to measure residual impairment. We found that zopiclone was an effective single-dose hypnotic with similar residual effects to the benzodiazepine and it may therefore provide a suitable alternative to benzodiazepines.
An analytical study of double bend achromat lattice.
Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D
2015-03-01
In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.
Localization of eosinophil granule major basic protein in paracoccidioidomycosis lesions.
Wagner, J M; Franco, M; Kephart, G M; Gleich, G J
1998-07-01
Paracoccidioidomycosis is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Although eosinophils have long been associated with the immune defense against helminths, the role of eosinophils in the immune response to fungal diseases is not as well studied. The eosinophil granule major basic protein is toxic to helminths and mammalian cells in vitro, and its release has been used as a marker of eosinophil localization and degranulation. To determine whether eosinophil infiltration and degranulation, as evidenced by the deposition of major basic protein, occur in lesions of P. brasiliensis, we used an immunofluorescence technique to localize the P. brasiliensis organisms and eosinophils and major basic protein. Initially, all tissues were stained with polyclonal antibody to major basic protein; subsequently, colocalization of major basic protein and P. brasiliensis by double staining with mouse and rabbit antibodies, respectively, was performed. Nine biopsy tissues from seven patients were analyzed. All nine biopsies showed infiltration of intact eosinophils using both the monoclonal and the polyclonal anti-major basic protein antibodies, along with the presence of P. brasiliensis. Furthermore, using the polyclonal anti-major basic protein antibody, nine of nine tissues showed extracellular major basic protein deposition (granular or diffuse fluorescence staining outside of intact eosinophils). The double staining procedure using the anti-major basic protein monoclonal antibody showed extracellular deposition in five of eight biopsies; in these five biopsies, approximately 60% of the areas containing P. brasiliensis had extracellular major basic protein deposited on the organisms. These observations support the hypothesis that the eosinophil, through toxic granule proteins such as major basic protein, participates in the pathophysiology of paracoccidioidomycosis.
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...
Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia
2018-06-12
In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.
Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung
2006-09-01
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.
Nandre, Rahul; Ruan, Xiaosai; Duan, Qiangde; Zhang, Weiping
2016-11-02
Enterotoxigenic Escherichia coli (ETEC) bacteria producing heat-stable toxin (STa) and/or heat-labile toxin (LT) are among top causes of children's diarrhea and travelers' diarrhea. Currently no vaccines are available for ETEC associated diarrhea. A major challenge in developing ETEC vaccines is the inability to stimulate protective antibodies against the key STa toxin which is potently toxic and also poorly immunogenic. A recent study suggested toxoid fusion 3xSTa N12S -dmLT, which consists of a monomer LT toxoid (LT R192G/L211A ) and three copies of STa toxoid STa N12S , may represent an optimal immunogen inducing neutralizing antibodies against STa toxin [IAI 2014, 82(5):1823-32]. In this study, we immunized mice with this fusion protein following a different parenteral route and using different adjuvants to further characterize immunogenicity of this toxoid fusion. Data from this study showed that 3xSTa N12S -dmLT toxoid fusion induced neutralizing anti-STa antibodies in the mice following subcutaneous immunization, as effectively as in the mice under intraperitoneal route. Data also indicated that double mutant LT (dmLT) can be an effective adjuvant for this toxoid fusion in mice subcutaneous immunization. Results from this study affirmed that toxoid fusion 3xSTa N12S -dmLT induces neutralizing antibodies against STa toxin, suggesting this toxoid fusion is potentially a promising immunogen for ETEC vaccine development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
Pionic retardation effects in two-pion-exchange three-nucleon forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coon, S.A.; Friar, J.L.
1986-09-01
Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v-italic/c-italic)/sup 2/ relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and inmore » the specification of the choice of ambiguity parameters in the latter potential.« less
Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system
NASA Astrophysics Data System (ADS)
Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello
2018-01-01
An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.
Vorticity and Λ polarization in baryon rich matter
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin
2018-02-01
The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of
Polarization in heavy-ion collisions: magnetic field and vorticity
NASA Astrophysics Data System (ADS)
Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.
2017-12-01
The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.
Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun
2014-10-15
Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.
Structured pedigree information for distributed fusion systems
NASA Astrophysics Data System (ADS)
Arambel, Pablo O.
2008-04-01
One of the most critical challenges in distributed data fusion is the avoidance of information double counting (also called "data incest" or "rumor propagation"). This occurs when a node in a network incorporates information into an estimate - e.g. the position of an object - and the estimate is injected into the network. Other nodes fuse this estimate with their own estimates, and continue to propagate estimates through the network. When the first node receives a fused estimate from the network, it does not know if it already contains its own contributions or not. Since the correlation between its own estimate and the estimate received from the network is not known, the node can not fuse the estimates in an optimal way. If it assumes that both estimates are independent from each other, it unknowingly double counts the information that has already being used to obtain the two estimates. This leads to overoptimistic error covariance matrices. If the double-counting is not kept under control, it may lead to serious performance degradation. Double counting can be avoided by propagating uniquely tagged raw measurements; however, that forces each node to process all the measurements and precludes the propagation of derived information. Another approach is to fuse the information using the Covariance Intersection (CI) equations, which maintain consistent estimates irrespective of the cross-correlation among estimates. However, CI does not exploit pedigree information of any kind. In this paper we present an approach that propagates multiple covariance matrices, one for each uncorrelated source in the network. This is a way to compress the pedigree information and avoids the need to propagate raw measurements. The approach uses a generalized version of the Split CI to fuse different estimates with appropriate weights to guarantee the consistency of the estimates.
Krizek, Beth A.
2015-01-01
AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is shown that AIL5 and AIL7 also act in a partially redundant manner with ANT. The results demonstrate that AIL genes exhibit unequal genetic redundancy with roles for AIL5, AIL6, and AIL7 only revealed in the absence of ANT function. ant ail5 and ant ail7 double mutant flowers show alterations in floral organ positioning and growth, sepal fusion, and reductions in petal number. In ant ail5, petals are often replaced by filaments or dramatically reduced in size. ant ail7 double mutants produce increased numbers of carpels, which have defects in valve fusion and a loss of apical tissues. The distinct phenotypes of ant ail5, ant ail7 and the previously characterized ant ail6 indicate that AIL5, AIL6, and AIL7 make unique contributions to flower development. These distinct roles are also supported by genetic analyses of ant ail triple mutants. While ant ail5 ail6 triple mutants closely resemble ant ail6 double mutants, ant ail5 ail7 triple mutants exhibit more severe deviations from the wild type than either ant ail5 or ant ail7 double mutants. Furthermore, it is shown that AIL5, AIL6, and AIL7 act in a dose dependent manners in ant and other mutant backgrounds. PMID:25956884
Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis
USDA-ARS?s Scientific Manuscript database
As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cell...
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Chen, Ying
2014-05-01
A multimodal biometric system has been considered a promising technique to overcome the defects of unimodal biometric systems. We have introduced a fusion scheme to gain a better understanding and fusion method for a face-iris-fingerprint multimodal biometric system. In our case, we use particle swarm optimization to train a set of adaptive Gabor filters in order to achieve the proper Gabor basic functions for each modality. For a closer analysis of texture information, two different local Gabor features for each modality are produced by the corresponding Gabor coefficients. Next, all matching scores of the two Gabor features for each modality are projected to a single-scalar score via a trained, supported, vector regression model for a final decision. A large-scale dataset is formed to validate the proposed scheme using the Facial Recognition Technology database-fafb and CASIA-V3-Interval together with FVC2004-DB2a datasets. The experimental results demonstrate that as well as achieving further powerful local Gabor features of multimodalities and obtaining better recognition performance by their fusion strategy, our architecture also outperforms some state-of-the-art individual methods and other fusion approaches for face-iris-fingerprint multimodal biometric systems.
Design and implementation of a prototype micropositioning and fusion of optical fibers
NASA Astrophysics Data System (ADS)
Vega, Fabio; Torres, Cesar; Mattos, Lorenzo
2011-09-01
We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.
Kiani, Ali Asghar; Shahsavar, Farhad; Gorji, Mojtaba; Ahmadi, Kolsoum; Nazarabad, Vahideh Heydari; Bahmani, Banafsheh
2016-01-01
Chronic myelogenous leukemia (CML) is a chronic malignancy of myeloid linage associated with a significant increase in granulocytes in bone marrow and peripheral blood. CML diagnosis is based on detection of Philadelphia chromosome and "Abelson murine leukemia viral oncogene homolog" (ABL)-"breakpoint cluster region protein" fusions (ABL-BCR fusions). In this study, patients with CML morphology were studied according to ABL-BCR fusions and the relationship between the fusions and peripheral blood cell changes was examined. All patients suspected to chronic myeloproliferative disorders in Lorestan Province visiting subspecialist hematology clinics who were confirmed by oncologist were studied over a period of 5 years. After completing basic data questionnaire, blood samples were obtained with informed consent from the patients. Blood cell count and morphology were investigated and RNA was extracted from blood samples. cDNA was synthesized from RNA and ABL-BCR fusions including b3a2 and b2a2 (protein 210 kd or p210), e1a2 (protein 190 kdor p190), and e19a2 (protein 230 kdor p230) were studied by multiplex reverse transcription polymerase chain reaction method. Coexistence of e1a2 and b2a2 (p210/p190) fusions was also studied. The prevalence of mutations and their correlation with the blood parameters were statistically analyzed. Of 58 patients positive for ABL-BCR fusion, 18 (30.5%) had b2a2 fusion, 37 (62.71%) had b3a2 fusion and three (3.08%) had e1a2 fusion. Coexistence of e1a2 and b2a2 (p210/p190) was not observed. There was no significant correlation between ABL-BCR fusions and white blood cell count, platelet count, and hemoglobin concentration. The ABL-BCR fusions in Lorestan Province were similar to other studies in Iran, and b3a2 fusion had the highest prevalence in the studied patients studied.
Screening effects on 12C+12C fusion reaction
NASA Astrophysics Data System (ADS)
Koyuncu, F.; Soylu, A.
2018-05-01
One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)
Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.
Tsurudome, M; Ito, Y
2000-01-01
Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.
Villarreal, Ashley M.; Adamson, Steven W.; Browning, Rebecca E.; Khem Raj, B.C.; Sajid, Muhammad Sohail; Karim, Shahid
2013-01-01
Exocytosis involves membrane fusion between secretory vesicles and the plasma membrane. The Soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs) and their receptor proteins (SNAREs) interact to fuse vesicles with the membrane and trigger the release of their sialosecretome out of the tick salivary gland cells. In this study, we examined the functional significance of the Vti family of SNARE proteins of blood-feeding Amblyomma maculatum and A. americanum. Vti1A and Vti1B have been implicated in multiple functional roles in vesicle transport. QRT-PCR studies demonstrated that the highest transcriptional expression of vti1a and vti1b genes occurs in unfed salivary glands, suggesting that elevated secretory vesicle formation occurs prior to feeding but continues at low rates after blood feeding commences. Vti1A and Vti1B localize to the secretory vesicles in unfed tick salivary glands in immunofluorescence microscopy studies. Knockdown of vti1a and vti1b by RNA interference resulted in a significant decrease in the engorged tick weight compared to the control during prolonged blood-feeding on the host. RNA interference of vti1a or vti1b impaired oviposition and none of the ticks produced eggs masses. Surprisingly, the double knockdown did not produce a strong phenotype and ticks fed normally on the host and produced egg masses, suggesting a compensatory mechanism exists within the secretory system which may have been activated in the double knockdown. These results suggest an important functional role of the Vti family of SNARE proteins in tick blood feeding and ultimately oviposition. Understanding the basic functions of the Vti family of SNARE proteins in salivary glands may lead to better ways to prevent tick attachment and transmission of tick-borne diseases. PMID:23499931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moroz, P.E.
A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less
Abdullah, Nor Linda; Mohd-Zin, Siti W; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M
2017-01-01
Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2 tm1Jrui/+ Epha4 rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2 tm1Jrui/+ Epha4 rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.
Abdullah, Nor Linda; Mohd-Zin, Siti W.; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M.
2017-01-01
Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent. PMID:29312933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kai; The State Key Laboratory Breeding Base of Basic Science of Stomatology; Song, Yong
Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed thatmore » SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.« less
EDITORIAL: Message from the Editor
NASA Astrophysics Data System (ADS)
Schüller, F. C.
2005-01-01
The group of 25 articles published in this special issue of Nuclear Fusion aims to monitor the progress made with experiments on fusion physics that have been conducted worldwide up to the end of 2004. These articles are based on overview reports from the various experimental teams presented at the Fusion Energy Conference (FEC 2004). This conference was organized by the IAEA together with the Portuguese host organization CFN-IST and was held in Vilamoura, Portugal, in early November 2004. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion. Most teams have made use of this opportunity. Therefore this issue, which also includes four conference summaries, presents a reasonably complete picture of the progress made since FEC 2002 in Lyon. The articles are placed in the following sequence: Conference summaries Theory of magnetic confinement Experimental confinement, plasma-material interactions and innovative concepts Experiments on stability, energetic particles, waves and current drive Inertial confinement fusion Tokamaks Performance: JT-60U, JET, DIII-D, ASDEX-U, C-MOD Steady state/long pulse operation: Tore Supra, HT-7, TRIAM Spherical tokamaks: MAST, NSTX Tritium experiments: JET Diagnostics and heating methods: JET (diagnostics), T-10 (ECRH and diagnostics) and FTU (LHH + ECRH) New devices: HL-2A Small devices Alternative magnetic confinement concepts Stellarators: LHD, TJ-II Reversed field pinches: MST Inertial confinement Direct drive Heavy ion beam fusion Readers will also notice the supplementary issue of the journal (volume 45, issue 10A). This extra issue contains the 15-year overview report on progress in fusion research as written by the International Fusion Research Council (IFRC) under the editorial responsibility of the IFRC. Both issues together will give the interested reader a state-of-the-art picture of the progress in nuclear fusion research.
Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Haque, Q.
2018-01-01
The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.
Bolivar, Juan M; Nidetzky, Bernd
2012-06-01
D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya
Evaluation techniques and mechanical properties of silicon carbide composites (SiC⁄SiC composites) reinforced with highly crystalline fibers are reviewed for fusion applications. The SiC⁄SiC composites used were fabricated by means of the CVI method. The evaluation includes in-plane tensile strength by in-plane tensile test, transthickness tensile strength by transthickness tensile test and diametral compression test and shear strength by compression test using double-notched specimen. All tests were successfully conducted using small specimens for neutron irradiation experiment. As application technique, the novel tungsten(W) coating technique on SiC is reviewed. The W powder melted by high power lamp in a few seconds and formed coating on SiC. No thick reaction layers of WC and W5Si3, which are formed by the other coating methods, were formed by this method.
NASA Astrophysics Data System (ADS)
Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.
2013-08-01
The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.
ERIC Educational Resources Information Center
Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.
2015-01-01
A 9-month training experiment was conducted to evaluate the efficacy of highly and minimally guided discovery interventions targeting the add-1 rule (the sum of a number and one is the next number on the mental number list) and doubles relations (e.g., an everyday example of the double 5 + 5 is five fingers on the left hand and five fingers on the…
Protective interior wall and attaching means for a fusion reactor vacuum vessel
Phelps, R.D.; Upham, G.A.; Anderson, P.M.
1985-03-01
The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.
Imaging Characteristics in ALK Fusion-Positive Lung Adenocarcinomas by Using HRCT
Okumura, Sakae; Kuroda, Hiroaki; Uehara, Hirofumi; Mun, Mingyon; Takeuchi, Kengo; Nakagawa, Ken
2014-01-01
Objectives: We aimed to identify high-resolution computed tomography (HRCT) features useful to distinguish the anaplastic lymphoma kinase gene (ALK) fusion-positive and negative lung adenocarcinomas. Methods: We included 236 surgically resected adenocarcinoma lesions, which included 27 consecutive ALK fusion-positive (AP) lesions, 115 epidermal growth factor receptor mutation-positive lesions, and 94 double-negative lesions. HRCT parameters including size, air bronchograms, pleural indentation, spiculation, and tumor disappearance rate (TDR) were compared. In addition, prevalence of small lesions (≤20 mm) and solid lesions (TDR ≤20%) were compared. Results: AP lesions were significantly smaller and had lower TDR (%) than ALK fusion-negative (AN) lesions (tumor diameter: 20.7 mm ± 14.1 mm vs. 27.4 mm ± 13.8 mm, respectively, p <0.01; TDR: 22.8% ± 24.8% vs. 44.8% ± 33.2%, respectively, p <0.01). All AP lesions >20 mm (n = 7, 25.9%) showed a solid pattern. Among all small lesions, AP lesions had lower TDR and more frequent spiculation than AN lesions (p <0.01). Among solid lesions, AP lesions were smaller than AN lesions (p = 0.01). Conclusion: AP lung lesions were significantly smaller and had a lower TDR than AN lesions. Spiculation was more frequent in small lesions. Non-solid >20 mm lesions may be ALK fusion-negative. PMID:24899136
β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.
Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin
2016-08-02
Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.
Intensity-hue-saturation-based image fusion using iterative linear regression
NASA Astrophysics Data System (ADS)
Cetin, Mufit; Tepecik, Abdulkadir
2016-10-01
The image fusion process basically produces a high-resolution image by combining the superior features of a low-resolution spatial image and a high-resolution panchromatic image. Despite its common usage due to its fast computing capability and high sharpening ability, the intensity-hue-saturation (IHS) fusion method may cause some color distortions, especially when a large number of gray value differences exist among the images to be combined. This paper proposes a spatially adaptive IHS (SA-IHS) technique to avoid these distortions by automatically adjusting the exact spatial information to be injected into the multispectral image during the fusion process. The SA-IHS method essentially suppresses the effects of those pixels that cause the spectral distortions by assigning weaker weights to them and avoiding a large number of redundancies on the fused image. The experimental database consists of IKONOS images, and the experimental results both visually and statistically prove the enhancement of the proposed algorithm when compared with the several other IHS-like methods such as IHS, generalized IHS, fast IHS, and generalized adaptive IHS.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J
2008-10-01
Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.
Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device
NASA Astrophysics Data System (ADS)
Motojima, Osamu
2006-12-01
The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.
Decision-level fusion of SAR and IR sensor information for automatic target detection
NASA Astrophysics Data System (ADS)
Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon
2017-05-01
We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.
Evaluation of taste solutions by sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko
In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Fusion and fission phenomena for the soliton interactions in a plasma
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Wu, Xiao-Yu; Liu, Lei
2017-02-01
Investigation in this paper is given to a generalized (3 + 1) -dimensional variable-coefficient Kadomtsev-Petviashvili equation for a plasma. Via the bilinear form, the singular and double Wronskian soliton solutions are derived, respectively, under the different variable-coefficient constraints. Interactions between the two solitons are depicted, where the soliton fusion and fission phenomena are respectively pictured out, both for the velocity-unvarying and velocity-varying two solitons. Soliton velocity is related to the variable coefficients h( t), l ( t), q( t), m( t) and n( t), while the soliton amplitude is not affected by them, where h( t), l( t) and q( t) are the perturbed effects, m( t) and n( t) stand for the disturbed wave velocities along the transverse spatial coordinates.
[A case of diprosopus in the cat].
Aharon, D C; Wouda, W; van Weelden, E
1986-06-15
A case of diprosopus in a spontaneously delivered live-born kitten is reported. All facial components were completely duplicated. Fusion of the skulls had occurred in the temporal region; a single ear was present at the site of fusion. Additional defects were a cleft lip in one face and cleft palates in both faces. The cerebral hemispheres and arterior portions of the brain stem were completely duplicated, whereas the cerebellum and caudal brain stem were partially duplicated. The pathogenesis and aetiology are discussed. It is believed that disprosopus originates during the (pre)gastrulation stage of embryonic development, either by coalescence of two embryonic fields following a double process of gastrulation or by bifurcation of the axial mesoderm during a single gastrulation.
Hadron-rich cosmic-ray families detected by emulsion chamber.
NASA Astrophysics Data System (ADS)
Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.
1995-11-01
Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djalali, Chaden; Paolone, Michael; Weygand, Dennis
2014-09-01
Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less
The GMO Sumrule and the πNN Coupling Constant
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.
The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).
The mechanism of a nuclear pore assembly: a molecular biophysics view.
Kuvichkin, Vasily V
2011-06-01
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA-PC liposomes-Mg²⁺, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) < 100 nm in diameter, a "big" liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The "big" membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
Fission-suppressed fusion breeder on the thorium cycle and nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R. W.
2012-06-19
Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less
Definition of Ignition in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Christopherson, A. R.; Betti, R.
2017-10-01
Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =Eα
The Connection between Employee Basic Skills & Productivity. Workforce & Workplace Literacy Series.
ERIC Educational Resources Information Center
BCEL Brief, 1993
1993-01-01
The experience of a number of specific local workplace programs indicates a definite connection between the provision of employee basic skills programs and increased worker productivity. One Tennessee company, for example, reports a 95 percent drop in costs resulting from worker mistakes and a doubling of worker productivity since the company…
Tunable and Reconfigurable Optical Negative-Index Materials with Low Losses
2012-01-21
to study metric signature transitions and the cosmological “Big Bang”. • A theory for basic nonlinear optical processes in NIMs and in double...h-MMs) can be used to study metric signature transitions and the cosmological “Big Bang”. • A theory for basic nonlinear optical processes in NIMs
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
NASA Astrophysics Data System (ADS)
Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling
2017-05-01
To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
Fusing Panchromatic and SWIR Bands Based on Cnn - a Preliminary Study Over WORLDVIEW-3 Datasets
NASA Astrophysics Data System (ADS)
Guo, M.; Ma, H.; Bao, Y.; Wang, L.
2018-04-01
The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpening method for the fusion of PAN and SWIR (short-wave infrared) bands, whose spectral coverages are not overlapping. This problem is addressed with a convolutional neural network (CNN), which is trained by WorldView-3 dataset. CNN can learn the complex relationship among bands, and thus alleviate spectral distortion. Consequently, in our network, we use the simple three-layer basic architecture with 16 × 16 kernels to conduct the experiment. Every layer use different receptive field. The first two layers compute 512 feature maps by using the 16 × 16 and 1 × 1 receptive field respectively and the third layer with a 8 × 8 receptive field. The fusion results are optimized by continuous training. As for assessment, four evaluation indexes including Entropy, CC, SAM and UIQI are selected built on subjective visual effect and quantitative evaluation. The preliminary experimental results demonstrate that the fusion algorithms can effectively enhance the spatial information. Unfortunately, the fusion image has spectral distortion, it cannot maintain the spectral information of the SWIR image.
Conceptual design of fast-ignition laser fusion reactor FALCON-D
NASA Astrophysics Data System (ADS)
Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.
2009-07-01
A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.
Xie, Mei-Ming; Xia, Kang; Zhang, Hong-Xin; Cao, Hong-Hui; Yang, Zhi-Jin; Cui, Hai-Feng; Gao, Shang; Tang, Kang-Lai
2017-01-23
Screw fixation is a typical technique for isolated talonavicular arthrodesis (TNA), however, no consensus has been reached on how to select most suitable inserted position and direction. The study aimed to present a new fixation technique and to evaluate the clinical outcome of individual headless compression screws (HCSs) applied with three-dimensional (3D) image processing technology to isolated TNA. From 2007 to 2014, 69 patients underwent isolated TNA by using double Acutrak HCSs. The preoperative three-dimensional (3D) insertion model of double HCSs was applied by Mimics, Catia, and SolidWorks reconstruction software. One HCS oriented antegradely from the edge of dorsal navicular tail where intersected interspace between the first and the second cuneiform into the talus body along the talus axis, and the other one paralleled the first screw oriented from the dorsal-medial navicular where intersected at the medial plane of the first cuneiform. The anteroposterior and lateral X-ray examinations certified that the double HCSs were placed along the longitudinal axis of the talus. Postoperative assessment included the American Orthopaedic Foot & Ankle Society hindfoot (AOFAS), the visual analogue scale (VAS) score, satisfaction score, imaging assessments, and complications. At the mean 44-months follow-up, all patients exhibited good articular congruity and solid bone fusion at an average of 11.26 ± 0.85 weeks (range, 10 ~ 13 weeks) without screw loosening, shifting, or breakage. The overall fusion rates were 100%. The average AOFAS score increased from 46.62 ± 4.6 (range, 37 ~ 56) preoperatively to 74.77 ± 5.4 (range, 64-88) at the final follow-up (95% CI: -30.86 ~ -27.34; p < 0.001). The mean VAS score decreased from 7.01 ± 1.2 (range, 4 ~ 9) to 1.93 ± 1.3 (range, 0 ~ 4) (95% CI: 4.69 ~ 5.48; p < 0.001). One cases (1.45%) and three cases (4.35%) experienced wound infection and adjacent arthritis respectively. The postoperative satisfaction score including pain relief, activities of daily living, and return to recreational activities were good to excellent in 62 (89.9%) cases. Individual 3D reconstruction of HCSs insertion model can be designed with three-dimensional image processing technology in TNA. The technology is safe, effective, and reliable to isolated TNA method with high bone fusion rates, low incidences of complications.
Calhoun, Vince D; Sui, Jing
2016-01-01
It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness. PMID:27347565
Multisource image fusion method using support value transform.
Zheng, Sheng; Shi, Wen-Zhong; Liu, Jian; Zhu, Guang-Xi; Tian, Jin-Wen
2007-07-01
With the development of numerous imaging sensors, many images can be simultaneously pictured by various sensors. However, there are many scenarios where no one sensor can give the complete picture. Image fusion is an important approach to solve this problem and produces a single image which preserves all relevant information from a set of different sensors. In this paper, we proposed a new image fusion method using the support value transform, which uses the support value to represent the salient features of image. This is based on the fact that, in support vector machines (SVMs), the data with larger support values have a physical meaning in the sense that they reveal relative more importance of the data points for contributing to the SVM model. The mapped least squares SVM (mapped LS-SVM) is used to efficiently compute the support values of image. The support value analysis is developed by using a series of multiscale support value filters, which are obtained by filling zeros in the basic support value filter deduced from the mapped LS-SVM to match the resolution of the desired level. Compared with the widely used image fusion methods, such as the Laplacian pyramid, discrete wavelet transform methods, the proposed method is an undecimated transform-based approach. The fusion experiments are undertaken on multisource images. The results demonstrate that the proposed approach is effective and is superior to the conventional image fusion methods in terms of the pertained quantitative fusion evaluation indexes, such as quality of visual information (Q(AB/F)), the mutual information, etc.
Calhoun, Vince D; Sui, Jing
2016-05-01
It is becoming increasingly clear that combining multi-modal brain imaging data is able to provide more information for individual subjects by exploiting the rich multimodal information that exists. However, the number of studies that do true multimodal fusion (i.e. capitalizing on joint information among modalities) is still remarkably small given the known benefits. In part, this is because multi-modal studies require broader expertise in collecting, analyzing, and interpreting the results than do unimodal studies. In this paper, we start by introducing the basic reasons why multimodal data fusion is important and what it can do, and importantly how it can help us avoid wrong conclusions and help compensate for imperfect brain imaging studies. We also discuss the challenges that need to be confronted for such approaches to be more widely applied by the community. We then provide a review of the diverse studies that have used multimodal data fusion (primarily focused on psychosis) as well as provide an introduction to some of the existing analytic approaches. Finally, we discuss some up-and-coming approaches to multi-modal fusion including deep learning and multimodal classification which show considerable promise. Our conclusion is that multimodal data fusion is rapidly growing, but it is still underutilized. The complexity of the human brain coupled with the incomplete measurement provided by existing imaging technology makes multimodal fusion essential in order to mitigate against misdirection and hopefully provide a key to finding the missing link(s) in complex mental illness.
Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.
2017-01-01
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527
NASA Astrophysics Data System (ADS)
Hu, Hang; Yu, Hong; Zhang, Yongzhi
2013-03-01
Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.
Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A
2017-11-28
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.
49 CFR 192.113 - Longitudinal joint factor (E) for steel pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... class Longitudinal joint factor (E) ASTM A 53/A53M Seamless 1.00 Electric resistance welded 1.00 Furnace butt welded .60 ASTM A 106 Seamless 1.00 ASTM A 333/A 333M Seamless 1.00 Electric resistance welded 1.00 ASTM A 381 Double submerged arc welded 1.00 ASTM A 671 Electric-fusion-welded 1.00 ASTM A 672...
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…
Future Energy Technology. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…
A sonic tool for spinal fusion.
Weis, E B
1977-01-01
The application of sonic energy to bone cutting problems is reported. The basic principle of the resonant tool, its adaptation for surgery, the experimental results of its use in animals, and clinical experience are reported. This sonic tool is found to introduce no significant tissue destruction. It does have several desirable characteristics for routine use in orthopedics.
NASA Technical Reports Server (NTRS)
Pryor, Wayne
1999-01-01
Dr. Wayne Pryor worked on three projects this summer. These were: 1) Inertial Electrostatic Confinement; 2) The Laser Elevator; and 3) Solar System Survey for Propellants Abstract. We Assisted Jon Nadler from Richland Community College in assembling and operating a table-top nuclear fusion reactor. We successfully demonstrated neutron production in a deuterium plasma. Pryor also obtained basic spectroscopic information on the atomic and molecular emissions in the plasma. The second project consisted of the completion of a paper on a novel propulsion concept (due to Tom Meyer of Colorado, the first author): a laser sail that bounces light back to the laser source. Recycling the photons from source to sail perhaps 100-1000 times dramatically improves the energy efficiency of this system, which may become very important for high-velocity missions in the future. Lastly, we compiled a very basic inventory of solar system propellant resources, their locations, and their accessibility. This initial inventory concentrates on sunlight availability, water availability, and the difficulty (delta-velocity requirement and radiation environment) in getting there.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
Elementary Accounting. A Programed Text. Revised. Edition Code-3.
ERIC Educational Resources Information Center
Army Finance School, Fort Benjamin Harrison, IN.
This programed text is designed to teach the basic elements of the double entry system of accounting, including basic terms, procedures, definitions, and principles used. The text consists of frames, which are sequenced instructional steps and, in most cases, are composed of two parts. The first part states a fact or relates information and asks a…
Cell-fusion method to visualize interphase nuclear pore formation.
Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko
2014-01-01
In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.
A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.
Yin, Erwei; Zeyl, Timothy; Saab, Rami; Chau, Tom; Hu, Dewen; Zhou, Zongtan
2015-07-01
The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naïve Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.
Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings
NASA Astrophysics Data System (ADS)
Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.
2018-05-01
We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.
Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Flores, Raphael; Armero, Alix; Pont, Caroline; Steinbach, Delphine; Quesneville, Hadi; Cooke, Richard; Salse, Jerome
2013-01-01
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named “PlantSyntenyViewer,” available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data. PMID:24317974
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Modeling selected emulsions and double emulsions as memristive systems.
Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica
2012-06-15
The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Strain on intervertebral discs after anterior cervical decompression and fusion.
Matsunaga, S; Kabayama, S; Yamamoto, T; Yone, K; Sakou, T; Nakanishi, K
1999-04-01
An analysis of the change in strain distribution of intervertebral discs present after anterior cervical decompression and fusion by an original method. The analytical results were compared to occurrence of herniation of the intervertebral disc on magnetic resonance imaging. To elucidate the influence of anterior cervical decompression and fusion on the unfused segments of the spine. There is no consensus regarding the exact significance of the biomechanical change in the unfused segment present after surgery. Ninety-six patients subjected to anterior cervical decompression and fusion for herniation of intervertebral discs were examined. Shear strain and longitudinal strain of intervertebral discs were analyzed on pre- and postoperative lateral dynamic routine radiography of the cervical spine. Thirty of the 96 patients were examined by magnetic resonance imaging before and after surgery, and the relation between alteration in strains and postsurgical occurrence of disc herniation was examined. In the cases of double- or triple-level fusion, shear strain of adjacent segments had increased 20% on average 1 year after surgery. Thirteen intervertebral discs that had an abnormally high degree of strain showed an increase in longitudinal strain after surgery. Eleven (85%) of the 13 discs that showed an abnormal increase in longitudinal strain had herniation in the same intervertebral discs with compression of the spinal cord during the follow-up period. Relief of symptoms was significantly poor in the patients with recent herniation. Close attention should be paid to long-term biomechanical changes in the unfused segment.
Shih, Ko-Nien; Chuang, Ya-Ting; Liu, Hsuan; Lo, Szecheng J
2004-04-01
During its life cycle, hepatitis D virus (HDV) produces two forms of delta antigen (HDAg), small delta antigen (SDAg) and large delta antigen (LDAg), which differ in their C-terminal 19 amino acids. Host enzymes termed ADARs (adenosine deaminases that act on double-stranded RNA) are required for LDAg production. These enzymes change the stop codon (UAG) of SDAg to a tryptophan codon (UGG). However, the temporal and spatial regulation of HDV RNA editing is largely unknown. In this study, we constructed three GFP fusion proteins containing different lengths of SDAg and characterized their cellular localization and effects on HDV replication. One of these fusion proteins, designated D(1-88)-GFP, inhibited LDAg but not SDAg production, suggesting that D(1-88)-GFP inhibits HDV RNA editing. Two experiments further supported this supposition: (i). RT-PCR analysis combined with NcoI restriction enzyme digestion revealed that HDV RNA editing was reduced by 42% in HeLa-D(1-88)-GFP when compared with HeLa cells; and (ii). the ratio of SDAg/LDAg production from the reporter RNAs was reduced in cells co-transfected with ADAR-expressing and reporter plasmids in the presence of D(1-88)-GFP. Double fluorescence microscopy found that D(1-88)-GFP was either associated with SC-35 or was adjacent to PML (premyelocytic leukaemia antigen) at nuclear speckles, but D(1-88)-GFP was not co-localized with ADAR, which was mainly located in the nucleolus. In situ hybridization showing co-localization of HDV RNA with D(1-88)-GFP at nuclear speckles suggested that HDV RNA editing might occur in the nuclear speckles and require other nuclear factor(s), in addition to ADAR.
A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.
Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya
2016-04-28
RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Progress toward commissioning and plasma operation in NSTX-U
NASA Astrophysics Data System (ADS)
Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team
2015-07-01
The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Zubarev, Alexander L.
The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments.
Underwater video enhancement using multi-camera super-resolution
NASA Astrophysics Data System (ADS)
Quevedo, E.; Delory, E.; Callicó, G. M.; Tobajas, F.; Sarmiento, R.
2017-12-01
Image spatial resolution is critical in several fields such as medicine, communications or satellite, and underwater applications. While a large variety of techniques for image restoration and enhancement has been proposed in the literature, this paper focuses on a novel Super-Resolution fusion algorithm based on a Multi-Camera environment that permits to enhance the quality of underwater video sequences without significantly increasing computation. In order to compare the quality enhancement, two objective quality metrics have been used: PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural SIMilarity) index. Results have shown that the proposed method enhances the objective quality of several underwater sequences, avoiding the appearance of undesirable artifacts, with respect to basic fusion Super-Resolution algorithms.
The Physics Basis of ITER Confinement
NASA Astrophysics Data System (ADS)
Wagner, F.
2009-02-01
ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode—the preferred confinement regime of ITER.
[Towards an unified theory of the universe basic forces ("the everything theory")].
Aguilar Peris, José
2004-01-01
Numerous efforts have been made in order to unify all the basic forces in nature. In 1967 the fusion of electromagnetic and weak forces was obtained and in 1973 a theoretical bridge between the electroweak and the strong forces have been constructed. This theory is waiting for experimental proofs in the CERN large hadron collider. The last stage would be "the everything theory", which includes the gravitational force. Only the so called superstring theory is a good candidate to overcome the incompatibility of the quantum mechanics and the general relativity, but this theory is not already achieved.
Nuclear Reactions in Micro/Nano-Scale Metal Particles
NASA Astrophysics Data System (ADS)
Kim, Y. E.
2013-03-01
Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.
Deducing the multi-trader population driving a financial market
NASA Astrophysics Data System (ADS)
Gupta, Nachi; Hauser, Raphael; Johnson, Neil
2005-12-01
We have previously laid out a basic framework for predicting financial movements and pockets of predictability by tracking the distribution of a multi-trader population playing on an artificial financial market model. This work explores extensions to this basic framework. We allow for more intelligent agents with a richer strategy set, and we no longer constrain the distribution over these agents to a probability space. We then introduce a fusion scheme which accounts for multiple runs of randomly chosen sets of possible agent types. We also discuss a mechanism for bias removal on the estimates.
Sun, Xu; Zhu, Ze-Zhang; Chen, Xi; Liu, Zhen; Wang, Bin; Qiu, Yong
2016-08-01
This paper presents a highly challenging technique involving posterior double vertebral column resections (VCRs) and satellite rods placement. This was a young adult case with severe angular thoracolumbar kyphosis of 101 degrees, secondary to anterior segmentation failure from T11 to L1 . There were hemivertebrae at T11 and T12 , and a wedged vertebra at L1 . He received double VCRs at T12 and T11 and instrumented fusion from T6 to L4 via a posterior only approach. Autologous grafts and a cage were placed between the bony surfaces of the osteotomy gap. Once closure of osteotomy was achieved, bilateral permanent CoCr rods were placed with addition of satellite rods. Postoperative X-ray demonstrated marked correction of kyphosis. On the 10(th) days after surgery, the patient was able to walk without assistance. In conclusion, double VCRs are effective to correct severe angular kyphosis, and addition of satellite rods may be imperative to enhance instrumentation strength and thus prevent correction loss. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Schulze-Luehrmann, Jan; Eckart, Rita A; Ölke, Martha; Saftig, Paul; Liebler-Tenorio, Elisabeth; Lührmann, Anja
2016-02-01
The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong
2016-11-01
Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.
Pupca, Gheorghe; Miclăuş, Graţian Dragoslav; Bucuraş, Viorel; Iacob, Nicoleta; Sas, Ioan; Matusz, Petru; Tubbs, R Shane; Loukas, Marios
2014-01-01
Crossed fused renal ectopia (CFRE) is the second most common fusion anomalies (FAs) of the kidneys after horseshoe kidney. Crossed fused renal ectopia (CFRE) results from one kidney crossing over to the opposite side and subsequent fusion of the parenchyma of the two kidneys. We report, by multidetector-row computed tomography (MDCT) angiography, an extremely rare case of a left CFRE (L-shaped kidney type), consisting of multiple renal arteries (one main renal artery for the upper renal parenchyma, and three renal arteries (one main and two additional) for the lower renal parenchyma) and two left renal veins, which produced a double nutcracker syndrome (both anterior and posterior). The L-shaped left kidney has a maximum length of 18.5 cm, a maximum width of 10.2 cm, and a maximum thickness of 5.3 cm. The upper pole of the kidney is located at the level of the lower third of T12 vertebral body (4.6 cm left to the mediosagittal plan); the lower pole is located along the lower half of the L5 vertebral body (1.5 cm left to the mediosagittal plan). The following case will focus on the relevant anatomy, embryology, and the clinical significance of this entity.
CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui
2017-12-01
Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)
Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells
Maeda, Junko; Yurkon, Charles R.; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C.; Roybal, Erica J.; Rota, Garrett W.; Saffer, Ethan R.; Rose, Barbara J.; Hanneman, William H.; Thamm, Douglas H.; Kato, Takamitsu A.
2012-01-01
Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246
Satoh, Keita; Oti, Takumi; Katoh, Akiko; Ueta, Yoichi; Morris, John F; Sakamoto, Tatsuya; Sakamoto, Hirotaka
2015-07-01
Arginine vasopressin (AVP) is a neurohypophysial hormone synthesized as a part of a prepropeptide precursor containing the signal peptide, AVP hormone, AVP-associated neurophysin II and copeptin in the hypothalamic neurosecretory neurons. A transgenic (Tg) rat line expressing the AVP-eGFP fusion gene has been generated. To establish the AVP-eGFP Tg rat as a unique model for an analysis of AVP dynamics in vivo, we first examined the in vivo molecular dynamics of the AVP-eGFP fusion gene, and then the release of GFP in response to physiological stimuli. Double immunoelectron microscopy demonstrated that GFP was specifically localized in neurosecretory vesicles of AVP neurons in this Tg rat. After stimulation of the posterior pituitary with high potassium we demonstrated the exocytosis of AVP neurosecretory vesicles containing GFP at the ultrastructural level. Biochemical analyses indicated that the AVP-eGFP fusion gene is subjected to in vivo post-translational modifications like the native AVP gene, and is packaged into neurosecretory vesicles as a fusion protein: copeptin1-14 -GFP. Moreover, GFP release into the circulating blood appeared to be augmented after osmotic stimulation, like native AVP. Thus, here we show for the first time the in vivo molecular processing of the AVP-eGFP fusion gene and stimulated secretion after osmotic stimulation in rats. Because GFP behaved like native AVP in the hypothalamo-pituitary axis, and in particular was released into the circulation in response to a physiological stimulus, the AVP-eGFP Tg rat model appears to be a powerful tool for analyzing neuroendocrine systems at the organismal level. © 2015 FEBS.
Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz
2013-01-01
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E
2009-12-01
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N
The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G
2015-08-28
We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0) MeV=(59.1±3.5) MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-08-01
We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
Mueller, M.E.; Sanchez, D.A.; Bergman, H.L.; McDonald, D.G.; Rhem, R.G.; Wood, C.M.
1991-01-01
Gill samples from juvenile brook trout (Salvelinus fontinalis) acclimated to low-level aluminum at pH 5.2 showed severe damage by day 4, with necrosis and fusion of secondary lamellae and hyperplasia and hypertrophy of mucous cells. Over the following 20 d, there was a continual process of repair with proliferation and hypertrophy of mucous cells. Qualitative analysis of gill samples plus physiology and mortality data collected in a companion study indicated progressive development (by day 10 onward) of increasing acclimation to Al. Quantitative analysis of gill samples on day 13 showed that mucous cell volume density had tripled and mucous cell area had doubled in Al-exposed fish compared with control fish. A lamellar fusion index showed evidence of fusion in Al-exposed fish by day 4 with recovery to nearly control levels by day 13. Physiological disturbances appear to be directly related to the histological changes observed in the gill epithelium. At the cellular level, changes in either mucous cell production and secretion or changes in mucus chemistry contribute, in part, to acclimation to Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hules, John
This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.
ERIC Educational Resources Information Center
Essock, Edward A.; Sinai, Michael J.; DeFord, Kevin; Hansen, Bruce C.; Srinivasan, Narayanan
2004-01-01
In this study the authors address the issue of how the perceptual usefulness of nonliteral imagery should be evaluated. Perceptual performance with nonliteral imagery of natural scenes obtained at night from infrared and image-intensified sensors and from multisensor fusion methods was assessed to relate performance on 2 basic perceptual tasks to…
Şenköylü, Alpaslan; Aktaş, Erdem; Sarıkaya, Baran; Sipahioğlu, Serkan; Gürbüz, Rıza; Timuçin, Muharrem
2018-01-01
Objectives Cage design and material properties play a crucial role in the long-term results, since interbody fusions using intervertebral cages have become one of the basic procedures in spinal surgery. Our aim is to design a novel Apatite-Wollastonite interbody fusion cage and evaluate its biomechanical behavior in silico in a segmental spinal model. Materials and Methods Mechanical properties for the Apatite-Wollastonite bioceramic cages were obtained by fitting finite element results to the experimental compression behavior of a cage prototype. The prototype was made from hydroxyapatite, pseudowollastonite, and frit by sintering. The elastic modulus of the material was found to be 32 GPa. Three intact lumbar vertebral segments were modelled with the ANSYS 12.0.1 software and this model was modified to simulate a Posterior Lumbar Interbody Fusion. Four cage designs in different geometries were analyzed in silico under axial loading, flexion, extension, and lateral bending. Results The K2 design had the best overall biomechanical performance for the loads considered. Maximum cage stress recorded was 36.7 MPa in compression after a flexion load, which was within the biomechanical limits of the cage. Conclusion Biomechanical analyses suggest that K2 bioceramic cage is an optimal design and reveals essential material properties for a stable interbody fusion. PMID:29581974
The Terra Data Fusion Project: An Update
NASA Astrophysics Data System (ADS)
Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.
2017-12-01
Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures, science, and sharing, will be presented with quantitative specifics. Results from several science-specific drivers for Terra fusion products will also be presented. We demonstrate that the Terra Data Fusion Project itself provides an excellent use-case for the community addressing Big Data and cyberinfrastructure problems.
Samal, Sweety; Khattar, Sunil K.; Kumar, Sachin; Collins, Peter L.
2012-01-01
The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence. PMID:22205748
Samal, Sweety; Khattar, Sunil K; Kumar, Sachin; Collins, Peter L; Samal, Siba K
2012-03-01
The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.
Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.
2012-01-01
Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850
Overview of the US Fusion Materials Sciences Program
NASA Astrophysics Data System (ADS)
Zinkle, Steven
2004-11-01
The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
Chang, Andres; Hackett, Brent A.; Winter, Christine C.; Buchholz, Ursula J.
2012-01-01
The recently identified human metapneumovirus (HMPV) is a worldwide respiratory virus affecting all age groups and causing pneumonia and bronchiolitis in severe cases. Despite its clinical significance, no specific antiviral agents have been approved for treatment of HMPV infection. Unlike the case for most paramyxoviruses, the fusion proteins (F) of a number of strains, including the clinical isolate CAN97-83, can be triggered by low pH. We recently reported that residue H435 in the HRB linker domain acts as a pH sensor for HMPV CAN97-83 F, likely through electrostatic repulsion forces between a protonated H435 and its surrounding basic residues, K295, R396, and K438, at low pH. Through site-directed mutagenesis, we demonstrated that a positive charge at position 435 is required but not sufficient for F-mediated membrane fusion. Arginine or lysine substitution at position 435 resulted in a hyperfusogenic F protein, while replacement with aspartate or glutamate abolished fusion activity. Studies with recombinant viruses carrying mutations in this region confirmed its importance. Furthermore, a second region within the F2 domain identified as being rich in charged residues was found to modulate fusion activity of HMPV F. Loss of charge at residues E51, D54, and E56 altered local folding and overall stability of the F protein, with dramatic consequences for fusion activity. As a whole, these studies implicate charged residues and potential electrostatic interactions in function, pH sensing, and overall stability of HMPV F. PMID:22761366
Present status of liquid metal research for a fusion reactor
NASA Astrophysics Data System (ADS)
Tabarés, Francisco L.
2016-01-01
Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.
NASA Technical Reports Server (NTRS)
Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.
1999-01-01
Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.
An approach to 3D model fusion in GIS systems and its application in a future ECDIS
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhao, Depeng; Pan, Mingyang
2016-04-01
Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.; Seth, D.L.; Ray, A.K.
A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.
Subnanosecond impulses of 10 13 to 10 14 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The target compounds include heavy water (D 2O) and deuterated benzene (C 6D 6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3.5 degrees plus/minus 3.5 degrees with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2sigma/dEdomega for 14-MeV D–T fusionmore » neutrons.« less
Zhu, Min; Liu, Chao; Ren, Shuangshuang; Lin, Zintong; Miao, Leiying; Sun, Weibin
2015-01-01
Gemination or fusion is a rare occurrence in the mandibular posterior teeth. The aim of this article is to describe the problems encountered and the strategy employed in treating such cases. A 34 years old patient came with the complaint of spontaneous and radiating pain in the right mandibular posterior region. The tooth in concern was an anomalous 'double' second mandibular molar diagnosed as having necrotic pulp with chronic apical abscess of endodontic origin. The present case emphasizes the importance of identifying anatomical anomalies during treatment of fused teeth with supernumerary tooth, and the need for the use of advanced imaging modalities like CBCT which is a critical aid in the diagnosis of such cases. Fused teeth can be managed quite efficiently by an overall combined treatment including both endodontic and periodontal therapy.
Integrated simulation of magnetic-field-assist fast ignition laser fusion
NASA Astrophysics Data System (ADS)
Johzaki, T.; Nagatomo, H.; Sunahara, A.; Sentoku, Y.; Sakagami, H.; Hata, M.; Taguchi, T.; Mima, K.; Kai, Y.; Ajimi, D.; Isoda, T.; Endo, T.; Yogo, A.; Arikawa, Y.; Fujioka, S.; Shiraga, H.; Azechi, H.
2017-01-01
To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target case, the core heating performance deteriorates by applying magnetic fields since the core is considerably deformed and most of the fast electrons are reflected due to the magnetic mirror formed through the implosion. On the other hand, in the case of a cone-attached solid ball target, the implosion is more stable under the kilo-tesla-class magnetic field. In addition, feasible magnetic field configuration is formed through the implosion. As a result, the core heating efficiency doubles by magnetic guiding. The dependence of core heating properties on the heating pulse shot timing was also investigated for the solid ball target.
Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; ...
2018-01-31
Subnanosecond impulses of 10 13 to 10 14 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The target compounds include heavy water (D 2O) and deuterated benzene (C 6D 6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3.5 degrees plus/minus 3.5 degrees with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2sigma/dEdomega for 14-MeV D–T fusionmore » neutrons.« less
NASA Astrophysics Data System (ADS)
Newman, Andrew J.; Richardson, Casey L.; Kain, Sean M.; Stankiewicz, Paul G.; Guseman, Paul R.; Schreurs, Blake A.; Dunne, Jeffrey A.
2016-05-01
This paper introduces the game of reconnaissance blind multi-chess (RBMC) as a paradigm and test bed for understanding and experimenting with autonomous decision making under uncertainty and in particular managing a network of heterogeneous Intelligence, Surveillance and Reconnaissance (ISR) sensors to maintain situational awareness informing tactical and strategic decision making. The intent is for RBMC to serve as a common reference or challenge problem in fusion and resource management of heterogeneous sensor ensembles across diverse mission areas. We have defined a basic rule set and a framework for creating more complex versions, developed a web-based software realization to serve as an experimentation platform, and developed some initial machine intelligence approaches to playing it.
NASA Astrophysics Data System (ADS)
Estrada, Sarah M.
This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.
Ota, Mitsutoshi; Furuya, Takeo; Maki, Satoshi; Inada, Taigo; Kamiya, Koshiro; Ijima, Yasushi; Saito, Junya; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao
2016-12-01
Laminoplasty (LMP) is a widely accepted surgical procedure for ossification of the posterior longitudinal ligament (OPLL) of the cervical spine. Progression of OPLL can occur in the long term after LMP. The aim of the present study was to determine whether addition of the instrumented fusion, (posterior decompression with instrumented fusion [PDF]), can suppress progression of OPLL or not. The present study included 50 patients who underwent LMP (n=23) or PDF (n=27) for OPLL of the cervical spine. We performed open door laminoplasty. PDF surgery was performed by double-door laminoplasty followed by instrumented fusion. We observed the non-ossified segment of the OPLL and measured the thickness of the OPLL at the thickest segment with pre- and postoperative sagittal CT multi-planar reconstruction images. Postoperative CT scan revealed fusion of the non-ossified segment of the OPLL was obtained in 4/23 patients (17%) in the LPM group and in 23/27 patients (85%) in the PDF group, showing a significant difference between both groups (p=0.003). Progression of the thickness of the OPLL in the PDF group (-0.1±0.4mm) was significantly smaller than in the LMP group (0.6±0.7mm, p=0.0002). The proportion of patients showing the decrease in thickness of OPLL was significantly larger in the PDF group (6/27 patients; 22%) than in the LMP group (0/23 patients; 0%, p=0.05). In conclusion, PDF surgery can suppress the thickening of OPLL. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pewitt, E.G.
The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.
Europe Report, Science and Technology.
1986-11-17
fallout, bio- technology, stimulation, BRITE [Basic Research in Industrial Technologies for Europe] and non-nuclear energy ); -Overall assessment of...must make more use of new technologies," Narjes says. The new program will also pay particular attention to public health, environment, and energy ...nuclear fission and fusion). Concurrently subjects such as security, waste, and energy saving will get more attention. It is evident that the
Data Fusion for Decision Support
2014-03-27
Black for handing me a seven page paper one afternoon with so much new vocabulary it took me all afternoon to read it (I must then also thank Wikipedia...104 Appendix A. Wildfire Basics .......................................................................................107 Appendix B. Web ...Band 5 – Infrared ( IR ) o Band 10 – Thermal IR o Quality Assessment (QA) Band 6 National Fuel Moisture Database (NFMD) Remote Automated
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.
2007-11-01
A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ηi, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).
A hierarchical classification method for finger knuckle print recognition
NASA Astrophysics Data System (ADS)
Kong, Tao; Yang, Gongping; Yang, Lu
2014-12-01
Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.
Intraocular lens based on double-liquid variable-focus lens.
Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi
2014-01-10
In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.
Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J
2010-12-01
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk
2017-04-01
The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.
NASA Astrophysics Data System (ADS)
Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.
2016-11-01
Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.
Li, Jin; Lindley-Start, Jack; Porch, Adrian; Barrow, David
2017-07-24
High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, M.; Morimoto, M.; Shima, Y.
2012-10-15
In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less
Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie
2013-12-01
Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
Sekiguchi, Hiroyuki; Uchida, Kentaro; Matsushita, Osamu; Inoue, Gen; Nishi, Nozomu; Masuda, Ryo; Hamamoto, Nana; Koide, Takaki; Shoji, Shintaro; Takaso, Masashi
2018-01-01
Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly) 10 , induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly) 12 -NH 2 , a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly) 10 /bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.
Sensor data monitoring and decision level fusion scheme for early fire detection
NASA Astrophysics Data System (ADS)
Rizogiannis, Constantinos; Thanos, Konstantinos Georgios; Astyakopoulos, Alkiviadis; Kyriazanos, Dimitris M.; Thomopoulos, Stelios C. A.
2017-05-01
The aim of this paper is to present the sensor monitoring and decision level fusion scheme for early fire detection which has been developed in the context of the AF3 Advanced Forest Fire Fighting European FP7 research project, adopted specifically in the OCULUS-Fire control and command system and tested during a firefighting field test in Greece with prescribed real fire, generating early-warning detection alerts and notifications. For this purpose and in order to improve the reliability of the fire detection system, a two-level fusion scheme is developed exploiting a variety of observation solutions from air e.g. UAV infrared cameras, ground e.g. meteorological and atmospheric sensors and ancillary sources e.g. public information channels, citizens smartphone applications and social media. In the first level, a change point detection technique is applied to detect changes in the mean value of each measured parameter by the ground sensors such as temperature, humidity and CO2 and then the Rate-of-Rise of each changed parameter is calculated. In the second level the fire event Basic Probability Assignment (BPA) function is determined for each ground sensor using Fuzzy-logic theory and then the corresponding mass values are combined in a decision level fusion process using Evidential Reasoning theory to estimate the final fire event probability.
NASA Astrophysics Data System (ADS)
Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group
2017-08-01
The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.
NASA Astrophysics Data System (ADS)
Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.
2017-08-01
We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.
A novel double fine guide sensor design on space telescope
NASA Astrophysics Data System (ADS)
Zhang, Xu-xu; Yin, Da-yi
2018-02-01
To get high precision attitude for space telescope, a double marginal FOV (field of view) FGS (Fine Guide Sensor) is proposed. It is composed of two large area APS CMOS sensors and both share the same lens in main light of sight. More star vectors can be get by two FGS and be used for high precision attitude determination. To improve star identification speed, the vector cross product in inter-star angles for small marginal FOV different from traditional way is elaborated and parallel processing method is applied to pyramid algorithm. The star vectors from two sensors are then used to attitude fusion with traditional QUEST algorithm. The simulation results show that the system can get high accuracy three axis attitudes and the scheme is feasibility.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Experiments on the Dynamics and Hydrodynamic Instabilities of Ablatively Accelerated Targets.
1983-02-01
pressure and velocities obtained using the double foil tech - diance nonuniformities has been investigated previously and 430 Appi P"v$ Lett.. Vol 41. No, 5...NRL is evaluating for the Department of Energy the feasibility of using direct laser drive to Implode fusion pellets.t Mission Research Corporation...MRC) has contracted to support this experiment by using its best effort to perform the tasks summarized below: A parametric study shall be performed
Occlusal characteristics and prevalence of associated dental anomalies in the primary dentition.
Lochib, Seema; Indushekar, K R; Saraf, Bhavna Gupta; Sheoran, Neha; Sardana, Divesh
2015-06-01
Morphological variations in primary dentition are of great concern to a pediatric dentist as it may pose clinical problems like dental caries, delayed exfoliation and also anomalies in the permanent dentition, such as impaction of successors, supernumerary teeth, permanent double teeth or aplasia of teeth. The present study was conducted to investigate the presence of dental anomalies in the primary dentition of 1000 schoolchildren in the 3-5 year-old age group in Faridabad. One-thousand schoolchildren were examined using Type III examination (WHO, 1997) for primary molar relationship, occlusal characteristics, primate spaces, physiological spaces and other anomalies of teeth, including number and morphology. The prevalence of physiological spaces in maxillary and mandibular arches was 50.9% and 46.7%, respectively, whereas primate spaces were found in 61.7% of the children in the maxillary arch and 27.9% in the mandibular arch. The prevalence of unilateral anterior and posterior cross-bite was 0.1% and 0.8%, respectively, in the present study. The prevalence of hypodontia in the primary dentition was found to be 0.4% and the prevalence of fusion and gemination in the present study was 0.5%. Double teeth (fusion and gemination) and hypodontia were the most common dental anomalies found in the primary dentition in the present study. Copyright © 2014 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang
2013-04-01
Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.
78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... Office's The 2013 ONP Comparative Research Review Presentation of the Charge on Neutrino-less Double Beta... priorities within the field of basic nuclear science research. Tentative Agenda: Agenda will include...
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
Saito, Junya; Maki, Satoshi; Kamiya, Koshiro; Furuya, Takeo; Inada, Taigo; Ota, Mitsutoshi; Iijima, Yasushi; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao
2016-10-01
We investigated the outcome of posterior decompression and instrumented fusion (PDF) surgery for patients with K-line (-) ossification of the posterior longitudinal ligament (OPLL) of the cervical spine, who may have a poor surgical prognosis. We retrospectively analyzed the outcome of a series of 27 patients who underwent PDF without correction of cervical alignment for K-line (-) OPLL and were followed-up for at least 1 year after surgery. We had performed double-door laminoplasty followed by posterior instrumented fusion without excessive correction of cervical spine alignment. The preoperative Japanese Orthopedic Association (JOA) score for cervical myelopathy was 8.0 points and postoperative JOA score was 11.9 points on average. The mean JOA score recovery rate was 43.6%. The average C2-C7 angle was 2.2° preoperatively and 3.1° postoperatively. The average maximum occupation ratio of OPLL was 56.7%. In conclusion, PDF without correcting cervical alignment for patients with K-line (-) OPLL showed moderate neurological recovery, which was acceptable considering K-line (-) predicts poor surgical outcomes. Thus, PDF is a surgical option for such patients with OPLL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate
2016-01-01
ABSTRACT Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2-double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. PMID:27628032
Effect of a single dose of dextromethorphan on psychomotor performance and working memory capacity.
Al-Kuraishy, Hayder M; Al-Gareeb, Ali I; Ashor, Ammar Waham
2012-04-01
Previous studies show that the prolonged use of dextromethorphan produces cognitive deterioration in humans. The aim of this study was to investigate the effect of a single dose of dextroemthrophan on psychomotor performance and working memory capacity. This is a randomized, double-blind, controlled, and prospective study. Thirty-six (17 women, 19 men) medical students enrolled in the study; half of them (7 women, 11 men) were given placebo, while the other half (10 women, 8 men) received dextromethorphan. The choice reaction time, critical flicker fusion threshold, and N-back working memory task were measured before and after 2 h of taking the drugs. Dextromethorphan showed a significant deterioration in the 3-back working memory task (P<0.05). No significant changes were seen as regards the choice reaction time components (total, recognition, motor) and critical flicker fusion threshold (P>0.05). On the other hand, placebo showed no significant changes as regards the choice reaction time, critical flicker fusion threshold, and N-back working memory task (P>0.05). A single dose of dextromethorphan has no effect on attention and arousal but may significantly impair the working memory capacity.
Gene amplification during myogenic differentiation
Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart
2016-01-01
Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505
Kleinman, R G; Csongradi, J J; Rinksy, L A; Bleck, E E
1982-01-01
The use of a "prone push" posteroanterior radiograph of the spine was reviewed in 58 patients with scoliosis (82 curves) who underwent Harrington instrumentation and spinal fusion. The technique is previously undescribed and is accomplished by applying manual pressure to the apices of each curve with the patient prone on the X-ray table. The average correction obtained for all 82 curves was 21.1 degrees, as measured on the push films and 21.8 degrees postoperatively. The difference between these values was not statistically significant. The close relationship between push film and immediate postoperative correction was not altered by the location of the curve, the sex or age of the patient, the presence of a single- or double-major curve pattern, the type of instrumentation employed, nor the etiology of the scoliosis. This method is an alternative to the commonly employed supine lateral bending radiographs. An estimate of spinal flexibility is important for determination of structural change in the spine, the rigidity of curves considered for instrumentation, the curves requiring fusion, the length of fusion necessary, and the amount of correction that is safely possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Amy; Callis, Richard; Efthimion, Philip
Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality.more » However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.« less
Zhao, Y J; Liu, Y; Sun, Y C; Wang, Y
2017-08-18
To explore a three-dimensional (3D) data fusion and integration method of optical scanning tooth crowns and cone beam CT (CBCT) reconstructing tooth roots for their natural transition in the 3D profile. One mild dental crowding case was chosen from orthodontics clinics with full denture. The CBCT data were acquired to reconstruct the dental model with tooth roots by Mimics 17.0 medical imaging software, and the optical impression was taken to obtain the dentition model with high precision physiological contour of crowns by Smart Optics dental scanner. The two models were doing 3D registration based on their common part of the crowns' shape in Geomagic Studio 2012 reverse engineering software. The model coordinate system was established by defining the occlusal plane. crown-gingiva boundary was extracted from optical scanning model manually, then crown-root boundary was generated by offsetting and projecting crown-gingiva boundary to the root model. After trimming the crown and root models, the 3D fusion model with physiological contour crown and nature root was formed by curvature continuity filling algorithm finally. In the study, 10 patients with dentition mild crowded from the oral clinics were followed up with this method to obtain 3D crown and root fusion models, and 10 high qualification doctors were invited to do subjective evaluation of these fusion models. This study based on commercial software platform, preliminarily realized the 3D data fusion and integration method of optical scanning tooth crowns and CBCT tooth roots with a curvature continuous shape transition. The 10 patients' 3D crown and root fusion models were constructed successfully by the method, and the average score of the doctors' subjective evaluation for these 10 models was 8.6 points (0-10 points). which meant that all the fusion models could basically meet the need of the oral clinics, and also showed the method in our study was feasible and efficient in orthodontics study and clinics. The method of this study for 3D crown and root data fusion could obtain an integrate tooth or dental model more close to the nature shape. CBCT model calibration may probably improve the precision of the fusion model. The adaptation of this method for severe dentition crowding and micromaxillary deformity needs further research.
Isotope effect on blob-statistics in gyrofluid simulations of scrape-off layer turbulence
NASA Astrophysics Data System (ADS)
Meyer, O. H. H.; Kendl, A.
2017-12-01
In this contribution we apply a recently established stochastic model for scrape-off layer fluctuations to long time series obtained from gyrofluid simulations of fusion edge plasma turbulence. Characteristic parameters are estimated for different fusion relevant isotopic compositions (protium, deuterium, tritium and singly charged helium) by means of conditional averaging. It is shown that large amplitude fluctuations associated with radially propagating filaments in the scrape-off layer feature double-exponential wave-forms. We find increased pulse duration and longer waiting times between peaks for heavier ions, while the amplitudes are similar. The associated radial blob velocity is shown to be reduced for heavier ions. A parabolic relation between skewness and kurtosis of density fluctuations seems to be present. Improved particle confinement in terms of reduced mean value close to the outermost radial boundary and blob characteristics for heavier plasmas is presented.
COLA: Optimizing Stream Processing Applications via Graph Partitioning
NASA Astrophysics Data System (ADS)
Khandekar, Rohit; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wolf, Joel; Wu, Kun-Lung; Andrade, Henrique; Gedik, Buğra
In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.
Fixed-Cell Imaging of Schizosaccharomyces pombe.
Hagan, Iain M; Bagley, Steven
2016-07-01
The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. © 2016 Cold Spring Harbor Laboratory Press.
Viza, N. D.; Harding, D. R.
2017-12-20
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viza, N. D.; Harding, D. R.
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
Climate change and the middle atmosphere. I - The doubled CO2 climate
NASA Technical Reports Server (NTRS)
Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.
1990-01-01
The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jiansen; Xue, Hailing; Ma, Jing
HIV CRF07 B′/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is importantmore » in HIV mediated cell–cell fusion and plays critical roles in conformational changes during viral invasion. - Highlights: • We solved the crystal structure of HIV CRF07 gp41 core region. • A hyper-mutant cluster in the middle of HR2 heptads repeat was identified. • The hyper-mutant site is important in HIV-cell fusion. • The model will help to understand the HIV fusion process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follis, Kathryn E.; York, Joanne; Nunberg, Jack H.
The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctionalmore » region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.« less
Fix, A G
1975-09-01
Analysis of histories and genealogies from seven relatively unacculturated, swidden-farming Semai settlements shows that the composition of local groups fluctuates through time. This instability is similar to a pattern which Neel and his colleagues have suggested is typical of primitive society, the fission-fusion model. In addition, the individuals comprising Semai fission groups are kinsmen which implies that the number of independent genomes represented is markedly less than the number of individual migrants (the lineal effect). Fission groups may form new villages or fuse with an established settlement. In either case, the genetic effects of such migration are more pronounced than would be expected on the basis of founder effect or random migration. Despite several conspicuous differences in social organization between the Semai and the South American Indians (e.g., bilateral vs. unilineal descent) whose population structure provided the empirical basis for the fission-fusion, lineal effect model, the basic similarities are striking. The Semai case thus lends support to the proposition that this pattern may be of some generality in technologically primitive populations.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
Stabilization effect of Weibel modes in relativistic laser fusion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belghit, Slimen, E-mail: Belghit.slimen@gmail.com; Sid, Abdelaziz, E-mail: Sid-abdelaziz@hotmail.com
In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. Thismore » decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.« less
Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.
He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan
2016-10-01
To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. © 2016 The Author(s).
Arts, Mark P; Brand, Ronald; van den Akker, Elske; Koes, Bart W; Peul, Wilco C
2010-06-16
Patients with cervical radicular syndrome due to disc herniation refractory to conservative treatment are offered surgical treatment. Anterior cervical discectomy is the standard procedure, often in combination with interbody fusion. Accelerated adjacent disc degeneration is a known entity on the long term. Recently, cervical disc prostheses are developed to maintain motion and possibly reduce the incidence of adjacent disc degeneration. A comparative cost-effectiveness study focused on adjacent segment degeneration and functional outcome has not been performed yet. We present the design of the NECK trial, a randomised study on cost-effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in patients with cervical disc herniation. Patients (age 18-65 years) presenting with radicular signs due to single level cervical disc herniation lasting more than 8 weeks are included. Patients will be randomised into 3 groups: anterior discectomy only, anterior discectomy with interbody fusion, and anterior discectomy with disc prosthesis. The primary outcome measure is symptomatic adjacent disc degeneration at 2 and 5 years after surgery. Other outcome parameters will be the Neck Disability Index, perceived recovery, arm and neck pain, complications, re-operations, quality of life, job satisfaction, anxiety and depression assessment, medical consumption, absenteeism, and costs. The study is a randomised prospective multicenter trial, in which 3 surgical techniques are compared in a parallel group design. Patients and research nurses will be kept blinded of the allocated treatment for 2 years. The follow-up period is 5 years. Currently, anterior cervical discectomy with fusion is the golden standard in the surgical treatment of cervical disc herniation. Whether additional interbody fusion or disc prosthesis is necessary and cost-effective will be determined by this trial. Netherlands Trial Register NTR1289.
2010-01-01
Background Patients with cervical radicular syndrome due to disc herniation refractory to conservative treatment are offered surgical treatment. Anterior cervical discectomy is the standard procedure, often in combination with interbody fusion. Accelerated adjacent disc degeneration is a known entity on the long term. Recently, cervical disc prostheses are developed to maintain motion and possibly reduce the incidence of adjacent disc degeneration. A comparative cost-effectiveness study focused on adjacent segment degeneration and functional outcome has not been performed yet. We present the design of the NECK trial, a randomised study on cost-effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in patients with cervical disc herniation. Methods/Design Patients (age 18-65 years) presenting with radicular signs due to single level cervical disc herniation lasting more than 8 weeks are included. Patients will be randomised into 3 groups: anterior discectomy only, anterior discectomy with interbody fusion, and anterior discectomy with disc prosthesis. The primary outcome measure is symptomatic adjacent disc degeneration at 2 and 5 years after surgery. Other outcome parameters will be the Neck Disability Index, perceived recovery, arm and neck pain, complications, re-operations, quality of life, job satisfaction, anxiety and depression assessment, medical consumption, absenteeism, and costs. The study is a randomised prospective multicenter trial, in which 3 surgical techniques are compared in a parallel group design. Patients and research nurses will be kept blinded of the allocated treatment for 2 years. The follow-up period is 5 years. Discussion Currently, anterior cervical discectomy with fusion is the golden standard in the surgical treatment of cervical disc herniation. Whether additional interbody fusion or disc prothesis is necessary and cost-effective will be determined by this trial. Trial Registration Netherlands Trial Register NTR1289 PMID:20553591
Park, Jung-Sun; Kim, Hye-Sung; Park, Hye-Mi; Kim, Chang-Hyun; Kim, Tai-Gyu
2011-11-03
Protein vaccines may be a useful strategy for cancer immunotherapy because recombinant tumor antigen proteins can be produced on a large scale at relatively low cost and have been shown to be safe for clinical application. However, protein vaccines have historically exhibited poor immunogenicity; thus, an improved strategy is needed for successful induction of immune responses. TAT peptide is a protein transduction domain composed of an 11-amino acid peptide (TAT(47-57): YGRKKRRQRRR). The positive charge of this peptide allows protein antigen fused with it to improve cell penetration. Poly(I:C) is a synthetic double-stranded RNA that is negatively charged and favors interaction with the cationic TAT peptide. Poly(I:C) has been reported on adjuvant role in tumor vaccine through promotion of immune responses. Therefore, we demonstrated that vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) can induce anti-tumor immunity in a murine colorectal tumor model. Splenocytes from mice vaccinated with a mixture of TAT-CEA fusion protein and poly(I:C) effectively induced CEA-specific IFN-γ-producing T cells and showed cytotoxic activity specific for MC-38-cea2 tumor cells expressing CEA. Vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) delayed tumor growth in MC-38-cea-2 tumor-bearing mice. Depletion of CD8(+) T cells and NK cells reversed the inhibition of tumor growth in an MC-38-cea2-bearing mice, indicating that CD8(+) T cells and NK cells are responsible for anti-tumor immunity by vaccine with a mixture of TAT-CEA fusion protein and poly(I:C). Taken together, these results suggest that poly(I:C) could be used as a potent adjuvant to induce the anti-tumor immunity of a TAT-CEA fusion protein vaccine in a murine colorectal tumor model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Myocardialization of the cardiac outflow tract
NASA Technical Reports Server (NTRS)
van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.
1999-01-01
During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally, (vi) ventricular myocardium did not produce factors capable of supporting myocardialization. Copyright 1999 Academic Press.
Valero, Enrique; Adan, Antonio; Cerrada, Carlos
2012-01-01
This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results. PMID:22778609
Suppressor Analysis of the Fusogenic Lambda Spanins.
Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry
2017-07-15
The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such investigations have been reported. Here, we report a suppressor analysis of lambda spanin function. To our knowledge this is the first suppression analysis of a class I-like complex and also the first such analysis of a prokaryote membrane fusion system. Copyright © 2017 American Society for Microbiology.
Luo, Dong-jiao; Qiu, Xiao-feng; Wang, Jiang; Yan, Jin; Wang, Hai-bin; Zhou, Jin-cheng; Yan, Jie
2008-11-01
To construct lipL32/1-lipL21-OmpL1/2 fusion gene of Leptospira interrogans and its prokaryotic expression system, and to identify the immunogenicity of its products. PCR using linking primers was applied to construct lipL32/1-lipL21-OmpL1/2 fusion gene and a prokaryotic expression system of the fusion gene was then established using routine genetic engineering technique. SDS-PAGE was used to examine output of the target recombinant protein rLipL32/1-LipL21-OmpL1/2. Double immunodiffusion and Western Blot assay were applied to identify immunogenicity of rLipL32/1-LipL21-OmpL1/2. lipL32/1-lipL21-OmpL1/2 fusion gene with correct sequence and its prokaryotic expression system E.coli BL21DE3pET42a-lipL32/1-lipL21-ompL1/2 was obtained in this study. The output of rLipL32/1-LipL21- OmpL1/2 after optimisation was 37.78 mg/L. The immunodiffusion titer of rabbit antiserum against rLipL32/1-LipL21-OmpL1/2 was 1:4. The rLipL32/1-LipL21-OmpL1/2 antiserum was able to recognize rLipL32/1-LipL21-OmpL1/2, rLipL32/1, rLipL21 and rOmpL1/2. Positive Western hybridization signals were found among rLipL32/1-LipL21-OmpL1/2 and rabbit antiserum against whole cell of strain 56601 and serum from patients infected with L.interrogans serogroups Icterohaemorrhagiae, Grippotyphosa, Autumnalis and Pomona. The fusion gene lipL32/1-lipL21-OmpL1/2 and its prokaryotic expression system were successfully constructed in this study. The expressed fusion protein can be used as the antigen for developing universal genetic engineering vaccine and universal serological tests of leptospirosis.
NASA Astrophysics Data System (ADS)
Lima-Santos, Antonio; Nepomechie, Rafael I.; Pimenta, Rodrigo A.
2018-04-01
We revisit the construction of the eigenvectors of the single and double-row transfer matrices associated with the Zamolodchikov–Fateev model, within the algebraic Bethe ansatz method. The left and right eigenvectors are constructed using two different methods: the fusion technique and Tarasov’s construction. A simple explicit relation between the eigenvectors from the two Bethe ansätze is obtained. As a consequence, we obtain the Slavnov formula for the scalar product between on-shell and off-shell Tarasov–Bethe vectors.
Electron cyclotron emission imaging and applications in magnetic fusion energy
NASA Astrophysics Data System (ADS)
Tobias, Benjamin John
Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.
Ferreira, Amilton; Mesa, Alejo
2010-01-01
The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.
Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.
Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph
2018-06-01
There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Xuguang; Rischke, Dirk H.; Institut fuer Theoretische Physik, J.W. Goethe-Universitaet, D-60438 Frankfurt am Main
2011-02-15
The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less
Deck the Halls. Animated Displays III: Mechanical Puzzles.
ERIC Educational Resources Information Center
Pizzo, Joe, Ed.
1993-01-01
Describes an exhibit containing four basic demonstrations relating to center of gravity and rotational equilibrium. The demonstrations involve (1) the stack of bricks, (2) the double cone, (3) the spool roller, and (4) the platform balance. (MDH)
Vasilyeva, Marina; Laski, Elida V; Shen, Chen
2015-10-01
The present study tested the hypothesis that children's fluency with basic number facts and knowledge of computational strategies, derived from early arithmetic experience, predicts their performance on complex arithmetic problems. First-grade students from United States and Taiwan (N = 152, mean age: 7.3 years) were presented with problems that differed in difficulty: single-, mixed-, and double-digit addition. Children's strategy use varied as a function of problem difficulty, consistent with Siegler's theory of strategy choice. The use of decomposition strategy interacted with computational fluency in predicting the accuracy of double-digit addition. Further, the frequency of decomposition and computational fluency fully mediated cross-national differences in accuracy on these complex arithmetic problems. The results indicate the importance of both fluency with basic number facts and the decomposition strategy for later arithmetic performance. (c) 2015 APA, all rights reserved).
AFRRI (Armed Forces Radiobiology Research Institute) Reports, July, August and September 1987.
1987-11-01
mononuclear cell layer obtained after Percol isolation contained approximately 90% mono- cytes as assessed by esterase staining. In most experiments...forming cell) were assayed using the double layer agar technique basically as described by Hagan et al. (22). The culture medium was double strength CMRL...trypticase soy broth, 20 g/ml L-asparagine. and penicillin-streptomycin. In the bottom layer of 35 mm plastic Petri dishes was 1 ml of a 1:1 mixture of culture
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
Core labeling of adenovirus with EGFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Long P.; Le, Helen N.; Nelson, Amy R.
2006-08-01
The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expressionmore » vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.« less
Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami
Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posteriormore » dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network.« less
Double peak searches for scalar and pseudoscalar resonances at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carena, Marcela; Huang, Peisi; Ismail, Ahmed
2016-12-01
Many new physics models contain a neutral scalar resonance that can be predominantly produced via gluon fusion through loops. In such a case, there could be important effects of additional particles, that in turn may hadronize before decaying and form bound states. This interesting possibility may lead to novel signatures with double peaks that can be searched for at the LHC. We study the phenomenology of double peak searches in diboson final states from loop-induced production and decay of a new neutral spin-0 resonance at the LHC. The loop-induced couplings should be mediated by particles carrying color and electroweak chargemore » that after forming bound states will induce a second peak in the diboson invariant mass spectrum near twice their mass. A second peak could be present via loop-induced couplings into gg (dijet),gamma gamma and Z gamma final states as well as in the WW and ZZ channels for the case of a pseudoscalar resonance or for scalars with suppressed tree-level coupling to gauge bosons« less
Double peak searches for scalar and pseudoscalar resonances at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carena, Marcela; Huang, Peisi; Ismail, Ahmed
2016-12-01
Many new physics models contain a neutral scalar resonance that can be predominantly produced via gluon fusion through loops. In such a case, there could be important effects of additional particles, that in turn may hadronize before decaying and form bound states. This interesting possibility may lead to novel signatures with double peaks that can be searched for at the LHC. We study the phenomenology of double peak searches in diboson final states from loop induced production and decay of a new neutral spin-0 resonance at the LHC. The loop-induced couplings should be mediated by particles carrying color and electroweak charge that after forming bound states will induce a second peak in the diboson invariant mass spectrum near twice their mass. As a result, a second peak could be present via loop-induced couplings intomore » $gg$ (dijet), $$\\gamma\\gamma$$ and $$Z\\gamma$$ final states as well as in the $WW$ and $ZZ$ channels for the case of a pseudo-scalar resonance or for scalars with suppressed tree-level coupling to gauge bosons.« less
NASA Astrophysics Data System (ADS)
Knapp, Wilfried
2018-01-01
Visual observation of double stars is an anachronistic passion especially attractive for amateurs looking for sky objects suitable for visual observation even in light polluted areas. Session planning then requires a basic idea which objects might be suitable for a given equipmentâthis question is a long term issue for visual double star observers and obviously not easy to answer, especially for unequal bright components. Based on a reasonably large database with limited aperture observations (done with variable aperture equipment iris diaphragm or aperture masks) a heuristic approach is used to derive a statistically well founded Rule of Thumb formula.
Computer simulator for a mobile telephone system
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1981-01-01
A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.
NASA Astrophysics Data System (ADS)
Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.
2017-12-01
The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.
A technique for thick polymer coating of inertial-confinement-fusion targets
NASA Technical Reports Server (NTRS)
Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.
1983-01-01
A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.
González, Silvia A; Affranchino, José L
2016-07-01
The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.
Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.
Knight, Derek E
2002-04-01
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.
Estimating true evolutionary distances under the DCJ model.
Lin, Yu; Moret, Bernard M E
2008-07-01
Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.
EDITORIAL: Plasma Surface Interactions for Fusion
NASA Astrophysics Data System (ADS)
2006-05-01
Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005). We are indebted to Lynda Saddiq and Fay Ownby, secretaries in the Physics Division of ORNL, whose special efforts, devotion, and expertise made possible both the Workshop and these Proceedings. J T Hogan, P S Krstic and F W Meyer Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA
Frost, T.P.; Lindsay, J.R.
1988-01-01
MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.
Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics
Jaipargas, Erica-Ashley; Barton, Kiah A.; Mathur, Neeta; Mathur, Jaideep
2015-01-01
Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions. PMID:26442089
Permyakova, Natalya V; Belavin, Pavel A; Pirozhkova, Dariya S; Ufimtseva, Elena G; Rozov, Sergey M; Mursalimov, Sergey R; Sidorchuk, Yuriy V; Uvarova, Elena A; Zagorskaya, Alla A; Marenkova, Tatiana V; Bannikova, Svetlana V; Demidov, Evgeniy A; Starostin, Konstantin V; Kravchenko, Marionella A; Vakhrusheva, Diana V; Berdnikov, Roman B; Eremeeva, Natalya I; Skornyakov, Sergey N; Peltek, Sergey E; Deineko, Elena V
2018-03-01
Development of effective vaccine candidates against tuberculosis (TB) is currently the most important challenge in the prevention of this disease since the BCG vaccine fails to guarantee a lifelong protection, while any other approved vaccine with better efficiency is still absent. The protective effect of the recombinant fusion protein CFP10-ESAT6-dIFN produced in a prokaryotic expression system (Escherichia coli) has been assessed in a guinea pig model of acute TB. The tested antigen comprises the Mycobacterium tuberculosis (Mtb) proteins ESAT6 and CFP10 as well as modified human γ-interferon (dIFN) for boosting the immune response. Double intradermal immunization of guinea pigs with the tested fusion protein (2 × 0.5 µg) induces a protective effect against subsequent Mtb infection. The immunized guinea pigs do not develop the symptoms of acute TB and their body weight gain was five times more as compared with the non-immunized infected guinea pigs. The animal group immunized with this dose of antigen displays the minimum morphological changes in the internal organs and insignificant inflammatory lesions in the liver tissue, which complies with a decrease in the bacterial load in the spleen and average Mtb counts in macrophages.
Kim, Hyoungmin; Lee, Choon-Ki; Yeom, Jin-Sup; Lee, Jae-Hyup; Lee, Ki-Ho; Chang, Bong-Soon
2012-07-01
To evaluate whether a synthetic bone chip made of porous hydroxyapatite can effectively extend local decompressed bone graft in instrumented posterior lumbar interbody fusion (PLIF). 130 patients, 165 segments, who had undergone PLIF with cages and instrumentation for single or double level due to degenerative conditions, were investigated retrospectively by independent blinded observer. According to the material of graft, patients were divided into three groups. HA group (19 patients, 25 segments): with hydroxyapatite bone chip in addition to autologous local decompressed bone, IBG group (25 patients, 28 segments): with autologous iliac crest bone graft in addition to local decompressed bone and LB group (86 patients, 112 segments): with local decompressed bone only. Radiologic and clinical outcome were compared among groups and postoperative complications, transfusion, time and cost of operation and duration of hospitalization were also investigated. Radiologic fusion rate and clinical outcome were not different. Economic cost, transfusion and hospital stay were also similar. But operation time was significantly longer in IBG group than in other groups. There were no lasting complications associated with HA and LB group with contrast to five cases with persisting donor site pain in IBG group. Porous hydroxyapatite bone chip is a useful bone graft extender in PLIF when used in conjunction with local decompressed bone.
Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate
2016-10-15
Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. © 2016. Published by The Company of Biologists Ltd.
Capilla, Laia; Medarde, Nuria; Alemany-Schmidt, Alexandra; Oliver-Bonet, Maria; Ventura, Jacint; Ruiz-Herrera, Aurora
2014-07-07
Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Son, Doo Kyung; Son, Dong Wuk; Kim, Ho Sang; Sung, Soon Ki; Lee, Sang Weon; Song, Geun Sung
2014-08-01
This study analyzed clinical and radiological outcomes of a zero-profile anchored spacer (Zero-P) and conventional cage-plate (CCP) for single level anterior cervical discectomy and fusion (ACDF) to compare the incidence and difference of postoperative dysphagia with both devices. We retrospectively reviewed our experiences of single level ACDF with the CCP and Zero-P. From January 2011 to December 2013, 48 patients who had single level herniated intervertebral disc were operated on using ACDF, with CCP in 27 patients and Zero-P in 21 patients. Patients who received more than double-level ACDF or combined circumferential fusion were excluded. Age, operation time, estimated blood loss (EBL), pre-operative modified Japanese Orthopaedic Association (mJOA) scores, post-operative mJOA scores, achieved mJOA scores and recovery rate of mJOA scores were assessed. Prevertebral soft tissue thickness and postoperative dysphagia were analyzed on the day of surgery, and 2 weeks and 6 months postoperatively. The Zero-P group showed same or favorable clinical and radiological outcomes compared with the CCP group. Postoperative dysphagia was significantly low in the Zero-P group. Application of Zero-P may achieve favorable outcomes and reduce postoperative dysphagia in single level ACDF.
NASA Astrophysics Data System (ADS)
Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttgé, L.; Trzaska, W. H.; Schmitt, C.; Chubarian, G.
2014-11-01
Background: In heavy-ion-induced reactions the mechanism leading to the formation of the compound nucleus and the role of quasifission is still not clear. Purpose: Investigation of the quasifission process of superheavy composite systems with Z =110 -116 and comparison with properties of fusion-fission and quasifission of lighter composite systems. Method: Mass and energy distributions of fissionlike fragments formed in the reactions 48Ca+232Th, 238U , 244Pu , and 248Cm at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET at the U-400 cyclotron of the FLNR JINR. Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies and ion-target combinations have been studied for asymmetric and symmetric fragments formed in the reactions. The capture cross sections were obtained for the reactions 48Ca+244Pu and 248Cm . The lower limits for fission barriers of 283 -286Cn , 289 -292Fl , and 293 -296Lv compound nuclei were estimated. Conclusions: Analysis of the properties of symmetric fragments has shown that a significant part of these fragments may be attributed to fusion-fission process for the reactions 48Ca +238U , 244Pu , and 248Cm .
TALE-PvuII fusion proteins--novel tools for gene targeting.
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Drosophila cell cycle under arrest: uncapped telomeres plead guilty.
Cenci, Giovanni
2009-04-01
Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.
1989-07-01
are established for particular missions. DESCRIPTION OF THE SCOPING CODE A fast-running FORTRAN code , TCT FOR, was written to perform the parameter...requirements; i.e., missions which require multi - stage , chemically propelled vehicles. Vehicle Sizing Algorithms The basic problem is the delivery of a...F04611-87-c-0092 77 - Ř ". -rd Z;PCc.e) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT " I WORK U" FLEMENT NO NO. [ iQ ACCESSION NO 162302F 3058
Video Analytics Evaluation: Survey of Datasets, Performance Metrics and Approaches
2014-09-01
training phase and a fusion of the detector outputs. 6.3.1 Training Techniques 1. Bagging: The basic idea of Bagging is to train multiple classifiers...can reduce more noise interesting points. Person detection and background subtraction methods were used to create hot regions. The hot regions were...detection algorithms are incorporated with MHT to construct one integrated detector /tracker. 6.8 IRDS-CASIA team IRDS-CASIA proposed a method to solve a
The Trojan Horse Method in Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitaleri, C.
2010-11-24
The Trojan Horse Method allows for the measurements of cross section in nuclear reaction between charged particles at astrophysical energies. The basic features of the method are discussed in the non resonant reactions case. A review of applications aimed to extract the bare nucleus astrophysical S{sub b}(E) factor for two body processes are presented. The information on electron screening potential U{sub e} were obtained from comparison with direct experiments of fusion reactions.
'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS
Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...
Ohba, Taro; Toyokawa, Gouji; Osoegawa, Atsushi; Hirai, Fumihiko; Yamaguchi, Masafumi; Taguchi, Ken-Ichi; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito; Sugio, Kenji
2016-09-01
The EGFR, K-ras, EML4-ALK, and BRAF genes are oncogenic drivers of lung adenocarcinoma. We conducted this study to analyze the mutations of these genes in stage I adenocarcinoma. The subjects of this retrospective study were 256 patients with resected stage I lung adenocarcinoma. We analyzed mutations of the EGFR, K-ras, and BRAF genes, and the EML4-ALK fusion gene. We also assessed disease-free survival (DFS) to evaluate the prognostic value and overall survival (OS) to evaluate the predictive value of treatment after recurrence. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes were detected in 120 (46.8 %), 14 (5.5 %), 6 (2.3 %), and 2 (0.8 %) of the 256 tumors. Two tumors had double mutations (0.8 %). The incidence of EGFR mutations was significantly higher in women than in men. The EML4-ALK fusion gene was detected only in younger patients. The DFS and OS of the K-ras mutant group were significantly worse than those of the EGFR mutant group, the EML4-ALK fusion gene group, and the wild-type group. Six of the seven patients with the EML4-ALK fusion gene are still alive without recurrent disease. In patients with stage I adenocarcinoma, mutation of the K-ras gene was a poor prognostic factor for recurrence. The presence of a mutation of the EGFR or EML4-ALK gene was not a prognostic factor.
Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?
Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo
2017-04-15
Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.
Fusion basis for lattice gauge theory and loop quantum gravity
NASA Astrophysics Data System (ADS)
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-02-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Measuring visual discomfort associated with 3D displays
NASA Astrophysics Data System (ADS)
Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.
2009-02-01
Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.
NASA Technical Reports Server (NTRS)
Holley, W. R.; Chatterjee, A.
1994-01-01
A theoretical framework is presented which provides a quantitative analysis of radiation induced translocations between the ab1 oncogene on CH9q34 and a breakpoint cluster region, bcr, on CH 22q11. Such translocations are associated frequently with chronic myelogenous leukemia. The theory is based on the assumption that incorrect or unfaithful rejoining of initial double strand breaks produced concurrently within the 200 kbp intron region upstream of the second abl exon, and the 16.5 kbp region between bcr exon 2 and exon 6 interact with each other, resulting in a fusion gene. for an x-ray dose of 100 Gy, there is good agreement between the theoretical estimate and the one available experimental result. The theory has been extended to provide dose response curves for these types of translocations. These curves are quadratic at low doses and become linear at high doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie
2007-08-10
We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less
Regularization of the double period method for experimental data processing
NASA Astrophysics Data System (ADS)
Belov, A. A.; Kalitkin, N. N.
2017-11-01
In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.
Excitation basis for (3+1)d topological phases
NASA Astrophysics Data System (ADS)
Delcamp, Clement
2017-12-01
We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.
Ng, Spencer
2015-01-01
As our understanding of the basic precepts of immunobiology continue to advance at a rapid pace, translating such discoveries into meaningful therapies for patients has proved challenging. This is especially apparent in the use of cytokine-based immunotherapies for cancer. Unanticipated and serious side effects, as well as low objective response rates seen in clinical trials, have dealt setbacks to the field. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and common γ-chain (γ-c) interleukins are cytokines that have been used as stand-alone immunotherapies with moderate success. Our group has found that the fusion of GM-CSF to members of γ-c interleukins results in the generation of novel proteins with unique signaling properties and unheralded biological effects. These fusion proteins, termed GIFT (GM-CSF interleukin fusion transgenes) fusokines, are the result of combining GM-CSF and a γ-c interleukin into a single, bifunctional polypeptide. In our experience, GIFT fusokines often confer immune cells with a gain of function that cannot be explained by the mere sum of their constituent moieties. They act as bispecific ligands, coupling activated GM-CSF and interleukin receptors together to drive unique downstream signaling events. The synergy that arises from these fusions has shown great promise in its ability to modulate the immune response and overcome maladaptive biological processes that underlie diseases such as cancer and autoimmune conditions. In this review, we discuss the ways in which the GIFT fusokines are able to alter the immune response, particularly in disease states, with a special emphasis on how these novel molecules may be translated into effective therapies in the clinical setting. PMID:25391644
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Sudo, Hideki; Hojo, Yoshihiro; Minami, Akio
2010-03-01
The authors present a new posterior correction technique consisting of simultaneous double-rod rotation using 2 contoured rods and polyaxial pedicle screws with or without Nesplon tapes. The purpose of this study is to introduce the basic principles and surgical procedures of this new posterior surgery for correction of adolescent idiopathic scoliosis. Through gradual rotation of the concave-side rod by 2 rod holders, the convex-side rod simultaneously rotates with the the concave-side rod. This procedure does not involve any force pushing down the spinal column around the apex. Since this procedure consists of upward pushing and lateral translation of the spinal column with simultaneous double-rod rotation maneuvers, it is simple and can obtain thoracic kyphosis as well as favorable scoliosis correction. This technique is applicable not only to a thoracic single curve but also to double major curves in cases of adolescent idiopathic scoliosis.
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Partial duplication of head--a rare congenital anomaly.
Hemachandran, Manikkapurath; Radotra, Bishan Dass
2004-10-01
Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.
Burge, D J; Eisenman, J; Byrnes-Blake, K; Smolak, P; Lau, K; Cohen, S B; Kivitz, A J; Levin, R; Martin, R W; Sherrer, Y; Posada, J A
2017-07-01
Blood-borne RNA circulating in association with autoantibodies is a potent stimulator of interferon production and immune system activation. RSLV-132 is a novel fully human biologic Fc fusion protein that is comprised of human RNase fused to the Fc domain of human IgG1. The drug is designed to remain in circulation and digest extracellular RNA with the aim of preventing activation of the immune system via Toll-like receptors and the interferon pathway. The present study describes the first clinical study of nuclease therapy in 32 subjects with systemic lupus erythematosus. The drug was well tolerated with a very favorable safety profile. The approximately 19-day serum half-life potentially supports once monthly dosing. There were no subjects in the study that developed anti-RSLV-132 antibodies. Decreases in B-cell activating factor correlated with decreases in disease activity in a subset of patients.
Fertilization Mechanisms in Flowering Plants
Dresselhaus, Thomas; Sprunck, Stefanie; Wessel, Gary M.
2016-01-01
Compared to the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells they interact and fuse with two dimorphic female gametes (egg and central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca2+ is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes including mammals. PMID:26859271
Dalla Paola, Luca; Brocco, Enrico; Ceccacci, Tanja; Ninkovic, Sasa; Sorgentone, Sara; Marinescu, Maria Grazia; Volpe, Antonio
2009-11-01
Charcot neuroarthropathy of the foot/ankle is a devastating complication of diabetes. Along with neuroarthropathy, osteomyelitis can occur which can result in amputation. This prospective study evaluated a limb salvage procedure as an alternative to amputation through surgical treatment of osteomyelitis of the midfoot or the ankle and stabilization with external fixation. Forty-five patients with Charcot arthropathy and osteomyelitis underwent debridement and attempted fusion with an external fixator. Chart and radiograph review was performed to assess the success of the fusion and eradication of infection. Out of 45 patients, 39 patients healed using emergent surgery to drain an acute manifestation of the infection while maintaining the fixation for an average of 25.7 weeks. Two patients were treated with intramedullary nail in a subsequent surgical procedure. In four patients, the infection could not be controlled, therefore a major amputation was carried out. For select patients, external fixation proved to be a reasonable alternative to below-knee amputation.
Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes
Sun, Ning; Lee, Andrew; Wu, Joseph C.
2013-01-01
Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890
Advances in boronization on NSTX-Upgrade
Skinner, C. H.; Bedoya, F.; Scotti, F.; ...
2017-01-27
Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron depositionmore » versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. Furthermore, this increase correlated with the rise of oxygen emission from the plasma.« less
NASA Astrophysics Data System (ADS)
Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.
2004-08-01
During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.
Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.
NASA Technical Reports Server (NTRS)
Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.
1973-01-01
Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.
Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.
Wall, Lindley B; Keener, Jay D; Brophy, Robert H
2009-01-01
A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.
Modulating the Neutron Flux from a Mirror Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D
2011-09-01
A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronousmore » detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.« less
Preliminary consideration of CFETR ITER-like case diagnostic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. S.; Liu, Y. K.; Gao, X.
2016-11-15
Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less
Hines, Nichole L.; Miller, Cathy L.
2012-01-01
Avian paramyxovirus serotype-1 (APMV-1) is capable of infecting a wide range of avian species leading to a broad range of clinical symptoms. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending on the virus strain and host species. Classification systems have been designed to group isolates based on their genetic composition. The genetic composition of the fusion gene cleavage site plays an important role in virulence. Presence of multiple basic amino acids at the cleavage site allows enzymatic cleavage of the fusion protein enabling virulent viruses to spread systemically. Diagnostic tests, including virus isolation, real-time reverse-transcription PCR, and sequencing, are used to characterize the virus and identify virulent strains. Genetic diversity within APMV-1 demonstrates the need for continual monitoring for changes that may arise requiring modifications to the molecular assays to maintain their usefulness for diagnostic testing. PMID:22577610
Context-Aware Personal Navigation Using Embedded Sensor Fusion in Smartphones
Saeedi, Sara; Moussa, Adel; El-Sheimy, Naser
2014-01-01
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts—where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone. PMID:24670715
Theory of plasma confinement in non-axisymmetric magnetic fields.
Helander, Per
2014-08-01
The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
Fusion Energy Sciences Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dart, Eli; Tierney, Brian
2012-09-26
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Officemore » of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.« less
HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1983-08-01
As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less
Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald
2015-04-01
We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Fusion PIC code performance analysis on the Cori KNL system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, Tuomas S.; Deslippe, Jack; Friesen, Brian
We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization ismore » shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.« less
Context-aware personal navigation using embedded sensor fusion in smartphones.
Saeedi, Sara; Moussa, Adel; El-Sheimy, Naser
2014-03-25
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts-where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone.
Broder, C C; Berger, E A
1993-01-01
The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent mammalian species. Syncytium formation mediated by several of the CDR3 mutants was partially or completely resistant to inhibition by the CDR3-directed monoclonal antibody L71, suggesting that the corresponding epitope is not directly involved in the fusion process.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419649
Broder, C C; Berger, E A
1993-02-01
The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent mammalian species. Syncytium formation mediated by several of the CDR3 mutants was partially or completely resistant to inhibition by the CDR3-directed monoclonal antibody L71, suggesting that the corresponding epitope is not directly involved in the fusion process.(ABSTRACT TRUNCATED AT 400 WORDS)
Current Thrusts in Ground Robotics: Programs, Systems, Technologies, Issues
2000-03-01
MPRS – Demo III – MDARS-E and MDARS-I – JAUGS SPAWAR Systems Center, San Diego San Diego CA 92152-7383 Basic UXO Gathering System (BUGS) Use tens of...processing resources • Modularity improves sensor fusion for alarms and alerts • Joint Architecture for Unmanned Ground Systems ( JAUGS ) SPAWAR Systems...pp lic at io ns 1996 1998 2000 2002 SPAWAR Systems Center, San Diego San Diego CA 92152-7383 JAUGS : Joint Architecture for Unmanned Ground Systems
Information Collection using Handheld Devices in Unreliable Networking Environments
2014-06-01
different types of mobile devices that connect wirelessly to a database 8 server. The actual backend database is not important to the mobile clients...Google’s infrastructure and local servers with MySQL and PostgreSQL on the backend (ODK 2014b). (2) Google Fusion Tables are used to do basic link...how we conduct business. Our requirements to share information do not change simply because there is little or no existing infrastructure in our
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decoste, R.; Lachambre, J.; Abel, G.
1994-05-01
Electrically insulated divertor plates are used on TdeV (Tokamak de Varennes) [18[ital th] [ital EPS] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics] Berlin (European Physical Society, Petit-Lancy, 1991), Vol. 15C, Part I, pp. 1--141] to produce various biasing configurations, which can be decomposed into two basic modes. Plasma biasing, with a radial electric field [ital E][sub [ital r
Open problems of magnetic island control by electron cyclotron current drive
Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...
2016-11-17
This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.
Synthesis and development of low cost, high temperature N-arylene polybenzimidazole foam material
NASA Technical Reports Server (NTRS)
Harrison, E. S.
1975-01-01
Polymer (and foam) studies followed two basic routes: (1) formation of high molecular weight uncyclized polyamide followed by subsequent fusion and cyclodehydration to yield NABI (foam) and (2) polymer and foam formation by reaction of diphenyl esters (or anhydrides) with the tetramine. The latter route was found much more attractive since considerable versatility in both basic polymer structure and crosslinkability is achievable. Preliminary studies on BAB, phthalic anhydride (PA), and 3, 3 (prime), 4, 4(prime) benzo pheno netetracarboxylic acid dianhydride (BTDA) as crosslinked polymer precursors were conducted. Nonmelting rigid char forming foams with densities as low as 2.7 lb/cubic ft. were achieved. The program was successful in the preparation of a potentially low cost, low density, high char yield, high temperature foam material.
NASA Astrophysics Data System (ADS)
Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian
2012-10-01
TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.
McMurray, Cynthia T.; Vijg, Jan
2015-01-01
This issue of Current Opinions focuses on the dual role of DNA in life and death. In ancient Roman religion and myth, Janus is the god who looks both to the past and to the future. He guides the beginnings of life, its progression from one condition to another, and he foresees distant events. The analogy to DNA could not be stronger. Closely interacting with the environment, our basic genetics provides the origin of life, guides the quality of health with age, predicts disease, and ultimately foresees our end. A shared and deep interest in the origin of life has long prompted our desire to define aging, and, ultimately, to understand whether it can be reversed. In this special issue, the authors collectively review concepts of normative aging, DNA instability, DNA repair, the genetic contribution of age and diet to disease, and how the basic molecular transactions of DNA give it a double life that guides health and survival, as well as the transitions to death. PMID:25282314
Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide
2016-05-24
Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.
Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June
2016-05-01
Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.
Richards, Mark W; O'Regan, Laura; Roth, Daniel; Montgomery, Jessica M; Straube, Anne; Fry, Andrew M; Bayliss, Richard
2015-05-01
Proteins of the echinoderm microtubule (MT)-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase MT network. EML1-4 consist of Trp-Asp 40 (WD40) repeats and an N-terminal region containing a putative coiled-coil. Recurrent gene rearrangements in non-small cell lung cancer (NSCLC) fuse EML4 to anaplastic lymphoma kinase (ALK) causing expression of several oncogenic fusion variants. The fusions have constitutive ALK activity due to self-association through the EML4 coiled-coil. We have determined crystal structures of the coiled-coils from EML2 and EML4, which describe the structural basis of both EML self-association and oncogenic EML4-ALK activation. The structures reveal a trimeric oligomerization state directed by a conserved pattern of hydrophobic residues and salt bridges. We show that the trimerization domain (TD) of EML1 is necessary and sufficient for self-association. The TD is also essential for MT binding; however, this property requires an adjacent basic region. These observations prompted us to investigate MT association of EML4-ALK and EML1-ABL1 (Abelson 1) fusions in which variable portions of the EML component are present. Uniquely, EML4-ALK variant 3, which includes the TD and basic region of EML4 but none of the WD40 repeats, was localized to MTs, both when expressed recombinantly and when expressed in a patient-derived NSCLC cell line (H2228). This raises the question of whether the mislocalization of ALK activity to MTs might influence downstream signalling and malignant properties of cells. Furthermore, the structure of EML4 TD may enable the development of protein-protein interaction inhibitors targeting the trimerization interface, providing a possible avenue towards therapeutic intervention in EML4-ALK NSCLC.
Permogorov, V I; Tiaglov, B V; Minaev, V E
1980-01-01
The data on the dependence of the melting curve parameters of double-stranded RNA (replicative form of RNA of f2 bacteriophage) poly(A) times poly(U) and poly(G) times poly(C) on the concentration of (C2H5)4NBr were obtained. The RNA melting range width is shown to pass through the minimum value T =2.1+/-0.1degrees at the point of inversion of relative stability of GC and AU pairs that corresponds to 4.0+/-0.1 M concentration of (C2H5)4NBr. Using the melting temperatures of poly(A) times poly(U) and poly(G) times poly(C) the rependence of Tgc-Tau parameter on (C2H5)4NBr concentration was shown. It was concluded from these data that the effect of the double-stranded RNA stacking heterogeneity was negligible in the 0-3 M range of (C2H5)4NBr concentration. Melting curves of RNA were obtained at various values of Tgc-Tau parameter. It was shown that the profile of fine structure of melting curves depends on the value of Tgc-Tau parameter.
Erdogan, Mehmet Ali; Ozgul, Ulku; Ucar, Muharrem; Korkmaz, Mehmet Fatih; Aydogan, Mustafa Said; Ozkan, Ahmet Selim; Colak, Cemil; Durmus, Mahmut
2017-06-15
A prospective, randomized, double-blinded study. The aim of this study was to compare the efficacy and side effects of patient-controlled intermittent bolus epidural analgesia (PCIEA) and patient-controlled continuous epidural analgesia (PCCEA) for postoperative pain control in adolescent idiopathic scoliosis. Epidural analgesia is an accepted efficacious and safe procedure for postoperative pain management in scoliosis surgery. However, the PCIEA has not been adequately investigated for postoperative pain control in adolescent idiopathic scoliosis. Forty-seven patients, 8 to 18 years of age, who were undergoing posterior spinal fusion for idiopathic scoliosis were randomized to either the PCIEA or PCCEA group. An epidural catheter was inserted by a surgeon under direct visualization. The PCIEA group received 0.2 mg/mL of morphine, 0.25 mL/kg of morphine bolus, additional doses of 0.25 mL/kg morphine with a 1-hour lockout given by patient-controlled demand, and no infusion. The PCCEA group received the following: 0.2 mg/mL morphine, an initial morphine loading set at 0.1 mL/kg, followed by a 0.05 mL/kg/h continuous infusion of morphine, and a 0.025 mL/kg bolus dose of morphine. There was a 30-minute lockout interval. The primary outcome was morphine usage. The secondary outcomes were pain score, postoperative nausea and vomiting, and pruritus. Cumulative morphine consumption was lower in the PCIEA group than in the PCCEA group. Both methods provided effective pain control. There were no differences in pain scores between the groups. Postoperative nausea, vomiting, and pruritus were lower in the PCIEA group. The two epidural analgesia techniques studied are both safe and effective methods for postoperative pain control after posterior spinal fusion in idiopathic scoliosis. Nausea, vomiting and pruritus were considerably higher in the PCCEA group. Concerns regarding side effects associated with epidural opioids can be avoided by an intermittent bolus with a relatively lower amount of opioid. 2.
Report of Freshwater Mussels Workshop Held at St. Louis, Missouri on 26-27 October 1982.
1983-10-01
I was accosted by a toddler armed .. with a large red apple, a double handful for him. The apple was brought down on my knee with all the force the...my best diction. "Apple!" the youngster cried, "Apple, apple, apple!" banging my knee in perfect time. Then back to his mother down the aisle he...neither simple nor perfect, but it is available and should be used. One of the basic rules , perhaps the basic rule , of the International Code of
Recent developments in high speed lens design at the NPRL
NASA Astrophysics Data System (ADS)
McDowell, M. W.; Klee, H. W.
An account is given of recent South African developments in large aperture lens design for high speed photography that are based on the novel zero-power corrector concept. Complex multiple-element lens configurations based on such conventional optical layouts as the Petzval and double-Gauss can by the means presented be replaced with greatly simplified lens configurations employing as few as four basic elements. A tabulation is made of third-order monochromatic and first-order chromatic aberrations of the basic four-element zero-power corrector design.
2013 Nuclear Fusion Prize Acceptance Speech 2013 Nuclear Fusion Prize Acceptance Speech
NASA Astrophysics Data System (ADS)
Whyte, D.
2015-01-01
I would like to express gratitude to the IAEA, the journal Nuclear Fusion and its board for this acknowledgement of work carried out at the MIT Alcator C-Mod tokamak. I must begin by making it clear that this is in no way an award to an individual. The experiments, data analysis and paper were a true collaborative effort from the C-Mod team. It is a honor to work with them and to accept the award on their behalf. I would also like to thank the US Department of Energy for their support in funding this research. The paper describes the exploration of the 'improved' confinement regime dubbed 'I-mode'. The distinguishing feature of this operational mode is a robust boundary pedestal in temperature with the somewhat surprising lack of any form of density pedestal. Thus the regime exhibits an enhanced energy confinement similar to H-mode, roughly double of L-mode at fixed input power, yet has global fuel and impurity particle transport of L-mode. These features are intriguing from a scientific and practical point of view. On the science side it is extremely useful to obtain such a clear demarcation between the energy and particle transport. For example, soon after its discovery, the I-mode was used to extract the observation that the edge T pedestal is the strongest determinant for intrinsic rotation in work by John Rice, Pat Diamond and colleagues. Recent results regarding core transport by Anne White, Nate Howard and colleagues show that I-mode has intriguing properties with respect to core response of fluctuations and profile stiffness. Mike Churchill's recent Ph. D study on C-Mod shows that I-mode exhibits no strong poloidal impurity asymmetry, unlike H-mode. The I-mode posed an interesting test for the peeling-ballooning-KBM model of the pedestal, the subject of the 2014 Nuclear Fusion award of Phil Snyder, and was examined by John Walk and Jerry Hughes showing that in fact the lack of the density pedestal pushed the I-mode far away from the P-B limit, and thus the limiting transport/stability feature of the I-mode was in a sense self-enforcing for keeping the regime free of ELMs. Also intriguing is that the I-mode exhibits global energy confinement scaling with a very weak power degradation, presumably this arises from a temperature pedestal which is not regulated by stability, it seems I-mode provides fertile ground for studying basic plasma phenomena. From a pragmatic point of view I-mode has now been obtained and studied in ASDEX-Upgrade and DIII-0D, as reported by Amanda Hubbard at this conference. There are interesting similarities to the C-Mod observations, such as a Te pedestal without a density pedestal, but also differences which are being sorted through in details of the edge fluctuations and the operational window to access I-mode. The I-mode is 'found' at power levels between L- and H, and thus suppressing the H-mode transition is a key aspect to maintaining I-mode. This is done basically by operating with the ion grad-B drift pointed away from the primary X-point. This is one of the reasons why intrinsically stationary regimes like I-mode, and others like QH-mode, are an attractive option for burning plasma scenarios without the need for ELM, if accessible and maintainable this requires no additional hardware since the pedestal self-regulates. In addition I-mode is highly attractive because of the L-mode particle confinement: the turbulence-dominated particle transport greatly eases both fuelling requirements and impurity control. Indeed I-mode is highly successful on the all high-Z wall of C-Mod. And in a burning plasma the control of the operating point is primarily through density control, thus one foresees that burn control through densification is very powerful and promising. Recent work has suggested that the power requirement to access I-mode has rather weak B dependence. This may explain why the regime has a relatively wide operating window in the high-field C-Mod and I-mode may be highly applicable to high B ITER and reactors. So while it is relatively early after this paper and the I-mode discovery, we expect continued interesting work in this area. I would also like to point out another feature of the Nuclear Fusion paper from 2010. Approximately one third of the co-authors were students at the time when the paper was written. Indeed, it is unlikely that I-mode would have been discovered without students. A student, Rachael McDermott, was seeking to slow down the confinement transition time in order to capture it with her new charge-exchange spectroscopy diagnostic. The attempt was a 'crazy idea' to use the 'unfavorable' grad-B drift with a very careful set of small power steps just below the H-mode transition. It was in such steps that the I-mode was found and then later expanded to a much wider operating window once it was realized how attractive the I-mode appeared. I believe the fusion community can take two lessons from this. First, it is vital that we continue to support the education of young scientists. Our investments in new devices are for naught if we do not have an extremely talented and trained new generation coming behind us. And to do that means we need to assure student are integrated with access to leading facilities like C-Mod where one third of the session leaders are students. Secondly, and related, small, capable and versatile fusion experiments are both highly appropriate to meet the education mission and to push forward the fusion science because of their ability to take on risk and try new ideas, and to explore unique, but relevant, parts of parameter space such as high magnet field fusion. I urge that we continue to support such facilities in the international fusion portfolio. Thank you again on behalf of the co-authors and the C-Mod team.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Claude; Hammel, Bruce; Azechi, Hiroshi; Labaune, Christine
2006-06-01
The Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA 2005) was held September 4-9, 2005 at the Bellevue Conference Center in Biarritz, France. The host organizations for this conference were the University of Bordeaux 1, the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a l'Energie Atomique (CEA). The conference objective was to review of the state of the art of research in inertial fusion sciences and applications since the last conference held in Monterey California, USA, in 2003. Altogether 509 abstracts were submitted, 418 accepted, and more than 440 persons from 23 countries attended the conference. These Proceedings contain 249 of the papers presented at IFSA 2005. This collection of papers represents the manuscripts submitted to and passing the peer review process. The IFSA 2005 conference is the first of a new series of three conferences to be organized in France, Japan and the USA and governed under Annex I of the Memorandum of Agreement, signed in June 2004, among the Lawrence Livermore Laboratory operated by the University of California (UC), Osaka University, and Institut Lasers et Plasmas (ILP), operated by CNRS Delegation Aquitaine. The IFSA 2005 continued the strong tradition of the three previous conferences in Bordeaux, Kyoto and Monterey. It was the largest IFSA yet with a substantial participation from countries such as China and Russia. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, there continues to be significant progress in the international inertial fusion community. At IFSA 2005, researchers presented the exciting advances in traditional hot spot ignition approach, including results from the early experiments from the NIF laser. A particularly emphasis of the meeting was the rapid and exciting progress in the fast ignition scheme. Integrated and basic physics experiments on GekkoXII, Vulcan, and other laser-matter interaction facilities have shown promising results. A lot of new results of experiments and numerical simulations in ultra-intense laser interactions have also been presented. The Megajoule Laser (LMJ), as one of two facilities being built to achieve target ignition, was a key attraction of IFSA 2005. About 200 participants toured the LMJ construction site and the LIL laser prototype during the conference. Before the tour, a special Facility Focus session examined progress on inertial fusion facilities around the world, including the soon-to-be-completed OMEGA-EP upgrade at Rochester, USA, and FIREX I, at Osaka, Japan. Recent progresses in hohlraum physics continue to give confidence in the ultimate achievement of ignition on the NIF Laser and the Megajoule Laser. The USA are pursuing a very focused program on ICF under the National Ignition Campaign (NIC). In China, a national project has been launched, the goal of which is fusion ignition and plasma burning in about 2020. Progress in direct drive has been notable over the past few years with the cryogenic implosions at LLE, polar direct-drive that may enable to switch rapidly from an indirect- to a direct-drive laser configuration, adiabat shaping of laser pulses, and even "Saturn targets", a short circuit topic from ICF to laboratory astrophysics. About this last topic, radiative shocks and plasma jets were among the most studied subjects. There were also sessions on the technologies of al1 types of drivers, including KrF and DPSSL lasers, particle beams, and Z-pinches. Advances in Z-pinch included double-hohlraum irradiation symmetry and the construction of a PW laser beam for the Z-facility. Advance in plasma diagnostics were dominated by proton imaging from ultra-intense interactions and precise imaging spectroscopy of core implosions. Of special interest, advanced target physics and reactor design studies have started to be more present during this IFSA edition. These Proceedings start with special chapters on the keynote speeches and the Teller lectures. The keynotes give an overview of progress in inertial fusion in North America, Europe and Asia. The Teller lectures show the contributions of this year's two winners: Joe Kilkenny of General Atomics and Max Tabak of LLNL. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers facilities, lasers, particle beams, Z-pinches, target fabrication and reactor design; Part C covers fundamental high-energy density science and other applications of inertial fusion VI technology such as plasma diagnostics, atomic physics and X-ray sources, laboratory astrophysics and laser particle acceleration. The readers should be aware that for some of the papers, only a short version is presented in this book: the extended version will be published in a topical issue of the European Physical Journal. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2005 an extremely successful conference. Jean-Claude Gauthier, technical committee co-chair Bruce Hammel, technical committee co-chair Hiroshi Azechi, technical committee co-chair Christine Labaune, proceedings co-editor
Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich
2007-05-01
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C.; Loros, Jennifer J.; Kück, Ulrich
2013-01-01
Summary The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41–EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41–EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi. PMID:17501918
TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308
Zhang, Sui; Wang, Dachun; Estrov, Zeev; Raj, Sean; Willerson, James T; Yeh, Edward T H
2004-12-21
Adult human peripheral blood CD34-positive (CD34+) cells appear to transform into cardiomyocytes in the injured hearts of severe combined immunodeficient mice. It remains unclear, however, whether the apparent transformation is the result of transdifferentiation of the donor stem cells or of fusion of the donor cell with the cardiomyocyte of the recipients. We performed flow cytometry analyses of cells isolated from the hearts of mice that received human CD34+ cells. Human HLA-ABC antigen and cardiac troponin T or Nkx2.5 were used as markers for cardiomyocytes derived from human CD34+ cells, and HLA-ABC and VE-cadherin were used to identify the transformed endothelial cells. The double-positive cells were collected and interphase fluorescence in situ hybridization was used to detect the expression of human and mouse X chromosomes in these cells. We found that 73.3% of nuclei derived from HLA+ and troponin T+ or Nkx2.5+ cardiomyocytes contain both human and mouse X chromosomes and 23.7% contain only human X chromosome. In contrast, the nuclei of HLA-, troponin T+ cells contain only mouse X chromosomes. Furthermore, 97.3% of endothelial cells derived from CD34+ cells contained human X chromosome only. Thus, both cell fusion and transdifferentiation may account for the transformation of peripheral blood CD34+ cells into cardiomyocytes in vivo.
Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.
1961-10-24
ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)
Overview of ECRH experimental results
NASA Astrophysics Data System (ADS)
Lloyd, Brian
1998-08-01
A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.
JPRS Report, Science & Technology, Japan, Fine Ceramics Industry Basic Issues Forum
1990-10-12
Department, Nagoya Industrial Technology Testing Station, Agency of Industrial Science & Technology Tetsuya Uchino Director, Asahi Glass Co, Ltd...12.5) (100) Steel 15 3 30 75 16 8 132 (22.7) (56.8) (12.2) (100) Glass , 12 13 73 2 16 15 119 Earth & Rock (10.9) (61.3) (13.4) (100) Share, by...fil- ters, burners Nuclear Power Equipment P&S Materials used in nuclear fusion reactors R&D Materials used to fix waste products in glass , materials
Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.
Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S
2014-01-01
Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.
The double-anchoring theory of lightness perception: a comment on Bressan (2006).
Howe, Piers D L; Sagreiya, Hersh; Curtis, Dwight L; Zheng, Chengjie; Livingstone, Margaret S
2007-10-01
Recently, a double-anchoring theory (DAT) of lightness perception was proposed (P. Bressan, 2006), which offers explanations for all the data explained by the original anchoring theory (A. Gilchrist et al., 1999), as well as a number of additional lightness phenomena. Consequently, DAT can account for an unprecedented range of empirical results, potentially explaining everything from the basic simultaneous contrast display to subtle variations of the Gelb effect. In this comment, the authors raised 4 concerns that demonstrate serious theoretical and empirical difficulties for DAT. PsycINFO Database Record (c) 2007 APA, all rights reserved.
Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka
2005-08-01
New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
The Joint European Torus (JET)
NASA Astrophysics Data System (ADS)
Rebut, Paul-Henri
2017-02-01
This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.
A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch
NASA Astrophysics Data System (ADS)
McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.
2017-10-01
We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basmaciogullari, Stephane; Pacheco, Beatriz; Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115
2006-09-15
We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1more » to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8{alpha} in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8{alpha}/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8{alpha} molecules.« less
Latif, Rana K; VanHorne, Edgar M; Kandadai, Sunitha Kanchi; Bautista, Alexander F; Neamtu, Aurel; Wadhwa, Anupama; Carter, Mary B; Ziegler, Craig H; Memon, Mohammed Faisal; Akça, Ozan
2016-01-20
Lung isolation skills, such as correct insertion of double lumen endobronchial tube and bronchial blocker, are essential in anesthesia training; however, how to teach novices these skills is underexplored. Our aims were to determine (1) if novices can be trained to a basic proficiency level of lung isolation skills, (2) whether video-didactic and simulation-based trainings are comparable in teaching lung isolation basic skills, and (3) whether novice learners' lung isolation skills decay over time without practice. First, five board certified anesthesiologist with experience of more than 100 successful lung isolations were tested on Human Airway Anatomy Simulator (HAAS) to establish Expert proficiency skill level. Thirty senior medical students, who were naive to bronchoscopy and lung isolation techniques (Novice) were randomized to video-didactic and simulation-based trainings to learn lung isolation skills. Before and after training, Novices' performances were scored for correct placement using pass/fail scoring and a 5-point Global Rating Scale (GRS); and time of insertion was recorded. Fourteen novices were retested 2 months later to assess skill decay. Experts' and novices' double lumen endobronchial tube and bronchial blocker passing rates showed similar success rates after training (P >0.99). There were no differences between the video-didactic and simulation-based methods. Novices' time of insertion decayed within 2 months without practice. Novices could be trained to basic skill proficiency level of lung isolation. Video-didactic and simulation-based methods we utilized were found equally successful in training novices for lung isolation skills. Acquired skills partially decayed without practice.
Choosing the Best Method to Introduce Accounting.
ERIC Educational Resources Information Center
Guerrieri, Donald J.
1988-01-01
Of the traditional approaches to teaching accounting--single entry, journal, "T" account, balance sheet, and accounting equation--the author recommends the accounting equation approach. It is the foundation of the double entry system, new material is easy to introduce, and it provides students with a rationale for understanding basic concepts.…
For the last decade ecosystem services have received increasing focus, yet the natural and social scientists working on mainstreaming these concepts are still struggling with the basic issues. One of such issue is developing a framework that avoids double counting, provides guid...
Current-free double layers: A review
NASA Astrophysics Data System (ADS)
Singh, Nagendra
2011-12-01
During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.
Prediction and control of chaotic processes using nonlinear adaptive networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.D.; Barnes, C.W.; Flake, G.W.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Autophagy modulation as a potential therapeutic target for diverse diseases
Rubinsztein, David C.; Codogno, Patrice; Levine, Beth
2012-01-01
Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation. PMID:22935804
Zurita-Lopez, Cecilia I.; Sandberg, Troy; Kelly, Ryan; Clarke, Steven G.
2012-01-01
Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-NG-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-NG-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-NG-monomethylarginine, not asymmetric ω-NG,NG-dimethylarginine or symmetric ω-NG,NG′-dimethylarginine, under the conditions tested. PMID:22241471
Stimuli-responsive LbL capsules and nanoshells for drug delivery.
Delcea, Mihaela; Möhwald, Helmuth; Skirtach, André G
2011-08-14
Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine. Copyright © 2011. Published by Elsevier B.V.
GENXICC: A generator for hadronic production of the double heavy baryons ΞccΞcc, ΞbcΞbc and ΞbbΞbb
NASA Astrophysics Data System (ADS)
Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang
2007-09-01
We write down a generator program for the hadronic production of the double-heavy baryons Ξ, Ξ and Ξ according to relevant publications. We name it as GENXICC and we test it by comparing its numerical results with those in references. It is written in a PYTHIA-compatible format and it can be easily implemented into PYTHIA. GENXICC is also written in modularization manner, with make, a GNU C compiler, one may apply the generator to various situations or experimental environments very conveniently. Program summaryProgram title:GENXICC Catalogue identifier:ADZJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:99 252 No. of bytes in distributed program, including test data, etc.:1 432 846 Distribution format:tar.gz Programming language:FORTRAN77/90 Computer:Any LINUX based on PC with FORTRAN77 or FORTRAN90 and GNU C compiler installed Operating systems:LINUX RAM:About 2.0 MB Classification:11.2 Nature of problem:Hadronic production of a double-heavy baryons: Ξ, Ξ and Ξ. Solution method:The production of the double-heavy baryons is realized by producing a binding double-heavy diquark either (QQ)[3]3¯,6 ( Q,Q=b,c) or (QQ)[1]3¯,6, which is in color anti-triplet 3¯ or color sextuplet 6 and in S-wave triplet or singlet configuration, respectively, and then by absorbing a proper light quark non-perturbatively. For the production of the various double-heavy baryons Ξ, Ξ and Ξ, the 'gluon-gluon fusion' mechanism, being the most important, is written precisely in the generator, but two additional mechanisms, i.e. the 'gluon-charm collision' and the 'charm-charm collision' ones, only for Ξ ( Ξcc+ or Ξcc++) are written. Furthermore, all the mechanisms are treated consistently within the general-mass flavor-number (GM-VFN) scheme. Specially, to deal with the amplitude and in order to save CPU time as much as possible, the 'improved helicity-approach' is applied for the most complicated gluon-gluon fusion mechanism. The code with a proper option can generate weighted and unweighted events accordingly as user's wish. Moreover, an interface to PYTHIA is provided to meet ones' needs to generate the 'complete events' of Ξ, i.e. to do the 'showers' of the partons appearing in the initial and final states of the subprocess, and the hadronization for final obtained 'showers', etc. Restrictions:In GENXICC, the approach to the hadronic production in terms of a 'complete αs4 calculation' via the production of a binding diquark state either (QQ)[3]3¯ or (QQ)[1]6 ( Q=c,b) for Ξ and Ξ production, and via that of a binding diquark state of (bc)[3]3¯ or (bc)[1]3¯ or (bc)[3]6 or (bc)[1]6 for Ξ is available, but the contributions from the other higher Fock states of the diquark states are not involved. Considering the needs of comparisons and applications in most cases, three mechanisms and their consistent summation for the hadronic production of Ξ are available. But for most purposes and applications to the baryons Ξ and Ξ, which contain b-quark(s) (much heavier than c-quark), only the 'gluon-gluon fusion' mechanism for the production is accurate enough, therefore, here only the 'gluon-gluon fusion' mechanism is available. Moreover, since the polarization of the double-heavy baryons is also strongly effected by hadronization of the double-heavy diquark produced via the mechanisms considered here, so in the present generator only the unpolarized production for the baryons are available. Running time:It depends on which option one chooses to match PYTHIA when generating the events and also on which mechanism is chosen for generating the events. Typically, for the most complicated case via gluon-gluon mechanism to generate the mixed events via the intermediate diquark in (cc)[3]3¯ and (cc)[1]6 states, then on a 1.8 GHz Intel P4-processor PC-machine, if taking IDWTUP=1 for PYTHIA option (the meaning will be explained later on), it takes about 20 hours to generate 1000 events, whereas, if IDWTUP=3 (the meaning will be explained later on), it takes only about 40 minutes to generate 10 6 events. In fact, there are two kinds of states for Ξ, i.e. one is that the inside b and c are symmetric in 'flavor space' and the other is that b and c are antisymmetric in 'flavor space' similar to the case for the baryons Λ and Σ. Let us call them as Ξ for symmetric one and Ξ for antisymmetric one when we need to distinguish them. Due to the electromagnetic interaction between the quarks, for instance, the two kinds of states may have different masses (degeneracy broken).
Fusion of navigational data in River Information Services
NASA Astrophysics Data System (ADS)
Kazimierski, W.
2009-04-01
River Information Services (RIS) is the complex system of solutions and services for inland shipping. It has been the scope of works carried out in most of European countries for last several years. There were also a few major pan-European projects like INDRIS or COMPRIS launched for these purposes. The main idea of RIS is to harmonize the activities of various companies, authorities and other users of inland waterways in Europe. In the last time growing activity in this area in Poland can be also noticed. The leading example can be the works carried out in Chair of Geoinformatics in Maritime University of Szczecin regarding RIS for the needs of Odra River. The Directive 2005/44/EC of European Parliament and Europe Council, followed by European Commission regulations, give precise guidelines on implementing RIS in Europe, stating the services that should be provided. Among them Traffic Information and Traffic Management services can be found. As per guidelines they should be based on tracking and tracing of ships in the inland waters. The results of tracking and tracing are Tactical Traffic Image and Strategic Traffic Image. The guidelines stated that, tracking and tracing system in RIS shall consist of various type sensors. The most important of them is thought to be Automatic Information System (AIS), and particularly its river version - Inland AIS. It is based on determining the position of ships by satellite positioning systems (mainly DGPS) and transmitting it to other users on radio VHF frequences. This guarantees usually high accuracy of data related to movement of ships (assuming proper functioning of system and ship's sensors), and gives the possibility of transmitting additional information about ship, like dimensions, port of destination, cargo, etc. However the other sensors that can be used for tracking shall not be forgotten. The most important of them are radar (traditionally used for tracking purposes in Vessel Traffic Systems) and video camera. Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself and the voyage, like dimensions, destination, etc. The second group is called dynamic data and contains all the information, which variability is important for creating Tactical Traffic Image. Both groups require different fusion algorithms, which take into consideration sources, update rate and method, accuracy and reliability. The article contains different issues related to navigational information fusion in River Information Services. It includes short description of structures and sources of navigational information and also the most popular integration methods. More detailed analysis was made for fusion of position derived from satellite systems (GPS) and from radar. The concept of tracking system, combining Inland AIS, radar and CCTV for the needs of RIS is introduced.
Samal, Sweety; Kumar, Sachin; Khattar, Sunil K; Samal, Siba K
2011-10-01
A key determinant of Newcastle disease virus (NDV) virulence is the amino acid sequence at the fusion (F) protein cleavage site. The NDV F protein is synthesized as an inactive precursor, F(0), and is activated by proteolytic cleavage between amino acids 116 and 117 to produce two disulfide-linked subunits, F(1) and F(2). The consensus sequence of the F protein cleavage site of virulent [(112)(R/K)-R-Q-(R/K)-R↓F-I(118)] and avirulent [(112)(G/E)-(K/R)-Q-(G/E)-R↓L-I(118)] strains contains a conserved glutamine residue at position 114. Recently, some NDV strains from Africa and Madagascar were isolated from healthy birds and have been reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we have evaluated the role of this conserved glutamine residue in the replication and pathogenicity of NDV by using the moderately pathogenic Beaudette C strain and by making Q114R, K115R and I118V mutants of the F protein in this strain. Our results showed that changing the glutamine to a basic arginine residue reduced viral replication and attenuated the pathogenicity of the virus in chickens. The pathogenicity was further reduced when the isoleucine at position 118 was substituted for valine.
Jefferson Lab 12 GEV Cebaf Upgrade
NASA Astrophysics Data System (ADS)
Rode, C. H.
2010-04-01
The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.
NASA Astrophysics Data System (ADS)
Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.
2015-08-01
We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.
Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Shi, Zhongbing; Jiang, Min; Yu, Liming; Chen, Wei; Shi, Peiwan; Zhong, Wulyu; Yang, Zengchen; Zhang, Boyu; Ji, Xiaoquan; Li, Yonggao; Zhou, Yan; Song, Shaodong; Huang, Mei; Song, Xianming; Li, Jiaxuan; Yuan, Baoshan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Xu, Yuhong; Yang, Qingwei; Duan, Xuru
2017-07-01
Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) × 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied.
Double-gap Alfvén eigenmodes: revisiting eigenmode interaction with the alfvén continuum.
Gorelenkov, N N
2005-12-31
A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.
Roderick, H L; Campbell, A K; Llewellyn, D H
1997-03-24
The multi-functional protein calreticulin (CRT) is normally found within the lumen of the endoplasmic reticulum (ER). However, some of its proposed functions require it to be located within the nucleus, where its presence is contentious. We have investigated this in live COS7, HeLa and LM(TK-) cells using green fluorescent protein (GFP)-fusion proteins. GFP-CRT, and GFP, with an ER signal peptide and a KDEL sequence (ER-GFP), were localised to the ER. In addition, GFP-CRT was located in the nucleus of all the cell types at low levels. The higher levels of nuclear fluorescence in LM(TK-) and HeLa cells suggested that glucocorticoid receptors might enhance nuclear localisation of calreticulin. Dexamethasone treatment of LM(TK-) cells doubled the amount of nuclear GFP-CRT, but did not affect the localisation of a GFP-CRT fusion in which the glucocorticoid receptor-binding N-domain of calreticulin had been deleted. Thus, despite ER targeting and retention signals, calreticulin is also located within the nucleus where its presence increases due to its interaction with glucocorticoid receptors.
NASA Astrophysics Data System (ADS)
Glassman, Matthew; Olsen, Bradley
2014-03-01
Triblock copolymers with associative protein midblocks and thermoresponsive endblocks form shear thinning hydrogels with a low yield stress at low temperatures, but can be reinforced by a self-assembled network of the endblock aggregates. Here, we compare the use of bioengineered elastin-like polypeptides (ELPs) to synthetic poly(N-isopropylacrylamide) (PNIPAM) as endblocks to control the self-assembly of the reinforcing network. The temperature dependence of the mechanics of these hydrogels is a strong function of the domain size and morphology in the endblock network. Despite the architectural similarities, triblock ELP fusions and PNIPAM bioconjugates exhibit distinct reinforcement maxima at fixed block composition and polymer concentration, and these differences can be attributed to the nanostructural features of the two systems. Furthermore, in ELP fusions, the amino acid sequence can be readily modified to manipulate the solvation kinetics of the endblock domains. Finally, various endblocks have been combined to form triblock terpolymer hydrogels, demonstrating how the choice of thermoresponsive blocks can be used to tune the reinforcement of shear thinning hydrogels.
A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobble, James Allen; Sinars, Daniel Brian
The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF programmore » shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.« less
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, Michel; Mossman, Alex; Reynolds, Meritt
2017-10-01
Magnetic reconstructions on lab based plasma injectors at General Fusion relies heavily on edge magnetic (``Bdot'') probes. On plasma experiments built for field compression (PCS) tests, the number and locations of Bdot probes is limited by mechanical constraints. Additional information about the q profiles near the core in our Spector plasmas is obtained using passive MHD spectroscopy. The coaxial helicity injection (CHI) formation process naturally generates hollow current profiles and reversed shear early in each discharge. Central Ohmic heating naturally peaks the current profiles as our plasmas evolve in time, simultaneously reducing the core safety factor, q(0), and reverse shear. As the central, non-monotonic q-profile crosses rational flux surfaces, we observe transient magnetic reconnection events (MRE's) due to the double tearing mode. Modal analysis allows us to infer the q surfaces involved in each burst. The parametric dependence of the timing of MRE's allows us to estimate the continuous time evolution of the core q profile. Combining core MHD spectroscopy with edge magnetic probe measurements greatly enhances our certainty of the overall q profile.
Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel
2017-08-03
Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.
Arthrodesis after failed knee arthroplasty. A nationwide multicenter investigation of 91 cases.
Knutson, K; Hovelius, L; Lindstrand, A; Lidgren, L
1984-12-01
Ninety-one patients with attempted arthrodesis after failed knee arthroplasty were identified in a prospective nationwide study of knee arthroplasties performed from October 1975 through January 1982 in Sweden. The study included 43 hinged or stabilized, 34 bi- or tricompartment, and 14 unicompartment endoprostheses. Three-fourths of the failures were caused by infections. At follow-up evaluation, two patients had expired from infection and four patients had amputations. Fusion was achieved in only 50% of 108 attempts in 91 knees. Patients with unstable joints had limited function. The fusion rate was relatively high after unicompartment endoprostheses, in cases with sustained rigid fixation, or in cases where infection was brought under control at arthrodesis. Rigid fixation was best achieved with an external double frame or an intramedullary nail. Repeated attempts were worthwhile. Removal of all foreign material, eradication of the infectious lesion, and an arthrodesis performed in a one- or two-stage procedure with insertion of gentamicin beads seemed to be the best way to combat infection. The treatment of prosthetic failures should be referred to centers with special interest in knee arthroplasty.
Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente
2016-08-31
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.
Effects of compressional magnetic perturbation on kinetic Alfven waves
NASA Astrophysics Data System (ADS)
Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong
2016-10-01
Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.
Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente
2016-01-01
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763
Karyotyping of Transformed Human Epithelial Cells from Exposures of Heavy Ions
NASA Technical Reports Server (NTRS)
Yeshitla, Samrawit
2013-01-01
It is most likely that the untreated transformed single clone (clone #2) cell undergoes unequal segregation of chromosome in two daughter cell that result in 94 chromosome during mitosis, particularly in anaphase stage. Chromosome aberration observed. I. Breakage of part of chromosome 7. II. One additional number of chromosome 8 instead of the total chromosome can only be explained by early abnormal cell division. III. Complete lost of chromosome and translocation and fusion of chromosome 3 and X-chromosome. IV. Our result for translocation and fusion of chromosome 3 and X- Chromosome is conformed by mBAND pattern. There is no different between the transformed parental cell and the single cloned transformed cell. Both harbor the chromosome 5 and 16 translocation and both harbor has the trisomy chromosome 20. Transformed cells may have the number of chromosomes greater or less than 46. Doubling of chromosome numbers is a signature of tumor. Chromosomal aberration was observed on HBEC-3kt non-irradiated-soft agar (Clone #2) sample, and indication of chromosome instability in the tumor development process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T. E.
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Evans, T. E.
2016-03-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
NASA Astrophysics Data System (ADS)
Simard, M.; Denbina, M. W.
2017-12-01
Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.
Heuristic control of the Utah/MIT dextrous robot hand
NASA Technical Reports Server (NTRS)
Bass, Andrew H., Jr.
1987-01-01
Basic hand grips and sensor interactions that a dextrous robot hand will need as part of the operation of an EVA Retriever are analyzed. What is to be done with a dextrous robot hand is examined along with how such a complex machine might be controlled. It was assumed throughout that an anthropomorphic robot hand should perform tasks just as a human would; i.e., the most efficient approach to developing control strategies for the hand would be to model actual hand actions and do the same tasks in the same ways. Therefore, basic hand grips that human hands perform, as well as hand grip action were analyzed. It was also important to examine what is termed sensor fusion. This is the integration of various disparate sensor feedback paths. These feedback paths can be spatially and temporally separated, as well as, of different sensor types. Neural networks are seen as a means of integrating these varied sensor inputs and types. Basic heuristics of hand actions and grips were developed. These heuristics offer promise of control dextrous robot hands in a more natural and efficient way.