Sample records for basic electrical rhythm

  1. Cardiac Electrophysiology: Normal and Ischemic Ionic Currents and the ECG

    ERIC Educational Resources Information Center

    Klabunde, Richard E.

    2017-01-01

    Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical…

  2. Sleep, Memory & Brain Rhythms

    PubMed Central

    Watson, Brendon O.; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called “sharp-wave ripple” seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep–REM and non-REM, the latter of which has an abundance of ripple electrical activity–might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function. PMID:26097242

  3. Sleep, Memory & Brain Rhythms.

    PubMed

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  4. Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons.

    PubMed

    Swerdlow, Charles D; Fishbein, Michael C; Chaman, Linda; Lakkireddy, Dhanunjaya R; Tchou, Patrick

    2009-08-01

    Sudden deaths proximate to use of conducted electrical weapons (CEWs) have been attributed to cardiac electrical stimulation. The rhythm in death caused by rapid, cardiac electrical stimulation usually is ventricular fibrillation (VF); electrical stimulation has not been reported to cause asystole or pulseless electrical activity (PEA). The authors studied the presenting rhythms in sudden deaths temporally proximate to use of TASER CEWs to estimate the likelihood that these deaths could be caused by cardiac electrical stimulation. This was a retrospective review of CEW-associated, nontraumatic sudden deaths from 2001 to 2008. Emergency medical services (EMS), autopsy, and law enforcement reports were requested and analyzed. Subjects were included if they collapsed within 15 minutes of CEW discharge and the first cardiac arrest rhythm was reported. Records for 200 cases were received. The presenting rhythm was reported for 56 of 118 subjects who collapsed within 15 minutes (47%). The rhythm was VF in four subjects (7%; 95% confidence interval [CI] = 3% to 17%) and bradycardia-asystole or PEA in 52 subjects (93%; 95% CI = 83% to 97%). None of the eight subjects who collapsed during electrocardiogram (ECG) monitoring had VF. Only one subject (2%) collapsed immediately after CEW discharge. This was the only death typical of electrically induced VF (2%, 95% CI = 0% to 9%). An additional 4 subjects (7%) collapsed within 1 minute, and the remaining 51 subjects (91%) collapsed more than 1 minute later. The time from collapse to first recorded rhythm was 3 minutes or less in 35 subjects (62%) and 5 minutes or less in 43 subjects (77%). In sudden deaths proximate to CEW discharge, immediate collapse is unusual, and VF is an uncommon VF presenting rhythm. Within study limitations, including selection bias and the possibility that VF terminated before the presenting rhythm was recorded, these data do not support electrically induced VF as a common mechanism of these sudden deaths.

  5. Modulation of hippocampal rhythms by subthreshold electric fields and network topology

    PubMed Central

    Berzhanskaya, Julia; Chernyy, Nick; Gluckman, Bruce J.; Schiff, Steven J.; Ascoli, Giorgio A.

    2012-01-01

    Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry. PMID:23053863

  6. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  7. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.

    PubMed

    Wu, Ying; Cao, Guan; Nitabach, Michael N

    2008-04-01

    Drosophila clock neurons exhibit self-sustaining cellular oscillations that rely in part on rhythmic transcriptional feedback loops. We have previously determined that electrical silencing of the pigment dispersing factor (PDF)-expressing lateral-ventral (LN(V)) pacemaker subset of fly clock neurons via expression of an inward-rectifier K(+) channel (Kir2.1) severely disrupts free-running rhythms of locomotor activity-most flies are arrhythmic and those that are not exhibit weak short-period rhythms-and abolishes LN(V) molecular oscillation in constant darkness. PDF is known to be an important LN(V) output signal. Here we examine the effects of electrical silencing of the LN(V) pacemakers on molecular rhythms in other, nonsilenced, subsets of clock neurons. In contrast to previously described cell-autonomous abolition of free-running molecular rhythms, we find that electrical silencing of the LN(V) pacemakers via Kir2.1 expression does not impair molecular rhythms in LN(D), DN1, and DN2 subsets of clock neurons. However, free-running molecular rhythms in these non-LN(V) clock neurons occur with advanced phase. Electrical silencing of LN(V)s phenocopies PDF null mutation (pdf (01) ) at both behavioral and molecular levels except for the complete abolition of free-running cellular oscillation in the LN(V)s themselves. LN(V) electrically silenced or pdf 01 flies exhibit weak free-running behavioral rhythms with short period, and the molecular oscillation in non-LN(V) neurons phase advances in constant darkness. That LN( V) electrical silencing leads to the same behavioral and non-LN( V) molecular phenotypes as pdf 01 suggests that persistence of LN(V) molecular oscillation in pdf 01 flies has no functional effect, either on behavioral rhythms or on non-LN(V) molecular rhythms. We thus conclude that functionally relevant signals from LN(V)s to non-LN(V) clock neurons and other downstream targets rely both on PDF signaling and LN(V) electrical activity, and that LN( V)s do not ordinarily send functionally relevant signals via PDF-independent mechanisms.

  8. Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales. PMID:18946516

  9. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    NASA Astrophysics Data System (ADS)

    Kachenoura, A.; Porée, F.; Hernández, A. I.; Carrault, G.

    2008-12-01

    Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs) are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG) from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA). The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  10. RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Kishimoto, Uichiro

    1958-01-01

    The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of the back and forth protoplasmic streaming along the strand. Generally some phase difference is observed between them. Periods of the electric potential rhythm show a Gaussian distribution. Amplitudes give a somewhat different distribution curve. Wave forms are not always simple harmonic ones, but are distorted more or less. However, auto-correlation analysis proves that there is a dominant rhythm of a nearly constant period which coincides with the mean period of the Gaussian distribution curve. Calculations made on an assumption that the electric potential rhythm is the result of many elementary rhythms (i.e., same periodicity, arbitrary phase angles) distributed throughout the plasmodium, give a satisfactory coincidence with the observed distribution for the amplitude. The predominance of a rhythm of a nearly constant periodicity suggests the existence of well organized interactions among components of a contractile protein network, the rhythmic deformation of which is supposed to be responsible for the protoplasmic streaming and for the electric potential rhythm. PMID:13563808

  11. Interaction between telencephalic signals and respiratory dynamics in songbirds

    PubMed Central

    Méndez, Jorge M.; Mindlin, Gabriel B.

    2012-01-01

    The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649

  12. A simple electrical-mechanical model of the heart applied to the study of electrical-mechanical alternans

    NASA Technical Reports Server (NTRS)

    Clancy, Edward A.; Smith, Joseph M.; Cohen, Richard J.

    1991-01-01

    Recent evidence has shown that a subtle alternation in the surface ECG (electrical alternans) may be correlated with the susceptibility to ventricular fibrillation. In the present work, the author presents evidence that a mechanical alternation in the heartbeat (mechanical alternans) generally accompanies electrical alternans. A simple finite-element computer model which emulates both the electrical and the mechanical activity of the heart is presented. A pilot animal study is also reported. The computer model and the animal study both found that (1) there exists a regime of combined electrical-mechanical alternans during the transition from a normal rhythm towards a fibrillatory rhythm, (2) the detected degree of alternation is correlated with the relative instability of the rhythm, and (3) the electrical and mechanical alternans may result from a dispersion in local electrical properties leading to a spatial-temporal alternation in the electrical conduction process.

  13. An introduction to the reading of electrocardiograms.

    PubMed

    Woodrow, P

    This article introduces the basic principles of reading electrocardiograms (ECGs) for nurses who are unfamiliar with reading them. For more experienced practitioners there are a number of useful articles and books (e.g. Hampton, 1992a, b) that will help further their knowledge. The ECG records cardiac electrical activity as a graph; interpretation is illustrated here by sinus rhythm. A single ECG lead (lead II) is used throughout this article. Atrial fibrillation is described to show a contrasting dysrhythmia. Specific nursing care is suggested for patients being monitored or having ECGs taken.

  14. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    PubMed

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  15. RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Kishimoto, Uichiro

    1958-01-01

    The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of back and forth protoplasmic streaming along the strand. When atmospheric pressure at a part of the plasmodium is increased (about 10 cm. H2O), the electric potential at this part becomes positive (0 to 20 mv.) to another part with a time constant of 2 to 15 minutes. If the atmospheric pressure at a part of the plasmodium is changed (about 10 cm. H2O) periodically, the electric potential rhythm also changes with the same period as that of the applied pressure change, and the amplitude of the former grows to a new level (i.e., forced oscillation). The electric potential rhythm, in this case, is generally delayed about 90° in phase angle from the external pressure change. The period of the electric potential rhythm which coincided with that of the pressure change is maintained for a while after stopping the application of the pressure change, if the period is not much different from the native flow rhythm. Such a pressure effect is brought about by the forced transport of protoplasm and is reversible as a rule. In the statistical analysis made by Kishimoto (1958) and in the rheological treatment made in the report, the rhythmic deformation of the contractile protein networks is supposed to be the cause of the protoplasmic flow along the strand and of the electric potential rhythm. The role of such submicroscopic networks in the protoplasm in various kinds of protoplasmic movement is emphasized. PMID:13563809

  16. "Cooking" Lessons for Rhythmic Skills: Jazz Piano.

    ERIC Educational Resources Information Center

    Gray, Jerry

    1983-01-01

    Jazz improvising basics can be broken down into four major areas: learning to feel rhythm; learning to hear sounds; imagining rhythm and sound combinations; and acquiring an effective technique to express these combinations. (RM)

  17. Computational approaches to understand cardiac electrophysiology and arrhythmias

    PubMed Central

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.

    2012-01-01

    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  18. [Atrial fibrillation].

    PubMed

    Spinar, J; Vítovec, J

    2003-09-01

    Atrial fibrilation is the most frequent arrhythmia, the occurrence increasing with age and associated diseases. The incidence at the age below 60 years is markedly lower than one per cent, whereas in persons above 80 years of age it exceeds six per cent. The occurrence in patients with heart failure is from 10% (NYHA II) up to 50% (NYHA IV). Atrial fibrillation is classified into that observed for the first time and permanent, respectively, while transient forms include paroxyzmal and persistent atrial fibrillation. The diagnosis is based on ECG recording, while echocardiography is most significant. The therapy includes two basic questions--anticoagulant or anti-aggregation treatment and the control of rhythm or frequency. The anticoagulant therapy should be introduced in all patients, where contraindications are not present, being necessary before every cardioversion, provided atrial fibrillation lasts more than two days. In patients without any heart disease and with a physiological echocardiogram it is possible to administer only anti-aggregation treatment. Cardioversion (the control of rhythm) is recommended to all symptomatic patients, in other cases and especially in older persons the control of frequency is safer and of more advantage. Electrical cardioversion is more effective that a pharmacological treatment, the sinus rhythm is preferably controlled by dofetilid, ibutilid, propafenon and amiodaron. For the control of heart rate beta-blockers, diltiazem, verapamil and digitalis are recommended.

  19. Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm.

    PubMed

    Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E

    2016-11-01

    Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium after electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. The objectives of this study were to investigate the relationship between the electromechanical and the electrical activation of the left ventricular (LV) endocardial surface during epicardial and endocardial pacing and during sinus rhythm as well as to map the distribution of electromechanical delays. In this study, 6 canines were investigated. Two external electrodes were sutured onto the epicardial surface of the LV. A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing and during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter, respectively. The mean correlation coefficient between electromechanical and electrical activation was 0.81 for epicardial anterior pacing, 0.79 for epicardial lateral pacing, 0.69 for endocardial pacing, and 0.56 for sinus rhythm. The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Out-of-hospital defibrillation with automated external defibrillators: postshock analysis should be delayed.

    PubMed

    Blouin, D; Topping, C; Moore, S; Stiell, I; Afilalo, M

    2001-09-01

    The American Heart Association protocols for use of automated external defibrillators (AEDs) recommend that a rhythm analysis be done immediately after each defibrillation attempt. However, shock is often followed by electrical silence or marginally organized electrical activity before ventricular fibrillation (VF) or ventricular tachycardia (VT) recurs. The optimal timing of postshock analysis for identification of recurrent VF/VT is unknown. This study examines the time to recurrence of VF/VT after a defibrillation attempt with AED. Over an 18-month period, all tapes from patients with out-of-hospital cardiac arrest who received shocks at least once with an AED were screened for recurrent VF/VT. All cases come from a single emergency medical services system providing basic life support, defibrillation with AED, and intubation with an esophageal-tracheal twin-lumen airway device (Combitube) for a population of 633,511 individuals. Pediatric and traumatic cases were excluded. When VF/VT recurred within 3 minutes of the defibrillation attempt, rhythm strips were printed and included in the study. Two cardiology fellows, blinded to the study objectives, measured the time from defibrillation to recurrent VF/VT for each strip. Over the study period, 222 tapes from 96 patients met the inclusion criteria. Only 44 (20%) occurrences of VF/VT had recurred within 6 seconds of defibrillation, 162 (73%) at 60 seconds, and 200 (90%) at 90 seconds. Eighty percent of VF/VT recurred more than 6 seconds after defibrillation and were missed when using current American Heart Association AED protocols. Subsequent analysis should be postponed until at least 30 seconds after defibrillation. Performing 30 seconds of chest compressions after defibrillation before subsequent AED rhythm analysis would increase AED identification of VF/VT to 52%.

  1. Systemic lupus erythematosus with organic brain syndrome: serial electroencephalograms accurately evaluate therapeutic efficacy.

    PubMed

    Kato, Takashi; Shiratori, Kyoji; Kobashigawa, Tsuyoshi; Hidaka, Yuji

    2006-01-01

    A 48-year-old man with systemic lupus erythematosus developed organic brain syndrome. High-dose prednisolone was ineffective, and somnolence without focal signs rapidly developed. Electroencephalogram (EEG) demonstrated a slow basic rhythm (3 Hz), but brain magnetic resonance imaging was normal. Somnolence resolved soon after performing plasma exchange (two sessions). However, memory dysfunction persisted, with EEG demonstrating mild abnormalities (7-8 Hz basic rhythm). Double-filtration plasmapheresis (three sessions) was done, followed by intravenous cyclophosphamide. Immediately after the first plasmapheresis session, memory dysfunction began to improve. After the second dose of cyclophosphamide, intellectual function resolved completely and EEG findings also normalized (basic rhythm of 10 Hz waves). Serial EEG findings precisely reflected the neurological condition and therapeutic efficacy in this patient. In contrast, protein levels in cerebrospinal fluid remained high and did not seem to appropriately reflect the neurological condition in this patient.

  2. Robust Measurements of Phase Response Curves Realized via Multicycle Weighted Spike-Triggered Averages

    NASA Astrophysics Data System (ADS)

    Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio

    2017-02-01

    Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.

  3. Analysis of ultradian heat production and aortic core temperature rhythms in the rat.

    PubMed

    Gómez-Sierra, J M; Canela, E I; Esteve, M; Rafecas, I; Closa, D; Remesar, X; Alemany, M

    1993-01-01

    The rhythms of aortic core temperature and overall heat production in Wistar rats was analyzed by using long series of recordings of temperature obtained from implanted thermocouple probes and heat release values from a chamber calorimeter. There was a very high degree of repetitiveness in the presentation of actual heat rhythms, with high cross-correlation values ascertained wit paired periodograms. No differences were observed between heat production between male and female adult rats. The cross-correlation for temperature gave similar figures. The cross-correlation study between heat production and aortic core temperature in the same animals was significant and showed a displacement of about 30 minutes between heat release and aortic core temperature. The analysis of heat production showed a strong predominance of rhythms with periods of 24 hours (frequencies < 11.6 microHz) or more; other rhythms detected (of roughly the same relative importance) had periods of 8 or 2.2 hours (35 or 126 microHz, respectively). The analysis of aortic core temperature showed a smaller quantitative contribution of the 8 or 2.2 hours (35 or 126 microHz) rhythms, with other harmonic rhythms interspersed (5.1 and 4.0 hours, i.e. 54 and 69 microHz). The proportion of 'noise' or cycles lower than 30 minutes (< 550 microHz) was higher in internal temperature than in the actual release of heat. The results are in agreement with the existence of a basic period of about 130 minutes (126 microHz) of warming/cooling of the blood, with a number of other harmonic rhythms superimposed upon the basic circadian rhythm.

  4. Biochronometry; Proceedings of the Symposium, Friday Harbor, Wash., September 4-6, 1969.

    NASA Technical Reports Server (NTRS)

    Menaker, M.

    1971-01-01

    Topics discussed include circadian activity rhythms in birds and man, variation of circadian rhythms in monkeys, resetting of circadian eclosion rhythm in fruitflies, the effectiveness of mathematical models of circadian rhythms, the influence of ac electric fields on circadian rhythms in man, the relation between changes in the metabolic rate and circadian periodicity of the resistance of pocket mice to ionizing radiation, the relation between circadian organization and the photoperiodic time measurement in moths, the circadian rhythm of optic nerve potentials in the isolated eye of the sea hare, phasing of circadian temperature rhythms in the pocket mouse by specific spectral regions, the phase-shifting effect of light on circadian rhymicity in the fruifly, hormonal control of circadian rhythms in the fruitfly, metabolically controlled temperature compensation in the circadian rhythm of algae, and circadian rhythms in the chloroplasts of algae. Individual items are abstracted in this issue.

  5. Neural mechanisms of rhythm perception: current findings and future perspectives.

    PubMed

    Grahn, Jessica A

    2012-10-01

    Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.

  6. The magnetic field of gastrointestinal smooth muscle activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John

    1997-11-01

    The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.

  7. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  9. Auditory and Motor Rhythm Awareness in Adults with Dyslexia

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Fryer, Ben; Maltby, James; Goswami, Usha

    2006-01-01

    Children with developmental dyslexia appear to be insensitive to basic auditory cues to speech rhythm and stress. For example, they experience difficulties in processing duration and amplitude envelope onset cues. Here we explored the sensitivity of adults with developmental dyslexia to the same cues. In addition, relations with expressive and…

  10. Is pulseless electrical activity a reason to refuse cardiopulmonary resuscitation with ECMO support?

    PubMed

    Pabst, Dirk; Brehm, Christoph E

    2018-04-01

    Cardiopulmonary resuscitation with ECMO support (ECPR) has shown to improve outcome in patients after cardiac arrest under resuscitation. Most current recommendations for ECPR do not include patients with a non-shockable rhythm such as PEA and asystole. The aim of this study was to investigate the outcome of 3 patient groups separated by initial rhythm at time of ECMO placement during CPR: asystole, PEA and shockable rhythm. We made a retrospective single-center study of adults who underwent ECPR for in-hospital cardiac arrest between June 2008 and January 2017. Outcome and survival were identified in 3 groups of patients regarding to the heart rhythm at the time decision for ECMO support was made: 1. patients with asystole, 2. patients with pulseless electrical activity, 3. patients with a shockable rhythm. 63 patients underwent ECPR in the mentioned time frame. Five patients were excluded due to incomplete data. Under the 58 included patients the number of cases for asystole, PEA, shockable rhythm was 7, 21 and 30 respectively. The means of CPR-time in these groups were 37, 41 and 37min. Survival to discharge was 0.0%, 23.8% and 40.0% respectively (p=0.09). All survivors to discharge had a good neurological outcome, defined as cerebral performance category 1or 2. Survival to discharge in patients with PEA as initial rhythm at the time of decision for ECPR is 23.8% while no patients with asystole as initial rhythm survived discharge. Patients with PEA should be carefully considered for ECPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Validation of Electromechanical Wave Imaging in a canine model during pacing and sinus rhythm

    PubMed Central

    Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E.

    2016-01-01

    Background Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium following electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. Objectives The objectives of this study are to investigate the relationship between electromechanical and electrical activation of the left-ventricular (LV) endocardial surface during epicardial and endocardial pacing as well as during sinus rhythm and also to investigate the distribution of electromechanical delays. Methods In this study, six canines were investigated. Two external electrodes were sutured onto the epicardial surface of the left ventricle (LV). A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing as well as during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter respectively. Results The mean correlation coefficient between electromechanical and electrical activation was R=0.81 for epicardial anterior pacing, R=0.79 for epicardial lateral pacing, R=0.69 for endocardial pacing and R=0.56 for sinus rhythm. Conclusions The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. PMID:27498277

  12. Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature.

    PubMed

    Rotariu, Elena L; Manole, Mioara D

    2017-08-01

    Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.

  13. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  14. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generallymore » consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab.« less

  15. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.L.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistentmore » with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.« less

  16. Routine versus aggressive upstream rhythm control for prevention of early atrial fibrillation in heart failure: background, aims and design of the RACE 3 study.

    PubMed

    Alings, M; Smit, M D; Moes, M L; Crijns, H J G M; Tijssen, J G P; Brügemann, J; Hillege, H L; Lane, D A; Lip, G Y H; Smeets, J R L M; Tieleman, R G; Tukkie, R; Willems, F F; Vermond, R A; Van Veldhuisen, D J; Van Gelder, I C

    2013-07-01

    Rhythm control for atrial fibrillation (AF) is cumbersome because of its progressive nature caused by structural remodelling. Upstream therapy refers to therapeutic interventions aiming to modify the atrial substrate, leading to prevention of AF. The Routine versus Aggressive upstream rhythm Control for prevention of Early AF in heart failure (RACE 3) study hypothesises that aggressive upstream rhythm control increases persistence of sinus rhythm compared with conventional rhythm control in patients with early AF and mild-to-moderate early systolic or diastolic heart failure undergoing electrical cardioversion. RACE 3 is a prospective, randomised, open, multinational, multicenter trial. Upstream rhythm control consists of angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers, mineralocorticoid receptor antagonists, statins, cardiac rehabilitation therapy, and intensive counselling on dietary restrictions, exercise maintenance, and drug adherence. Conventional rhythm control consists of routine rhythm control therapy without cardiac rehabilitation therapy and intensive counselling. In both arms, every effort is made to keep patients in the rhythm control strategy, and ion channel antiarrhythmic drugs or pulmonary vein ablation may be instituted if AF relapses. Total inclusion will be 250 patients. If upstream therapy proves to be effective in improving maintenance of sinus rhythm, it could become a new approach to rhythm control supporting conventional pharmacological and non-pharmacological rhythm control.

  17. Factors associated with out-of-hospital cardiac arrest with pulseless electric activity: A population-based study.

    PubMed

    Ko, Dennis T; Qiu, Feng; Koh, Maria; Dorian, Paul; Cheskes, Sheldon; Austin, Peter C; Scales, Damon C; Wijeysundera, Harindra C; Verbeek, P Richard; Drennan, Ian; Ng, Tiffany; Tu, Jack V; Morrison, Laurie J

    2016-07-01

    Many patients with out-of-hospital cardiac arrest present with pulseless electric activity (PEA) rather than shockable rhythm. Despite improvements in resuscitation care, survival of PEA patients remains dismal. Our main objective was to characterize out-of-hospital cardiac arrest patients by initial presenting rhythm and to evaluate independent determinants of PEA. A population-based study was conducted using the Toronto Rescu Epistry database with linkage to administrative data in Ontario, Canada. We included patients older than 20 years who had nontraumatic cardiac arrests from 2005 to 2010. Multivariable logistic regression models were constructed to determine factors predicting the occurrence of PEA vs shockable rhythm vs asystole. Of the 9,882 included patients who received treatment, 24.5% had PEA, 26.3% had shockable rhythm, and 49.2% had asystole. Patients with PEA had a mean age of 72 years, 41.2% were female and had multiple comorbidities, and 53.4% were hospitalized in the past year. As compared with shockable rhythm, PEA patients were older, were more likely to be women, and had more comorbidities. As compared with asystole, PEA patients had similar baseline and clinical characteristics, but were substantially more likely to have an arrest witnessed by emergency medical services (odds ratio 13) or by bystander (odds ratio 3.24). Mortality at 30 days was 95.5%, 77.9%, and 98.9% for patients with PEA, shockable rhythm, asystole, respectively. Patient characteristics differed substantially in those presenting with PEA and shockable rhythm. In contrast, the main distinguishing factor between PEA and asystole cardiac arrest related mainly to factors at the time of the cardiac arrest. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pacemakers and Implantable Defibrillators: MedlinePlus Health Topic

    MedlinePlus

    ... pattern. Most arrhythmias result from problems in the electrical system of the heart. If your arrhythmia is ... pacemaker helps control abnormal heart rhythms. It uses electrical pulses to prompt the heart to beat at ...

  19. Sleep and Predicted Cognitive Performance of New Cadets during Cadet Basic Training at the United States Military Academy

    DTIC Science & Technology

    2005-09-01

    7 B. SLEEP ARCHITECTURE..................................7 1. Circadian Rhythm and Human Sleep Drive...body temperature. Van Dongen & Dinges, 2000 ....10 Figure 2. EEG of Human Brain Activity During Sleep. http://ist-socrates.berkeley.edu/~jmp...the predicted levels of human performance based on circadian rhythms , amount and quality of sleep, and combines cognitive performance 5 predictions

  20. Recent advances in rhythm control for atrial fibrillation

    PubMed Central

    Bond, Richard; Olshansky, Brian; Kirchhof, Paulus

    2017-01-01

    Atrial fibrillation (AF) remains a difficult management problem. The restoration and maintenance of sinus rhythm—rhythm control therapy—can markedly improve symptoms and haemodynamics for patients who have paroxysmal or persistent AF, but some patients fare well with rate control alone. Sinus rhythm can be achieved with anti-arrhythmic drugs or electrical cardioversion, but the maintenance of sinus rhythm without recurrence is more challenging. Catheter ablation of the AF triggers is more effective than anti-arrhythmic drugs at maintaining sinus rhythm. Whilst pulmonary vein isolation is an effective strategy, other ablation targets are being evaluated to improve sinus rhythm maintenance, especially in patients with chronic forms of AF. Previously extensive ablation strategies have been used for patients with persistent AF, but a recent trial has shown that pulmonary vein isolation without additional ablation lesions is associated with outcomes similar to those of more extensive ablation. This has led to an increase in catheter-based technology to achieve durable pulmonary vein isolation. Furthermore, a combination of anti-arrhythmic drugs and catheter ablation seems useful to improve the effectiveness of rhythm control therapy. Two large ongoing trials evaluate whether a modern rhythm control therapy can improve prognosis in patients with AF. PMID:29043080

  1. Early postnatal changes in respiratory activity in rat in vitro and modulatory effects of substance P.

    PubMed

    Shvarev, Y N; Lagercrantz, H

    2006-10-01

    Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.

  2. Can electrons act as antioxidants? A review and commentary.

    PubMed

    Oschman, James L

    2007-11-01

    A previous study demonstrated that connecting the human body to the earth during sleep (earthing) normalizes the daily cortisol rhythm and improves sleep. A variety of other benefits were reported, including reductions in pain and inflammation. Subsequent studies have confirmed these earlier findings and documented virtually immediate physiologic and clinical effects of grounding or earthing the body. It is well established, though not widely known, that the surface of the earth possesses a limitless and continuously renewed supply of free or mobile electrons as a consequence of a global atmospheric electron circuit. Wearing shoes with insulating soles and/or sleeping in beds that are isolated from the electrical ground plane of the earth have disconnected most people from the earth's electrical rhythms and free electrons. The most reasonable hypothesis to explain the beneficial effects of earthing is that a direct earth connection enables both diurnal electrical rhythms and free electrons to flow from the earth to the body. It is proposed that the earth's diurnal electrical rhythms set the biological clocks for hormones that regulate sleep and activity. It is also suggested that free electrons from the earth neutralize the positively charged free radicals that are the hallmark of chronic inflammation. A relationship between cortisol and inflammation was established in the pioneering work of H. Selye published in the 1950s. Current biomedical research has led to an inflammation hypothesis that is establishing chronic inflammation as the culprit behind almost every modern chronic illness. The research summarized here and in subsequent reports provides a basis for a number of earthing technologies that restore and maintain natural electrical contact between the human body and the earth throughout the day and night in situations where going barefoot on the earth is impractical. It is proposed that free or mobile electrons from the earth can resolve chronic inflammation by serving as natural antioxidants.

  3. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    PubMed

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  4. Gender differences in the circadian variations in muscle strength assessed with and without superimposed electrical twitches.

    PubMed

    Giacomoni, Magali; Edwards, Ben; Bambaeichi, Effat

    The circadian rhythm in muscle strength was analysed in 12 males (28 +/- 4 years, 79.6 +/- 12.3 kg, 1.80 +/- 0.05 m) and eight females (28 +/- 4 years, 60.3 +/- 5.5 kg, 1.61 +/- 0.08 m). After two familiarization sessions, participants were tested at six different times of the day (02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 hours), the order of which was randomly assigned over 3-4 days. Rectal temperature (T(rec)) was measured over 30 min before each test. Peak isokinetic torques (PT) of knee extensors and flexors were then measured at 1.05 rad s(-1) and 3.14 rad s(-1) through a 90 degrees range of motion. Maximal isometric voluntary contraction (MVC) of knee extensors and flexors was measured at 60 degrees of knee flexion and the MVC of knee extensors was also assessed with superimposed electrical twitches (50 Hz, 250 V, 200 mus pulse width) in order to control for motivational effects. Three trials were performed in each condition, separated by 3 min recovery, and the highest values were retained for subsequent analyses. A significant circadian rhythm was observed for T(rec) in both males and females (acrophase, Phi, 17:29 and 16:40 hours; mesor, Me, 37.0 and 36.8 degrees C; amplitude, A, 0.28 and 0.33 degrees C for males and females, respectively). The mesor of T(rec) was higher in males than in females (p < 0.05). Significant circadian rhythms were observed for knee extensor PT at 3.14 rad s(-1) in males (Phi, 17:06 hours; Me, 178.2 N m; A, 4.7 N m) and for knee extensor PT at 1.05 rad s(-1) in females (Phi, 15:35 hours; Me, 128.7 N m; A, 3.7 N m). In males, the MVC of knee extensors demonstrated a significant circadian rhythm, but only when electrical twitches were superimposed (Phi, 16:17 h; Me, 302.1 N m; A, 13.6 N m). Acrophases of all indices of muscle strength were not statistically different between the two groups and were located in the afternoon (12:47 < Phi < 17:16 hours). The amplitude (percentage of mesor) of extensors MVC (electrically stimulated) was higher in males (6.4%) than in females (4.2%; p < 0.05). Significant circadian rhythms were not consistently observed for all indices of muscle strength whatever the gender. Our group of female subjects tended to show lower circadian amplitudes than the males. In males, maximal voluntary contraction of electrically stimulated muscles followed a circadian curve, which was not significant without the superimposed twitches. These results suggest that motivation could have a masking effect on the circadian rhythm in muscle performance and strengthen the view that peripheral factors are implicated in this rhythm.

  5. Instantly Converting Atrial Fibrillation into Sinus Rhythm by a Digital Rectal Exam on a 29-year-Old Male

    PubMed Central

    Ruan, Cheng-Huai

    2010-01-01

    Vagal maneuvers cause increase in vagal tone, which has been shown to slow many types supraventricular tachycardia, such as atrial fibrillation (AF). However, the conversion of AF to sinus rhythm is usually not associated with vagal manuvers. Thus, AF is classically treated with medication and electrical cardioversion. Here, we present a 29-year-old male with no cardiovascular history and a low atherosclerotic risk profile who developed AF which converted into sinus rhythm immediately after a digital rectal exam. The patient remained asymptomatic after a 3-month follow-up. This implies that the digital rectal exam can be considered as an additional attempt to convert AF to sinus rhythm in AF patients. PMID:21769254

  6. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  7. Atrial fibrillation induced and converted by domestic supply electric shock.

    PubMed

    Rao, Usha; Agarwal, Ajit

    2012-11-01

    We present a case of persistent atrial fibrillation induced by a low-voltage electric shock reverting back to sinus rhythm after a similar repeat shock. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  8. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork.

    PubMed

    Belle, Mino D C; Diekman, Casey O

    2018-02-03

    Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Clinical skills: cardiac rhythm recognition and monitoring.

    PubMed

    Sharman, Joanna

    With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.

  10. Effect of electric field exposure on melatonin and enzyme circadian rhythms in the rat pineal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Anderson, L.E.; Hilton, D.I.

    The effects of chronic 30-day electric field exposure on pineal serotonin N-acetyl transferase (EC 2.1.15) activity as well as melatonin and 5-methoxy tryptophol (5-MTOL) concentrations in rats, were assessed.

  11. Trends in U.S. Hospitalizations Rates and Rhythm Control Therapies Following Publication of the AFFIRM and RACE Trials

    PubMed Central

    Martin-Doyle, William; Essebag, Vidal; Zimetbaum, Peter; Reynolds, Matthew R.

    2010-01-01

    Introduction The impact of trials comparing rate vs. rhythm control for AF on subsequent use of rhythm control therapies and hospitalizations at a national level has not been described. Methods and Results We queried the Healthcare Cost & Utilization Project on the frequency of hospital admissions and performance of specific rhythm control procedures from 1998–2006. We analyzed trends in hospitalization for AF as principal diagnosis before and after the publication of key rate vs. rhythm trials in 2002. We also reviewed the use of electrical cardioversion and catheter ablation as principal procedures during hospital admissions for any cause and for AF as principal diagnosis. We additionally appraised the overall outpatient utilization of antiarrhythmic drugs during this same time frame using IMS Health’s National Prescription Audit.™ Admissions for AF as a principal diagnosis increased at 5%/year from 1998–2002. Following publication of the AFFIRM and RACE trials in 2002, admissions declined by 2%/year from 2002–2004, before rising again from 2004–06. In-hospital electrical cardioversion followed a similar pattern. National prescription volumes for antiarrhythmic drugs grew at <1%/yr from 2002–06, with a marked decline in the use of Class I-A agents, while catheter ablations during admissions for AF as the principal diagnosis increased at 30%/year. Conclusion The use of rhythm control therapies in the U.S. declined significantly in the first few years after publication of AFFIRM and RACE. This trend reversed by 2005, at which time rapid growth in the use of catheter ablation for AF was observed. PMID:21087329

  12. Electrical activity of the cingulate cortex. II. Cholinergic modulation.

    PubMed

    Borst, J G; Leung, L W; MacFabe, D F

    1987-03-24

    The role of the cholinergic innervation in the modulation of cingulate electrical activity was studied by means of pharmacological manipulations and brain lesions. In the normal rat, an irregular slow activity (ISA) accompanied with EEG-spikes was recorded in the cingulate cortex during immobility as compared to walking. Atropine sulfate, but not atropine methyl nitrate, increased ISA and the frequency of cingulate EEG-spikes. Pilocarpine suppressed ISA and EEG-spikes during immobility, and induced a slow (4-7 Hz) theta rhythm. Unilateral or bilateral lesions of the substantia innominata and ventral globus pallidus area using kainic acid did not significantly change the cingulate EEG or its relation to behavior. Large electrolytic lesions of the medial septal nuclei and vertical limbs of the diagonal band generally decreased or abolished all theta activity in the cingulate cortex and the hippocampus. However, in 5 rats the cingulate theta rhythm increased while the hippocampal theta disappeared after a medial septal lesion. The large, postlesion cingulate theta, accompanied by sharp EEG-spikes during its negative phase, is an unequivocal demonstration of the existence of a theta rhythm in the cingulate cortex, independent of the hippocampal rhythm. Cholinergic afferents from the medial septum and diagonal band nuclei are inferred to be responsible for the behavioral suppression of cingulate EEG-spikes and ISA, and partially for the generation of a local cingulate theta rhythm. However, an atropine-resistant pathway and a theta-suppressing pathway, possibly coming from the medial septum or the hippocampus, may also be important in cingulate theta generation.

  13. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  14. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    PubMed

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.

  15. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285

  16. Mathematical modeling in chronobiology.

    PubMed

    Bordyugov, G; Westermark, P O; Korenčič, A; Bernard, S; Herzel, H

    2013-01-01

    Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.

  17. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  18. At-risk elementary school children with one year of classroom music instruction are better at keeping a beat.

    PubMed

    Slater, Jessica; Tierney, Adam; Kraus, Nina

    2013-01-01

    Temporal processing underlies both music and language skills. There is increasing evidence that rhythm abilities track with reading performance and that language disorders such as dyslexia are associated with poor rhythm abilities. However, little is known about how basic time-keeping skills can be shaped by musical training, particularly during critical literacy development years. This study was carried out in collaboration with Harmony Project, a non-profit organization providing free music education to children in the gang reduction zones of Los Angeles. Our findings reveal that elementary school children with just one year of classroom music instruction perform more accurately in a basic finger-tapping task than their untrained peers, providing important evidence that fundamental time-keeping skills may be strengthened by short-term music training. This sets the stage for further examination of how music programs may be used to support the development of basic skills underlying learning and literacy, particularly in at-risk populations which may benefit the most.

  19. Electric injury, Part II: Specific injuries.

    PubMed

    Fish, R M

    2000-01-01

    Electric injury can cause disruption of cardiac rhythm and breathing, burns, fractures, dislocations, rhabdomyolysis, eye and ear injury, oral and gastrointestinal injury, vascular damage, disseminated intravascular coagulation, peripheral and spinal cord injury, and Reflex Sympathetic Dystrophy. Secondary trauma from falls, fires, flying debris, and inhalation injury can complicate the clinical picture. Diagnostic and treatment considerations for electric injuries are described in this article, which is the second part of a three-part series on electric injuries.

  20. Rate versus rhythm control and outcomes in patients with atrial fibrillation and chronic kidney disease: data from the GUSTO-III Trial.

    PubMed

    Williams, Eric S; Thompson, Vivian P; Chiswell, Karen E; Alexander, John H; White, Harvey D; Ohman, E Magnus; Al-Khatib, Sana M

    2013-01-01

    Atrial fibrillation (AF) and chronic kidney disease (CKD) have both been shown to portend worse outcomes after acute myocardial infarction (MI); however, the benefit of a rhythm control strategy in patients with CKD post-MI is unclear. We prospectively studied 985 patients with new-onset AF post-MI in the GUSTO-III trial, of whom 413 (42%) had CKD (creatinine clearance < 60 mL/min). A rhythm control strategy, defined as the use of an antiarrhythmic medication and/or electrical cardioversion, was used in 346 (35%) of patients. A rhythm control strategy was used in 34% of patients with CKD and 36% of patients with no CKD. At hospital discharge, sinus rhythm was present in 487 (76%) of patients treated with a rate control strategy, vs. 276 (80%) in those treated with rhythm control (p = 0.20). CKD was associated with a lower odds of sinus rhythm at discharge (unadjusted OR 0.56, 95% CI 0.38-0.84, p < 0.001). However, in multivariable analyses, treatment with a rhythm control strategy was not associated with discharge rhythm (HR 1.068, 95% CI 0.69-1.66, p = 0.77), 30-day mortality (HR 0.78, 95% CI 0.54-1.12, p = 0.18) or mortality from day 30 to 1 year (HR 1.00, 95% CI 0.59-1.69, p = 0.99). CKD status did not significantly impact the relationship between rhythm control and outcomes. Treatment with a rhythm or rate control strategy does not signifi cantly impact short-term or long-term mortality in patients with post-MI AF, regardless of kidney disease status. Future studies to investigate the optimal management of AF in CKD patients are needed.

  1. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    PubMed

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Instantaneous electrocardiographic changes and transient sinus rhythm restoration in severe hyperkalaemia.

    PubMed

    Gogas, Bill D; Iliodromitis, Efstathios K; Leftheriotis, Dionyssios I; Flevari, Panagiota G; Rallidis, Loukianos S; Kremastinos, Dimitrios T

    2011-04-14

    Severe hyperkalaemia is a life threatening electrolyte abnormality that if not treated urgently, might cause electric death. Hyperkalaemia induced electrocardiogram (ECG) alterations vary according to the levels and rate of increase of potassium concentration ([K(+)]) in the extracellular milieu but the paradox is that not all these cases provide ECG changes. We describe the first case in the literature of transient sinus rhythm (SR) recovery despite severe hyperkalaemia in a 57-year-old (yo) male patient with impressive ECG changes considering the heart rhythm and QRS morphology. We also review the literature for the mechanism of ECG alterations induced by hyperkalaemia. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus.

    PubMed

    Salazar, Vielka L; Stoddard, Philip K

    2008-03-01

    To understand the evolution of sexually dimorphic communication signals, we must quantify their costs, including their energetic costs, the regulation of these costs, and the difference between the costs for the sexes. Here, we provide the first direct measurements of the relative energy expended on electric signals and show for the focal species Brachyhypopomus pinnicaudatus that males spend a significantly greater proportion of their total energy budget on signal generation (11-22%) compared with females (3%). Both sexes significantly reduce the energy spent on electric signals during daylight hours through circadian modulation of the amplitude, duration and repetition rate of the electric signal, but this effect is more marked in males. Male body condition predicted the energy spent on electric signals (R(2)=0.75). The oxygen consumed by males for signal production closely paralleled the product of the electric signal's waveform area (R(2)=0.99) and the discharge rate (R(2)=0.59), two signal parameters that can be assessed directly by conspecifics. Thus the electric communication signal of males carries the information to reveal their body condition to prospective mates and competing males. Because the electric signal constitutes a significant fraction of the energy budget, energy savings, along with predation avoidance, provides an adaptive basis for the production of circadian rhythms in electric signals.

  4. The Scorpion An ideal animal model to study long-term microgravity effects on circadian rhythms

    NASA Astrophysics Data System (ADS)

    Riewe, Pascal C.; Horn, Eberhard R.

    2000-01-01

    The temporal pattern of light and darkness is basic for the coordination of circadian rhythms and establishment of homoeostasis. The 24th frequency of zeitgebers is probably a function of the Earth's rotation. The only way to eliminate its influence on organisms is to study their behavior in space because the reduced day length during orbiting the Earth might disrupt synchronizing mechanisms based on the 24th rhythm. The stability of microgravity induced disturbances of synchronization as well as the extent of adaptation of different physiological processes to this novel environment can only be studied during long-term exposures to microgravity, i.e., on the International Space Station. Biological studies within the long-term domain on ISS demand the use of experimental models which can be exposed to automatic handling of measurements and which need less or no nutritional care. Scorpions offer these features. We describe a fully automatic recording device for the simultaneous collection of data regarding the sensorimotor system and homoeostatic mechanisms. In particular, we record sensitivity changes of the eyes, motor activity and heart beat and/or respiratory activity. The advantage of the scorpion model is supported by the fact that data can be recorded preflight, inflight and postflight from the same animal. With this animal model, basic insights will be obtained about the de-coupling of circadian rhythms of multiple oscillators and their adaptation to the entraining zeitgeber periodicity during exposure to microgravity for at least three biological parameters recorded simultaneously. .

  5. Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders.

    PubMed

    Çalıyurt, Okan

    2017-12-01

    Chronobiology is a field that studies the effects of time on biological systems. Periodicity is of particular interest. The master biological clock in the suprachiasmatic nucleus controls daily rhythms of core body temperature, rest-activity cycle, physiological and behavioral functions, psychomotor functions and mood in humans. The clock genes are involved in the generation of the circadian rhythms and the biological clock is synchronized to solar day by direct photic inputs. Various circadian rhythm abnormalities have been demonstrated in mood disorders such as unipolar depression, bipolar depression and seasonal affective disorder. Hypotheses involving circadian rhythm abnormalities related to the etiology of mood disorders have been raised. The resulting circadian rhythm changes can be measured and evaluated that these techniques can be used to identify subtypes of mood disorders associated with circadian rhythm changes. The data obtained from chronobiological studies reveal methods that manipulate circadian rhythms. The effects of light and melatonin on circadian rhythms are determined by these studies. Chronobiological research has been applied to the psychiatric clinic and light therapy has been used as a chronotherapeutic in the treatment of mood disorders. On the other hand, chronotherapeutic approaches with effects on circadian rhythms such as sleep deprivation therapy have been used in the treatment of mood disorders too. As a good example of translational psychiatry, chronobiological studies have been projected in the psychiatry clinic. It may be possible, the data obtained from the basic sciences are used in the diagnosis of mood disorders and in the treatment of psychiatric disorders as chronotherapeutic techniques. Developments in the field of chronobiology and data obtained from chronotherapeutics may enable the development of evidence-based diagnosis and treatment in psychiatry.

  6. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  7. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  8. Systematic analysis of ECG predictors of sinus rhythm maintenance after electrical cardioversion for persistent atrial fibrillation.

    PubMed

    Lankveld, Theo; de Vos, Cees B; Limantoro, Ione; Zeemering, Stef; Dudink, Elton; Crijns, Harry J; Schotten, Ulrich

    2016-05-01

    Electrical cardioversion (ECV) is one of the rhythm control strategies in patients with persistent atrial fibrillation (AF). Unfortunately, recurrences of AF are common after ECV, which significantly limits the practical benefit of this treatment in patients with AF. The objectives of this study were to identify noninvasive complexity or frequency parameters obtained from the surface electrocardiogram (ECG) to predict sinus rhythm (SR) maintenance after ECV and to compare these ECG parameters with clinical predictors. We studied a wide variety of ECG-derived time- and frequency-domain AF complexity parameters in a prospective cohort of 502 patients with persistent AF referred for ECV. During 1-year follow-up, 161 patients (32%) maintained SR. The best clinical predictor of SR maintenance was antiarrhythmic drug (AAD) treatment. A model including clinical parameters predicted SR maintenance with a mean cross-validated area under the receiver operating characteristic curve (AUC) of 0.62 ± 0.05. The best single ECG parameter was the dominant frequency (DF) on lead V6. Combining several ECG parameters predicted SR maintenance with a mean AUC of 0.64 ± 0.06. Combining clinical and ECG parameters improved prediction to a mean AUC of 0.67 ± 0.05. Although the DF was affected by AAD treatment, excluding patients taking AADs did not significantly lower the predictive performance captured by the ECG. ECG-derived parameters predict SR maintenance during 1-year follow-up after ECV at least as good as known clinical predictors of rhythm outcome. The DF proved to be the most powerful ECG-derived predictor. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. The daily timing of gene expression and physiology in mammals

    PubMed Central

    Schibler, Ueli

    2007-01-01

    Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in aIl cells, most clock out-puts are cell-specific. This conclusion is based on genomewide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellularproliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan. PMID:17969863

  10. Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Alpatov, A. M.; Wassmer, G. T.; Rietveld, W. J.; Fuller, C. A.

    2003-01-01

    Circadian function is affected by exposure to altered ambient force environments. Under non-earth gravitational fields, both basic features of circadian rhythms and the expression of the clock responsible for these rhythms are altered. We examined the activity rhythm of the tenebrionid beetle, Trigonoscelis gigas, in conditions of microgravity (microG; spaceflight), earth's gravity (1 G) and 2 G (centrifugation). Data were recorded under a light-dark cycle (LD), constant light (LL), and constant darkness (DD). Free-running period (tau) was significantly affected by both the gravitational field and ambient light intensity. In DD, tau was longer under 2 G than under either 1 G or microG. In addition, tauLL was significantly different from tauDD under microG and 1 G, but not under 2 G.

  11. Influence of gravity on the circadian timing system

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.

    1994-01-01

    The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.

  12. Peripartum Cardiomyopathy

    MedlinePlus

    ... heart rate and rhythm, to look for abnormal electric con- duction, and to rule out a heart ... CAD IDC PPCM Figure.   Survival in patients with car- diomyopathy. This bar graph shows the predicted 5- ...

  13. Chronobiology of micturition: putative role of the circadian clock.

    PubMed

    Negoro, Hiromitsu; Kanematsu, Akihiro; Yoshimura, Koji; Ogawa, Osamu

    2013-09-01

    Mammals urinate less frequently during the sleep period than the awake period. This is modulated by a triad of factors, including decreased arousal in the brain, a decreased urine production rate in the kidneys and increased functional bladder capacity during sleep. The circadian clock is genetic transcription-translation feedback machinery. It exists in most organs and cells, termed the peripheral clock, which is orchestrated by the central clock in the suprachiasmatic nucleus of the brain. We discuss the linkage between the day and night change in micturition frequency and the genetic rhythm maintained by the circadian clock system, focusing on the brain, kidney and bladder. We performed an inclusive review of the literature on the diurnal change in micturition frequency, urine volume, functional bladder capacity and urodynamics in humans and rodents, relating this to recent basic biological findings about the circadian clock. In humans various behavioral studies demonstrated a diurnal functional change in the kidney and bladder. Conversely, patients with nocturnal enuresis and nocturia showed impairment in this triad of factors. Rats and mice, which are nocturnal animals, also have a micturition frequency rhythm that is decreased during the day, which is the sleep phase for them. Mice with a genetically defective circadian clock system show impaired physiological rhythms in the triad of factors. The existence of the circadian clock has been proven in the brain, kidney and bladder, in which thousands of circadian oscillating genes exist. In the kidney they include genes involved in the regulation of water and major electrolytes. In the bladder they include connexin 43, a gene associated with the regulation of bladder capacity. Recent progress in molecular biology about the circadian clock provides an opportunity to investigate the genetic basis of the micturition rhythm or impairment of the rhythm in nocturnal enuresis and nocturia. If this approach is to be translated clinically, a strategy is to analyze and treat the triad of micturition factors as separate parts of 1 problem. The other way could be to cope with this triad of problems simultaneously, if possible, by treating the circadian physiological rhythm itself. The discoveries reviewed point toward further investigation of the micturition rhythm by basic and translational chronobiology. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Bartlett, Adrian M.; Shumaker, Robert W.; Wich, Serge A.; Menken, Steph B. J.

    2015-01-01

    The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels. PMID:25569211

  15. Does the choice of definition for defibrillation and CPR success impact the predictability of ventricular fibrillation waveform analysis?

    PubMed

    Jin, Danian; Dai, Chenxi; Gong, Yushun; Lu, Yubao; Zhang, Lei; Quan, Weilun; Li, Yongqin

    2017-02-01

    Quantitative analysis of ventricular fibrillation (VF), such as amplitude spectral area (AMSA), predicts shock outcomes. However, there is no uniform definition of shock/cardiopulmonary resuscitation (CPR) success in out-of-hospital cardiac arrest (OHCA). The objective of this study is to investigate post-shock rhythm variations and the impact of shock/CPR success definition on the predictability of AMSA. A total of 554 shocks from 257 OHCA patients with VF as initial rhythm were analyzed. Post-shock rhythms were analyzed every 5s up to 120s and annotated as VF, asystole (AS) and organized rhythm (OR) at serial time intervals. Three shock/CPR success definitions were used to evaluate the predictability of AMSA: (1) termination of VF (ToVF); (2) return of organized electrical activity (ROEA); (3) return of potentially perfusing rhythm (RPPR). Rhythm changes occurred after 54.5% (N=302) of shocks and 85.8% (N=259) of them occurred within 60s after shock delivery. The observed post-shock rhythm changes were (1) from AS to VF (24.9%), (2) from OR to VF (16.1%), and (3) from AS to OR (12.1%). The area under the receiver operating characteristic curve (AUC) for AMSA as a predictor of shock/CPR success reached its maximum 60s post-shock. The AUC was 0.646 for ToVF, 0.782 for ROEA, and 0.835 for RPPR (p<0.001) respectively. Post-shock rhythm is unstable in the first minute after the shock. The predictability of AMSA varies depending on the definition of shock/CPR success and performs best with the return of potentially perfusing rhythm endpoint for OHCA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

    PubMed Central

    Li, RA

    2012-01-01

    Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential. PMID:22673497

  17. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

    PubMed

    Li, R A

    2012-06-01

    Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.

  18. The study of synchronization of rhythms of microvascular blood flow and oxygen saturation during adaptive changes

    NASA Astrophysics Data System (ADS)

    Dunaev, Andrey V.; Sidorov, Victor V.; Krupatkin, Alexander I.; Rafailov, Ilya E.; Palmer, Scott G.; Sokolovski, Sergei G.; Stewart, Neil A.; Rafailov, Edik U.

    2014-02-01

    Multi-functional laser non-invasive diagnostic systems, such as "LAKK-M", allow the study of a number of microcirculatory parameters, including blood microcirculatory index (Im) (by laser Doppler flowmetry, LDF) and oxygen saturation (StO2) of skin tissue (by tissue reflectance oximetry, TRO). Such systems may provide significant information relevant to physiology and clinical medicine. The aim of this research was to use such a system to study the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted with 8 healthy volunteers - 3 females and 5 males of 21-49 years. Each volunteer was subjected to basic 3 minute tests. The volunteers were observed for between 1-4 months each, totalling 422 basic tests. Measurements were performed on the palmar surface of the right middle finger and the forearm medial surface. Wavelet analysis was used to study rhythmic oscillations in LDF- and TRO-data. Tissue oxygen consumption (from arterial and venal blood oxygen saturation and nutritive flux volume) was calculated for all volunteers during "adaptive changes" as (617+/-123 AU) and (102+/-38 AU) with and without arteriovenous anastomoses (AVAs) respectively. This demonstrates increased consumption compared to normal (495+/-170 AU) and (69+/-40 AU) with and without AVAs respectively. Data analysis demonstrated the emergence of resonance and synchronization of rhythms of microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and potentially from psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes suggest increased oxygen consumption resulting from increased microvascular blood flow velocity.

  19. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  20. Sleeping on Mars: A Hidden Challenge for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin

    2017-01-01

    The purpose of this talk is to provide a general public audience with basic information about what it is like to sleep in space. Dr. Flynn-Evans will begin by highlighting how sleep is different in movies and science fiction compared to real life. She will next cover basic information about sleep and circadian rhythms, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.

  1. Genetic Testing for Inherited Heart Disease

    MedlinePlus

    ... are also inherited heart conditions that affect the electric system of the heart, causing abnormal heart rhythms ... mistakenly labeled as a heart attack, drowning, or car accident. The sudden death of a previously healthy ...

  2. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  3. Detection of ventricular fibrillation from multiple sensors

    NASA Astrophysics Data System (ADS)

    Lindsley, Stephanie A.; Ludeman, Lonnie C.

    1992-07-01

    Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.

  4. Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods

    PubMed Central

    Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.

    2008-01-01

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545

  5. Anti-arrhythmic strategies for atrial fibrillation

    PubMed Central

    Grandi, Eleonora; Maleckar, Mary M.

    2016-01-01

    Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with increased risk of cerebrovascular stroke, and with several other pathologies, including heart failure. Current therapies for AF are targeted at reducing risk of stroke (anticoagulation) and tachycardia-induced cardiomyopathy (rate or rhythm control). Rate control, typically achieved by atrioventricular nodal blocking drugs, is often insufficient to alleviate symptoms. Rhythm control approaches include antiarrhythmic drugs, electrical cardioversion, and ablation strategies. Here, we offer several examples of how computational modeling can provide a quantitative framework for integrating multi scale data to: (a) gain insight into multi-scale mechanisms of AF; (b) identify and test pharmacological and electrical therapy and interventions; and (c) support clinical decisions. We review how modeling approaches have evolved and contributed to the research pipeline and preclinical development and discuss future directions and challenges in the field. PMID:27612549

  6. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue

    PubMed Central

    Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter

    2011-01-01

    Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161

  7. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  8. Optimizing Survival Outcomes For Adult Patients With Nontraumatic Cardiac Arrest.

    PubMed

    Jung, Julianna

    2016-10-01

    Patient survival after cardiac arrest can be improved significantly with prompt and effective resuscitative care. This systematic review analyzes the basic life support factors that improve survival outcome, including chest compression technique and rapid defibrillation of shockable rhythms. For patients who are successfully resuscitated, comprehensive postresuscitation care is essential. Targeted temperature management is recommended for all patients who remain comatose, in addition to careful monitoring of oxygenation, hemodynamics, and cardiac rhythm. Management of cardiac arrest in circumstances such as pregnancy, pulmonary embolism, opioid overdose and other toxicologic causes, hypothermia, and coronary ischemia are also reviewed.

  9. Paroxysmal supraventricular tachycardia (PSVT)

    MedlinePlus

    PSVT; Supraventricular tachycardia; Abnormal heart rhythm - PSVT; Arrhythmia - PSVT; Rapid heart rate - PSVT; Fast heart rate - PSVT ... Normally, the chambers of the heart (atria and ventricles) contract in ... are caused by an electrical signal that begins in an area ...

  10. Novel pharmacological targets for the rhythm control management of atrial fibrillation.

    PubMed

    Burashnikov, Alexander; Antzelevitch, Charles

    2011-12-01

    Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Introducing Music to the Hearing-Impaired.

    ERIC Educational Resources Information Center

    Jahns, Elke

    2001-01-01

    Describes an independent music therapy project where the author worked with an 11-year-old boy, Johnny, who had recently become profoundly deaf. States that the goals were to master basic playing of an instrument and proficiency in reading notes and rhythms. (CMK)

  12. Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach.

    PubMed

    Stupfel, M; Pletan, Y

    1983-01-01

    Recent developments in human rhythmic respiratory pathology lead to this review of the literature for ultradian rhythms of middle and low frequencies, that is having periods longer than the usual respiratory rates, whose periods are seconds or fractions of seconds. Ultradian respiratory movements for respiratory periods (5 less than tau less than 50 min) have been reported in many species of small laboratory animals (mice, rats, guinea-pigs, rabbits, quails). Long-period respiratory rates (20 less than tau less than 90 min) have been found in human fetuses and infants. But they are more difficult to detect in human adults, except during sleep where they have been related to REM and NONREM activities. These respiratory rhythms of middle and low frequencies are supposed to result from dissipative energy structures related to surface-volume relationships, with interlocking chemical clocks, and to be relevant to a basic rest-activity cycle.

  13. Circadian Rhythm Sleep Disorders: Part I, Basic Principles, Shift Work and Jet Lag DisordersAn American Academy of Sleep Medicine Review

    PubMed Central

    Sack, Robert L; Auckley, Dennis; Auger, R. Robert; Carskadon, Mary A.; Wright, Kenneth P.; Vitiello, Michael V.; Zhdanova, Irina V.

    2007-01-01

    Objective: This the first of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. In this first part of this paper, the general principles of circadian biology that underlie clinical evaluation and treatment are reviewed. We then report on the accumulated evidence regarding the evaluation and treatment of shift work disorder (SWD) and jet lag disorder (JLD). Methods: A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. Results: A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of SWD and JLD. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting (“resetting the clock”), and 3) symptomatic treatment using hypnotic and stimulant medications. Conclusion: Circadian rhythm science has also pointed the way to rational interventions for the SWD and JLD, and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria. Citation: Sack RL; Auckley D; Auger RR; Carskadon MA; Wright KP; Vitiello MV; Zhdanova IV. Circadian rhythm sleep disorders: Part I, basic principles, shift work and jet lag disorders. SLEEP 2007;30(11):1460-1483. PMID:18041480

  14. The Teaching of Literature.

    ERIC Educational Resources Information Center

    O Cuilleanain, Cormac

    Literature is authentic language, written with unusual care, skill, and language awareness. It is useful for teaching culture and civilization, but equally useful for teaching basic elements of language: grammar, vocabulary, rhythms, and registers. Literary skills are also widely used in everyday situations, with sophisticated literary techniques…

  15. A stochastic model of input effectiveness during irregular gamma rhythms.

    PubMed

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.

  16. An Innovative Approach to Automatically Detect and Interpret Salient Spatiotemporal Features of a Numeric Field: A Case Study in Electrocardiographic Imaging

    NASA Astrophysics Data System (ADS)

    Ironi, Liliana; Tentoni, Stefania

    2009-08-01

    The last decade has witnessed major advancements in the direct application of functional imaging techniques to several clinical contexts. Unfortunately, this is not the case of Electrocardiology. As a matter of fact, epicardial maps, which can hit electrical conduction pathologies that routine surface ECG's analysis may miss, can be obtained non invasively from body surface data through mathematical model-based reconstruction methods. But, their interpretation still requires highly specialized skills that belong to few experts. The automated detection of salient patterns in the map, grounded on the existing interpretation rationale, would therefore represent a major contribution towards the clinical use of such valuable tools, whose diagnostic potential is still largely unexploited. We focus on epicardial activation isochronal maps, which convey information about the heart electric function in terms of the depolarization wavefront kinematics. An approach grounded on the integration of a Spatial Aggregation (SA) method with concepts borrowed from Computational Geometry provides a computational framework to extract, from the given activation data, a few basic features that characterize the wavefront propagation, as well as a more specific set of features that identify an important class of heart rhythm pathologies, namely reentry arrhythmias due to block of conduction.

  17. Division of Biological and Medical Research annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projectionmore » models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.« less

  18. Secondary ventricular fibrillation or pulseless ventricular tachycardia during cardiac arrest and epinephrine dosing.

    PubMed

    Straznitskas, Andrew D; Wong, Sylvia; Kupchik, Nicole; Carlbom, David

    2015-05-01

    Development of ventricular fibrillation or pulseless ventricular tachycardia after an initial rhythm of pulseless electrical activity or asystole is associated with significantly increased cardiac arrest mortality. To examine differences in epinephrine administration during cardiac arrest between patients who had a secondary ventricular fibrillation or ventricular tachycardia develop and patients who did not. Data were collected for 2 groups of patients with in-hospital cardiac arrest and an initial rhythm of pulseless electrical activity or asystole: those who had a secondary ventricular fibrillation or ventricular tachycardia develop (cases) and those who did not (controls). Dosing of epinephrine during cardiac arrest and other variables were compared between cases and controls. Of the 215 patients identified with an initial rhythm of pulseless electrical activity or asystole, 51 (23.7%) had a secondary ventricular fibrillation or ventricular tachycardia develop. Throughout the total duration of arrest, including periods of return of spontaneous circulation, the dosing interval for epinephrine in patients who had a secondary ventricular fibrillation or ventricular tachycardia develop was 1 mg every 3.4 minutes compared with 1 mg every 5 minutes in controls (P= .001). For the total duration of pulselessness, excluding periods of return of spontaneous circulation during the arrest, the dosing interval for epinephrine in patients who had a secondary ventricular fibrillation or ventricular tachycardia develop was 1 mg every 3.1 minutes versus 1 mg every 4.3 minutes in controls (P= .001). More frequent administration of epinephrine during cardiac arrest is associated with development of secondary ventricular fibrillation or ventricular tachycardia. ©2015 American Association of Critical-Care Nurses.

  19. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    PubMed

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  20. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    PubMed Central

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  1. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  2. Training Procedure Manual for the Mentally Retarded.

    ERIC Educational Resources Information Center

    Dustin, Josephine; And Others

    Presented is a training procedure manual for institutionalized moderately, severely, and profoundly retarded persons. Teaching activities are suggested for the following skill areas: motor development and awareness (including sensory stimulation, mat skills, and music and basic rhythm); toileting; eating skills (such as straw sipping and table…

  3. Basic results of medical examinations of Soyuz spacecraft crew members

    NASA Technical Reports Server (NTRS)

    Gurovskiy, N. N.; Yegorov, A. D.; Kakurin, L. I.; Nefedov, Y. G.

    1975-01-01

    Weightlessness, hypokinesia and intense activity of crew members caused changes in human physiological functions during prolonged space flight as expressed in unusual diurnal rhythms. Microclimate, radiation and the nervous emotional state were not of significance in emergence of human body response reactions.

  4. The evolutionary biology of musical rhythm: was Darwin wrong?

    PubMed

    Patel, Aniruddh D

    2014-03-01

    In The Descent of Man, Darwin speculated that our capacity for musical rhythm reflects basic aspects of brain function broadly shared among animals. Although this remains an appealing idea, it is being challenged by modern cross-species research. This research hints that our capacity to synchronize to a beat, i.e., to move in time with a perceived pulse in a manner that is predictive and flexible across a broad range of tempi, may be shared by only a few other species. Is this really the case? If so, it would have important implications for our understanding of the evolution of human musicality.

  5. The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong?

    PubMed Central

    Patel, Aniruddh D.

    2014-01-01

    In The Descent of Man, Darwin speculated that our capacity for musical rhythm reflects basic aspects of brain function broadly shared among animals. Although this remains an appealing idea, it is being challenged by modern cross-species research. This research hints that our capacity to synchronize to a beat, i.e., to move in time with a perceived pulse in a manner that is predictive and flexible across a broad range of tempi, may be shared by only a few other species. Is this really the case? If so, it would have important implications for our understanding of the evolution of human musicality. PMID:24667562

  6. Modelling the heart as a communication system.

    PubMed

    Ashikaga, Hiroshi; Aguilar-Rodríguez, José; Gorsky, Shai; Lusczek, Elizabeth; Marquitti, Flávia Maria Darcie; Thompson, Brian; Wu, Degang; Garland, Joshua

    2015-04-06

    Electrical communication between cardiomyocytes can be perturbed during arrhythmia, but these perturbations are not captured by conventional electrocardiographic metrics. We developed a theoretical framework to quantify electrical communication using information theory metrics in two-dimensional cell lattice models of cardiac excitation propagation. The time series generated by each cell was coarse-grained to 1 when excited or 0 when resting. The Shannon entropy for each cell was calculated from the time series during four clinically important heart rhythms: normal heartbeat, anatomical reentry, spiral reentry and multiple reentry. We also used mutual information to perform spatial profiling of communication during these cardiac arrhythmias. We found that information sharing between cells was spatially heterogeneous. In addition, cardiac arrhythmia significantly impacted information sharing within the heart. Entropy localized the path of the drifting core of spiral reentry, which could be an optimal target of therapeutic ablation. We conclude that information theory metrics can quantitatively assess electrical communication among cardiomyocytes. The traditional concept of the heart as a functional syncytium sharing electrical information cannot predict altered entropy and information sharing during complex arrhythmia. Information theory metrics may find clinical application in the identification of rhythm-specific treatments which are currently unmet by traditional electrocardiographic techniques. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Reduction of coherence of the human brain electric potentials

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Smirnov, Fedor

    Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damaged as well. We are going to consider the electro-neurophysiological aspect of the general problem: men surrounded by physical fields including ones of cosmic origination. Magnetic storms’ influence had been observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old, Moscow). To control the main functional systems of the examinees, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. All of these characteristics, save for the EEG, were within the normal range for all of the examinees during measurements. According to the EEG investigations by implementation of the computer proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal-polar and occipital areas of the head belong to the interval [0.3, 0.8] for all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with electromagnetic geophysical researches and geomagnetic storms). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of IZMIRAN were used), the values of the theta-rhythm frontal - occipital coherence function of all of the students of the group under consideration decreased by a factor of two or more, including the zero coherence function value. The similar result was obtained for another basic low-frequency electro-neurophysiological rhythm delta (f = 0.5 - 3.9 Hz, A = 20 μV). The usual coherence function values from the interval [0.3, 0.8] were being registered, typically, about 48 hours after the magnetic storm end. The result about decreasing of the coherence of the brain low frequency bioelectric oscillations under a magnetic storm influence was obtained by two methods: 1) comparison of the time series of bioelectric oscillations of a given person without a magnetic storm and under its influence; 2) comparison of two sets of time series of oscillations: a) the set A of time series measured without a magnetic storm and b) the set B of time series measured under its influence, regardless to an individual. Surely, the total number of the EEGs available for the investigation by the set’s approach, i.e. without personification, is more than the number of the EEGs available by the individual approach because there were ones investigated without a magnetic storm only as well as ones investigated under its influence only. By the EEG measurements with closed or open eyes, but without a functional load on the brain in the form of the proof-reading test, a distinctive decrease of the coherence function was not observed during a magnetic storm as well as for pairs of points from other parts of the head (see above) or other rhythms.

  8. Plasticity of circadian activity and body temperature rhythms in golden spiny mice.

    PubMed

    Cohen, Rotem; Smale, Laura; Kronfeld-Schor, Noga

    2009-04-01

    Most animals can be categorized as nocturnal, diurnal, or crepuscular. However, rhythms can be quite plastic in some species and vary from one individual to another within a species. In the golden spiny mouse (Acomys russatus), a variety of rhythm patterns have been seen, and these patterns can change considerably as animals are transferred from the field into the laboratory. We previously suggested that these animals may have a circadian time-keeping system that is fundamentally nocturnal and that diurnal patterns seen in their natural habitat reflect mechanisms operating outside of the basic circadian time-keeping system (i.e., masking). In the current study, we further characterized plasticity evident in the daily rhythms of golden spiny mice by measuring effects of lighting conditions and access to a running wheel on rhythms in general activity (GA) and body temperature (Tb). Before the wheel was introduced, most animals were active mainly during the night, though there was considerable inter-individual variability and patterns were quite plastic. The introduction of the wheel caused an increase in the level of nighttime activity and Tb in most individuals. The periods of the rhythms in constant darkness (DD) were very similar, and even slightly longer in this study (24.1+/-0.2 h) than in an earlier one in which animals had not been provided with running wheels. We found no correlation between the distance animals ran in their wheels and the period of their rhythms in DD. Re-entrainment after phase delays of the LD cycle occurred more rapidly in the presence than absence of the running wheel. The characteristics of the rhythms of golden spiny mice seen in this study may be the product of natural selection favoring plasticity of the circadian system, perhaps reflecting what can happen during an evolutionary transition as animals move from a nocturnal to a diurnal niche.

  9. [Inappropriate analyses of automated external defibrillators used during out-of-hospital cardiac arrests].

    PubMed

    Ballesteros Peña, Sendoa

    2013-04-01

    To estimate the frequency of therapeutic errors and to evaluate the diagnostic accuracy in the recognition of shockable rhythms by automated external defibrillators. A retrospective descriptive study. Nine basic life support units from Biscay (Spain). Included 201 patients with cardiac arrest, since 2006 to 2011. The study was made of the suitability of treatment (shock or not) after each analysis and medical errors identified. The sensitivity, specificity and predictive values with 95% confidence intervals were then calculated. A total of 811 electrocardiographic rhythm analyses were obtained, of which 120 (14.1%), from 30 patients, corresponded to shockable rhythms. Sensitivity and specificity for appropriate automated external defibrillators management of a shockable rhythm were 85% (95% CI, 77.5% to 90.3%) and 100% (95% CI, 99.4% to 100%), respectively. Positive and negative predictive values were 100% (95% CI, 96.4% to 100%) and 97.5% (95% CI, 96% to 98.4%), respectively. There were 18 (2.2%; 95% CI, 1.3% to 3.5%) errors associated with defibrillator management, all relating to cases of shockable rhythms that were not shocked. One error was operator dependent, 6 were defibrillator dependent (caused by interaction of pacemakers), and 11 were unclassified. Automated external defibrillators have a very high specificity and moderately high sensitivity. There are few operator dependent errors. Implanted pacemakers interfere with defibrillator analyses. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  10. Percutaneous ligation of the left atrial appendage results in atrial electrical substrate modification.

    PubMed

    Syed, Faisal F; Rangu, Venu; Bruce, Charles J; Johnson, Susan B; Danielsen, Andrew; Gilles, Emily J; Ladewig, Dorothy J; Mikell, Susan B; Berhow, Steven; Wahnschaffe, Douglas; Suddendorf, Scott H; Asirvatham, Samuel J; Friedman, Paul A

    2015-03-01

    Debulking of electrically active atrial tissue may reduce the mass of fibrillating tissue during atrial fibrillation, eliminate triggers, and promote maintenance of normal sinus rhythm (NSR). We investigated whether left atrial appendage (LAA) ligation results in modification of atrial electrical substrate. Healthy male mongrel dogs (N = 20) underwent percutaneous epicardial LAA ligation. The ligation system grabber recorded LAA local electrograms (EGM) continuously before, during, and after closure. Successful ligation with a preloaded looped suture was confirmed intraprocedurally by LAA Doppler flow cessation on transesophageal echocardiography (TEE) and loss of LAA electrical activity, and after procedure by direct necropsic visualization. P-wave duration on surface electrocardiograms was measured immediately before and after LAA closure. Percent P-wave duration reduction was correlated with preclosure LAA internal dimensions measured by TEE and external dimensions measured on necropsy specimens to investigate associations of LAA geometry with the extent of electrical substrate modification. LAA ligation was successful in all dogs and accompanied by loss of LAA EGM. P-wave duration reduced immediately on ligation (mean 75 ms preligation to 63 ms postligation; mean difference ± standard error, 12 ± 1 ms; P < 0.0001). Percent P-wave reduction was associated with larger LAA longitudinal cross-sectional area (R(2) = 0.263, P = 0.04) and smaller external circumference (R(2) = 0.687, P = 0.04). All dogs were in sinus rhythm. Percutaneous LAA ligation results in its acute electrical isolation and atrial electrical substrate modification, the degree of which is associated with LAA geometry. These electrical changes raise the possibility that LAA ligation may promote NSR by removing LAA substrate and triggers. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cardiogenic shock

    MedlinePlus

    ... heart rhythm (bradycardia) or problem with the electrical system of the heart (heart block) Cardiogenic shock occurs when ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is ...

  12. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    PubMed

    Cheron, G; Leroy, A; De Saedeleer, C; Bengoetxea, A; Lipshits, M; Cebolla, A; Servais, L; Dan, B; Berthoz, A; McIntyre, J

    2006-11-22

    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e., in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.

  13. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  14. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value

    PubMed Central

    Bloch, Guy; Barnes, Brian M.; Gerkema, Menno P.; Helm, Barbara

    2013-01-01

    Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles. PMID:23825202

  15. The Utility of Therapeutic Hypothermia for Post-Cardiac Arrest Syndrome Patients With an Initial Nonshockable Rhythm.

    PubMed

    Perman, Sarah M; Grossestreuer, Anne V; Wiebe, Douglas J; Carr, Brendan G; Abella, Benjamin S; Gaieski, David F

    2015-12-01

    Therapeutic hypothermia (TH) attenuates reperfusion injury in comatose survivors of cardiac arrest. The utility of TH in patients with nonshockable initial rhythms has not been widely accepted. We sought to determine whether TH improved neurological outcome and survival in postarrest patients with nonshockable rhythms. We identified 519 patients after in- and out-of-hospital cardiac arrest with nonshockable initial rhythms from the Penn Alliance for Therapeutic Hypothermia (PATH) registry between 2000 and 2013. Propensity score matching was used. Patient and arrest characteristics used to estimate the propensity to receive TH were age, sex, location of arrest, witnessed arrest, and duration of arrest. To determine the association between TH and outcomes, we created 2 multivariable logistic models controlling for confounders. Of 201 propensity score-matched pairs, mean age was 63 ± 17 years, 51% were male, and 60% had an initial rhythm of pulseless electric activity. Survival to hospital discharge was greater in patients who received TH (17.6% versus 28.9%; P < 0.01), as was a discharge Cerebral Performance Category of 1 to 2 (13.7% versus 21.4%; P = 0.04). In adjusted analyses, patients who received TH were more likely to survive (odds ratio, 2.8; 95% confidence interval, 1.6-4.7) and to have better neurological outcome (odds ratio, 3.5; 95% confidence interval, 1.8-6.6) than those that did not receive TH. Using propensity score matching, we found that patients with nonshockable initial rhythms treated with TH had better survival and neurological outcome at hospital discharge than those who did not receive TH. Our findings further support the use of TH in patients with initial nonshockable arrest rhythms. © 2015 American Heart Association, Inc.

  16. Relationship Between the Duration of Cardiopulmonary Resuscitation and Favorable Neurological Outcomes After Out-of-Hospital Cardiac Arrest: A Prospective, Nationwide, Population-Based Cohort Study.

    PubMed

    Goto, Yoshikazu; Funada, Akira; Goto, Yumiko

    2016-03-18

    The determination of appropriate duration of in-the-field cardiopulmonary resuscitation (CPR) for out-of-hospital cardiac arrest (OHCA) patients is one of the biggest challenges for emergency medical service providers and clinicians. The appropriate CPR duration before termination of resuscitation remains unclear and may differ based on initial rhythm. We aimed to determine the relationship between CPR duration and post-OHCA outcomes. We analyzed the records of 17 238 OHCA patients (age ≥18 years) who achieved prehospital return of spontaneous circulation. Data were prospectively recorded in a nationwide, Japanese database between 2011 and 2012. The time from CPR initiation to prehospital return of spontaneous circulation (CPR duration) was calculated. The primary end point was 1-month survival with favorable neurological outcomes (Cerebral Performance Category [CPC] scale; CPC 1-2). The 1-month CPC 1-2 rate was 21.8% (n=3771). CPR duration was inversely associated with 1-month CPC 1-2 (adjusted unit odds ratio: 0.95, 95% CI: 0.94-0.95). Among all patients, a cumulative proportion of >99% of 1-month CPC 1-2 was achieved with a CPR duration of 35 minutes. When sorted by the initial rhythm, the CPR duration producing more than 99% of survivors with CPC 1-2 was 35 minutes for shockable rhythms and pulseless electrical activity, and 42 minutes for asystole. CPR duration was independently and inversely associated with favorable 1-month neurological outcomes. The critical prehospital CPR duration for OHCA was 35 minutes in patients with initial shockable rhythms and pulseless electrical activity, and 42 minutes in those with initial asystole. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence.

    PubMed

    Stevens, Richard G

    2009-08-01

    Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.

  18. New Learning - The IPP Programme: Improvements in Learning and Self Esteem by Changing the Organization of Learning

    NASA Astrophysics Data System (ADS)

    Garber, Klaus; Ausserer, Oskar; Giacomuzzi, Salvatore

    "New learning" is basically an individualized learning style. "New learning" starts by the individual itself. The individual is the basis for conditions, learning contents, rhythm, duration and intensity of the teaching. The appropriate slogan is: fetch the individual at his personal conditions.

  19. When They're Very Young

    ERIC Educational Resources Information Center

    Powers, Keith

    2012-01-01

    In kindergarten and beyond, students gradually develop their musical skills. But music aptitude develops much earlier--and teachers can begin to foster it in preschool. It's clear that, properly nurtured, preschoolers have an amazing ability to learn the fundamentals of singing on pitch and basic rhythm. It's also clear that by kindergarten that…

  20. How to Engage Medical Students in Chronobiology: An Example on Autorhythmometry

    ERIC Educational Resources Information Center

    Rol de Lama, M. A.; Lozano, J. P.; Ortiz, V.; Sanchez-Vazquez, F. J.; Madrid, J. A.

    2005-01-01

    This contribution describes a new laboratory experience that improves medical students' learning of chronobiology by introducing them to basic chronobiology concepts as well as to methods and statistical analysis tools specific for circadian rhythms. We designed an autorhythmometry laboratory session where students simultaneously played the role…

  1. Association of initial rhythm with neurologically favorable survival in non-shockable out-of-hospital cardiac arrest without a bystander witness or bystander cardiopulmonary resuscitation.

    PubMed

    Fukuda, Tatsuma; Ohashi-Fukuda, Naoko; Matsubara, Takehiro; Doi, Kent; Kitsuta, Yoichi; Nakajima, Susumu; Yahagi, Naoki

    2016-05-01

    Out-of-hospital cardiac arrest (OHCA) has a predominantly non-shockable rhythm. Non-shockable rhythm, and the absence of a bystander witness or bystander cardiopulmonary resuscitation (CPR) are associated with poor outcomes. However, the association between the type of non-shockable rhythm and outcomes is not well known. To examine the association between the initial rhythm and neurologically favorable outcomes after non-shockable OHCA without a bystander witness or bystander CPR. In a nationwide, population-based, cohort study, we analyzed 213,984 adult OHCA patients with a non-shockable rhythm who had neither a bystander witness nor bystander CPR. They were identified through the Japanese national OHCA registry data from January 1, 2005 to December 31, 2010. The primary outcome was neurologically favorable survival. Among 213,984 patients, the initial rhythm was Pulseless Electrical Activity (PEA) in 31,179 patients (14.6%) and Asystole in 182,805 patients (85.4%). The neurological outcome was more favorable in PEA than in Asystole (1.4% vs. 0.2%, p<0.0001). After adjusting for age, sex, etiology of arrest, epinephrine administration, advanced airway management, time from call to contact with patient, and calendar year, PEA was associated with an increased neurologically favorable survival rate (odds ratio 7.86; 95% confidence interval 6.81-9.07). In subgroup analysis stratified by age group (18-64, 65-84, or ≥85years), the neurologically favorable survival rate was ≥1% in PEA, even for patients aged ≥85years, but <1% in Asystole among all age groups. PEA and Asystole should not be considered to be identical to non-shockable rhythm, but rather should be clearly distinguished from each other from the perspective of quantitative medical futility. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  2. Biological Rhythms Modelisation of Vigilance and Sleep in Microgravity State with COSINOR and Volterra's Kernels Methods

    NASA Astrophysics Data System (ADS)

    Gaudeua de Gerlicz, C.; Golding, J. G.; Bobola, Ph.; Moutarde, C.; Naji, S.

    2008-06-01

    The spaceflight under microgravity cause basically biological and physiological imbalance in human being. Lot of study has been yet release on this topic especially about sleep disturbances and on the circadian rhythms (alternation vigilance-sleep, body, temperature...). Factors like space motion sickness, noise, or excitement can cause severe sleep disturbances. For a stay of longer than four months in space, gradual increases in the planned duration of sleep were reported. [1] The average sleep in orbit was more than 1.5 hours shorter than the during control periods on earth, where sleep averaged 7.9 hours. [2] Alertness and calmness were unregistered yield clear circadian pattern of 24h but with a phase delay of 4h.The calmness showed a biphasic component (12h) mean sleep duration was 6.4 structured by 3-5 non REM/REM cycles. Modelisations of neurophysiologic mechanisms of stress and interactions between various physiological and psychological variables of rhythms have can be yet release with the COSINOR method. [3

  3. Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World.

    PubMed

    Mermet, Jérôme; Yeung, Jake; Naef, Felix

    2017-03-01

    Mammals have evolved an internal timing system, the circadian clock, which synchronizes physiology and behavior to the daily light and dark cycles of the Earth. The master clock, located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems chronobiology are now being directed at understanding, on a comprehensive scale, how the circadian clock controls different layers of gene regulation to provide robust timing cues at the cellular and tissue level. In this review, we introduce some basic concepts underlying periodicity of gene regulation, and then highlight recent genome-wide investigations on the propagation of rhythms across multiple regulatory layers in mammals, all the way from chromatin conformation to protein accumulation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Sleep in the Intensive Care Unit

    PubMed Central

    Friese, Randall S.; Gehlbach, Brian K.; Schwab, Richard J.; Weinhouse, Gerald L.; Jones, Shirley F.

    2015-01-01

    Sleep is an important physiologic process, and lack of sleep is associated with a host of adverse outcomes. Basic and clinical research has documented the important role circadian rhythm plays in biologic function. Critical illness is a time of extreme vulnerability for patients, and the important role sleep may play in recovery for intensive care unit (ICU) patients is just beginning to be explored. This concise clinical review focuses on the current state of research examining sleep in critical illness. We discuss sleep and circadian rhythm abnormalities that occur in ICU patients and the challenges to measuring alterations in circadian rhythm in critical illness and review methods to measure sleep in the ICU, including polysomnography, actigraphy, and questionnaires. We discuss data on the impact of potentially modifiable disruptors to patient sleep, such as noise, light, and patient care activities, and report on potential methods to improve sleep in the setting of critical illness. Finally, we review the latest literature on sleep disturbances that persist or develop after critical illness. PMID:25594808

  5. Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents.

    PubMed

    Atkins, D L; Hartley, L L; York, D K

    1998-03-01

    To evaluate the accuracy and efficacy of automated external defibrillators (AEDs) in patients <16 years old. AEDs are standard therapy in out-of-hospital resuscitation of adults and have led to higher success rates. Their use in children and adolescents has never been evaluated, despite recommendations from the American Heart Association that they be used in children >8 years of age. This was a retrospective cohort study of children <16 years old who underwent out-of-hospital cardiac resuscitation and on whom an AED was used during the resuscitation. The setting was rural and urban prehospital emergency medical systems. Patients were identified by review of a database of cardiac arrests maintained by a large surveillance program of these services. AEDs were used to assess cardiac rhythm in 18 patients with a mean age of 12.1 +/- 3.7 years. The cardiac rhythms were analyzed 67 times and included ventricular fibrillation (25), asystole/pulseless electrical activity (32), sinus bradycardia (6), and sinus tachycardia (4). The AEDs recognized all nonshockable rhythms accurately and advised no shock. Ventricular fibrillation was recognized accurately in 22 (88%) of 25 episodes and advised or administered a shock 22 times. Sensitivity and specificity for accurate rhythm analysis were 88% and 100%, respectively. One patient with a nonshockable rhythm survived, whereas 3 of 9 patients with ventricular fibrillation survived. These data furnish evidence that AEDs provide accurate rhythm detection and shock delivery to children and young adolescents. AED use is potentially as effective for children as it is for adults.

  6. Nonlinear and Stochastic Dynamics in the Heart

    PubMed Central

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  7. Successful electrical cardioversion of supraventricular tachycardia in a pregnant patient

    PubMed Central

    Yılmaz, Fevzi; Beydilli, Inan; Kavalcı, Cemil; Yılmaz, Serkan

    2012-01-01

    Summary Background: Pregnancy can precipitate cardiac arrhythmias not previously present in seemingly well individuals. Atrial and ventricular premature beats are frequently present during pregnancy and are usually benign. Supraventricular tachycardia and malignant ventricular tachyarrhythmias occur less frequently. Maternal and fetal arrhythmias occurring during pregnancy may jeopardize the life of the mother and the fetus. Case Report: A 32-year-old pregnant women at 26 weeks gestation presented to the emergency department with palpitation. She had mild chest discomfort after a supraventricular tachycardia (SVT) episode but did not have syncope. After monitoring and access of an IV line, vagal manoeuvres were applied but the rhythm was resistant. Then she was treated with 5 mg metoprolol IV, but the SVT persisted. Then after IV infusion of adenosine triphosphate 6 to 12 mg, the rhythm was resistant. Synchronized cardioversion with 100 joules was performed. Patients’ rhythm was normalized to a sinus rhythm. She was discharged from hospital without any adverse effects following 24-hour monitoring. Conclusions: All pregnant patients with SVT require careful maternal and fetal monitoring during treatment, and close collaboration between the managing obstetrician and the cardiologist is essential. PMID:23569481

  8. Nonlinear dynamics in cardiac conduction

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  9. Sensorimotor Synchronization with Different Metrical Levels of Point-Light Dance Movements.

    PubMed

    Su, Yi-Huang

    2016-01-01

    Rhythm perception and synchronization have been extensively investigated in the auditory domain, as they underlie means of human communication such as music and speech. Although recent studies suggest comparable mechanisms for synchronizing with periodically moving visual objects, the extent to which it applies to ecologically relevant information, such as the rhythm of complex biological motion, remains unknown. The present study addressed this issue by linking rhythm of music and dance in the framework of action-perception coupling. As a previous study showed that observers perceived multiple metrical periodicities in dance movements that embodied this structure, the present study examined whether sensorimotor synchronization (SMS) to dance movements resembles what is known of auditory SMS. Participants watched a point-light figure performing two basic steps of Swing dance cyclically, in which the trunk bounced at every beat and the limbs moved at every second beat, forming two metrical periodicities. Participants tapped synchronously to the bounce of the trunk with or without the limbs moving in the stimuli (Experiment 1), or tapped synchronously to the leg movements with or without the trunk bouncing simultaneously (Experiment 2). Results showed that, while synchronization with the bounce (lower-level pulse) was not influenced by the presence or absence of limb movements (metrical accent), synchronization with the legs (beat) was improved by the presence of the bounce (metrical subdivision) across different movement types. The latter finding parallels the "subdivision benefit" often demonstrated in auditory tasks, suggesting common sensorimotor mechanisms for visual rhythms in dance and auditory rhythms in music.

  10. [Management of surgery patients with implanted cardiac pacemakers].

    PubMed

    Ugljen, R; Dadić, D; Ferek-Petrić, B; Jelić, I; Letica, D; Anić, D; Husar, J

    1995-01-01

    Patients having cardiac pacemaker implanted may be subjected to various general surgery procedures. Application of electrosurgery for the purpose of resection and coagulation, provides a high frequency electric field which produces electric voltage on the electrodes of the pacing system. This voltage may be detected within the pacing system, and various arrhythmias can be provoked in correlation with underlying rhythm and mode of pacing. Preoperative patient control and proper pacemaker programming can prevent the pacing malfunctions due to the electrosurgery application. Appropriate positioning of the neutral electrode in relation to the pacing system avoids the electric fields intersection and decreases their interference.

  11. Teaching the Middle School Grade-Level Outcomes with Standards-Based Instruction

    ERIC Educational Resources Information Center

    Avery, Marybell; Rettig, Brad

    2015-01-01

    This article focuses on the grade-level outcomes to be assessed on middle school (grades 6-8) physical education. Specifically, the article describes how to teach basic tactics and strategies while applying fundamental movement patterns to the various game and movement categories (invasion, net/wall, target, fielding/striking, dance/rhythms, &…

  12. The Effect of Key on Vocal Sight-Reading Achievement

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2013-01-01

    At its most basic level, sight-reading can be defined as the production of accurate pitch and rhythm from a previously unseen musical score. For vocalists, sight-reading principally involves the production of pitches by determining their relationship within a tonal framework. The ability to mentally conceive tonal function and convert it into…

  13. Intrinsic rhythm and basic tonus in insect skeletal muscle.

    PubMed

    Hoyle, G

    1978-04-01

    The jumping muscle of orthopterous insects contains fibres that possess an intrinsic rhythm (IR) of slow contraction. The contributing fibres are generally synchronized, but as many as three or four pacemakers are present. The frequency, amplitude and duration of IR contractions fluctuate erratically over a 24 h period. Metathoracic DUM neurone bursts suppress IR for a few minutes. Other, unidentified dorsal neurones enhance its amplitude. In addition to IR, the extensor tibiae shows intrinsic basic tonus (BT). BT is relaxed for several s by low-frequency burst output from unidentified metathoracic dorsal neurones. DUM neurone bursts may enhance extensor BT, relax it, or leave it unaffected. The effects on IR of various regimes of activity in the slow extensor tibiae (SETi) and the common inhibitor (CI) axons were examined. CI affects IR when stimulated at frequencies above 2 Hz. It causes amplitude depression and reduced duration of individual IR contractions as well as increased frequency. At 30 Hz and above, CI completely suppresses IR. An enhanced IR contraction starts within a few milliseconds of the termination of a CI train. At low frequencies (below 10 Hz) SETi causes increased frequency and decreased amplitude of IR, with a depressed IR contraction following cessation of the SETi burst. At frequencies above 15 Hz the SETi-evoked contraction dominates tension development, though IR summates with it during the rising phase. In quiescent preparations not showing IR, SETi stimulation at 10 Hz often started up IR. Single SETi or FETi impulses can initiate an IR contraction, and cause altered phasing, with up to a quintupling of frequency. After a critical period has elapsed following the onset of an IR contraction, a single single impulse in any one of the three axons will terminate it abruptly. The early termination is followed by a reduced interval which is proportional to the reduced IR contraction time. The rhythm of accumulated readiness to go into an IR contraction is independent of the pacemaker rhythm that initiates the contraction.

  14. Your move or mine? Music training and kinematic compatibility modulate synchronization with self- versus other-generated dance movement.

    PubMed

    Su, Yi-Huang; Keller, Peter E

    2018-01-29

    Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.

  15. Reducing language to rhythm: Amazonian Bora drummed language exploits speech rhythm for long-distance communication

    NASA Astrophysics Data System (ADS)

    Seifart, Frank; Meyer, Julien; Grawunder, Sven; Dentel, Laure

    2018-04-01

    Many drum communication systems around the world transmit information by emulating tonal and rhythmic patterns of spoken languages in sequences of drumbeats. Their rhythmic characteristics, in particular, have not been systematically studied so far, although understanding them represents a rare occasion for providing an original insight into the basic units of speech rhythm as selected by natural speech practices directly based on beats. Here, we analyse a corpus of Bora drum communication from the northwest Amazon, which is nowadays endangered with extinction. We show that four rhythmic units are encoded in the length of pauses between beats. We argue that these units correspond to vowel-to-vowel intervals with different numbers of consonants and vowel lengths. By contrast, aligning beats with syllables, mora or only vowel length yields inconsistent results. Moreover, we also show that Bora drummed messages conventionally select rhythmically distinct markers to further distinguish words. The two phonological tones represented in drummed speech encode only few lexical contrasts. Rhythm thus appears to crucially contribute to the intelligibility of drummed Bora. Our study provides novel evidence for the role of rhythmic structures composed of vowel-to-vowel intervals in the complex puzzle concerning the redundancy and distinctiveness of acoustic features embedded in speech.

  16. Reducing language to rhythm: Amazonian Bora drummed language exploits speech rhythm for long-distance communication

    PubMed Central

    Grawunder, Sven; Dentel, Laure

    2018-01-01

    Many drum communication systems around the world transmit information by emulating tonal and rhythmic patterns of spoken languages in sequences of drumbeats. Their rhythmic characteristics, in particular, have not been systematically studied so far, although understanding them represents a rare occasion for providing an original insight into the basic units of speech rhythm as selected by natural speech practices directly based on beats. Here, we analyse a corpus of Bora drum communication from the northwest Amazon, which is nowadays endangered with extinction. We show that four rhythmic units are encoded in the length of pauses between beats. We argue that these units correspond to vowel-to-vowel intervals with different numbers of consonants and vowel lengths. By contrast, aligning beats with syllables, mora or only vowel length yields inconsistent results. Moreover, we also show that Bora drummed messages conventionally select rhythmically distinct markers to further distinguish words. The two phonological tones represented in drummed speech encode only few lexical contrasts. Rhythm thus appears to crucially contribute to the intelligibility of drummed Bora. Our study provides novel evidence for the role of rhythmic structures composed of vowel-to-vowel intervals in the complex puzzle concerning the redundancy and distinctiveness of acoustic features embedded in speech. PMID:29765620

  17. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel

  18. Two hearts synchronized each other with a DDD pacemaker.

    PubMed

    Brunacci, Michele; Valbusa, Alberto; Brunelli, Claudio; Bertero, Giovanni

    2016-12-01

    : We describe the case of a patient with dyspnea and heterotopic cardiac transplant, ventricular fibrillation from the native heart and sinus rhythm from the transplanted one. The two hearts were synchronized with a pacemaker. Electric external cardioversion and a different type of pacemaker stimulation were successfully performed, with improving symptoms.

  19. Role of Left Ventricular Diastolic Dysfunction in Predicting Atrial Fibrillation Recurrence after Successful Electrical Cardioversion

    PubMed Central

    Melduni, Rowlens M.; Cullen, Michael W.

    2013-01-01

    The role of left ventricular (LV) diastolic dysfunction in predicting atrial fibrillation (AF) recurrence after successful electrical cardioversion is largely unknown. Studies suggest that there may be a link between abnormal LV compliance and the initial development, and recurrence of AF after electrical cardioversion. Although direct-current cardioversion (DCCV) is a well-established and highly effective method to convert AF to sinus rhythm, it offers little else beyond immediate rate control because it does not address the underlying cause of AF. Preservation of sinus rhythm after successful cardioversion still remains a challenge for clinicians. Despite the use of antiarrhythmic drugs and serial cardioversions, the rate of AF recurrence remains high in the first year. Current evidence suggests that diastolic dysfunction, which is associated with atrial volume and pressure overload, may be a mechanism underlying the perpetuating cycle of AF recurrence following successful electrical cardioversion. Diastolic dysfunction is considered to be a defect in the ability of the myofibrils, which have shortened against a load in systole to eject blood into the high-pressure aorta, to rapidly or completely return to their resting length. Consequently, LV filling is impaired and the non-compliant left ventricle is unable to fill at low pressures. As a result, left atrial and pulmonary vein pressure rises, and electrical and structural remodeling of the atrial myocardium ensues, creating a vulnerable substrate for AF. In this article, we review the current evidence highlighting the association of LV diastolic dysfunction with AF recurrence after successful electrical cardioversion and provide an approach to the management of LV diastolic dysfunction to prevent AF recurrence. PMID:23525127

  20. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    PubMed

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  1. Effects of adrenaline on rhythm transitions in out-of-hospital cardiac arrest.

    PubMed

    Neset, Andres; Nordseth, Trond; Kramer-Johansen, Jo; Wik, Lars; Olasveengen, Theresa M

    2013-11-01

    We wanted to study the effects of intravenous (i.v.) adrenaline (epinephrine) on rhythm transitions during cardiac arrest with initial or secondary ventricular fibrillation/tachycardia (VF/VT). Post hoc analysis of patients included in a randomised controlled trial of i.v. drugs in adult, non-traumatic out-of-hospital cardiac arrest patients who were defibrillated and had a readable electrocardiography recording. Patients who received adrenaline were compared with patients who did not. Cardiac rhythms were annotated manually using the defibrillator data. Eight hundred and forty-nine patients were included in the randomised trial of which 223 were included in this analysis; 119 in the adrenaline group and 104 in the no-adrenaline group. The proportion of patients with one or more VF/VT episodes after temporary return of spontaneous circulation (ROSC) was higher in the adrenaline than in the no-adrenaline group, 24% vs. 12%, P = 0.03. Most relapses from ROSC to VF/VT in the no-adrenaline group occurred during the first 20 min of resuscitation, whereas patients in the adrenaline group experienced such relapses even after 20 min. Fibrillations from asystole or pulseless electrical activity, shock resistant VF/VT and the number of rhythm transitions per patient was higher in the adrenalin group compared with the no-adrenalin group: 90% vs. 69%, P < 0.001; 46% vs. 33%, P = 0.006; median 8 (5,13) vs. 2 (1,5), P < 0.001, respectively. Patients who received adrenaline had more rhythm transitions from ROSC and non-shockable rhythms to VF/VT. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Echocardiography in cardiac arrest: An emergency medicine review.

    PubMed

    Long, Brit; Alerhand, Stephen; Maliel, Kurian; Koyfman, Alex

    2018-03-01

    Cardiac arrest management primarily focuses on optimal chest compressions and early defibrillation for shockable cardiac rhythms. Non-shockable rhythms such as pulseless electrical activity (PEA) and asystole present challenges in management. Point-of-care ultrasound (POCUS) in cardiac arrest is promising. This review provides a focused assessment of POCUS in cardiac arrest, with an overview of transthoracic (TTE) and transesophageal echocardiogram (TEE), uses in arrest, and literature support. Cardiac arrest can be distinguished between shockable and non-shockable rhythms, with management varying based on the rhythm. POCUS provides a diagnostic and prognostic tool in the emergency department (ED), which may improve accuracy in clinical decision-making. Several protocols incorporate POCUS based on different cardiac views. TTE includes parasternal long axis, parasternal short axis, apical 4-chamber, and subxiphoid views, which may be used in cardiac arrest for diagnosis of underlying cause and potential prognostication. TEE is conducted by inserting the probe into the esophagus of intubated patients, with several studies evaluating its use in cardiac arrest. It is associated with few adverse effects, while allowing continued compressions (and evaluation of those compressions) and not interrupting resuscitation efforts. POCUS is a valuable diagnostic and prognostic tool in cardiac arrest, with recent literature supporting its diagnostic ability. TTE can guide resuscitation efforts dependent on the rhythm, though TTE should not interrupt other resuscitation measures. TEE can be useful during arrest, but further studies based in the ED are needed. Published by Elsevier Inc.

  3. Pathophysiology of depression: role of sleep and the melatonergic system.

    PubMed

    Srinivasan, Venkataramanujan; Pandi-Perumal, Seithikurippu R; Trakht, Ilya; Spence, D Warren; Hardeland, Ruediger; Poeggeler, Burkhard; Cardinali, Daniel P

    2009-02-28

    Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the body's master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.

  4. A Curriculum Guide for Electricity/Electronics.

    ERIC Educational Resources Information Center

    Rouse, Bill, Comp.

    This curriculum guide is designed to upgrade the secondary electrical trades program in Mississippi by broadening its scope to incorporate basic electronic principles. Covered in the individual chapters of the guide are the following courses: basic electricity (occupational information, basic physics, circuit fundamentals, resistance and Ohm's…

  5. Effect of verapamil on immediate recurrence of atrial fibrillation.

    PubMed

    Daoud, E G; Hummel, J D; Augostini, R; Williams, S; Kalbfleisch, S J

    2000-11-01

    The purpose of this study was to assess the effect of verapamil on immediate recurrences of atrial fibrillation occurring after successful electrical cardioversion. The effect of verapamil on the recurrence of atrial fibrillation within 5 minutes after successful transthoracic cardioversion was assessed in 19 (5%) of 364 patients undergoing electrical cardioversion. The mean duration of atrial fibrillation was 4.44+/-3.0 months. In the 19 patients, cardioversion was successful after each of three consecutive cardioversion attempts per patient; however, atrial fibrillation recurred 0.4+/-0.3 minutes after cardioversion. Verapamil 10 mg was administered intravenously and a fourth cardioversion was performed. Cardioversion after verapamil was successful in each patient, and atrial fibrillation did not recur in 9 (47%) of 19 patients (P < 0.001 vs before verapamil). In the remaining 10 patients in whom atrial fibrillation recurred, the duration of sinus rhythm was significantly longer compared with before verapamil (3.6+/-2.4 min, P < 0.001). The density of atrial ectopy occurring after cardioversion was significantly less after verapamil (21+/-14 ectopic beats per min) compared with before verapamil (123+/-52 ectopic beats per min, P < 0.001). Among patients with immediate recurrence of atrial fibrillation after electrical cardioversion, acute calcium channel blockade by verapamil reduces recurrence of atrial fibrillation and extends the duration of sinus rhythm.

  6. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  7. The Learning of the Elderly and the Profile of the Adult Educator

    ERIC Educational Resources Information Center

    Requejo Osorio, Agustin

    2008-01-01

    This paper deals with specific characteristics of elders,1 bearing in mind both their cognitive and their non-cognitive aspects. Regarding their way of learning, the paper refers to basic principles for this group of people: active learning, situational analysis, their experience, awareness that they have--and need--specific time and rhythm for…

  8. Towards an Auditory Account of Speech Rhythm: Application of a Model of the Auditory "Primal Sketch" to Two Multi-Language Corpora

    ERIC Educational Resources Information Center

    Lee, Christopher S.; Todd, Neil P. McAngus

    2004-01-01

    The world's languages display important differences in their rhythmic organization; most particularly, different languages seem to privilege different phonological units (mora, syllable, or stress foot) as their basic rhythmic unit. There is now considerable evidence that such differences have important consequences for crucial aspects of language…

  9. Feline arrhythmias: an update.

    PubMed

    Côté, Etienne

    2010-07-01

    In the cat, electrocardiography is indicated for assessing the rhythm of the heartbeat and identifying and monitoring the effect of certain systemic disorders on the heart. Basic information regarding feline electrocardiography is contained in several textbooks, and the reader is referred to these sources for background reading. This article describes selected clinical advances in feline cardiac arrhythmias and electrocardiography from the past decade.

  10. Sensorimotor Synchronization with Different Metrical Levels of Point-Light Dance Movements

    PubMed Central

    Su, Yi-Huang

    2016-01-01

    Rhythm perception and synchronization have been extensively investigated in the auditory domain, as they underlie means of human communication such as music and speech. Although recent studies suggest comparable mechanisms for synchronizing with periodically moving visual objects, the extent to which it applies to ecologically relevant information, such as the rhythm of complex biological motion, remains unknown. The present study addressed this issue by linking rhythm of music and dance in the framework of action-perception coupling. As a previous study showed that observers perceived multiple metrical periodicities in dance movements that embodied this structure, the present study examined whether sensorimotor synchronization (SMS) to dance movements resembles what is known of auditory SMS. Participants watched a point-light figure performing two basic steps of Swing dance cyclically, in which the trunk bounced at every beat and the limbs moved at every second beat, forming two metrical periodicities. Participants tapped synchronously to the bounce of the trunk with or without the limbs moving in the stimuli (Experiment 1), or tapped synchronously to the leg movements with or without the trunk bouncing simultaneously (Experiment 2). Results showed that, while synchronization with the bounce (lower-level pulse) was not influenced by the presence or absence of limb movements (metrical accent), synchronization with the legs (beat) was improved by the presence of the bounce (metrical subdivision) across different movement types. The latter finding parallels the “subdivision benefit” often demonstrated in auditory tasks, suggesting common sensorimotor mechanisms for visual rhythms in dance and auditory rhythms in music. PMID:27199709

  11. The influence of cardiac rhythm type and frequency on the prognosis of severe heart failure patients initially qualified for heart transplantation.

    PubMed

    Sobieszczańska-Małek, Małgorzata; Zieliński, Tomasz; Rywik, Tomasz; Piotrowska, Małgorzata; Religa, Grzegorz; Przybyłowski, Piotr; Rózański, Jacek; Korewicki, Jerzy

    2010-01-01

    Atrial fibrillation (AF) is the most common arrhythmia among patients (pts) with heart failure and has significant influence on survival. to assess prognosis of pts with refractory heart failure (HF) qualified for heart transplantation (HTX). 872 pts (107 W and 765 M) were qualified for HTX between Dec 2003 and Oct 2007. Patient's death or super urgent heart transplantation were considered the end point in Kaplan-Meier survival curves. 680 pts were on sinus rhythm (SR) and 192(22.0%) had atrial fibrillation (AF). During follow-up (1-1464 days, mean 550 days) 155 pts (17.7%) died, 17.65% with SR and 18.23% with AF (ns). EF - mean 21,6 (SR) and 21,8 (FA), NYHA 3,1 (SR), NTproBNP- mean 3635, 4 (SR) and 4349,4 (FA), Arronson - mean 7,8 (SR) and 7,7 (FA). There were no significant differences between groups. We analyzed influence of heart rate (Kaplan-Maier method) on survival. The pts were divided according to HR: gr.I <70/min, gr II 71-89/min, gr III >90/min. The shortest survival rate was noticed in group III. There was no difference in survival between group I and II. The prognosis for patients qualified for heart transplant does not depend on the type of the dominant cardiac rhythm (atrial fibrillation or sinus rhythm). The prognosis is significantly better for those patients whose basic, resting heart rate does not exceed 90 bpm regardless of the rhythm type.

  12. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  13. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    PubMed

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  14. Basic and advanced paediatric cardiopulmonary resuscitation - guidelines of the Australian and New Zealand Resuscitation Councils 2010.

    PubMed

    Tibballs, James; Aickin, Richard; Nuthall, Gabrielle

    2012-07-01

    Guidelines for basic and advanced paediatric cardiopulmonary resuscitation (CPR) have been revised by Australian and New Zealand Resuscitation Councils. Changes encourage CPR out-of-hospital and aim to improve the quality of CPR in-hospital. Features of basic CPR include: omission of abdominal thrusts for foreign body airway obstruction; commencement with chest compression followed by ventilation in a ratio of 30:2 or compression-only CPR if the rescuer is unwilling/unable to give expired-air breathing when the victim is 'unresponsive and not breathing normally'. Use of automated external defibrillators is encouraged. Features of advanced CPR include: prevention of cardiac arrest by rapid response systems; restriction of pulse palpation to 10 s to diagnosis cardiac arrest; affirmation of 15:2 compression-ventilation ratio for children and for infants other than newly born; initial bag-mask ventilation before tracheal intubation; a single direct current shock of 4 J/kg for ventricular fibrillation (VF) and pulseless ventricular tachycardia followed by immediate resumption of CPR for 2 min without analysis of cardiac rhythm and avoidance of unnecessary interruption of continuous external cardiac compressions. Monitoring of exhaled carbon dioxide is recommended to detect non-tracheal intubation, assess quality of CPR, and to help match ventilation to reduced cardiac output. The intraosseous route is recommended if immediate intravenous access is impossible. Amiodarone is strongly favoured over lignocaine for refractory VF and adrenaline over atropine for severe bradycardia, asystole and pulseless electrical activity. Family presence at resuscitation is encouraged. Therapeutic hypothermia is acceptable after resuscitation to improve neurological outcome. Extracorporeal circulatory support for in-hospital cardiac arrest may be used in equipped centres. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  15. A Serious Cause of Panic Attack

    PubMed Central

    O'Connell, Michael; Bernard, Aaron

    2012-01-01

    We report on a case of a patient with atrial fibrillation in the setting of Wolff-Parkinson-White syndrome. The patient underwent synchronized electrical cardioversion, typically considered safe and effective, which resulted in a dangerous complication for the patient (degeneration into ventricular fibrillation). Discussion of common rhythm disturbances in WPW and management strategies are reviewed. PMID:23326712

  16. Effects of short-term exposure to powerline-frequency electromagnetic field on the electrical activity of the heart.

    PubMed

    Elmas, Onur; Comlekci, Selcuk; Koylu, Halis

    2012-01-01

    ABSTRACT The heart is a contractile organ that can generate its own rhythm. The contraction, or the rhythm, of the heart may be influenced by electromagnetic field (EMF) exposure, because of the heart's excitability characteristic. In previous studies, different methods have been used to study the possible effects of an extremely low frequency electromagnetic field (ELF-EMF) on the heart. But the studies' designs were not similar, and the results were also different. Recent studies have shown some evidence that short-term EMF exposure can influence the heart more than long-term exposure. This study investigated how the heart is affected in the first EMF exposure. In a simulation of the daily exposure of humans to a power frequency, Wistar albino rats were used. By utilizing the Helmholtz-coil set, we obtained a 50-Hz, 1-μT EMF and examined rat heart activity during short-term EMF exposure. No effect was observed under this exposure condition. The results obtained do not confirm a possible mechanism in the electrical activity of the rat heart model.

  17. Basic Restriction and Reference Level in Anatomically-based Japanese Models for Low-Frequency Electric and Magnetic Field Exposures

    NASA Astrophysics Data System (ADS)

    Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu

    Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.

  18. Improving reading skills in students with dyslexia: the efficacy of a sublexical training with rhythmic background

    PubMed Central

    Bonacina, Silvia; Cancer, Alice; Lanzi, Pier Luca; Lorusso, Maria Luisa; Antonietti, Alessandro

    2015-01-01

    The core deficit underlying developmental dyslexia (DD) has been identified in difficulties in dynamic and rapidly changing auditory information processing, which contribute to the development of impaired phonological representations for words. It has been argued that enhancing basic musical rhythm perception skills in children with DD may have a positive effect on reading abilities because music and language share common mechanisms and thus transfer effects from the former to the latter are expected to occur. A computer-assisted training, called Rhythmic Reading Training (RRT), was designed in which reading exercises are combined with rhythm background. Fourteen junior high school students with DD took part to 9 biweekly individual sessions of 30 min in which RRT was implemented. Reading improvements after the intervention period were compared with ones of a matched control group of 14 students with DD who received no intervention. Results indicated that RRT had a positive effect on both reading speed and accuracy and significant effects were found on short pseudo-words reading speed, long pseudo-words reading speed, high frequency long words reading accuracy, and text reading accuracy. No difference in rhythm perception between the intervention and control group were found. Findings suggest that rhythm facilitates the development of reading skill because of the temporal structure it imposes to word decoding. PMID:26500581

  19. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    PubMed Central

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi

    2015-01-01

    Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  20. Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Chaves, M.; Preto, M.

    2013-06-01

    A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.

  1. The role of sleep problems and circadian clock genes in attention-deficit hyperactivity disorder and mood disorders during childhood and adolescence: an update.

    PubMed

    Dueck, Alexander; Berger, Christoph; Wunsch, Katharina; Thome, Johannes; Cohrs, Stefan; Reis, Olaf; Haessler, Frank

    2017-02-01

    A more recent branch of research describes the importance of sleep problems in the development and treatment of mental disorders in children and adolescents, such as attention-deficit hyperactivity disorder (ADHD) and mood disorders (MD). Research about clock genes has continued since 2012 with a focus on metabolic processes within all parts of the mammalian body, but particularly within different cerebral regions. Research has focused on complex regulatory circuits involving clock genes themselves and their influence on circadian rhythms of diverse body functions. Current publications on basic research in human and animal models indicate directions for the treatment of mental disorders targeting circadian rhythms and mechanisms. The most significant lines of research are described in this paper.

  2. Evidence that a Motor Timing Deficit Is a Factor in the Development of Stuttering

    ERIC Educational Resources Information Center

    Olander, Lindsey; Smith, Anne; Zelaznik, Howard N.

    2010-01-01

    Purpose: To determine whether young children who stutter have a basic motor timing and/or a coordination deficit. Method: Between-hands coordination and variability of rhythmic motor timing were assessed in 17 children who stutter (4-6 years of age) and 13 age-matched controls. Children clapped in rhythm with a metronome with a 600-ms interbeat…

  3. Basic Auditory Processing Skills and Specific Language Impairment: A New Look at an Old Hypothesis

    ERIC Educational Resources Information Center

    Corriveau, Kathleen; Pasquini, Elizabeth; Goswami, Usha

    2007-01-01

    Purpose: To explore the sensitivity of children with specific language impairment (SLI) to amplitude-modulated and durational cues that are important for perceiving suprasegmental speech rhythm and stress patterns. Method: Sixty-three children between 7 and 11 years of age were tested, 21 of whom had a diagnosis of SLI, 21 of whom were matched for…

  4. Development and Trial of a Two Year Program of String Instruction. Final Report.

    ERIC Educational Resources Information Center

    Rolland, Paul; And Others

    A series of films focused on movement education and rhythm training in string playing with emphasis on the violin were developed. An introductory film deals with principles of movement in string playing. Fifteen additional titles offer guidance to the student and teacher in the various details of basic string instruction. A summary film presents a…

  5. Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression

    PubMed Central

    2013-01-01

    Background Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. Discussion The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. Summary Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems. PMID:23521808

  6. Low-energy cardioversion of spontaneous atrial fibrillation. Immediate and long-term results.

    PubMed

    Lévy, S; Ricard, P; Gueunoun, M; Yapo, F; Trigano, J; Mansouri, C; Paganelli, F

    1997-07-01

    Recent studies have suggested that induced atrial fibrillation (AF) could be successfully terminated by using a two-catheter electrode system and low energy (< 400 V). This study evaluated the efficacy and safety of low-energy cardioversion in spontaneous chronic and paroxysmal AF. Forty-two consecutive patients with spontaneous AF underwent low-energy electrical cardioversion. AF was chronic (> or = 1 month) with a mean duration of 9 +/- 19 months in 28 patients (group I) or paroxysmal with a history of recurrent attacks and a mean duration of the present episode of 7 +/- 16 days in 14 patients (group II). An underlying heart disease was present in 28 patients. A 3/3-ms biphasic shock was delivered between catheters positioned in the right atrium and the coronary sinus in 32 patients. In 10 patients, the left pulmonary artery branch was used. The catheters were connected to a custom external defibrillator. The shocks were synchronized to the R wave. Following a test shock of 60 V, the energy was increased in 40-V steps until a maximum of 400 V or restoration of sinus rhythm. Sinus rhythm was restored in 22 of the 28 patients (78%) of group I by using a mean leading-edge voltage of 297 +/- 57 V (mean energy 3.3 +/- 1.3 J) and in 11 of 14 patients (78%) of group II by using a mean leading-edge voltage of 223 +/- 41 V (mean energy, 1.8 +/- 0.7 J). The energy required for terminating chronic AF was significantly (P < .001) higher than that required for terminating paroxysmal AF. Among the other variables studied, the duration of AF significantly affected the successful voltage. Ventricular proarrhythmia occurred in 1 patient with atrial flutter due to an unsynchronized shock. Of the 22 patients of group I in whom sinus rhythm was restored, 14 (63%) remained in sinus rhythm with a mean follow-up of 9 +/- 3 months. Pain level showed a good correlation with increasing voltage. However, a marked inter-individual variation was noted. Atrial defibrillation using low energy between two intracardiac catheters with an electrical field between the right and left atria and the protocol used is feasible in patients with persistent spontaneous AF. The technique is safe provided synchronization to the R wave is achieved. A low recurrence rate of AF was seen in patients in whom sinus rhythm was restored.

  7. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day.

    PubMed

    Medanic, M; Gillette, M U

    1992-05-01

    1. The suprachiasmatic nucleus (SCN) of the hypothalamus is the primary pacemaker for circadian rhythms in mammals. The 24 h pacemaker is endogenous to the SCN and persists for multiple cycles in the suprachiasmatic brain slice. 2. While serotonin is not endogenous to the SCN, a major midbrain hypothalamic afferent pathway is serotonergic. Within this tract the dorsal raphe nucleus sends direct projections to the ventrolateral portions of the SCN. We investigated a possible regulatory role for serotonin in the mammalian circadian system by examining its effect, when applied at projection sites, on the circadian rhythm of neuronal activity in rat SCN in vitro. 3. Eight-week-old male rats from our inbred colony, housed on a 12 h light: 12 h dark schedule, were used. Hypothalamic brain slices containing the paired SCN were prepared in the day and maintained in glucose and bicarbonate-supplemented balanced salt solution for up to 53 h. 4. A 10(-11) ml drop of 10(-6) M-serotonin (5-hydroxytryptamine (5-HT) creatinine sulphate complex) in medium was applied to the ventrolateral portion of one of the SCN for 5 min on the first day in vitro. The effect of the treatment at each of seven time points across the circadian cycle was examined. The rhythm of spontaneous neuronal activity was recorded extracellularly on the second and third days in vitro. Phase shifts were determined by comparing the time-of-peak of neuronal activity in serotonin- vs. media-treated slices. 5. Application of serotonin during the subjective day induced significant advances in the phase of the electrical activity rhythm (n = 11). The most sensitive time of treatment was CT 7 (circadian time 7 is 7 h after 'lights on' in the animal colony), when a 7.0 +/- 0.1 h phase advance was observed (n = 3). This phase advance was perpetuated on day 3 in vitro without decrement. Serotonin treatment during the subjective night had no effect on the timing of the electrical activity rhythm (n = 9). 6. The specificity of the serotonin-induced phase change was assessed by treating slices in the same manner with a microdrop of serotonergic agonists, 5-carboxamidotryptamine, that targets the 5-HT1 class of receptors, or 8-hydroxy-dipropylaminotetralin (8-OH DPAT), that acts on the 5-HT1A receptor subtype.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.

    PubMed

    Granados-Fuentes, Daniel; Hermanstyne, Tracey O; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D

    2015-10-01

    Neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, display daily rhythms in electrical activity with more depolarized resting potentials and higher firing rates during the day than at night. Although these daily variations in the electrical properties of SCN neurons are required for circadian rhythms in physiology and behavior, the mechanisms linking changes in neuronal excitability to the molecular clock are not known. Recently, we reported that mice deficient for either Kcna4 (Kv1.4(-/-)) or Kcnd2 (Kv4.2(-/-); but not Kcnd3, Kv4.3(-/-)), voltage-gated K(+) (Kv) channel pore-forming subunits that encode subthreshold, rapidly activating, and inactivating K(+) currents (IA), have shortened (0.5 h) circadian periods in SCN firing and in locomotor activity compared with wild-type (WT) mice. In the experiments here, we used a mouse (Per2(Luc)) line engineered with a bioluminescent reporter construct, PERIOD2::LUCIFERASE (PER2::LUC), replacing the endogenous Per2 locus, to test the hypothesis that the loss of Kv1.4- or Kv4.2-encoded IA channels also modifies circadian rhythms in the expression of the clock protein PERIOD2 (PER2). We found that SCN explants from Kv1.4(-/-)Per2(Luc) and Kv4.2(-/-) Per2(Luc), but not Kv4.3(-/-)Per2(Luc), mice have significantly shorter (by approximately 0.5 h) circadian periods in PER2 rhythms, compared with explants from Per2(Luc) mice, revealing that the membrane properties of SCN neurons feedback to regulate clock (PER2) expression. The combined loss of both Kv1.4- and Kv4.2-encoded IA channels in Kv1.4(-/-)/Kv4.2(-/-)Per2(Luc) SCN explants did not result in any further alterations in PER2 rhythms. Interestingly, however, mice lacking both Kv1.4 and Kv4.2 show a striking (approximately 1.8 h) advance in their daily activity onset in a light cycle compared with WT mice, suggesting additional roles for Kv1.4- and Kv4.2-encoded IA channels in controlling the light-dependent responses of neurons within and/or outside of the SCN to regulate circadian phase of daily activity. © 2015 The Author(s).

  9. An in depth view of avian sleep.

    PubMed

    Beckers, Gabriël J L; Rattenborg, Niels C

    2015-03-01

    Brain rhythms occurring during sleep are implicated in processing information acquired during wakefulness, but this phenomenon has almost exclusively been studied in mammals. In this review we discuss the potential value of utilizing birds to elucidate the functions and underlying mechanisms of such brain rhythms. Birds are of particular interest from a comparative perspective because even though neurons in the avian brain homologous to mammalian neocortical neurons are arranged in a nuclear, rather than a laminar manner, the avian brain generates mammalian-like sleep-states and associated brain rhythms. Nonetheless, until recently, this nuclear organization also posed technical challenges, as the standard surface EEG recording methods used to study the neocortex provide only a superficial view of the sleeping avian brain. The recent development of high-density multielectrode recording methods now provides access to sleep-related brain activity occurring deep in the avian brain. Finally, we discuss how intracerebral electrical imaging based on this technique can be used to elucidate the systems-level processing of hippocampal-dependent and imprinting memories in birds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Medium voltage therapy for preventing and treating asystole and PEA in ICDs.

    PubMed

    Gilman, Byron L; Brewer, James E; Kroll, Kai; Kroll, Mark W

    2009-01-01

    Sudden cardiac death (SCD) takes up to 500,000 lives each year before a victim can even be treated. To address this the implantable cardioverter defibrillator (ICD) was developed to treat those identified at high risk of SCD. Unfortunately, there are a significant number of cases in which the ICD does not successfully return a victim to normal rhythm and effective perfusion of the blood. The vast majority of cases that are not responsive to the ICD therapy require cardio-pulmonary resuscitation (CPR) according to current resuscitation guidelines. A novel electrical stimulus called medium voltage therapy (MVT) has shown efficacy in producing coronary and carotid blood flow during ventricular fibrillation. This report presents the case that the same stimulus may be effective and feasible for use in ICD patients that do not respond to their ICD therapy, or do not have a rhythm in which, an ICD shock is indicated. The inclusion of MVT technology in implantable devices may be effective in preparing the heart for successful defibrillation or in improving the metabolic condition of the heart to the extent that a pulsatile rhythm may spontaneously develop.

  11. [Epidemiological characteristics of out-of-hospital cardiorespiratory arrest recorded by the 061 emergencies system (SAMU) in the Balearic Islands (Spain), 2009-2012].

    PubMed

    Socias Crespí, L; Ceniceros Rozalén, M I; Rubio Roca, P; Martínez Cuellar, N; García Sánchez, A; Ripoll Vera, T; Lesmes Serrano, A

    2015-05-01

    To describe the epidemiology of out-of-hospital cardiorespiratory arrest (OHCA) and identify factors associated with recovery of spontaneous circulation (ROSC). Observational study of OHCA registered on a continuous basis in the Emergency Medical Services (EMS) database during 2009-2012. The islands of Mallorca, Ibiza, Menorca and Formentera (Balearic Islands, Spain). OHCA in patients ≥ 18 years of age. The main variables were: Patient sex, age, probable cause, place of arrest, bystander, witnessed, basic life support (BLS), shockable rhythm, intervention time, semi-automatic defibrillator (AED), duration of cardiopulmonary arrest (CA), and ROSC. Independent variables were defined according to the Utstein protocol, and the dependent variable was defined as ROSC. The EMS treated 1170 OHCAs (28/100,000 persons-year). We included 1130 CA. The mean age was 61.4 years (73.4% males). Most CA (72.3%) were of cardiac etiology, and 84.7% were witnessed. A total of 840 (74.3%) received BLS and 400 (47.6%) did so before arrival of the EMS (45 by bystander relatives). AED was available in 330 cases CA (29.2%) (96 with shockable rhythm). The interval between emergency call and BLS and between emergency call and advanced life support was 8.4 and 15.8min, respectively. Shockable rhythm was monitored in 257 CAs (22.7%). ROSC occurred in 261 (23.1%). Factors associated with ROSC were age, shockable rhythm, BLS before EMS arrival, and CA duration less than 30min. The incidence rate of the OHCA is low. The proportion of patients receiving BLS from relatives was low. Age, shockable rhythm and BSL before EMS arrival were associated with ROSC. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  12. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  13. Taser X26 discharges in swine: ventricular rhythm capture is dependent on discharge vector.

    PubMed

    Valentino, Daniel J; Walter, Robert J; Dennis, Andrew J; Margeta, Bosko; Starr, Frederic; Nagy, Kimberly K; Bokhari, Faran; Wiley, Dorion E; Joseph, Kimberly T; Roberts, Roxanne R

    2008-12-01

    Data from our previous studies indicate that Taser X26 stun devices can acutely alter cardiac function in swine. We hypothesized that most transcardiac discharge vectors would capture ventricular rhythm, but that other vectors, not traversing the heart, would fail to capture the ventricular rhythm. Using an Institutional Animal Care and Use Committee (IACUC) approved protocol, four Yorkshire pigs (25-36 kg) were anesthetized, paralyzed with succinylcholine (2 mg/kg), and then exposed to 10 second discharges from a police-issue Taser X26. For most discharges, the barbed darts were pushed manually into the skin to their full depth (12 mm) and were arranged in either transcardiac (such that a straight line connecting the darts would cross the region of the heart) or non-transcardiac vectors. A total of 11 different vectors and 22 discharge conditions were studied. For each vector, by simply rotating the cartridge 180-degrees in the gun, the primary current-emitting dart was changed and the direction of current flow during the discharge was reversed without physically moving the darts. Echocardiography and electrocardiograms (ECGs) were performed before, during, and after all discharges. p values < 0.05 were considered significant. ECGs were unreadable during the discharges because of electrical interference, but echocardiography images clearly demonstrated that ventricular rhythm was captured immediately in 52.5% (31 of 59) of the discharges on the ventral surface of the animal. In each of these cases, capture of the ventricular rhythm with rapid ventricular contractions consistent with ventricular tachycardia (VT) or flutter was seen throughout the discharge. A total of 27 discharges were administered with transcardiac vectors and ventricular capture occurred in 23 of these discharges (85.2% capture rate). A total of 32 non-transcardiac discharges were administered ventrally and capture was seen in only eight of these (25% capture rate). Ventricular fibrillation (VF) was seen with two vectors, both of which were transcardiac. In the remaining animals, VT occurred postdischarge until sinus rhythm was regained spontaneously. For most transcardiac vectors, Taser X26 caused immediate ventricular rhythm capture. This usually reverted spontaneously to sinus rhythm but potentially fatal VF was seen with two vectors. For some non-transcardiac vectors, capture was also seen but with a significantly (p < 0.0001) decreased incidence.

  14. Antiarrhythmic Drugs for Nonshockable-Turned-Shockable Out-of-Hospital Cardiac Arrest: The ALPS Study (Amiodarone, Lidocaine, or Placebo).

    PubMed

    Kudenchuk, Peter J; Leroux, Brian G; Daya, Mohamud; Rea, Thomas; Vaillancourt, Christian; Morrison, Laurie J; Callaway, Clifton W; Christenson, James; Ornato, Joseph P; Dunford, James V; Wittwer, Lynn; Weisfeldt, Myron L; Aufderheide, Tom P; Vilke, Gary M; Idris, Ahamed H; Stiell, Ian G; Colella, M Riccardo; Kayea, Tami; Egan, Debra; Desvigne-Nickens, Patrice; Gray, Pamela; Gray, Randal; Straight, Ron; Dorian, Paul

    2017-11-28

    Out-of-hospital cardiac arrest (OHCA) commonly presents with nonshockable rhythms (asystole and pulseless electric activity). It is unknown whether antiarrhythmic drugs are safe and effective when nonshockable rhythms evolve to shockable rhythms (ventricular fibrillation/pulseless ventricular tachycardia [VF/VT]) during resuscitation. Adults with nontraumatic OHCA, vascular access, and VF/VT anytime after ≥1 shock(s) were prospectively randomized, double-blind, to receive amiodarone, lidocaine, or placebo by paramedics. Patients presenting with initial shock-refractory VF/VT were previously reported. The current study was a prespecified analysis in a separate cohort that initially presented with nonshockable OHCA and was randomized on subsequently developing shock-refractory VF/VT. The primary outcome was survival to hospital discharge. Secondary outcomes included discharge functional status and adverse drug-related effects. Of 37 889 patients with OHCA, 3026 with initial VF/VT and 1063 with initial nonshockable-turned-shockable rhythms were treatment-eligible, were randomized, and received their assigned drug. Baseline characteristics among patients with nonshockable-turned-shockable rhythms were balanced across treatment arms, except that recipients of a placebo included fewer men and were less likely to receive bystander cardiopulmonary resuscitation. Active-drug recipients in this cohort required fewer shocks, supplemental doses of their assigned drug, and ancillary antiarrhythmic drugs than recipients of a placebo ( P <0.05). In all, 16 (4.1%) amiodarone, 11 (3.1%) lidocaine, and 6 (1.9%) placebo-treated patients survived to hospital discharge ( P =0.24). No significant interaction between treatment assignment and discharge survival occurred with the initiating OHCA rhythm (asystole, pulseless electric activity, or VF/VT). Survival in each of these categories was consistently higher with active drugs, although the trends were not statistically significant. Adjusted absolute differences (95% confidence interval) in survival from nonshockable-turned-shockable arrhythmias with amiodarone versus placebo were 2.3% (-0.3, 4.8), P =0.08, and for lidocaine versus placebo 1.2% (-1.1, 3.6), P =0.30. More than 50% of these survivors were functionally independent or required minimal assistance. Drug-related adverse effects were infrequent. Outcome from nonshockable-turned-shockable OHCA is poor but not invariably fatal. Although not statistically significant, point estimates for survival were greater after amiodarone or lidocaine than placebo, without increased risk of adverse effects or disability and consistent with previously observed favorable trends from treatment of initial shock-refractory VF/VT with these drugs. Together the findings may signal a clinical benefit that invites further investigation. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01401647. © 2017 American Heart Association, Inc.

  15. Rhythms and outcomes of adult in-hospital cardiac arrest.

    PubMed

    Meaney, Peter A; Nadkarni, Vinay M; Kern, Karl B; Indik, Julia H; Halperin, Henry R; Berg, Robert A

    2010-01-01

    To determine the relationship of electrocardiographic rhythm during cardiac arrest with survival outcomes. Prospective, observational study. Total of 411 hospitals in the National Registry of Cardiopulmonary Resuscitation. Total of 51,919 adult patients with pulseless cardiac arrests from April 1999 to July 2005. Registry data collected included first documented rhythm, patient demographics, pre-event data, event data, and survival and neurologic outcome data. Of 51,919 indexed cardiac arrests, first documented pulseless rhythm was ventricular tachycardia (VT) in 3810 (7%), ventricular fibrillation (VF) in 8718 (17%), pulseless electrical activity (PEA) in 19,262 (37%) and asystole 20,129 (39%). Subsequent VT/VF (that is, VT or VF occurring during resuscitation for PEA or asystole) occurred in 5154 (27%), with first documented rhythm of PEA and 4988 (25%) with asystole. Survival to hospital discharge rate was not different between those with first documented VF and VT (37% each, adjusted odds ratio [OR]) 1.08; 95% confidence interval [CI] 0.95-1.23). Survival to hospital discharge was slightly more likely after PEA than asystole (12% vs. 11%, adjusted OR 1.1; 95% CI 1.00-1.18), Survival to discharge was substantially more likely after first documented VT/VF than PEA/asystole (adjusted OR 1.68; 95% CI 1.55-1.82). Survival to discharge was also more likely after PEA/asystole without subsequent VT/VF compared with PEA/asystole with subsequent VT/VF (14% vs. 7% for PEA without vs. with subsequent VT/VF; 12% vs. 8% for asystole without vs. with subsequent VT/VF; adjusted OR 1.60; 95% CI, 1.44-1.80). Survival to hospital discharge was substantially more likely when the first documented rhythm was shockable rather than nonshockable, and slightly more likely after PEA than asystole. Survival to hospital discharge was less likely following PEA/asystole with subsequent VT/VF compared to PEA/asystole without subsequent VT/VF.

  16. Reviews/Essays: School Start Times and the Sleep-Wake Cycle of Adolescents--A Review and Critical Evaluation of Available Evidence

    ERIC Educational Resources Information Center

    Kirby, Matthew; Maggi, Stefania; D'Angiulli, Amedeo

    2011-01-01

    The authors have integrated the major findings on the sleep-wake cycle and its performance correlates in adolescents. Basic research shows that lack of synchronicity between early school start times and the circadian rhythm of adolescents (and the sleep debt accumulated as a result) involves several cognitive correlates that may harm the academic…

  17. Sleep and Performance Research Center

    DTIC Science & Technology

    2012-05-01

    upon the placement of the work period with respect to the circadian rhythm. Additional studies were published by SPRC care factually during the...Research Center (SPRC) conducts human and animal studies in laboratory and field settings in support of basic and applied sleep research at Washington...Program of Research Field Studies in Humans In a field study of serving police officers, Charles, et al. (2011) found that perceived shorter

  18. From molecules to behavior and the clinic: Integration in chronobiology.

    PubMed

    Bechtel, William

    2013-12-01

    Chronobiology, especially the study of circadian rhythms, provides a model scientific field in which philosophers can study how investigators from a variety of disciplines working at different levels of organization are each contributing to a multi-level account of the responsible mechanism. I focus on how the framework of mechanistic explanation integrates research designed to decompose the mechanism with efforts directed at recomposition that relies especially on computation models. I also examine how recently the integration has extended beyond basic research to the processes through which the disruption of circadian rhythms contributes to disease, including various forms of cancer. Understanding these linkages has been facilitated by discoveries about how circadian mechanisms interact with mechanisms involved in other physiological processes, including the cell cycle and the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Toast, Anyone? Project Teaches Electricity Basics and Math

    ERIC Educational Resources Information Center

    Quagliana, David F.

    2010-01-01

    This article describes an electrical technology experiment that shows students how to determine the cost of using an electrical appliance. The experiment also provides good math practice and teaches basic electricity terms and concepts, such as volt, ampere, watt, kilowatt, and kilowatt-hour. This experiment could be expanded to calculate the cost…

  20. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 3, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 2, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  2. Visual tuning and metrical perception of realistic point-light dance movements.

    PubMed

    Su, Yi-Huang

    2016-03-07

    Humans move to music spontaneously, and this sensorimotor coupling underlies musical rhythm perception. The present research proposed that, based on common action representation, different metrical levels as in auditory rhythms could emerge visually when observing structured dance movements. Participants watched a point-light figure performing basic steps of Swing dance cyclically in different tempi, whereby the trunk bounced vertically at every beat and the limbs moved laterally at every second beat, yielding two possible metrical periodicities. In Experiment 1, participants freely identified a tempo of the movement and tapped along. While some observers only tuned to the bounce and some only to the limbs, the majority tuned to one level or the other depending on the movement tempo, which was also associated with individuals' preferred tempo. In Experiment 2, participants reproduced the tempo of leg movements by four regular taps, and showed a slower perceived leg tempo with than without the trunk bouncing simultaneously in the stimuli. This mirrors previous findings of an auditory 'subdivision effect', suggesting the leg movements were perceived as beat while the bounce as subdivisions. Together these results support visual metrical perception of dance movements, which may employ similar action-based mechanisms to those underpinning auditory rhythm perception.

  3. Cumulative lesioning of respiratory interneurons disrupts and precludes motor rhythms in vitro

    PubMed Central

    Hayes, John A.; Wang, Xueying; Del Negro, Christopher A.

    2012-01-01

    How brain functions degenerate in the face of progressive cell loss is an important issue that pertains to neurodegenerative diseases and basic properties of neural networks. We developed an automated system that uses two-photon microscopy to detect rhythmic neurons from calcium activity, and then individually laser ablates the targets while monitoring network function in real time. We applied this system to the mammalian respiratory oscillator located in the pre-Bötzinger Complex (preBötC) of the ventral medulla, which spontaneously generates breathing-related motor activity in vitro. Here, we show that cumulatively deleting preBötC neurons progressively decreases respiratory frequency and the amplitude of motor output. On average, the deletion of 120 ± 45 neurons stopped spontaneous respiratory rhythm, and our data suggest ≈82% of the rhythm-generating neurons remain unlesioned. Cumulative ablations in other medullary respiratory regions did not affect frequency but diminished the amplitude of motor output to a lesser degree. These results suggest that the preBötC can sustain insults that destroy no more than ≈18% of its constituent interneurons, which may have implications for the onset of respiratory pathologies in disease states. PMID:22566628

  4. The volcano mouse Neotomodon alstoni of central Mexico, a biological model in the study of breeding, obesity and circadian rhythms.

    PubMed

    Miranda-Anaya, M; Pérez-Mendoza, M; Juárez-Tapia, C R; Carmona-Castro, A

    2018-04-24

    The "Mexican volcano mouse" Neotomodon alstoni, is endemic of the Transverse Neovolcanic Ridge in central Mexico. It is considered as least concern species and has been studied as a potential laboratory model from different perspectives. Two lines of research in neuroendocrinology have been addressed: reproduction and parental care, particularly focused on paternal attention and the influence of testosterone, and studies on physiology and behavior of circadian rhythms, focused on the circadian biology of the species, its circadian locomotor activity and daily neuroendocrine regulation of metabolic parameters related to energy balance. Some mice, when captive, spontaneously develop obesity, which allows for comparisons between lean and obese mice of daily changes in neuronal and metabolic parameters associated with changes in food intake and locomotor activity. This review includes studies that consider this species an attractive animal model where the alteration of circadian rhythms influences the pathogenesis of obesity, specifically with the basic regulation of food intake and metabolism and differences related to sex. This study can be considered as a reference to the comparative animal physiology among rodents. Copyright © 2018. Published by Elsevier Inc.

  5. PKPD model of interleukin-21 effects on thermoregulation in monkeys--application and evaluation of stochastic differential equations.

    PubMed

    Overgaard, Rune Viig; Holford, Nick; Rytved, Klaus A; Madsen, Henrik

    2007-02-01

    To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.

  6. Congenital central hypoventilation syndrome (CCHS): Circadian temperature variation.

    PubMed

    Saiyed, Rehan; Rand, Casey M; Carroll, Michael S; Koliboski, Cynthia M; Stewart, Tracey M; Brogadir, Cindy D; Kenny, Anna S; Petersen, Emily K E; Carley, David W; Weese-Mayer, Debra E

    2016-03-01

    Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs. controls), as well as a disrupted relationship between core body temperature (CBT) and PST. PST was sampled every 3 min over four 24-hr periods in CCHS cases and similarly aged controls. CBT was sampled in a subset of these recordings. PST was recorded from 25 CCHS cases (110,664 measures/230 days) and 39 controls (78,772 measures/164 days). Simultaneous CBT measurements were made from 23 CCHS patients. In CCHS, mean PST was lower overall (P = 0.03) and at night (P = 0.02), and PST variability (interquartile range) was higher at night (P = 0.05) (vs. controls). PST circadian rhythm remained intact but the phase relationship of PST to CBT rhythm was extremely variable in CCHS. PST alterations in CCHS likely reflect altered autonomic control of peripheral vascular tone. These alterations represent a previously unreported manifestation of CCHS and may provide an opportunity for therapeutic intervention. The relationship between temperature dysregulation and CCHS may also offer insight into basic mechanisms underlying thermoregulation. © 2015 Wiley Periodicals, Inc.

  7. Region-Specific Changes in Gamma and Beta2 Rhythms in NMDA Receptor Dysfunction Models of Schizophrenia

    PubMed Central

    Roopun, Anita K.; Cunningham, Mark O.; Racca, Claudia; Alter, Kai; Traub, Roger D.; Whittington, Miles A.

    2008-01-01

    Cognitive disruption in schizophrenia is associated with altered patterns of spatiotemporal interaction associated with multiple electroencephalogram (EEG) frequency bands in cortex. In particular, changes in the generation of gamma (30–80 Hz) and beta2 (20–29 Hz) rhythms correlate with observed deficits in communication between different cortical areas. Aspects of these changes can be reproduced in animal models, most notably those involving acute or chronic reduction in glutamatergic synaptic communication mediated by N-methyl D-aspartate (NMDA) receptors. In vitro electrophysiological and immunocytochemical approaches afforded by such animal models continue to reveal a great deal about the mechanisms underlying EEG rhythm generation and are beginning to uncover which basic molecular, cellular, and network phenomena may underlie their disruption in schizophrenia. Here we briefly review the evidence for changes in γ-aminobutyric acidergic (GABAergic) and glutamatergic function and address the problem of region specificity of changes with quantitative comparisons of effects of ketamine on gamma and beta2 rhythms in vitro. We conclude, from available evidence, that many observed changes in markers for GABAergic function in schizophrenia may be secondary to deficits in NMDA receptor–mediated excitatory synaptic activity. Furthermore, the broad range of changes in cortical dynamics seen in schizophrenia—with contrasting effects seen in different brain regions and for different frequency bands—may be more directly attributable to underlying deficits in glutamatergic neuronal communication rather than GABAergic inhibition alone. PMID:18544550

  8. Biophotonics: Optical Science and Engineering for the 21st Century

    NASA Astrophysics Data System (ADS)

    Shen, Xun; van Wijk, Roeland

    It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book.

  9. Different Impacts of Time From Collapse to First Cardiopulmonary Resuscitation on Outcomes After Witnessed Out-of-Hospital Cardiac Arrest in Adults.

    PubMed

    Hara, Masahiko; Hayashi, Kenichi; Hikoso, Shungo; Sakata, Yasushi; Kitamura, Tetsuhisa

    2015-05-01

    It is well known that cardiopulmonary resuscitation (CPR) should be attempted as early as possible after out-of-hospital cardiac arrest (OHCA). However, it is unclear about the impact of time to CPR on OHCA outcome by first documented rhythm (pulseless ventricular tachycardia/ventricular fibrillation [pVT/VF], pulseless electric activity [PEA], and asystole). We enrolled 257,354 adult witnessed OHCA patients between 2007 and 2012 from a prospective nationwide population-based cohort database in Japan. We evaluated relationships between time from collapse to first CPR and neurologically favorable 1-month survival defined as Glasgow-Pittsburg cerebral performance category 1 or 2 by first documented rhythm after witnessed OHCA. We used logistic model for the estimation of prognosis. The number of OHCA patients with pVT/VF, PEA, and asystole were 38,661, 96,906, and 121,787, respectively. The overall neurologically favorable 1-month survival rates were 21.3% in patients with pVT/VF, 2.7% PEA, and 0.6% asystole. The proportion of asystole increased as the time from collapse to CPR delayed, whereas those of pVT/VF and PEA decreased (trend P<0.001). Estimated incidences of end-point after OHCA became lower as first CPR delayed irrespective of type of first documented rhythm, but were different by the rhythm. The average percentage point decreases in neurologically favorable 1-month survival probability for each incremental minute of CPR delay were 8.3%, 4.4%, and 6.4% for patients with pVT/VF, PEA, and asystole, respectively. The OHCA outcome differed by time to first CPR and first documented rhythm. Shortening of time to first CPR is crucial for improving the OHCA outcome. © 2015 American Heart Association, Inc.

  10. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    PubMed

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  11. Children Using Cochlear Implants Capitalize on Acoustical Hearing for Music Perception

    PubMed Central

    Hopyan, Talar; Peretz, Isabelle; Chan, Lisa P.; Papsin, Blake C.; Gordon, Karen A.

    2012-01-01

    Cochlear implants (CIs) electrically stimulate the auditory nerve providing children who are deaf with access to speech and music. Because of device limitations, it was hypothesized that children using CIs develop abnormal perception of musical cues. Perception of pitch and rhythm as well as memory for music was measured by the children’s version of the Montreal Battery of Evaluation of Amusia (MBEA) in 23 unilateral CI users and 22 age-matched children with normal hearing. Children with CIs were less accurate than their normal hearing peers (p < 0.05). CI users were best able to discern rhythm changes (p < 0.01) and to remember musical pieces (p < 0.01). Contrary to expectations, abilities to hear cues in music improved as the age at implantation increased (p < 0.01). Because the children implanted at older ages also had better low frequency hearing prior to cochlear implantation and were able to use this hearing by wearing hearing aids. Access to early acoustical hearing in the lower frequency ranges appears to establish a base for music perception, which can be accessed with later electrical CI hearing. PMID:23133430

  12. Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking

    PubMed Central

    Unudurthi, Sathya D.; Wolf, Roseanne M.; Hund, Thomas J.

    2014-01-01

    Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN (“source”) and the charge needed to excite the surrounding atrial tissue (“sink”). We also discuss how compromised “source-sink” balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the “source-sink” balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers. PMID:25505419

  13. EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients

    NASA Astrophysics Data System (ADS)

    Tan, Hock Guan; Shee, Cheng Yap; Kong, Keng He; Guan, Cuntai; Ang, Wei Tech

    2011-03-01

    This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.

  14. CORRELATION INDICES OF CEREBRAL HEMODYNAMICS AND ELECTRICAL ACTIVITY IN CHILDREN WITH IMPAIRED MOTOR SKILLS.

    PubMed

    Golovchenko, I V; Hayday, M I

    The correlations between the indicators of cerebral hemodynamics and electrical activity in children with impaired motor skills of central origin (children with cerebral palsy) were investigated. There is established a high number of links between indicators of rheoencephalogram (REG) and electroencephalogram (EEG) in the left cerebral hemisphere than in the right. In frontomastoidal allocation 19 correlations and in occipitomastoidal - 59 links. We suppose that poor circulation in vertebroplasty-basilar system leads to the defeat of the brain stem, which, with afferent pathways of the reticular formation, connects the thalamus with the cortex. In the reticular formation there is an inhibition of ascending activators influences, which eland to decreasing of the cortex is tonus. You can talk about the functional immaturity of the system of nonspecific activation by the reticular formation of the brain stem. Children with violation of motor activity had significantly more negative and positive significant and high correlation among the existing indicators of electric brain activity and cerebral hemodynamics, in our opinion, is due to the development of interconnection compensation that is carried out by adjustment of the functional systems and the formation of new forms of adaptive responses in conditions of disontogenetik. Feature correlation pattern of the EEG, of children with disorders of motor activity, is associated with a significantly great number of high and significant correlations between measures of electrical brain activity in the δ- and q- rhythms, especially in the temporal areas of the cerebral cortex. According to visual analysis of EEG there is revealed a common manifestation of changes of bioelectric brain activity in children with disorders of motor activity. This is manifested in the development of paroxysmal activity of action potentials of θ- and δ-rhythms with the focus of activity in the anterior areas of the cerebral cortex; the formation of a mosaic representation of the θ-rhythms in temporal areas; the presence of hypersynchronous a-paroxysms in the posterior areas of the cerebral cortex. The given facts testify to activation of mechanisms of limbic-neocortical systems and synchronizing influences of the reticular formation of the stem and diencephalic structures. There is also detected greater number of correlations when occipitomastoidal registration was lone it reflects compensatory redistribution of cerebral blood flow over the affected structures of brain stem structures that are associated with the provision of cortical functions.

  15. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded.

  16. Developing Basic Electronics Aptitudes.

    ERIC Educational Resources Information Center

    Lakeshore Technical Coll., Cleveland, WI.

    This curriculum guide provides materials for basic training in electrical and electronic theory to enable participants to analyze circuits and use test equipment to verify electrical operations and to succeed in the beginning electrical and electronic courses in the Lakeshore Technical College (Wisconsin) electronics programs. The course includes…

  17. The role of HATCH score in predicting the success rate of sinus rhythm following electrical cardioversion of atrial fibrillation.

    PubMed

    Emren, Sadık Volkan; Kocabaş, Uğur; Duygu, Hamza; Levent, Fatih; Şimşek, Ersin Çağrı; Yapan Emren, Zeynep; Tülüce, Selcen

    2016-01-01

    The HATCH score predicts the development of persistent and permanent atrial fibrillation (AF) one year after spontaneous or pharmacological conversion to sinus rhythm in patients with AF. However, it remains unknown whether HATCH score predicts short-term success of the procedure at early stages for patients who have undergone electrical cardioversion (EC) for AF. The present study evaluated whether HATCH score predicts short-term success of EC in patients with AF. The study included patients aged 18 years and over, who had undergone EC due to AF lasting less than 12 months, between December 2011 and October 2013. HATCH score was calculated for all patients. The acronym HATCH stands for Hypertension, Age (above 75 years), Transient ischaemic attack or stroke, Chronic obstructive pulmonary disease, and Heart failure. This scoring system awards two points for heart failure and transient ischaemic attack or stroke and one point for the remaining items. The study included 227 patients and short-term EC was successful in 163 of the cases. The mean HATCH scores of the patients who had undergone successful or unsuccessful EC were 1.3 ± 1.4 and 2.9 ± 1.4, respectively (p < 0.001). The area of the HATCH score under the curve in receiver operating characteristics analysis was (AUC) 0.792 (95% CI 0.727-0.857, p < 0.001). A HATCH score of two and above yielded 77% sensitivity, 62% specificity, 56% positive predictive value, and 87% negative predictive value in predicting unsuccessful cardioversion. HATCH score is useful in predicting short-term success of EC at early stages for patients with AF, for whom the use of a rhythm-control strategy is planned.

  18. Gout and arrhythmias: In search for causation beyond association.

    PubMed

    Giannopoulos, Georgios; Angelidis, Christos; Deftereos, Spyridon

    2018-06-13

    Gout is a systemic disease, characterized by the formation and deposition of crystals in tissues (mainly in and around the joints) of individuals with elevated serum uric acid levels. Lately, a considerable number of reports relating elevated uric acid and/or gout with rhythm disorders, such as atrial fibrillation, have been published. This review summarizes evidence linking common arrhythmias and hyperuricemia/gout and discusses questions or controversies that surround it. Overall, existing evidence may not be overwhelming, but strongly suggests a positive correlation between uric acid levels and common rhythm disorders. Needless to say that such a link - as a univariate association between the two - is to be expected, given the extensive overlap of risk factors and comorbidities of hyperuricemia/gout and arrhythmias. However, the observed associations seem to persist - in most studies - after extensive adjustment for potential confounders. Still, multivariable analyses of epidemiologically collected data cannot substitute for proof coming from basic and clinical studies. There is obviously a need for further basic research to establish a causal relationship between uric acid effects and arrhythmias, as well as translational studies and clinical trials to investigate the therapeutic implications of such a relationship. Simply put, we are fairly certain that there is association, but proof of causation is what we are still in want of. Copyright © 2018. Published by Elsevier Inc.

  19. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  20. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580

  2. 10 CFR 431.36 - Compliance Certification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT Electric Motors Certification § 431.36 Compliance Certification. (a) General. Beginning April 26, 2003, a manufacturer or private labeler shall not distribute in commerce any basic model of an electric...: (i) The nominal full load efficiency for each basic model of electric motor distributed is not less...

  3. 10 CFR 431.36 - Compliance Certification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EQUIPMENT Electric Motors Certification § 431.36 Compliance Certification. (a) General. Beginning April 26, 2003, a manufacturer or private labeler shall not distribute in commerce any basic model of an electric...: (i) The nominal full load efficiency for each basic model of electric motor distributed is not less...

  4. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48

    PubMed Central

    Gupta, Deepak K.; Shah, Amil M.; Giugliano, Robert P.; Ruff, Christian T.; Antman, Elliott M.; Grip, Laura T.; Deenadayalu, Naveen; Hoffman, Elaine; Patel, Indravadan; Shi, Minggao; Mercuri, Michele; Mitrovic, Veselin; Braunwald, Eugene; Solomon, Scott D.

    2014-01-01

    Aims The complex relationship between left atrial (LA) structure and function, electrical burden of atrial fibrillation (AF) and stroke risk is not well understood. We aimed to describe LA structure and function in AF. Methods and results Left atrial structure and function was assessed in 971 subjects enrolled in the echocardiographic substudy of ENGAGE AF-TIMI 48. Left atrial size, emptying fraction (LAEF), and contractile function were compared across AF types (paroxysmal, persistent, or permanent) and CHADS2 scores as an estimate of stroke risk. The majority of AF patients (55%) had both LA enlargement and reduced LAEF, with an inverse relationship between LA size and LAEF (R = −0.57, P < 0.001). With an increasing electrical burden of AF and higher CHADS2 scores, LA size increased and LAEF declined. Moreover, 19% of AF subjects had impaired LAEF despite normal LA size, and LA contractile dysfunction was present even among the subset of AF subjects in sinus rhythm at the time of echocardiography. Conclusions In a contemporary AF population, LA structure and function were increasingly abnormal with a greater electrical burden of AF and higher stroke risk estimated by the CHADS2 score. Moreover, LA dysfunction was present despite normal LA size and sinus rhythm, suggesting that the assessment of LA function may add important incremental information in the evaluation of AF patients. Clinical Trial Registration: http://www.clinicaltrials.gov; ID = NCT00781391. PMID:24302269

  5. A TASER conducted electrical weapon with cardiac biomonitoring capability: Proof of concept and initial human trial.

    PubMed

    Stopyra, Jason P; Ritter, Samuel I; Beatty, Jennifer; Johnson, James C; Kleiner, Douglas M; Winslow, James E; Gardner, Alison R; Bozeman, William P

    2016-10-01

    Despite research demonstrating the overall safety of Conducted Electrical Weapons (CEWs), commonly known by the brand name TASER(®), concerns remain regarding cardiac safety. The addition of cardiac biomonitoring capability to a CEW could prove useful and even lifesaving in the rare event of a medical crisis by detecting and analyzing cardiac rhythms during the period immediately after CEW discharge. To combine an electrocardiogram (ECG) device with a CEW to detect and store ECG signals while still allowing the CEW to perform its primary function of delivering an incapacitating electrical discharge. This work was performed in three phases. In Phase 1 standard law enforcement issue CEW cartridges were modified to demonstrate transmission of ECG signals. In Phase 2, a miniaturized ECG recorder was combined with a standard issue CEW and tested. In Phase 3, a prototype CEW with on-board cardiac biomonitoring was tested on human volunteers to assess its ability to perform its primary function of electrical incapacitation. Bench testing demonstrated that slightly modified CEW cartridge wires transmitted simulated ECG signals produced by an ECG rhythm generator and from a human volunteer. Ultimately, a modified CEW incorporating ECG monitoring successfully delivered incapacitating current to human volunteers and successfully recorded ECG signals from subcutaneous CEW probes after firing. An ECG recording device was successfully incorporated into a standard issue CEW without impeding the functioning of the device. This serves as proof-of-concept that safety measures such as cardiac biomonitoring can be incorporated into CEWs and possibly other law enforcement devices. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Industrial Electronics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Tiffany, Earl

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 30 terminal objectives for a two-semester (2 hours daily) high school course in basic industrial electronics. The objectives cover instruction in basic electricity including AC-DC theory, magnetism, electrical safety, care and use of hand tools,…

  7. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management.

    PubMed

    Margulescu, Andrei D; Mont, Lluis

    2017-08-01

    Atrial fibrillation (AF) is the most common human arrhythmia. AF is a progressive disease, initially being nonsustained and induced by trigger activity, and progressing towards persistent AF through alteration of the atrial myocardial substrate. Treatment of AF aims to decrease the risk of stroke and improve the quality of life, by preventing recurrences (rhythm control) or controlling the heart rate during AF (rate control). In the last 20 years, catheter-based and, less frequently, surgical and hybrid ablation techniques have proven more successful compared with drug therapy in achieving rhythm control in patients with AF. However, the efficiency of ablation techniques varies greatly, being highest in paroxysmal and lowest in long-term persistent AF. Areas covered: In this review, we discuss the fundamental differences between paroxysmal and persistent AF and the potential impact of those differences on patient management, emphasizing the available therapeutic strategies to achieve rhythm control. Expert commentary: Treatment to prevent AF recurrences is suboptimal, particularly in patients with persistent AF. Emerging technologies, such as documentation of atrial fibrosis using magnetic resonance imaging and documentation of electrical substrate using advanced electrocardiographic imaging techniques are likely to provide valuable insights about patient-specific tailoring of treatments.

  8. Longitudinal assessment of daily activity patterns on weight change after involuntary job loss: the ADAPT study protocol.

    PubMed

    Haynes, Patricia L; Silva, Graciela E; Howe, George W; Thomson, Cynthia A; Butler, Emily A; Quan, Stuart F; Sherrill, Duane; Scanlon, Molly; Rojo-Wissar, Darlynn M; Gengler, Devan N; Glickenstein, David A

    2017-10-10

    The World Health Organization has identified obesity as one of the most visible and neglected public health problems worldwide. Meta-analytic studies suggest that insufficient sleep increases the risk of developing obesity and related serious medical conditions. Unfortunately, the nationwide average sleep duration has steadily declined over the last two decades with 25% of U.S. adults reporting insufficient sleep. Stress is also an important indirect factor in obesity, and chronic stress and laboratory-induced stress negatively impact sleep. Despite what we know from basic sciences about (a) stress and sleep and (b) sleep and obesity, we know very little about how these factors actually manifest in a natural environment. The Assessing Daily Activity Patterns Through Occupational Transitions (ADAPT) study tests whether sleep disruption plays a key role in the development of obesity for individuals exposed to involuntary job loss, a life event that is often stressful and disrupting to an individual's daily routine. This is an 18-month closed, cohort research design examining social rhythms, sleep, dietary intake, energy expenditure, waist circumference, and weight gain over 18 months in individuals who have sustained involuntary job loss. Approximately 332 participants who lost their job within the last 3 months are recruited from flyers within the Arizona Department of Economic Security (AZDES) Unemployment Insurance Administration application packets and other related postings. Multivariate growth curve modeling will be used to investigate the temporal precedence of changes in social rhythms, sleep, and weight gain. It is hypothesized that: (1) unemployed individuals with less consistent social rhythms and worse sleep will have steeper weight gain trajectories over 18 months than unemployed individuals with stable social rhythms and better sleep; (2) disrupted sleep will mediate the relationship between social rhythm disruption and weight gain; and (3) reemployment will be associated with a reversal in the negative trajectories outlined above. Positive findings will provide support for the development of obesity prevention campaigns targeting sleep and social rhythms in an accessible subgroup of vulnerable individuals.

  9. Circadian rhythms in sports performance--an update.

    PubMed

    Drust, B; Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2005-01-01

    We discuss current knowledge on the description, impact, and underlying causes of circadian rhythmicity in sports performance. We argue that there is a wealth of information from both applied and experimental work, which, when considered together, suggests that sports performance is affected by time of day in normal entrained conditions and that the variation has at least some input from endogenous mechanisms. Nevertheless, precise information on the relative importance of endogenous and exogenous factors is lacking. No single study can answer both the applied and basic research questions that are relevant to this topic, but an appropriate mixture of real-world research on rhythm disturbances and tightly controlled experiments involving forced desynchronization protocols is needed. Important issues, which should be considered by any chronobiologist interested in sports and exercise, include how representative the study sample and the selected performance tests are, test-retest reliability, as well as overall design of the experiment.

  10. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  11. Musical rhythm and affect. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Witek, Maria A. G.; Kringelbach, Morten L.; Vuust, Peter

    2015-06-01

    The Quartet Theory of Human Emotion (QT) proposed by Koelsch et al. [1] adds to existing affective models, e.g. by directing more attention to emotional contagion, attachment-related and non-goal-directed emotions. Such an approach seems particularly appropriate to modelling musical emotions, and music is indeed a recurring example in the text, used to illustrate the distinct characteristics of the affect systems that are at the centre of the theory. Yet, it would seem important for any theory of emotion to account for basic functions such as prediction and anticipation, which are only briefly mentioned. Here we propose that QT, specifically its focus on emotional contagion, attachment-related and non-goal directed emotions, might help generate new ideas about a largely neglected source of emotion - rhythm - a musical property that relies fundamentally on the mechanism of prediction.

  12. Dynamics of sleep/wake determination--Normal and abnormal

    NASA Astrophysics Data System (ADS)

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  13. Analysis of the features of untrained human movements based on the multichannel EEG for controlling anthropomorphic robotic arm

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Runnova, Anastasia; Pchelintseva, Svetlana; Efremova, Tatiana; Zhuravlev, Maksim; Pisarchik, Alexander

    2018-04-01

    We have considered time-frequency and spatio-temporal structure of electrical brain activity, associated with real and imaginary movements based on the multichannel EEG recordings. We have found that along with wellknown effects of event-related desynchronization (ERD) in α/μ - rhythms and β - rhythm, these types of activity are accompanied by the either ERS (for real movement) or ERD (for imaginary movement) in low-frequency δ - band, located mostly in frontal lobe. This may be caused by the associated processes of decision making, which take place when subject is deciding either perform the movement or imagine it. Obtained features have been found in untrained subject which it its turn gives the possibility to use our results in the development of brain-computer interfaces for controlling anthropomorphic robotic arm.

  14. Millwright Apprenticeship. Related Training Modules. 2.1-2.17 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains 17 modules covering electricity and electronics. The modules provide information on the following topics: basics of energy, atomic theory, electrical conduction, basics of direct current, introduction to circuits, reading…

  15. 10 CFR 431.36 - Compliance Certification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EQUIPMENT Electric Motors Certification § 431.36 Compliance Certification. (a) General. A manufacturer or private labeler shall not distribute in commerce any basic model of an electric motor which is subject to... efficiency for each basic model of electric motor distributed is not less than the minimum nominal full load...

  16. 10 CFR 431.36 - Compliance Certification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EQUIPMENT Electric Motors Certification § 431.36 Compliance Certification. (a) General. A manufacturer or private labeler shall not distribute in commerce any basic model of an electric motor which is subject to... efficiency for each basic model of electric motor distributed is not less than the minimum nominal full load...

  17. ONR Tokyo Scientific Bulletin. Volume 4, Number 4, October-December 1979,

    DTIC Science & Technology

    1979-12-01

    describing various biological rhythms, from oscillatory electrical activities of the brain to circadian fluctuations in bodily functions and task...Technology Division, Naval Research Laboratory, has concentrated his activities on the design and utilization of far infrared gas lasers for the study... activities of the International Indian Ocean Expedition (IIOE) and the plankton sorting center established at Cochin, for plankton samples taken during the

  18. Basic Electricity--a Novel Analogy.

    ERIC Educational Resources Information Center

    Grant, Richard

    1996-01-01

    Uses the analogy of water flow to introduce concepts in basic electricity. Presents a demonstration that uses this analogy to help students grasp the relationship between current, voltage, and resistance. (JRH)

  19. In-flight automated external defibrillator use and consultation patterns.

    PubMed

    Brown, Aaron Michael; Rittenberger, Jon C; Ammon, Charles M; Harrington, Scott; Guyette, Francis X

    2010-01-01

    Limited information exists about the in-flight use and outcomes associated with automated external defibrillators (AEDs) on commercial airlines. To describe the characteristics and outcomes of AED use during in-flight emergencies including in-flight cardiac arrest and the associated ground medical consultation patterns. We collected cases of AED use that were self-reported to an airline consultation service from three U.S. airlines between May 2004 and March 2009. We reviewed all available data files, related consultation forms, and recordings. For each case, demographics, initial rhythm, shock delivery/success, survival to admission, and ground medical consultation use were obtained. Success was defined as the return of a perfusing rhythm. Initial rhythms were classified as sinus, heart block, supraventricular tachycardia (SVT), atrial fibrillation/flutter, asystole, pulseless electrical activity (PEA), and ventricular fibrillation (VF)/ventricular tachycardia (VT). There were a total of 169 AED applications with 40 cardiac arrests. The mean patient ages were 58 years (standard deviation [SD] 15) and 63 years (SD 12), respectively; both populations were 64% male. AEDs were applied for monitoring in 129 (76%) cases with the following initial rhythms: sinus, 114 (88%); atrial fibrillation/flutter, seven (5%); complete heart block, four (3%); and SVT, four (3%). Presenting rhythms among the cardiac arrest population were as follows: asystole, 16 (40%); VF/VT, 10 (25%); and PEA, 14 (35%). Fourteen patients were defibrillated, including nine of the 10 patients with initial VF/VT and five for the presence of VF/VT after resuscitation for initial PEA/asystole. Defibrillation was advised but not performed in the remaining case of initial VF/VT, and no medical consultation was obtained. All five successful defibrillations occurred in patients with initial VF/VT. There were six (15%; 95% confidence interval [CI] 3-27%) survivors, with five survivals occurring after successful defibrillation for initial VF/VT and one with return of a perfusing rhythm after cardiopulmonary resuscitation (CPR) for a junctional rhythm. Survival in those with VF/VT was five of 10 (50%; 95% CI 14-86%). Medications were delivered in two cases. The median time to first shock was 19 seconds (interquartile range [IQR] 12-24 seconds) after AED application. Medical consultation was obtained in 42 (33%) of the 129 AED monitoring cases and 14 (35%) of the 40 cardiac arrest cases. Use of AEDs resulted in 50% survival among those with VF/VT in flight and 15% overall survival for cardiac arrest. Survival is poor among patients presenting with nonshockable rhythms. AEDs are used extensively for in-flight monitoring, with significant rhythms identified. Ground medical consultation is sought in only one-third of AED uses and cardiac arrests.

  20. Conjugate Relationships in Basic Electricity.

    ERIC Educational Resources Information Center

    Fisher, Kurt

    1999-01-01

    Presents an organization of seemingly disparate convention and procedure statements and rules of basic electricity into conjugate relationships which can be used to reduce students' memorization loads and improve their understanding. (WRM)

  1. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS.

    PubMed

    Garcia-Rill, Edgar; Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2011-10-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.

  2. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications

    PubMed Central

    Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2011-01-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40–60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30–60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep–wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models. PMID:20936418

  3. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  4. Observing the sick child: part 2b. Respiratory palpation.

    PubMed

    Aylott, Marion

    2007-02-01

    Assessment is a major nursing role, and expanding assessment techniques, traditionally seen as the remit of the medical profession, can assist nursing assessment and the provision of appropriate care. This is the third article in a series of five articles. Parts 1 and 2a provided a practical critical review of the validity and reliability of basic respiratory assessment focusing on measurement of respiratory rate, rhythm and depth. This article provides a practical step-by-step introduction to the theory and practice of advanced respiratory assessment using palpation. Next month we will build on these skills and provide a practical step-by-step introduction to using auscultation in order to augment basic respiratory assessment skills.

  5. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  6. The control of locomotor frequency by excitation and inhibition

    PubMed Central

    Li, Wen-Chang; Moult, Peter R

    2012-01-01

    Every type of neural rhythm has its own operational range of frequency. Neuronal mechanisms underlying rhythms at different frequencies, however, are poorly understood. We use a simple aquatic vertebrate, the two day old Xenopus tadpole, to investigate how the brainstem and spinal circuits generate swimming rhythms of different speeds. We first determined that the basic motor output pattern was not altered with varying swimming frequencies. The firing reliability of different types of rhythmic neuron involved in swimming was then analysed. The results showed that there was a drop in the firing reliability in some inhibitory interneurons when fictive swimming slowed. We have recently established that premotor excitatory interneurons (descending interneurons; dINs) are critical in rhythmically driving activity in the swimming circuit. Voltage-clamp recordings from dINs showed higher frequency swimming correlated with stronger background excitation and phasic inhibition, but did not correlate with phasic excitation. Two parallel mechanisms have been proposed for tadpole swimming maintenance: post-inhibition rebound firing and NMDA receptor (NMDAR) dependent pace-maker firing in dINs. Rebound tests in dINs in this study showed that greater background depolarization and phasic inhibition led to faster rebound firing. Higher depolarization was previously shown to accelerate dIN pace-maker firing in the presence of NMDA. Here we show that enhancing dIN background excitation during swimming speeds up fictive swimming frequency whilst weakening phasic inhibition without changing background excitation slows down swimming rhythms. We conclude that both strong background excitation and phasic inhibition can promote faster tadpole swimming. PMID:22553028

  7. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  8. Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects

    PubMed Central

    Rivera, Ana Leonor; Toledo-Roy, Juan C.; Ellis, Jason; Angelova, Maia

    2017-01-01

    Circadian rhythms become less dominant and less regular with chronic-degenerative disease, such that to accurately assess these pathological conditions it is important to quantify not only periodic characteristics but also more irregular aspects of the corresponding time series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for the decomposition of experimental time series, in a model-free way, into a trend, quasiperiodic components and noise fluctuations. We compared SSA with the traditional techniques of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in young adults with acute insomnia and healthy age-matched controls. The findings suggest a small but significant delay in circadian components in the subjects with acute insomnia, i.e. a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude. The power of the ultradian components follows a fractal 1/f power law for controls, whereas for those with acute insomnia this power law breaks down because of an increased variability at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This suggests that for healthy sleepers attention and activity can be sustained at whatever time scale required by circumstances, whereas for those with acute insomnia this capacity may be impaired and these individuals need to rest or switch activities in order to stay focused. Traditional methods of circadian rhythm analysis are unable to detect the more subtle effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min time scale. PMID:28753669

  9. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.

    PubMed

    Elson, Matthew S; Berkowitz, Ari

    2016-03-02

    The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.

  10. Alternative Fuels Data Center: Electricity Fuel Basics

    Science.gov Websites

    , coal, nuclear energy, hydropower, natural gas, wind energy, solar energy, and stored hydrogen. Plug-in Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics

  11. Fuel Cell Vehicle Basics | NREL

    Science.gov Websites

    Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was

  12. Computational optogenetics: A novel continuum framework for the photoelectrochemistry of living systems

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan; Abilez, Oscar J.; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second-order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  13. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems.

    PubMed

    Wong, Jonathan; Abilez, Oscar J; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  14. Effects of high-intensity power-frequency electric fields on implanted modern multiprogrammable cardiac pacemakers.

    PubMed

    Butrous, G S; Meldrum, S J; Barton, D G; Male, J C; Bonnell, J A; Camm, A J

    1982-05-01

    The effect on an implanted, multiprogrammable pacemaker of power-frequency (50 Hz) electric fields up to an intensity (unperturbed value measured at 1.7 m) of 20 kV/m were assessed in ten paced patients. Radiotelemetric monitoring of the electrocardiogram allowed supervision of the electrocardiogram throughout exposure to the alternating electric field. Displacement body currents of up to 300μA were achieved depending on the position and height of the patient. None of the pacemakers was inhibited, triggered or reverted to fixed rate operation during the exposure. The programmable functions, programmability or output characteristics were not affected. Small changes in cardiac rate and rhythm elicited the correct pacemaker responses. Unlike earlier models of pacemaker, this modern implanted pacemaker, which represents `the state of the art', is not affected by 50 Hz electric fields likely to be encountered when standing underneath power lines.

  15. Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability

    NASA Astrophysics Data System (ADS)

    Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.

    2016-11-01

    How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.

  16. Okologie als Frage der Zeit: Eine Antwort auf Helmut Heid und Gerd-Jan Krol (The Concept of Time in Environmental Education: A Replique to Helmut Heid and Gerd-Jan Krol).

    ERIC Educational Resources Information Center

    Reheis, Fritz

    1997-01-01

    Responds to arguments that environmental education must be backed up by a theory of society. Sketches a paradigm that would be broad enough to cover all object areas relevant to a well-grounded pedagogy of environment, and links the basic idea of ecology with insights on scales and rhythms of time. (DSK)

  17. Investigation of a vibration-damping unit for reduction in low-frequency vibrations of electric motors

    NASA Technical Reports Server (NTRS)

    Grigoryey, N. V.; Fedorovich, M. A.

    1973-01-01

    The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.

  18. Ethics and methods for biological rhythm research on animals and human beings.

    PubMed

    Portaluppi, Francesco; Smolensky, Michael H; Touitou, Yvan

    2010-10-01

    This article updates the ethical standards and methods for the conduct of high-quality animal and human biological rhythm research, which should be especially useful for new investigators of the rhythms of life. The editors of Chronobiology International adhere to and endorse the Code of Conduct and Best Practice Guidelines of the Committee On Publication Ethics (COPE), which encourages communication of such updates at regular intervals in the journal. The journal accepts papers representing original work, no part of which was previously submitted for publication elsewhere, except as brief abstracts, as well as in-depth reviews. The majority of research papers published in Chronobiology International entails animal and human investigations. The editors and readers of the journal expect authors of submitted manuscripts to have made an important contribution to the research of biological rhythms and related phenomena using ethical methods/procedures and unbiased, accurate, and honest reporting of findings. Authors of scientific papers are required to declare all potential conflicts of interest. The journal and its editors endorse compliance of investigators to the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, relating to the conduct of ethical research on laboratory and other animals, and the principles of the Declaration of Helsinki of the World Medical Association, relating to the conduct of ethical research on human beings. The peer review of manuscripts by Chronobiology International thus includes judgment as to whether or not the protocols and methods conform to ethical standards. Authors are expected to show mastery of the basic methods and procedures of biological rhythm research and proper statistical assessment of data, including the appropriate application of time series data analyses, as briefly reviewed in this article. The journal editors strive to consistently achieve high standards for the research of original and review papers reported in Chronobiology International, and current examples of expectations are presented herein.

  19. Right atrial isolation associated with atrial septal closure in patients with atrial septal defect and chronic atrial fibrillation.

    PubMed

    Minzioni, G; Graffigna, A; Pagani, F; Vigano, M

    1993-12-01

    To restore sinus rhythm in the remaining heart chambers of six adult patients with atrial septal defect and chronic or paroxysmal atrial fibrillation, electrical, right atrial isolation associated with surgical correction of the defect was performed. All but one patient was free from atrial fibrillation without medication 2-25 months after operation. The isolated right atrial appendages showed intrinsic rhythmical activity in five patients and no electrical activity in one. Right atrial isolation is a safe and effective procedure that abolishes atrial fibrillation in patients with arrhythmia after surgical correction of atrial septal defect.

  20. The impact of weather on human health.

    PubMed

    Sulman, F G

    1984-01-01

    The impact of weather on human health is a well-known fact, yet, alas, neglected in the past. Bioclimatology, a vast field of medical knowledge, has only been developed in the past few years. It shows that the air we breathe has a profound influence on our well-being. Electrical charges of the air, such as ions, spherics and electrofields can affect our endocrine, vegetative and autonomous nerve system. It may even be responsible for post-operative thromboembolism. The present article describes weather reactions, electric radiations, climate rhythm, medical aspects of weather changes, and their effect on health and disease. Special devotion is also given to the manifestations of evil winds.

  1. Gender differences in the mu rhythm of the human mirror-neuron system.

    PubMed

    Cheng, Yawei; Lee, Po-Lei; Yang, Chia-Yen; Lin, Ching-Po; Hung, Daisy; Decety, Jean

    2008-05-07

    Psychologically, females are usually thought to be superior in interpersonal sensitivity than males. The human mirror-neuron system is considered to provide the basic mechanism for social cognition. However, whether the human mirror-neuron system exhibits gender differences is not yet clear. We measured the electroencephalographic mu rhythm, as a reliable indicator of the human mirror-neuron system activity, when female (N = 20) and male (N = 20) participants watched either hand actions or a moving dot. The display of the hand actions included androgynous, male, and female characteristics. The results demonstrate that females displayed significantly stronger mu suppression than males when watching hand actions. Instead, mu suppression was similar across genders when participants observed the moving dot and between the perceived sex differences (same-sex vs. opposite-sex). In addition, the mu suppressions during the observation of hand actions positively correlated with the personal distress subscale of the interpersonal reactivity index and negatively correlated with the systemizing quotient. The present findings indirectly lend support to the extreme male brain theory put forward by Baron-Cohen (2005), and may cast some light on the mirror-neuron dysfunction in autism spectrum disorders. The mu rhythm in the human mirror-neuron system can be a potential biomarker of empathic mimicry.

  2. Visual tuning and metrical perception of realistic point-light dance movements

    PubMed Central

    Su, Yi-Huang

    2016-01-01

    Humans move to music spontaneously, and this sensorimotor coupling underlies musical rhythm perception. The present research proposed that, based on common action representation, different metrical levels as in auditory rhythms could emerge visually when observing structured dance movements. Participants watched a point-light figure performing basic steps of Swing dance cyclically in different tempi, whereby the trunk bounced vertically at every beat and the limbs moved laterally at every second beat, yielding two possible metrical periodicities. In Experiment 1, participants freely identified a tempo of the movement and tapped along. While some observers only tuned to the bounce and some only to the limbs, the majority tuned to one level or the other depending on the movement tempo, which was also associated with individuals’ preferred tempo. In Experiment 2, participants reproduced the tempo of leg movements by four regular taps, and showed a slower perceived leg tempo with than without the trunk bouncing simultaneously in the stimuli. This mirrors previous findings of an auditory ‘subdivision effect’, suggesting the leg movements were perceived as beat while the bounce as subdivisions. Together these results support visual metrical perception of dance movements, which may employ similar action-based mechanisms to those underpinning auditory rhythm perception. PMID:26947252

  3. Studying circadian rhythm and sleep using genetic screens in Drosophila.

    PubMed

    Axelrod, Sofia; Saez, Lino; Young, Michael W

    2015-01-01

    The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab. © 2015 Elsevier Inc. All rights reserved.

  4. Non-invasive electromechanical activation imaging as a tool to study left ventricular dyssynchronous patients: Implication for CRT therapy.

    PubMed

    Dawoud, Fady; Spragg, David D; Berger, Ronald D; Cheng, Alan; Horáček, B Milan; Halperin, Henry R; Lardo, Albert C

    2016-01-01

    Electromechanical de-coupling is hypothesized to explain non-response of dyssynchrony patient to cardiac resynchronization therapy (CRT). In this pilot study, we investigated regional electromechanical uncoupling in 10 patients referred for CRT using two non-invasive electrical and mechanical imaging techniques (CMR tissue tracking and ECGI). Reconstructed regional electrical and mechanical activation captured delayed LBBB propagation direction from septal to anterior/inferior and finally to lateral walls as well as from LV apical to basal. All 5 responders demonstrated significantly delayed mechanical and electrical activation on the lateral LV wall at baseline compared to the non-responders (P<.05). On follow-up ECGI, baseline electrical activation patterns were preserved in native rhythm and global LV activation time was reduced with biventricular pacing. The combination of novel imaging techniques of ECGI and CMR tissue tracking can be used to assess spatial concordance of LV electrical and mechanical activation to gain insight into electromechanical coupling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Platelet reactivity and mean platelet volume as risk markers of thrombogenesis in atrial fibrillation.

    PubMed

    Makowski, Marcin; Smorag, Ireneusz; Makowska, Joanna; Bissinger, Andrzej; Grycewicz, Tomasz; Paśnik, Jarek; Kidawa, Michal; Lubiński, Andrzej; Zielińska, Marzenna; Baj, Zbigniew

    2017-05-15

    Atrial fibrillation (AF) is associated with increased risk of thromboembolic complications. One of the markers of the increased risk of hypercoagulable state is platelet hyperreactivity. The aim of the study was to assess impact of arrhythmia on platelet reactivity. The study included 36 (mean age 48,3; range 21-60) male patients with lone atrial fibrillation, with exclusion of concomitant diseases known to trigger hypercoagulable state. The AF patients underwent cardioversion to restore sinus rhythm and were subsequently under observation for 1month. Echocardiography, ECG and blood collection was performed before cardioversion (T0) and 4weeks after successful cardioversion (T1). During the study period patients have been contacted and examined every week and 24h ECG monitoring was performed. Platelet reactivity was assessed based on changes of CD62 and CD42b expression on platelet surface after stimulation with thrombin. Also changes in MPV were assessed. In all patients sinus rhythm was maintained at the end of the study period, however in 14 patients recurrences of AF were observed, confirmed by 24h ECG monitoring (atrial fibrillation recurrence group - AFR) and 22 patients maintained sinus rhythm throughout the whole study period (SR group). Mean fluorescence intensity (MFI) of CD62 on thrombin stimulated platelets decreased significantly 4weeks after electrical cardioversion as compared to T0 (48.04±22.42 vs 41.47±16.03; p<0.01). Also MFI of CD42b on thrombin stimulated platelets decreased significantly 4weeks after electrical cardioversion as compared to T0 (22.16±10.82 vs 12.06±5.99; p<0.0001). Platelets reactivity estimated by CD 62 expression in SR group decreased significantly after 4weeks observation (58.01±15.26 vs 46.57±13.44; p<0.001) opposite to AFR group 35.66±21.87 vs 34.54±16.4; p-ns). Moreover there were significant differences between basal reactivity during AF between SR and AFR groups (58.01±15.26 vs 35.66±21.87; p-0.01). MFI of CD42b on thrombin stimulated platelets decreased significantly both in AFR and SR groups (22.05±11.36 vs 13.8±6.03; p<0.001 and 21.87±14.18 vs 10.04±5.09; p<0005). MPV decreased significantly 4weeks after electrical cardioversion as compared to T0 (8.81±0.19 vs 8.42±0.14; p<0.0001). The changes of platelet reactivity to thrombin observed after restoration of sinus rhythm in patients prove that arrhythmia intrinsically leads to increased reactivity of platelets. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Emergence of Alpha and Gamma Like Rhythms in a Large Scale Simulation of Interacting Neurons

    NASA Astrophysics Data System (ADS)

    Gaebler, Philipp; Miller, Bruce

    2007-10-01

    In the normal brain, at first glance the electrical activity appears very random. However, certain frequencies emerge during specific stages of sleep or between quiet wake states. This raises the question of whether current mathematical and computational models of interacting neurons can display similar behavior. A recent model developed by Eugene Izhikevich appears to succeed. However, early dynamical simulations used to detect these patterns were possibly compromised by an over-simplified initial condition and evolution algorithm. Utilizing the same model, but a more robust algorithm, here we present our initial results, showing that these patterns persist under a wide range of initial conditions. We employ spectral analysis of the firing patterns of a system of interacting excitatory and inhibitory neurons to demonstrate a bimodal spectrum centered on two frequencies in the range characteristic of alpha and gamma rhythms in the human brain.

  7. [The risk of direct current countershock].

    PubMed

    Gajek, J; Zyśko, D

    2001-07-01

    Direct current cardioversion (DCC) is a procedure commonly used to restore the sinus rhythm in patients with supraventricular and ventricular arrhythmias. Its safety, regarding the use of electric current, is still a matter of controversy and debate. The patients with atrial fibrillation/flutter, supraventricular or ventricular tachycardia represent a broad spectrum of clinical conditions and it is difficult to draw the conclusions. The high success rate of DCC in restoring the sinus rhythm, may be partly responsible for enhancing and revealing proarrhythmic properties of antiarrhythmic drugs. The deaths described as a complications of DCC were mainly due to the proarrhythmia and less common to the progression of the pathologic process. The embolic, arrhythmic and anesthetic complications of DCC can be prevented if the known recommendations of performing the DCC are followed. The authors review critically the literature data about the complications of the procedure and come to the conclusion of safety of DCC.

  8. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.

    PubMed

    Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier

    2012-08-22

    The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.

  9. Improper bystander-performed basic life support in cardiac arrests managed with public automated external defibrillators.

    PubMed

    Nishi, Taiki; Takei, Yutaka; Kamikura, Takahisa; Ohta, Keisuke; Hashimoto, Masaaki; Inaba, Hideo

    2015-01-01

    The aim of the study was to determine the quality of basic life support (BLS) in out-of-hospital cardiac arrests (OHCAs) receiving bystander cardiopulmonary resuscitation (CPR) and public automated external defibrillator (AED) application. From January 2006 to December 2012, data were prospectively collected from OHCA) and impending cardiac arrests treated with and without public AED before emergency medical technician (EMT) arrival. Basic life support actions and outcomes were compared between cases with and without public AED application. Interruptions of CPR were compared between 2 groups of AED users: health care provider (HCP) and non-HCP. Public AEDs were applied in 10 and 273 cases of impending cardiac arrest and non-EMT-witnessed OHCAs, respectively (4.3% of 6407 non-EMT-witnessed OHCAs). Defibrillation was delivered to 33 (13.3%) cases. Public AED application significantly improved the rate of 1-year neurologically favorable survival in bystander CPR-performed cases with shockable initial rhythm but not in those with nonshockable rhythm. Emergency calls were significantly delayed compared with other OHCAs without public AED application (median: 3 and 2 minutes, respectively; P < .0001). Analysis of AED records obtained from 136 (54.6%) of the 249 cases with AED application revealed significantly lower rate of compressions delivered per minute and significantly greater proportion of CPR pause in the non-HCP group. Time interval between power on and the first electrocardiographic analysis widely varied in both groups and was significantly prolonged in the non-HCP group (P = .0137). Improper BLS responses were common in OHCAs treated with public AEDs. Periodic training for proper BLS is necessary for both HCPs and non-HCPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.

  11. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with refractory periods. The same system can be perturbed to a state in which amplitude of oscillation is attenuated or abolished. We have characterized critical perturbations which induce transitions between these two states, giving rise to patterns of dysrhythmic activity that are similar to those seen in the experiments. We illustrate the importance of noise in initiation and termination of rhythm, comparable to normal respiratory rhythm intermixed with spontaneous dysrhythmias. In the BvP system the incidence and duration of dysrhythmia is shown to be strongly influenced by the level of noise. These studies should lead to greater understanding of rhythmicity and integrative responses of the respiratory control system, and provide insight into disturbances in control mechanisms that cause apnea and aspiration in clinical disease states.

  12. Nonlinear time series analysis of electrocardiograms

    NASA Astrophysics Data System (ADS)

    Bezerianos, A.; Bountis, T.; Papaioannou, G.; Polydoropoulos, P.

    1995-03-01

    In recent years there has been an increasing number of papers in the literature, applying the methods and techniques of Nonlinear Dynamics to the time series of electrical activity in normal electrocardiograms (ECGs) of various human subjects. Most of these studies are based primarily on correlation dimension estimates, and conclude that the dynamics of the ECG signal is deterministic and occurs on a chaotic attractor, whose dimension can distinguish between healthy and severely malfunctioning cases. In this paper, we first demonstrate that correlation dimension calculations must be used with care, as they do not always yield reliable estimates of the attractor's ``dimension.'' We then carry out a number of additional tests (time differencing, smoothing, principal component analysis, surrogate data analysis, etc.) on the ECGs of three ``normal'' subjects and three ``heavy smokers'' at rest and after mild exercising, whose cardiac rhythms look very similar. Our main conclusion is that no major dynamical differences are evident in these signals. A preliminary estimate of three to four basic variables governing the dynamics (based on correlation dimension calculations) is updated to five to six, when temporal correlations between points are removed. Finally, in almost all cases, the transition between resting and mild exercising seems to imply a small increase in the complexity of cardiac dynamics.

  13. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators.

    PubMed

    Gutierrez, Gabrielle J; O'Leary, Timothy; Marder, Eve

    2013-03-06

    Rhythmic oscillations are common features of nervous systems. One of the fundamental questions posed by these rhythms is how individual neurons or groups of neurons are recruited into different network oscillations. We modeled competing fast and slow oscillators connected to a hub neuron with electrical and inhibitory synapses. We explore the patterns of coordination shown in the network as a function of the electrical coupling and inhibitory synapse strengths with the help of a novel visualization method that we call the "parameterscape." The hub neuron can be switched between the fast and slow oscillators by multiple network mechanisms, indicating that a given change in network state can be achieved by degenerate cellular mechanisms. These results have importance for interpreting experiments employing optogenetic, genetic, and pharmacological manipulations to understand circuit dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  15. Hypercalcemic crisis and primary hyperparathyroidism: Cause of an unusual electrical storm.

    PubMed

    Guimarães, Tatiana; Nobre Menezes, Miguel; Cruz, Diogo; do Vale, Sónia; Bordalo, Armando; Veiga, Arminda; Pinto, Fausto J; Brito, Dulce

    2017-12-01

    Hypercalcemia is a known cause of heart rhythm disorders, however its association with ventricular arrhythmias is rare. The authors present a case of a fifty-three years old male patient with a ischemic and ethanolic dilated cardiomyopathy, and severely reduced ejection fraction, carrier of cardiac resynchronization therapy (CRT) with cardioverter defibrillator (ICD), admitted in the emergency department with an electrical storm, with multiple appropriated ICD shocks, refractory to antiarrhythmic therapy. In the etiological investigation was documented severe hypercalcemia secondary to primary hyperparathyroidism undiagnosed until then. Only after the serum calcium level reduction ventricular tachycardia was stopped. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. [Clinical evaluation of the anti-arrhythmic properties and cardiohemodynamic effects of the basic anti-arrhythmia agents].

    PubMed

    Stoliarchuk, A A; Storozhuk, B G; Briskin, V R

    1985-01-01

    The authors studied the antiarrhythmic and antifibrillatory effects of the known antiarrhythmic agents and the new Soviet coronaroactive drug phenicaberan exhibiting an antiarrhythmic action. All the drugs were examined for side effects and the action on the central and intracardiac hemodynamics in patients with acute myocardial infarction. Recommendations have been given as to the choice of effective drugs for the prophylaxis of arrhythmias depending on the pattern of heart rhythm abnormality and the hemodynamics.

  17. Computational modeling of the cell-autonomous mammalian circadian oscillator.

    PubMed

    Podkolodnaya, Olga A; Tverdokhleb, Natalya N; Podkolodnyy, Nikolay L

    2017-02-24

    This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.

  18. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  19. [The automated external defibrillator in the resuscitation chain. The importance of the AED examined].

    PubMed

    Mosterd, Arend

    2015-01-01

    The survival rate for those suffering an out-of-hospital cardiac arrest (OHCA) is improving slowly, with > 90% of the survivors being discharged from hospital with cognitive function intact. A recent analysis of the ARREST (AmsteRdam Resuscitation Study) group documented an increase in survival rates with favourable neurological outcome from 16.2% in 2006 to 19.7% in 2012. Only those victims whose initial cardiac rhythm is 'shockable' (i.e. ventricular fibrillation or tachycardia) reap the benefits: their survival rate increased from 29.1% to 41.4%. The prognosis for those with a non-shockable rhythm remains grim (< 5% survival). A recent analysis of the ARREST database points to the increasing use of AEDs (by laypersons, but particularly by police officers and fire-fighters with a training in basic life support) as one of the main drivers of this improved prognosis. An AED is now used in 59% of OHCA in the greater Amsterdam area, and has become an essential link in the resuscitation chain.

  20. Generalized auditory agnosia with spared music recognition in a left-hander. Analysis of a case with a right temporal stroke.

    PubMed

    Mendez, M F

    2001-02-01

    After a right temporoparietal stroke, a left-handed man lost the ability to understand speech and environmental sounds but developed greater appreciation for music. The patient had preserved reading and writing but poor verbal comprehension. Slower speech, single syllable words, and minimal written cues greatly facilitated his verbal comprehension. On identifying environmental sounds, he made predominant acoustic errors. Although he failed to name melodies, he could match, describe, and sing them. The patient had normal hearing except for presbyacusis, right-ear dominance for phonemes, and normal discrimination of basic psychoacoustic features and rhythm. Further testing disclosed difficulty distinguishing tone sequences and discriminating two clicks and short-versus-long tones, particularly in the left ear. Together, these findings suggest impairment in a direct route for temporal analysis and auditory word forms in his right hemisphere to Wernicke's area in his left hemisphere. The findings further suggest a separate and possibly rhythm-based mechanism for music recognition.

  1. The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity

    PubMed Central

    Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.

    2013-01-01

    Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  2. Sleeping in Space: An Unexpected Challenge for Future Mars Explorers

    NASA Technical Reports Server (NTRS)

    Flynn-Evans, Erin

    2018-01-01

    This talk will serve as the keynote address for a research symposium being held at Washington State University. The purpose of the talk is to provide researchers and students at WSU with an overview about what it is like to sleep in space. Dr. Flynn-Evans will begin by highlighting how sleep is different in movies and science fiction compared to real life. She will next cover basic information about sleep and circadian rhythms, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.

  3. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.

    PubMed

    Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo

    2017-06-01

    Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2016-12-01

    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus.

    PubMed

    Rash, J E; Olson, C O; Pouliot, W A; Davidson, K G V; Yasumura, T; Furman, C S; Royer, S; Kamasawa, N; Nagy, J I; Dudek, F E

    2007-10-26

    Suprachiasmatic nucleus (SCN) neurons generate circadian rhythms, and these neurons normally exhibit loosely-synchronized action potentials. Although electrotonic coupling has long been proposed to mediate this neuronal synchrony, ultrastructural studies have failed to detect gap junctions between SCN neurons. Nevertheless, it has been proposed that neuronal gap junctions exist in the SCN; that they consist of connexin32 or, alternatively, connexin36; and that connexin36 knockout eliminates neuronal coupling between SCN neurons and disrupts circadian rhythms. We used confocal immunofluorescence microscopy and freeze-fracture replica immunogold labeling to examine the distributions of connexin30, connexin32, connexin36, and connexin43 in rat and mouse SCN and used whole-cell recordings to re-assess electrotonic and tracer coupling. Connexin32-immunofluorescent puncta were essentially absent in SCN but connexin36 was relatively abundant. Fifteen neuronal gap junctions were identified ultrastructurally, all of which contained connexin36 but not connexin32, whereas nearby oligodendrocyte gap junctions contained connexin32. In adult SCN, one neuronal gap junction was >600 connexons, whereas 75% were smaller than 50 connexons, which may be below the limit of detectability by fluorescence microscopy and thin-section electron microscopy. Whole-cell recordings in hypothalamic slices revealed tracer coupling with neurobiotin in <5% of SCN neurons, and paired recordings (>40 pairs) did not reveal obvious electrotonic coupling or synchronized action potentials, consistent with few neurons possessing large gap junctions. However, most neurons had partial spikes or spikelets (often <1 mV), which remained after QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide] had blocked sodium-mediated action potentials within the recorded neuron, consistent with spikelet transmission via small gap junctions. Thus, a few "miniature" gap junctions on most SCN neurons appear to mediate weak electrotonic coupling between limited numbers of neuron pairs, thus accounting for frequent detection of partial spikes and hypothetically providing the basis for "loose" electrical or metabolic synchronization of electrical activity commonly observed in SCN neuronal populations during circadian rhythms.

  6. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2016-01-01

    Aims Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Methods and results Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. Conclusion In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. PMID:28011835

  7. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping

    PubMed Central

    Cameron, Daniel J.; Bentley, Jocelyn; Grahn, Jessica A.

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion. PMID:26029122

  8. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    PubMed

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  9. Electrical cardioversion

    PubMed Central

    Sucu, Murat; Davutoglu, Vedat; Ozer, Orhan

    2009-01-01

    External electrical cardioversion was first performed in the 1950s. Urgent or elective cardioversions have specific advantages, such as termination of atrial and ventricular tachycardia and recovery of sinus rhythm. Electrical cardioversion is life-saving when applied in urgent circumstances. The succcess rate is increased by accurate tachycardia diagnosis, careful patient selection, adequate electrode (paddles) application, determination of the optimal energy and anesthesia levels, prevention of embolic events and arrythmia recurrence and airway conservation while minimizing possible complications. Potential complications include ventricular fibrillation due to general anesthesia or lack of synchronization between the direct current (DC) shock and the QRS complex, thromboembolus due to insufficient anticoagulant therapy, non-sustained VT, atrial arrhythmia, heart block, bradycardia, transient left bundle branch block, myocardial necrosis, myocardial dysfunction, transient hypotension, pulmonary edema and skin burn. Electrical cardioversion performed in patients with a pacemaker or an incompatible cardioverter defibrillator may lead to dysfunction, namely acute or chronic changes in the pacing or sensitivity threshold. Although this procedure appears fairly simple, serious consequences might occur if inappropriately performed. PMID:19448376

  10. When the clock strikes: Modeling the relation between circadian rhythms and cardiac arrhythmias

    NASA Astrophysics Data System (ADS)

    Seenivasan, Pavithraa; Menon, Shakti N.; Sridhar, S.; Sinha, Sitabhra

    2016-10-01

    It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12am-6am, with 6pm-12am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i.e., temporal oscillations in physiological activity with a period close to 24 hours and synchronized with the day-night cycle. Although studies have identified the genetic basis of circadian rhythm at the intracellular level, the mechanisms by which they influence cardiac pathologies are not yet fully understood. Evidence has suggested that diurnal variations in the conductance properties of ion channel proteins that govern the excitation dynamics of cardiac cells may provide the crucial link. In this paper, we investigate the relationship between the circadian rhythm as manifested in modulations of ion channel properties and the susceptibility to cardiac arrhythmias by using a mathematical model that describes the electrical activity in ventricular tissue. We show that changes in the channel conductance that lead to extreme values for the duration of action potentials in cardiac cells can result either in abnormally high-frequency reentrant activity or spontaneous conduction block of excitation waves. Both phenomena increase the likelihood of wavebreaks that are known to initiate potentially life- threatening arrhythmias. Thus, disruptive cardiac excitation dynamics are most likely to occur in time-intervals of the day-night cycle during which the channel properties are closest to these extreme values, providing an intriguing relation between circadian rhythms and cardiac pathologies.

  11. I(A) channels encoded by Kv1.4 and Kv4.2 regulate neuronal firing in the suprachiasmatic nucleus and circadian rhythms in locomotor activity.

    PubMed

    Granados-Fuentes, Daniel; Norris, Aaron J; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D

    2012-07-18

    Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.

  12. Selective interference with pacemaker activity by electrical dental devices.

    PubMed

    Miller, C S; Leonelli, F M; Latham, E

    1998-01-01

    We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.

  13. Detection and Prevention of Cardiac Arrhythmias During Space Flight

    NASA Technical Reports Server (NTRS)

    Pillai, Dilip; Rosenbaum, David S.; Liszka, Kathy J.; York, David W.; Mackin, Michael A.; Lichter, Michael J.

    2004-01-01

    There have been reports suggesting that long-duration space flight might lead to an increased risk of potentially serious heart rhythm disturbances. If space flight does, in fact, significantly decrease cardiac electrical stability, the effects could be catastrophic, potentially leading to sudden cardiac death. It will be important to determine the mechanisms underlying this phenomenon in order to prepare for long-term manned lunar and interplanetary missions and to develop appropriate countermeasures. Electrical alternans affecting the ST segment and T-wave have been demonstrated to be common among patients at increased risk for ventricular arrhythmias. Subtle electrical alternans on the ECG may serve as a noninvasive marker of vulnerability to ventricular arrhythmias. We are studying indices of electrical instability in the heart for long term space missions by non-invasively measuring microvolt level T-wave alternans in a reduced gravity environment. In this investigation we are using volunteer subjects on the KC-135 aircraft as an initial study of the effect of electrical adaptation of the heart to microgravity. T-wave alternans will be analyzed for heart rate variability and QT restitution curve plotting will be compared for statistical significance.

  14. Electrocardiography in two subspecies of manatee (Trichechus manatus latirostris and Trichechus manatus manatus)

    USGS Publications Warehouse

    Siegal-Willott, J.; Estrada, A.; Bonde, R.K.; Wong, A.; Estrada, D.J.; Harr, K.

    2006-01-01

    Electrocardiographic (ECG) measurements were recorded in two subspecies of awake, apparently healthy, wild manatees (Trichechus manatus latirostris and T. m. manatus) undergoing routine field examinations in Florida and Belize. Six unsedated juveniles (dependent and independent calves) and 6 adults were restrained in ventral recumbency for ECG measurements. Six lead ECGs were recorded for all manatees and the following parameters were determined: heart rate and rhythm; P, QRS, and T wave morphology, amplitude, and duration; and mean electrical axis (MEA). Statistical differences using a t-test for equality of means were determined. No statistical difference was seen based on sex or subspecies of manatees in the above measured criteria. Statistical differences existed in heart rate (P = 0.047), P wave duration (P = 0.019), PR interval (P = 0.025), and MEA (P = 0.021) between adult manatees and calves. Our findings revealed normal sinus rhythms, no detectable arrhythmias, prolonged PR and QT intervals, prolonged P wave duration, and small R wave amplitude as compared with cetacea and other marine mammals. This paper documents the techniques for and baseline recordings of ECGs in juvenile and adult free-living manatees. It also demonstrates that continual assessment of cardiac electrical activity in the awake manatee can be completed and can be used to aid veterinarians and biologists in routine health assessment, during procedures, and in detecting the presence of cardiac disease or dysfunction.

  15. Electrocardiography in two subspecies of manatee (Trichechus manatus latirostris and T. m. manatus).

    PubMed

    Siegal-Willott, Jessica; Estrada, Amara; Bonde, Robert; Wong, Arthur; Estrada, Daniel J; Harr, Kendal

    2006-12-01

    Electrocardiographic (ECG) measurements were recorded in two subspecies of awake, apparently healthy, wild manatees (Trichechus manatus latirostris and T. m. manatus) undergoing routine field examinations in Florida and Belize. Six unsedated juveniles (dependent and independent calves) and 6 adults were restrained in ventral recumbency for ECG measurements. Six lead ECGs were recorded for all manatees and the following parameters were determined: heart rate and rhythm; P, QRS, and T wave morphology, amplitude, and duration; and mean electrical axis (MEA). Statistical differences using a t-test for equality of means were determined. No statistical difference was seen based on sex or subspecies of manatees in the above measured criteria. Statistical differences existed in heart rate (P = 0.047), P wave duration (P = 0.019), PR interval (P = 0.025), and MEA (P = 0.021) between adult manatees and calves. Our findings revealed normal sinus rhythms, no detectable arrhythmias, prolonged PR and QT intervals, prolonged P wave duration, and small R wave amplitude as compared with cetacea and other marine mammals. This paper documents the techniques for and baseline recordings of ECGs in juvenile and adult free-living manatees. It also demonstrates that continual assessment of cardiac electrical activity in the awake manatee can be completed and can be used to aid veterinarians and biologists in routine health assessment, during procedures, and in detecting the presence of cardiac disease or dysfunction.

  16. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 21: Basic Transistor Theory; Module 21T: Multi-Element Vacuum Tubes. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on transistor theory is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in…

  17. What Constitutes a Phrase in Sound-Based Music? A Mixed-Methods Investigation of Perception and Acoustics.

    PubMed

    Olsen, Kirk N; Dean, Roger T; Leung, Yvonne

    2016-01-01

    Phrasing facilitates the organization of auditory information and is central to speech and music. Not surprisingly, aspects of changing intensity, rhythm, and pitch are key determinants of musical phrases and their boundaries in instrumental note-based music. Different kinds of speech (such as tone- vs. stress-languages) share these features in different proportions and form an instructive comparison. However, little is known about whether or how musical phrasing is perceived in sound-based music, where the basic musical unit from which a piece is created is commonly non-instrumental continuous sounds, rather than instrumental discontinuous notes. This issue forms the target of the present paper. Twenty participants (17 untrained in music) were presented with six stimuli derived from sound-based music, note-based music, and environmental sound. Their task was to indicate each occurrence of a perceived phrase and qualitatively describe key characteristics of the stimulus associated with each phrase response. It was hypothesized that sound-based music does elicit phrase perception, and that this is primarily associated with temporal changes in intensity and timbre, rather than rhythm and pitch. Results supported this hypothesis. Qualitative analysis of participant descriptions showed that for sound-based music, the majority of perceived phrases were associated with intensity or timbral change. For the note-based piano piece, rhythm was the main theme associated with perceived musical phrasing. We modeled the occurrence in time of perceived musical phrases with recurrent event 'hazard' analyses using time-series data representing acoustic predictors associated with intensity, spectral flatness, and rhythmic density. Acoustic intensity and timbre (represented here by spectral flatness) were strong predictors of perceived musical phrasing in sound-based music, and rhythm was only predictive for the piano piece. A further analysis including five additional spectral measures linked to timbre strengthened the models. Overall, results show that even when little of the pitch and rhythm information important for phrasing in note-based music is available, phrasing is still perceived, primarily in response to changes of intensity and timbre. Implications for electroacoustic music composition and music recommender systems are discussed.

  18. What Constitutes a Phrase in Sound-Based Music? A Mixed-Methods Investigation of Perception and Acoustics

    PubMed Central

    Olsen, Kirk N.; Dean, Roger T.; Leung, Yvonne

    2016-01-01

    Phrasing facilitates the organization of auditory information and is central to speech and music. Not surprisingly, aspects of changing intensity, rhythm, and pitch are key determinants of musical phrases and their boundaries in instrumental note-based music. Different kinds of speech (such as tone- vs. stress-languages) share these features in different proportions and form an instructive comparison. However, little is known about whether or how musical phrasing is perceived in sound-based music, where the basic musical unit from which a piece is created is commonly non-instrumental continuous sounds, rather than instrumental discontinuous notes. This issue forms the target of the present paper. Twenty participants (17 untrained in music) were presented with six stimuli derived from sound-based music, note-based music, and environmental sound. Their task was to indicate each occurrence of a perceived phrase and qualitatively describe key characteristics of the stimulus associated with each phrase response. It was hypothesized that sound-based music does elicit phrase perception, and that this is primarily associated with temporal changes in intensity and timbre, rather than rhythm and pitch. Results supported this hypothesis. Qualitative analysis of participant descriptions showed that for sound-based music, the majority of perceived phrases were associated with intensity or timbral change. For the note-based piano piece, rhythm was the main theme associated with perceived musical phrasing. We modeled the occurrence in time of perceived musical phrases with recurrent event ‘hazard’ analyses using time-series data representing acoustic predictors associated with intensity, spectral flatness, and rhythmic density. Acoustic intensity and timbre (represented here by spectral flatness) were strong predictors of perceived musical phrasing in sound-based music, and rhythm was only predictive for the piano piece. A further analysis including five additional spectral measures linked to timbre strengthened the models. Overall, results show that even when little of the pitch and rhythm information important for phrasing in note-based music is available, phrasing is still perceived, primarily in response to changes of intensity and timbre. Implications for electroacoustic music composition and music recommender systems are discussed. PMID:27997625

  19. Electrical storms and their prognostic implications.

    PubMed

    Awan, Zahid Aslam; ul Hassan, Mahmood; Bangash, Kamran; Shah, Bakhtawar; Noor, Lubna

    2009-01-01

    Prevention of sudden cardiac death has always been a challenge for electrophysiologists and to date, automatic implantable cardiovertor defibrillator (AICD) is found to be the only remedy. This device delivers an intracardiac shock whenever it senses a fatal ventricular arrhythmia in order to achieve sinus rhythm. If the delivery of these intracardiac shocks becomes frequent, the situation is declared as an electrical storm. This article deals with the frequency, precipitating factors and prevention of electrical storms. One hundred and ten episodes of electrical storms (a total of 668 shocks) were retrospectively analysed in 25 recipients of automatic implantable cardioverter defibrillators. ECG, echocardiography, serum electrolytes, urea and creatinine were done for all the patients, and they were hospitalized for a minimum of 24 hours. During the 3 year study period, all the 25 patients with an implantable cardiovertor defibrillator, on an average, received one shock per two years. However, 12 out of these 25 patients (50%) had more than two shocks within 24 hours. Most of these patients with electrical storms were having active ischemia, electrolytes imbalances or renal failure. Electrical storms are common in patients with coronary artery disease with impaired left ventricular functions. Ischemia, electrolytes imbalances and renal failure predispose to the electrical storms. Electrical Storms are predictors of poor prognosis.

  20. Sustainable Transportation Basics | Transportation Research | NREL

    Science.gov Websites

    Transportation Basics Sustainable Transportation Basics Compare Vehicle Technologies 3-D introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen

  1. Memristors in plants

    PubMed Central

    Volkov, Alexander G; Tucket, Clayton; Reedus, Jada; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    We investigated electrical circuitry of the Venus flytrap, Mimosa pudica and Aloe vera. The goal was to discover if these plants might have a new electrical component—a resistor with memory. This element has attracted great interest recently and the researchers were looking for its presence in different systems. The analysis was based on cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation of plants by bipolar sinusoidal or triangle periodic waves induces electrical responses in the Venus flytrap, Mimosa pudica and Aloe vera with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in plant tissue. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. This study can be a starting point for understanding mechanisms of memory, learning, circadian rhythms, and biological clocks. PMID:24556876

  2. Chronic exposure to ELF fields may induce depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pinealmore » gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.« less

  3. Influence of space weather on human organism at different geo-latitudes: telecommunication helio-medical monitoring "Geliomed" 2003-2010

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Maria; Obridko, Vladimir; Samsonov, Sergey; Vitaliy, Vishnevskey; Grigoryev, Pavel; Valeriy, Pipin; Khabarova, Olga

    We discuss the results of the long-term telecommunicative biogeophysical monitoring "Geliomed" (2003-2010). The purpose is to explore the effects of spatial and temporal variations in space weather and climatic factors on the human health state. The monitoring is carried out simultaneously at the different geographical areas that covers the different latitudes. The project developed in the joint collaboration the Ukrainian National Academy of Science and the Russian Academy of Science. The experiment carried out simultaneously in Moscow, Yakutsk, Kiev and Simferopol. The principal components of the experiment can be summarized as follows: 1. Equipments and data gathering methods are the same for all the scientific cen-ters which are involved in experiment. Research centers working with the same equipment and using the same protocols with on-line registration of current data on same portal server (http//geliomed.immsp.kiev.ua) 2. The groups of patients involved in the program are kept the same for the whole observational period of time. 3. The daily registered parameters in-clude: psycho-emotional tests and 1-st lead ECG (contain 25 000 measurements for the whole period), arterial pressure (100 000 measurements), variability cardiac contraction (25000 mea-surements), electric conduction of bioactive points on skin (more than 500 000 measurements for the whole period ). 4. The every patient in the monitoring group is examined at the 4 functional states. Registration is done at rest, after standard psychology test, Roufiet test, and after 10 min relax. 5. The data of the ECG measurements are analyzed in the phase space constructed from the signal and its derivative. 6. The results time series were compared with daily values of space weather and geomagnetic parameters. Results. In the all monitoring centers all the patients involved in the monitoring show the same type of changes in the cardiac activity parameters during an isolated magnetic storm. Such a change of the ECG parameters occurs nearly simultaneously for all the centers. The higher latitude, the greater amplitude of the ECG parameters change. The properties of the detected phenomena can be summarized as follows: -The dynamics of adaptation programs changes during the storm. The maximum amplitude of change is observed for the healthy patients. -The number of none-typical ECG beats increase; -There are no clear evidences for variations of RR intervals during geomagnetic storms. -Man are more sensitive to magnetic storms, while endogenous rhythms predominate for females; Additionally, we find, that the embedding of ECG time series in 3D phase space can be considered as a mix of a few states. At the rest, the occurrence of the basic ECG state compare to additional ones is about 8:2. The occurrence of the basic state increases after the stress. Thus, the external stress may change the relative disorder of the system. To understand the origin of the standard cardio-cycle changes we reconstruct of the dynamical model of the individual cardiac beat. The reconstruction reveals that the typical evolution of the cardiac rhythm includes the drift of attractor in the embedding space and the sudden change between a few basic patterns of attractor. However one of pattern is always dominating. These several pattern of ECG beat attractor can be ascribed to a several states of the system. Qualitatively, the nonlinear ECG dynamics is defined by the stationary points, which are inside into Q and T waves. Conclusions: many-year telecommunication heliomedical monitoring in different lat-itudes showed, that space and geophysical factor act as a training factor for the adaptation-resistant member of the population. It serve as a channel for rejection of nonviable members of the population, synchronize the total populations rhythms, create conditions for generation of new information in the process of evolution adaptation of biological systems in general.

  4. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  5. Electrical Trades. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline is intended to assist vocational instructors in developing and teaching a course in the electrical trades. Addressed in the individual sections of the outline are the following topics: orientation (a course overview, job orientation, safety, first aid, and Vocational Industrial Clubs of America); basic skills (mathematics,…

  6. Basic Electricity. Training Module 3.325.1.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic concepts of electricity as applied to water and wastewater treatment. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers definition of terms, voltage, current…

  7. Basic Electricity. Part 2.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    This guide, the second (part 2) in a set of four guides, is designed for the student interested in a vocation in electrical work, and includes two units: Unit IV--Electrical Theory, covering thirteen lessons (matter, the atom, electrical charges in the atom, rules of electric charges, electricity, atoms in an electrical conductor, electrical…

  8. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510

  9. Dark matters: effects of light at night on metabolism.

    PubMed

    Nelson, Randy J; Chbeir, Souhad

    2018-05-11

    Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.

  10. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling.

    PubMed

    Burton, Katherine J; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping; Zhou, Qun-Yong

    2015-04-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms.

  11. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

    PubMed Central

    Burton, Katherine J.; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping

    2015-01-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms. PMID:27103928

  12. Chemical cardioversion of recent-onset atrial fibrillation in the emergency department using vernakalant hydrochloride achieves safe and rapid restoration of sinus rhythm and facilitates same day discharge.

    PubMed

    Stoneman, P; Gilligan, P; Mahon, P; Sheahan, R

    2017-11-01

    Vernakalant hydrochloride is a rapid-acting antiarrhythmic drug licensed in the EU since 2010 for the conversion of recent-onset atrial fibrillation with proven efficacy and safety when compared with placebo and amiodarone in randomized clinical trials. The aim of our study was to determine the feasibility of same day discharge (following 2 h monitoring) from the emergency department after successful cardioversion using vernakalant hydrochloride. Patients with recent-onset atrial fibrillation treated in the emergency department of a large Dublin academic teaching hospital. Patients received a maximum of two weight based 10 min infusions of vernakalant. Hypotensive events (>30% initial blood pressure), arrhythmias, conversion rates, and time to conversion were recorded. Sinus rhythm was restored in 35 out of 42 patients (83%) in an average of 8.8 min (median 8 min), average CHA2DS2-VASc of 0.92, HAS-BLED of 0.21 and average symptoms duration of 12 h. There were no hypotensive or arrhythmogenic events. 41 out of 42 patients were discharged after 2 h of monitoring. Vernakalant hydrochloride has provided a quick, safe, and practical means of achieving rapid restoration of sinus rhythm in our ED population with stable recent-onset AF who would otherwise not have undergone routine electrically cardioversion and same day discharge.

  13. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E.

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadianmore » rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.« less

  14. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator.

    PubMed

    Mezan, Shaul; Feuz, Jean Daniel; Deplancke, Bart; Kadener, Sebastian

    2016-10-11

    Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide. We show that PDF feedback is required for maintaining normal oscillation pattern in CLK-driven transcription. Interestingly, we found that CLK and neuronal firing suppresses pdf transcription, likely through a common pathway involving the transcription factors DHR38 and SR, establishing a direct link between electric activity and the circadian system. In sum, our work provides evidence for the existence of an uncharacterized CLK-PDF feedback loop that tightly wraps together the molecular oscillator with the circadian neuronal network in Drosophila. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Music through the skin—simple demonstration of human electrical conductivity

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Möllmann, K. P.

    2016-05-01

    The conduction of electricity is an important topic for any basic physics course. Issues of safety often results in teacher demonstration experiments in front of the class or in extremely simple though—for students—not really fascinating (not to say boring) hands on activities for everybody using 1.5 V batteries, cables and light bulbs etc. Here we briefly review some basic facts about conduction of electricity through the human body and report a simple, safe, and awe inspiring electrical conduction experiment which can be performed with little preparation by a teacher involving the whole class of say 20 students.

  16. 75 FR 61219 - Entergy Operations, Inc.; River Bend Station, Unit 1; Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Emergencies,'' for repair and corrective actions states that two individuals, one Mechanical Maintenance... actions will be taken to ensure basic electrical/l&C tasks can be performed by Mechanical Maintenance personnel. Mechanical Maintenance personnel will receive training in basic electrical and I&C tasks to...

  17. A Basic Guide to Nuclear Power.

    ERIC Educational Resources Information Center

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  18. DEVELOPMENT OF COMMUNITY POWER FROM SUSTAINABLE SMALL HYDRO POWER SYSTEMS – ACAPACITY BUILDING PROJECT IN BANGANG, CAMEROON

    EPA Science Inventory

    Electric power is one of the basic needs for the development of any community. With electric power lacking in most rural communities in Africa, providing basic amenities that are dependent on power such as clean portable drinking water, powering equipment in health and dent...

  19. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...

  20. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...

  1. Electrical Experiments. VT-214-12-3. Part III. Basic Electronics.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this third document in a series of six electrical learning activity packages focuses on basic electronics. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of information sheets and job…

  2. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007

    DOE R&D Accomplishments Database

    Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.

    2007-04-04

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  3. Appliance Services. Basic Course. Career Education.

    ERIC Educational Resources Information Center

    Killough, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 25 terminal objectives for a basic appliance repair course. The materials were developed for a 36-week course (2 hours daily) designed to enable the student to be well-grounded in the fundamentals of electricity as well as applied electricity.…

  4. Intermittency in electric brain activity in the perception of ambiguous images

    NASA Astrophysics Data System (ADS)

    Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-04-01

    Present paper is devoted to the study of intermittency during the perception of bistable Necker cube image being a good example of an ambiguous object, with simultaneous measurement of EEG. Distributions of time interval lengths corresponding to the left-oriented and right-oriented cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform and it was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a marker of Necker cube recognition process.

  5. Circadian Rhythms in Plants, Insects and Mammals Exposed to ELF Magnetic and/or Electric Fields and Currents

    DTIC Science & Technology

    1975-08-28

    favorable to the model. Parameter estimates from this fitting process, carried out in the nature of a "moving-average" throughout the cntilre serces of...34OWOLS Pl %%t4)1 uSSvMS~ USA NIWW 162-7-020 r,.6/WEfg 4/R:0 GAUSS.8:O.5 GAUSS.C:I.O GAUSS.D:2.0 GAtJ$ 360 :24 i ONCHRNHEC SCHOUL if .) 75.2 40.0 20

  6. Light Visor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Seasonal Affective Disorder is a form of depression brought on by reduced light. For some people, this can lead to clinical depression. NASA has conducted research in light therapy and employs it to help astronauts adjust internal rhythms during orbital flight. Dr. George Brainard, a medical researcher and NASA consultant, has developed a portable light therapy device, which is commercially available. The Light Visor allows continuous light therapy and can be powered by either batteries or electricity. Dr. Brainard continues to research various aspects of light therapy.

  7. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov Websites

    in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability -electric vehicles (EVs)-also called electric-drive vehicles collectively-use electricity either as their charge the battery. Some can travel more than 70 miles on electricity alone, and all can operate solely

  8. Electricity. A Bilingual Text = Electricidad. Un Texto Bilingue.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in electricity in a two-column, English-Spanish format. Following an introduction to electricity and a lesson on safety, the booklet contains 21 units covering the following topics: ways to produce electricity; basic circuits; electrical measurements; electric generators; transformers, symbols and…

  9. Heart rate variability parameters in horses distinguish atrial fibrillation from sinus rhythm before and after successful electrical cardioversion.

    PubMed

    Broux, B; De Clercq, D; Decloedt, A; Ven, S; Vera, L; van Steenkiste, G; Mitchell, K; Schwarzwald, C; van Loon, G

    2017-11-01

    Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. After successful treatment, recurrence is common. Heart rate monitors are easily applicable in horses and some devices offer basic heart rate variability (HRV) calculations. If HRV can be used to distinguish between AF and sinus rhythm (SR), this could become a monitoring tool for horses at risk for recurrence of AF. The purpose of this study was to assess whether in horses AF (before cardioversion) and SR (after cardioversion) can be differentiated based upon HRV parameters. Cohort study with internal controls. Six HRV parameters were determined in 20 horses, both in AF and in SR, at rest (2- and 5-min and 1- and 4-h recordings) and during exercise (walk and trot, 2-min recordings). Time-domain (standard deviation of the NN intervals, root mean squared successive differences in NN intervals and triangular index), frequency domain (low/high frequency ratio) and nonlinear parameters (standard deviation of the Poincaré plot [SD]1 and SD2) were used. Statistical analysis was done using paired Wilcoxon signed rank tests and receiver operating characteristic curves. HRV was higher during AF compared to SR. Results for the detection of AF were good (area under the receiver operating characteristic curve [AUC] 0.8-1) for most HRV parameters. Root mean squared successive differences in NN intervals and SD1 yielded the best results (AUC 0.9-1). Sensitivity and specificity were high for all parameters at all recordings, but highest during exercise. Although AUCs improved with longer recordings, short recordings were also good (AUC 0.8-1) for the detection of AF. In horses with frequent second degree atrioventricular block, HRV at rest is increased and recordings at walk or trot are recommended. Animals served as their own controls and there was no long-term follow-up to identify AF recurrence. AF (before cardioversion) and SR (after cardioversion) could be distinguished with HRV. This technique has promise as a monitoring tool in horses at risk for AF development. © 2017 EVJ Ltd.

  10. Treatment of out-of-hospital supraventricular tachycardia: adenosine vs verapamil.

    PubMed

    Brady, W J; DeBehnke, D J; Wickman, L L; Lindbeck, G

    1996-06-01

    To compare the use of adenosine and the use of verapamil as out-of-hospital therapy for supraventricular tachycardia (SVT). A period of prospective adenosine use (March 1993 to February 1994) was compared with a historical control period of verapamil use (March 1990 to February 1991) for SVT. Data were obtained for SVT patients treated in a metropolitan, fire-department-based paramedic system serving a population of approximately 1 million persons. Standard drug protocols were used and patient outcomes (i.e., conversion rates, complications, and recurrences) were monitored. During the adenosine treatment period, 105 patients had SVT; 87 (83%) received adenosine, of whom 60 (69%) converted to a sinus rhythm (SR). Vagal maneuvers (VM) resulted in restoration of SR in 8 patients (7.6%). Some patients received adenosine for non-SVT rhythms: 7 sinus tachycardia, 18 atrial fibrilation, 7 wide-complex tachycardia (WCT), and 2 ventricular tachycardia; no non-SVT rhythm converted to SR and none of these patients experienced an adverse effect. Twenty-five patients were hemodynamically unstable (systolic blood pressure < 90 mm Hg), with 20 receiving drug and 13 converting to SR; 8 patients required electrical cardioversion. Four patients experienced adverse effects related to adenosine (chest pain dyspnea, prolonged bradycardia, and ventricular tachycardia). In the verapamil period, 106 patients had SVT: 52 (49%) received verapamil (p < 0.001, compared with the adenosine period), of whom 43 (88%) converted to SR (p = 0.11). Two patients received verapamil for WCT; neither converted to SR and both experienced cardiovascular collapse. VM resulted in restoration of SR in 12 patients (11.0%) (p = 0.52). Sixteen patients were hemodynamically unstable, with 5 receiving drug (p = 0.005) and 5 converting to SR; 9 patients required electrical cardioversion (p = 0.48). Four patients experienced adverse effects related to verapamil (hypotension ventricular tachycardia, ventricular fibrillation). Recurrence of SVT was noted in 2 adenosine patients and 2 verapamil patients in the out-of-hospital setting and in 23 adenosine patients and 15 verapamil patients after ED arrival, necessitating additional therapy (p = 0.48 and 0.88, for recurrence rates and types of additional therapies, respectively). Hospital diagnoses, outcomes, and ED dispositions were similar for the 2 groups. Adenosine and verapamil were equally successful in converting out-of-hospital SVT in patients with similar etiologies responsible for the SVT. Recurrence of SVT occurred at similar rates for the 2 medications. Rhythm misidentification remains a common issue in out-of-hospital cardiac care in this emergency medical services system.

  11. [The variability of respiratory pattern and gas exchange].

    PubMed

    Grishin, O V; Grishin, V G; Kovalenko, Iu V

    2012-01-01

    It is known, that spectral analysis of heart rate and respiratory variability allows to find out the very low frequency (VLF) rhythm. However it is not known, it is necessary to carry this rhythm to what type of wave processes. The purpose of the present researches was to study the respiratory variability and the variability of gas exchange parameters. 10 healthy subjects have been surveyed. The pneumogramms within 30 minutes spent record, and then a method "breath-by-breath" within 30 minutes registered gas exchange parameters (Ve--lung ventilation, V(O2) -O2 consumption and other parameters). Fast Fourier transform method has found out two groups of the basic peaks. The first--in a range 0.2-0.3 Hz (a time cycle--3-5 s), that corresponds respiratory frequency which size at subjects varied from 12 to 20 per minute. The second--in a range 0.002-0.0075 Hz, that corresponds VLF diapason (a time cycle--1-3.5 minutes). At the analysis pneumogramms rhythms in the same ranges have been established. The carried out researches allow to draw a conclusion on steady character of wave process in a VLF-range. It can be carried to quasi-periodic oscillations type. First oscillator or respiratory frequency it is formed by means of mechanisms of chemoreception. Considering, that V(O2) and V(CO2) are function energy exchange, it is possible to believe, what exactly energy demand define the second oscillator.

  12. Molecular cloning and characterization of the light-regulation and circadian-rhythm of the VDE gene promoter from Zingiber officinale.

    PubMed

    Zhao, Wenchao; Wang, Shaohui; Li, Xin; Huang, Hongyu; Sui, Xiaolei; Zhang, Zhenxian

    2012-08-01

    Ginger (Zingiber officinale Rosc.) is prone to photoinhibition under intense sunlight. Excessive light can be dissipated by the xanthophyll cycle, where violaxanthin de-epoxidase (VDE) plays a critical role in protecting the photosynthesis apparatus from the damage of excessive light. We isolated ~2.0 kb of ginger VDE (GVDE) gene promoter, which contained the circadian box, I-box, G-box and GT-1 motif. Histochemical staining of Arabidopsis indicated the GVDE promoter was active in almost all organs, especially green tissues. β-glucuronidase (GUS) activity driven by GVDE promoter was repressed rather than activated by high light. GUS activity was altered by hormones, growth regulators and abiotic stresses, which increased with 2,4-dichlorophenoxyacetic acid and decreased with abscisic acid, salicylic acid, zeatin, salt (sodium chloride) and polyethylene glycol. Interestingly, GUS activities with gibberellin or indole-3-acetic acid increased in the short-term (24 h) and decreased in the long-term (48 and 72 h). Analysis of 5' flank deletion found two crucial functional regions residing in -679 to -833 and -63 to -210. Northern blotting analysis found transcription to be regulated by the endogenous circadian clock. Finally, we found a region necessary for regulating the circadian rhythm and another for the basic promoter activity. Key message A novel promoter, named GVDE promoter, was first isolated and analyzed in this study. We have determined one region crucial for promoter activity and another responsible for keeping circadian rhythms.

  13. An Introduction to Tensors for Students of Physics and Engineering

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2002-01-01

    Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.

  14. Timing of host feeding drives rhythms in parasite replication

    PubMed Central

    Cumnock, Katherine; Schneider, David; Subudhi, Amit; Savill, Nicholas J.

    2018-01-01

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience. PMID:29481559

  15. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  16. T198. A SCHIZOPHRENIA-LIKE BIRTH SEASONALITY AMONG MATHEMATICIANS AND AN OPPOSITE SEASONALITY AMONG BIOLOGISTS: MORE EVIDENCE IMPLICATING BIMODAL RHYTHMS OF GENERAL BIRTHS

    PubMed Central

    Marzullo, Giovanni

    2018-01-01

    Abstract Background Based on early-20th century births, a pre-electric illumination time of comparatively normal human exposure to sunlight, studies of schizophrenia (SCZ) found a birth seasonality with two opposite effects: a SCZ-liability peak among subjects born around late-February and an equally significant SCZ-resistance peak among those born six months later, around late-August. We previously investigated this rhythm in connection with a sunlight-dependent bimodal rhythm of general births that, prior to the full advent of electric lighting (but not later), occurred ubiquitously in non-equatorial parts of the world. We found that the SCZ-liability peak coincided with a first, Feb-Mar peak of general-population births (the GP1) while the SCZ-resistance peak coincided with a second, Aug-Sep peak of those births (the GP2). Moreover, in a study of hand and visual-field preferences among professional baseball players, we found the SCZ-liability, GP1-coincident seasonality among players with preferences denoting cerebral asymmetry “deficits” (CADs) and the SCZ-resistance, GP2-coincident seasonality among those with preferences denoting cerebral asymmetry “excesses.” Also, in a study suggested by associations of CADs with artistic abilities, we found the SCZ-liability, GP1-coincident seasonality among groups representing visual, performing and literary art “creators” (VPL-Artists) and the SCZ-resistance, GP2-coincident seasonality among groups representing art critics, historians, curators and other art “observers” (Para-Artists). Together, these findings suggested, as one possibility (but see later), that the SCZ-liability, CAD effects and artistic abilities could all three represent traits genetically or otherwise selected into the GP1 excess population of newborns and out of the GP2 population. The present study of “scientists” was initially aimed at the purported arts/science antithesis. Methods Birth seasonalities were examined among early-20th century born American scientists and among yet earlier European biologists and mathematicians. Results A group representing 1,925 American scientists showed the SCZ-resistance, GP2-coincident seasonality. However, this effect proved to be mostly due to biologists because biochemists, chemists, and physicists showed gradually less seasonality while mathematicians suggested an altogether artist-like, GP1-coincident seasonality. This intimation of a biologist-mathematician antithesis was pursued with an investigation of most major figures in the history of the two sciences from the 15th to the early-20th century. The two groups, numbering 576 mathematicians and 787 biologists, shared the same mean decade of birth, the 1780s, and essentially the same geographic origin in Western Europe. The mathematicians showed a very significant SCZ liability-like, GP1-coincident seasonality while the biologists showed an even more significant SCZ resistance-like, GP2-coincident seasonality. The latter effect was particularly strong among naturalists, anatomists and other groups representing biological “observationalism” as opposed to “experimentalism.” Discussion The findings are discussed in light of a) new evidence that the annual photoperiod is indeed alone responsible for both peaks of general births, with the GP1 and the GP2 being caused by maternal periconceptional exposure to, respectively, the summer-solstice sunlight maximum and the winter-solstice minimum, and b) an approach/withdrawal theory of lateralization of basic emotions where the left cerebral cortex would handle external stimuli eliciting complacent emotions towards external realities while the right cortex would handle internal stimuli eliciting disdain for those realities.

  17. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    PubMed

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Basic Electricity/Electronics (Industrial Arts). Vocational Education Curriculum Guide. Bulletin 1724.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide is designed to assist industrial arts teachers, counselors, and administrators in improving instruction in the areas of electricity and basic electronics. Included in the first part of the guide are a course flow chart, a course description, a discussion of target grade levels and prerequisites, course goals and objectives,…

  19. A Validity and Reliability Study of the Basic Electronics Skills Self-Efficacy Scale (BESS)

    ERIC Educational Resources Information Center

    Korkmaz, Ö.; Korkmaz, M. K.

    2016-01-01

    The aim of this study is to improve a measurement tool to evaluate the self-efficacy of Electrical-Electronics Engineering students through their basic electronics skills. The sample group is composed of 124 Electrical-Electronics engineering students. The validity of the scale is analyzed with two different methods through factor analysis and…

  20. Knowledge Retention among Graduates of Basic Electricity and Electronics Schools.

    ERIC Educational Resources Information Center

    Hall, Eugene R.; And Others

    The extent of knowledge decay during the interval between graduation from a basic electricity and electronics (BE/E) school and entry into a construction electrician (CE) "A" school was assessed. A sample consisting of 307 BE/E graduates was retested using a multiple choice test identical to the final examination taken at BE/E school.…

  1. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.385 Cessation of distribution of a...

  2. Formative Evaluation of an Experimental BE/E [Basic Electricity and Electronics] Program. Report No. 9-75.

    ERIC Educational Resources Information Center

    Fishburne, R. P., Jr.; Mims, Diane M.

    An experimental Basic Electricity and Electronics course (BE/E) utilizing a lock-step, instructor presentation methodology was developed and evaluated at the Service School Command, Great Lakes. The study, directed toward the training of lower mental group, school nonqualified personnel, investigated comparative data on test performance, attitude,…

  3. Ethical and methodological standards for laboratory and medical biological rhythm research.

    PubMed

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was conducted, shift schedule in studies involving shift work, and menstrual cycle stage in studies involving young women). Rhythm analysis of time series data should be performed with the perspective that rhythms of different periods might be superimposed upon the observed temporal pattern of interest. A variety of different and complementary statistical procedures can be used for rhythm detection. Fitting a mathematical model to the time series data provides a better and more objective analysis of time series data than simple data inspection and narrative description, and if rhythmicity is documented by objective methods, its characterization is required by relevant parameters such as the rhythm's period (tau), MESOR (time series average), amplitude (range of temporal variation), acrophase (time of peak value), and bathyphase (time of trough value). However, the assumptions underlying the time series modeling must be satisfied and applicable in each case, especially the assumption of sinusoidality in the case of cosinor analysis, before it can be accepted as appropriate. An important aspect of the peer review of manuscripts submitted to Chronobiology International entails judgment of the conformity of research protocols and methods to the standards described in this article.

  4. Electricity-Electronics Curriculum Guide. Instructional Modules Level II.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Div. of Vocational Education.

    These teacher's materials are for a 24-unit competency-based secondary education course on electricity and electronics designed for California public schools. The 24 units are: (1) an orientation; (2) an introduction to electricity; (3) safety; (4) history of electricity; (5) basic electrical skills; (6) magnetism; (7) the nature of electricity;…

  5. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    PubMed

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  6. Serial binary interval ratios improve rhythm reproduction.

    PubMed

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  7. Serial binary interval ratios improve rhythm reproduction

    PubMed Central

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258

  8. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  9. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.

    PubMed

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.

  10. “Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm

    PubMed Central

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334

  11. Use of rhythm in acquisition of a computer-generated tracking task.

    PubMed

    Fulop, A C; Kirby, R H; Coates, G D

    1992-08-01

    This research assessed whether rhythm aids acquisition of motor skills by providing cues for the timing of those skills. Rhythms were presented to participants visually or visually with auditory cues. It was hypothesized that the auditory cues would facilitate recognition and learning of the rhythms. The three timing principles of rhythms were also explored. It was hypothesized that rhythms that satisfied all three timing principles would be more beneficial in learning a skill than rhythms that did not satisfy the principles. Three groups learned three different rhythms by practicing a tracking task. After training, participants attempted to reproduce the tracks from memory. Results suggest that rhythms do help in learning motor skills but different sets of timing principles explain perception of rhythm in different modalities.

  12. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    PubMed

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  13. [Changes in Spatial Organization of Cortical Rhythm Vibrations in Children uner the Influence of Music].

    PubMed

    Shepovalnikov, A N; Egorov, M V

    2015-01-01

    Changes is systemic brain activity under influence of classical music (minor and major music) were studied at two groups of healthy children aged 5-6 years (n = 53). In 25 of studied children the Luscher test showed increased level of anxiety which significantly decreased after music therapy sessions. Bioelectrical cortical activity registered from 20 unipolar leads was subjected to correlation, coherence and factor analysis. Also the dynamics of the power spectrum for each of the EEG was studied. According to EEG all children after listening to both minor and major tones showed reorganization of brain rhythm structure accompanied by a decrease in the level of coherence and correlation of EEG; also was found significant and almost universal decrease in the EEG power spectrum. Registered EEG changes under the influence of classical music seems to reflect a decrease in excess of "internal tension" and weakening degree of "stiffness" to ensure the activity of cerebral structures responsible for mechanisms of "basic integration" which maintain constant readiness of brain to rapid and complete inclusion in action.

  14. Biorhythms on cellular and organismic level (introduction).

    PubMed

    Mergenhagen, D

    1989-01-01

    The regular change of day and night, of light and darkness during millions of years has strongly affected the development of life on earth. Many organisms adapted themselves to this environmental condition and, finally, evolved an endogenous timer which usually is in phase with the earth's rotation and causes many functions to perform one oscillation per day. Such circadian rhythms (derived from circa dies i.e. about 1 day) were found in almost all classes of plants and animals, and even in protozoans. They persist in a constant environment and, therefore, are independent of any known external trigger signals. Since even unicells perform circadian rhythms which are similar to those observed in highly developed multicellular organisms many scientists favor the existence of a basic mechanism common to all kinds of biological clocks that is located somewhere in the single cell and probably comprises many different biochemical reactions. One purpose of this topical meeting was to discuss how organisms respond to the absence of gravity and terrestrial zeitgeber and how they may react to the imposing of hypergravity fields. Another aim was to develop model-mechanisms appropriate to describe these responses.

  15. A Clinical Feasibility Study of Atrial and Ventricular Electromechanical Wave Imaging

    PubMed Central

    Provost, Jean; Gambhir, Alok; Vest, John; Garan, Hasan; Konofagou, Elisa E.

    2014-01-01

    Background Cardiac Resynchronization Therapy (CRT) and atrial ablation currently lack a noninvasive imaging modality for reliable treatment planning and monitoring. Electromechanical Wave Imaging (EWI) is an ultrasound-based method that has previously been shown to be capable of noninvasively and transmurally mapping the activation sequence of the heart in animal studies by estimating and imaging the electromechanical wave, i.e., the transient strains occurring in response to the electrical activation, at both very high temporal and spatial resolution. Objective Demonstrate the feasibility of noninvasive transthoracic EWI for mapping the activation sequence during different cardiac rhythms in humans. Methods EWI was performed in CRT patients with a left bundle-branch block (LBBB), during sinus rhythm, left-ventricular pacing, and right-ventricular pacing and in atrial flutter (AFL) patients before intervention and correlated with results from invasive intracardiac electrical mapping studies during intervention. Additionally, the feasibility of single-heartbeat EWI at 2000 frames/s, is demonstrated in humans for the first time in a subject with both AFL and right bundle-branch-block. Results The electromechanical activation maps demonstrated the capability of EWI to localize the pacing sites and characterize the LBBB activation sequence transmurally in CRT patients. In AFL patients, the propagation patterns obtained with EWI were in agreement with results obtained from invasive intracardiac mapping studies. Conclusion Our findings demonstrate the potential capability of EWI to aid in monitoring and follow-up of patients undergoing CRT pacing therapy and atrial ablation with preliminary validation in vivo. PMID:23454060

  16. Development of Poincare Software to Predict Arrythmias

    NASA Technical Reports Server (NTRS)

    Maaliki, Samer

    2003-01-01

    The most distressing types of heart malfunction occur because of an abnormal rhythm of the heart. Cardiac arrythmias can be caused by abnormal rhythmicity of the pacemaker, electrolyte disturbances, blockage of the transmission of the electric impulse through the heart, and other abnormalities. There is strong evidence that space flight is associated with decreased cardiac electrical stability that may pose a life threatening risk to astronauts. For example, during the Skylab missions, a crewmember had a five beat run of ventricular tachycardia during lower body negative pressure. Also, analysis of nine 24-hour Holter monitor recordings obtained during long term spaceflight on Mir revealed one 14-beat run of ventricular tachycardia. A Mir cosmonaut was replaced in 1986 because of cardiac dysrhythmias. Most recently, in July of 1997, a Mir commander was unable to participate in the Spektr module repair due to complaints of an irregular heart rhythm. Despite these examples, possible mechanisms of arrhythmias and countermeasure strategies have barely been addressed. The Poincare method has been proposed as a technique that might potentially predict life-threatening arrhythmias before they occur. According to this method, each RR interval obtained from an EKG recording is plotted sequentially vs. the previous RR interval. Several studies using the method have demonstrated a strong correlation between the shape of the Poincare plot and ventricular arrhythmia. Our purpose was to develop an automated software program that detects the R peaks from an EKG recording while simultaneously displaying the Poincare plot and other related parameters.

  17. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  18. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus

    PubMed Central

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2017-01-01

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms. PMID:28270612

  19. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures.

    PubMed

    Migliaro, Adriana; Silva, Ana

    2016-01-01

    Timing is crucial for social interactions. Animal behavior is synchronized with biotic and abiotic environment variables ensuring that the activity phase of conspecifics occurs during the same period of the day. As biological rhythms are embedded in the complex integrative control of the brain, it is fundamental to explore its interaction with environmental and social factors. This approach will unravel the link between external stimuli carrying information on environmental cycles and the neural commands for behavior, including social behavior, associated with precise phases of those cycles. Arousal in the solitary Gymnotus omarorum and in the gregarious Brachyhypopomus gauderio is characterized by a nocturnal increase in the basal discharge rate of electric behavior, which is mild and transient in G. omarorum and large and persistent in B. gauderio. In this study, we show that the major integrator of social behavior, AVT (arginine vasotocin), is not involved in the nocturnal increase of electric behavior basal rate in isolated animals of either species. On the other hand, endogenous melatonin, the major modulator of the circadian system, is responsible for the nocturnal increase in electric behavior in isolated individuals of both species. © 2016 S. Karger AG, Basel.

  20. Basic guidelines to introduce electric circuit simulation software in a general physics course

    NASA Astrophysics Data System (ADS)

    Moya, A. A.

    2018-05-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 23: Multivibrators. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on multivibrators is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Three lessons are included in the…

  2. Waterworks Operator Training Manual.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    Sixteen self-study waterworks operators training modules are provided. Module titles are the following: basic mathematics, basic chemistry, analysis procedures, microbiology, basic electricity, hydraulics, chlorination, plant operation, surface water, ground water, pumps, cross connections, distribution systems, safety, public relations, and…

  3. Hypothermia after cardiac arrest: expanding the therapeutic scope.

    PubMed

    Bernard, Stephen

    2009-07-01

    Therapeutic hypothermia for 12 to 24 hrs following resuscitation from out-of-hospital cardiac arrest is now recommended by the American Heart Association for the treatment of neurological injury when the initial cardiac rhythm is ventricular fibrillation. However, the role of therapeutic hypothermia is uncertain when the initial cardiac rhythm is asystole or pulseless electrical activity, or when the cardiac arrest is primarily due to a noncardiac cause, such as asphyxia or drug overdose. Given that survival rate in these latter conditions is very low, it is unlikely that clinical trials will be undertaken to test the efficacy of therapeutic hypothermia in this setting because of the very large sample size that would be required to detect a significant difference in outcomes. Therefore, in patients with anoxic brain injury after nonventricular fibrillation cardiac arrest, clinicians will need to balance the possible benefit of therapeutic hypothermia with the possible side effects of this therapy. Given that the side effects of therapeutic hypothermia are generally easily managed in the critical care setting, and there is benefit for anoxic brain injury demonstrated in laboratory studies, consideration may be given to treat comatose post-cardiac arrest patients with therapeutic hypothermia in this setting. Because the induction of therapeutic hypothermia has become more feasible with the development of simple intravenous cooling techniques and specialized equipment for improved temperature control in the critical care unit, it is expected that therapeutic hypothermia will become more widely used in the management of anoxic neurological injury whatever the presenting cardiac rhythm.

  4. Should we use automated external defibrillators in hospital wards?

    PubMed

    De Regge, M; Monsieurs, K G; Vandewoude, K; Calle, P A

    2012-01-01

    Automated external defibrillators (AEDs) have shown to improve survival after cardiopulmonary arrest (CPA) in many, but not all clinical settings. A recent study reported that the use of AEDs in-hospital did not improve survival. The current retrospective study reports the results of an in-hospital AED programme in a university hospital, and focuses on the quality of AED use. At Ghent University Hospital 30 AEDs were placed in non-monitored hospital wards and outpatient clinics treating patients with non-cardiac problems. Nurses were trained to use these devices. From November 2006 until March 2011, the AEDs were used in 23 of 39 CPA cases, in only one patient the presenting heart rhythm was ventricular fibrillation and this patient survived. Pulseless electrical activity was present in 14 patients (four survived) and asystole in eight patients (one survived). AEDs were attached to eight patients without CPA, and in 16 patients with CPA AED was not used. The quality of AED use was often suboptimal as illustrated by external artifacts during the first rhythm analysis by the AED in 30% (7/23) and more than 20 seconds delay before restart of chest compressions after the AED rhythm analysis in 50% (9/18). The literature data, supported by our results, indicate that in-hospital AED programmes are unlikely to improve survival after CPA. Moreover, their use is often suboptimal. Therefore, if AEDs are introduced in a hospital, initial training, frequent retraining and close follow-up are essential.

  5. Effect of electrical stimulation of the lower esophageal sphincter using endoscopically implanted temporary stimulation leads in patients with reflux disease.

    PubMed

    Banerjee, Rupa; Pratap, Nitesh; Kalpala, Rakesh; Reddy, D Nageshwar

    2014-03-01

    Electrical stimulation therapy (EST) has been shown to increase lower esophageal sphincter (LES) pressure in animals; however, data on the effect of EST on LES pressure in patients with gastroesophageal reflux disease (GERD) are lacking. The aim of our study was to investigate the effect of EST on LES pressure and esophageal function in patients with GERD. Patients with a diagnosis of GERD responsive to proton pump inhibitors (PPIs), increased esophageal acid on 24-h pH monitoring off GERD medications, basal LES pressure >5 mmHg, hernia <2 cm and esophagitis

  6. Modeling the response of normal and ischemic cardiac tissue to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kandel, Sunil Mani

    Heart disease, the leading cause of death worldwide, is often caused by ventricular fibrillation. A common treatment for this lethal arrhythmia is defibrillation: a strong electrical shock that resets the heart to its normal rhythm. To design better defibrillators, we need a better understanding of both fibrillation and defibrillation. Fundamental mysteries remain regarding the mechanism of how the heart responds to a shock, particularly anodal shocks and the resultant hyperpolarization. Virtual anodes play critical roles in defibrillation, and one cannot build better defibrillators until these mechanisms are understood. We are using mathematical modeling to numerically simulate observed phenomena, and are exploring fundamental mechanisms responsible for the heart's electrical behavior. Such simulations clarify mechanisms and identify key parameters. We investigate how systolic tissue responds to an anodal shock and how refractory tissue reacts to hyperpolarization by studying the dip in the anodal strength-interval curve. This dip is due to electrotonic interaction between regions of depolarization and hyperpolarization following a shock. The dominance of the electrotonic mechanism over calcium interactions implies the importance of the spatial distribution of virtual electrodes. We also investigate the response of localized ischemic tissue to an anodal shock by modeling a regional elevation of extracellular potassium concentration. This heterogeneity leads to action potential instability, 2:1 conduction block (alternans), and reflection-like reentry at the boarder of the normal and ischemic regions. This kind of reflection (reentry) occurs due to the delay between proximal and distal segments to re-excite the proximal segment. Our numerical simulations are based on the bidomain model, the state-of-the-art mathematical description of how cardiac tissue responds to shocks. The dynamic LuoRudy model describes the active properties of the membrane. To model ischemia, the Luo-Rudy model is modified by adding ischemic-related ion currents and concentrations to mimic conditions during the initial phase of ischemia. The stimulus is applied through a unipolar electrode that induces a complicated spatial distribution of transmembrane potential, including adjacent regions of depolarization and hyperpolarization. This research is significant because it uncovers basic properties of excitation that are fundamental for understanding cardiac pacing and defibrillation.

  7. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Science.gov Websites

    AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a

  8. Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

    PubMed Central

    Tchumatchenko, Tatjana; Clopath, Claudia

    2014-01-01

    Oscillations play a critical role in cognitive phenomena and have been observed in many brain regions. Experimental evidence indicates that classes of neurons exhibit properties that could promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically, these two properties are studied separately but it is not clear which is the dominant determinant of global network rhythms. Our aim is to provide an analytical understanding of how these two effects destabilize the fluctuation-driven state, in which neurons fire irregularly, and lead to an emergence of global synchronous oscillations. Here we show how the oscillation frequency is shaped by single neuron resonance, electrical and chemical synapses.The presence of both gap junctions and subthreshold resonance are necessary for the emergence of oscillations. Our results are in agreement with several experimental observations such as network responses to oscillatory inputs and offer a much-needed conceptual link connecting a collection of disparate effects observed in networks. PMID:25405458

  9. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    PubMed

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p < 0.001). This difference faded after pregnancy, owing to the fall observed in pre-eclampsia (11.8 +/- 3.2 pg/ml, 9.8 +/- 2.1, and 11.1 +/- 2.0, respectively; NS). The rhythm of melatonin concentration was lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  10. Sparsely-synchronized brain rhythm in a small-world neural network

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2013-07-01

    Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.

  11. Automated External Defibrillators and Survival After In-Hospital Cardiac Arrest

    PubMed Central

    Chan, Paul S.; Krumholz, Harlan M.; Spertus, John A.; Jones, Philip G.; Cram, Peter; Berg, Robert A.; Peberdy, Mary Ann; Nadkarni, Vinay; Mancini, Mary E.; Nallamothu, Brahmajee K.

    2013-01-01

    Context Automated external defibrillators (AEDs) improve survival from out-of-hospital cardiac arrests, but data on their effectiveness in hospitalized patients are limited. Objective To evaluate the association of AED use and survival for in-hospital cardiac arrest. Design, Setting, Patients Cohort study of 11,695 hospitalized patients with cardiac arrests between January 1, 2000 and August 26, 2008 at 204 hospitals following the introduction of AEDs on general hospital wards. Main Outcome Measure Survival to hospital discharge by AED use, using multivariable hierarchical regression analyses to adjust for patient factors and hospital site. Results Of 11,695 patients, 9616 (82.2%) had non-shockable rhythms (asystole and pulseless electrical activity) and 2079 (17.8%) had shockable rhythms (ventricular fibrillation and pulseless ventricular tachycardia). AEDs were used in 4515 (38.6%) patients. Overall, 2117 (18.1%) patients survived to hospital discharge. Within the entire study population, AED use was associated with a lower rate of survival after in-hospital cardiac arrest compared with no AED use (16.3% vs. 19.3%; adjusted rate ratio (RR), 0.85; 95% confidence interval (CI), 0.78–0.92; P<0.001). Among cardiac arrests due to non-shockable rhythms, AED use was associated with lower survival (10.4% vs. 15.4%; adjusted RR, 0.74; 95% CI, 0.65–0.83; P<.001). In contrast, for cardiac arrests due to shockable rhythms, AED use was not associated with survival (38.4% vs. 39.8%; adjusted RR, 1.00; 95% CI, 0.88–1.13; P=0.99). These patterns were consistently observed in both monitored and non-monitored hospital units where AEDs were used, after matching patients to the individual units in each hospital where the cardiac arrest occurred, and with a propensity score analysis. Conclusion Use of AEDs in hospitalized patients with cardiac arrest is not associated with improved survival. PMID:21078809

  12. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.

    PubMed

    Hindriks, R; Micheli, C; Bosman, C A; Oostenveld, R; Lewis, C; Mantini, D; Fries, P; Deco, G

    2018-06-07

    The discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed. Due to their close proximity to the cortical surface, electrocorticographic (ECoG) recordings can potentially provide a more detailed picture of the functional organization of resting-state cortical rhythms, albeit at the expense of spatial coverage. In this study we propose using source-space spatial independent component analysis (spatial ICA) for identifying generators of resting-state cortical rhythms as recorded with ECoG and for reconstructing their functional connectivity. Network structure is assessed by two kinds of connectivity measures: instantaneous correlations between band-limited amplitude envelopes and oscillatory phase-locking. By simulating rhythmic cortical generators, we find that the reconstruction of oscillatory phase-locking is more challenging than that of amplitude correlations, particularly for low signal-to-noise levels. Specifically, phase-lags can both be over- and underestimated, which troubles the interpretation of lag-based connectivity measures. We illustrate the methodology on somatosensory beta rhythms recorded from a macaque monkey using ECoG. The methodology decomposes the resting-state sensorimotor network into three cortical generators, distributed across primary somatosensory and primary and higher-order motor areas. The generators display significant and reproducible amplitude correlations and phase-locking values with non-zero lags. Our findings illustrate the level of spatial detail attainable with source-projected ECoG and motivates wider use of the methodology for studying resting-state as well as event-related cortical dynamics in macaque and human. Copyright © 2018. Published by Elsevier Inc.

  13. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  14. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 33: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  15. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 25: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in the module:…

  16. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on intermediate power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included…

  17. [Research on automatic external defibrillator based on DSP].

    PubMed

    Jing, Jun; Ding, Jingyan; Zhang, Wei; Hong, Wenxue

    2012-10-01

    Electrical defibrillation is the most effective way to treat the ventricular tachycardia (VT) and ventricular fibrillation (VF). An automatic external defibrillator based on DSP is introduced in this paper. The whole design consists of the signal collection module, the microprocessor controlingl module, the display module, the defibrillation module and the automatic recognition algorithm for VF and non VF, etc. This automatic external defibrillator has achieved goals such as ECG signal real-time acquisition, ECG wave synchronous display, data delivering to U disk and automatic defibrillate when shockable rhythm appears, etc.

  18. Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    design-In this design, the energy conversion unit and an electric propulsion system are connected . Series design-In this design, the primary engine is connected to a generator that produces electricity

  19. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  20. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  1. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  2. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  3. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  4. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  5. [Possibilities of transcranial magnetic therapy and color and rhythm therapy in rehabilitation of ischemic stroke].

    PubMed

    Sholomov, I I; Cherevashchenko, L A; Suprunov, O V; Raĭgorondskiĭ, Iu M

    2009-01-01

    One hundred and sixteen post-stroke patients were studied in the early rehabilitation period. All patients were divided into 4 groups: 3 main and 1 control groups. Three main groups (87 patients) received transcranial magnetic therapy (TMT) and/or color and rhythm therapy (CRT) along with traditional treatment and the control group (29 patients) received only basic therapy. TMT was conducted using bitemporal technique, running regime with modulation frequency 1-10 Hz. In CRT, the alternating stimulation of the right and left eye with green and/or blue color with a period of 2-4 s and duration of luminescence 1s was applied. Each of 3 main groups received 2 treatment sessions with an interval of 1,5 month (1st - TMT, 2nd - CRT, 3rd - TMT + CRT). After the treatment, the marked positive changes were seen in all main groups, in particular in group 3. The improvement of neurologic symptoms on the B. Lindmark scale was higher by 9,5% in group 3 compared to the control one, on the Barthel index - by 8,8%, on MMSE and A. Luria and Schulte test - by 5,4 and 14,3%, respectively. Rheographic and encephalographic study revealed the significant improvement of hemodynamics and alpha-rhythm differentiation, decrease of patients with dysrhythmia by 14,6% in group 3 as compared to the control group. The best results were seen in the combination of TMT and CRT, TMT exerted a higher effect on the hemodynamics and CRT - on the psychoemotional state. Both therapies were well tolerated and had no side-effects.

  6. Surviving out-of-hospital cardiac arrest: just a matter of defibrillators?

    PubMed

    Zorzi, Alessandro; Gasparetto, Nicola; Stella, Federica; Bortoluzzi, Andrea; Cacciavillani, Luisa; Basso, Cristina

    2014-08-01

    Out-of-hospital sudden cardiac arrest (OHCA) is a leading cause of death all over the world. Although the outcome of OHCA resulting from 'nonshockable' rhythms (asystole and pulseless electrical activity) is poor regardless of resuscitation efforts, 'shockable' rhythms such as ventricular tachycardia or fibrillation may carry a good prognosis if early defibrillation is performed. At present, simplified cardiopulmonary resuscitation techniques (hands-only cardiopulmonary resuscitation) and automated external defibrillators (AEDs) offer lay people the possibility to provide lifesaving treatment to OHCA victims in the critical minutes before the arrival of the emergency medical system. Programs aimed at increasing provision of cardiopulmonary resuscitation and use of AEDs by lay people have been set up in different countries, including Italy, and have contributed to improve survival rates. However, success of these programs critically depends on appropriate planning and design, and on cultural predisposition of witnesses to undertake immediate measures of resuscitation in the case of OHCA. Placement of a large number of AEDs may carry high costs and little benefits if it is uncoordinated and not preceded by educational campaigns to spread widely the 'culture of resuscitation' in the population.

  7. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon

    2013-06-01

    Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

  8. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  9. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  10. Electric Current Solves Mazes

    ERIC Educational Resources Information Center

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  11. ELECTRICAL APPLIANCE SERVICEMAN, SUGGESTED GUIDE FOR A TRAINING COURSE.

    ERIC Educational Resources Information Center

    LOVE, L. CARL; RONEY, MAURICE W.

    THE PURPOSE OF THIS GUIDE IS TO AID IN PLANNING AND DEVELOPING A COURSE FOR TRAINING ELECTRICAL APPLIANCE SERVICEMEN. OUTLINES (ONE PAGE EACH) COVER -- (1) RELATED INSTRUCTION, (2) FUNDAMENTALS OF ELECTRICITY, (3) BASIC CONTROLS AND ELECTRONIC COMPONENTS, (4) RESISTANCE HEATING APPLIANCES, (5) MOTORS FOR ELECTRIC APPLIANCES, (6) MOTOR DRIVEN…

  12. Alternative Fuels Data Center: Electricity

    Science.gov Websites

    efficiency. Using electricity to power vehicles can have significant energy security and emissions benefits . Icon of an information sign. Basics Find information about using electricity as a vehicle fuel Considerations Explore the benefits and considerations of using electricity as a vehicle fuel. Icon of a fueling

  13. The Tractor Electrical System. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The fundamental principles underlying the application of electricity to tractors and farm equipment are presented. An understanding of the material in the basic manual will enable the service man to understand better the service procedures covered in service manuals on electrical equipment. Topics dealt with are fundamentals of electricity,…

  14. Principles of complementary medicine in terms of a suggested scientific basis.

    PubMed

    Popp, Fritz-Albert

    2008-05-01

    In order to create a scientific basis of complementary medicine it is certainly necessary to add a more non-local approach to the molecular substance of orthodox "life-sciences". It should be able to explain strange phenomena like healing by homeopathy or acupuncture. A possible frame concerns oscillatory electromagnetic interactions as regulatory and - in case of disease--deregulatory impulses of the organisms. These couplings are found, for instance, in biological rhythms, external rhythmical influences (sun exposure, atmospheric disturbances), and vibrations of the body over a huge range of frequencies. One basic example is biophotons and "delayed luminescence".

  15. Drafting. Advanced Print Reading--Electrical.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This document is a workbook for drafting students learning advanced print reading for electricity applications. The workbook contains seven units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; riser diagrams; schematic diagrams; and…

  16. Differential short-term memorisation for vocal and instrumental rhythms.

    PubMed

    Klyn, Niall A M; Will, Udo; Cheong, Yong-Jeon; Allen, Erin T

    2016-07-01

    This study explores differential processing of vocal and instrumental rhythms in short-term memory with three decision (same/different judgments) and one reproduction experiment. In the first experiment, memory performance declined for delayed versus immediate recall, with accuracy for the two rhythms being affected differently: Musicians performed better than non-musicians on clapstick but not on vocal rhythms, and musicians were better on vocal rhythms in the same than in the different condition. Results for the second experiment showed that concurrent sub-vocal articulation and finger-tapping differentially affected the two rhythms and same/different decisions, but produced no evidence for articulatory loop involvement in delayed decision tasks. In a third experiment, which tested rhythm reproduction, concurrent sub-vocal articulation decreased memory performance, with a stronger deleterious effect on the reproduction of vocal than of clapstick rhythms. This suggests that the articulatory loop may only be involved in delayed reproduction not in decision tasks. The fourth experiment tested whether differences between filled and empty rhythms (continuous vs. discontinuous sounds) can explain the different memorisation of vocal and clapstick rhythms. Though significant differences were found for empty and filled instrumental rhythms, the differences between vocal and clapstick can only be explained by considering additional voice specific features.

  17. Inhibition Potentiates the Synchronizing Action of Electrical Synapses

    PubMed Central

    Pfeuty, Benjamin; Golomb, David; Mato, Germán; Hansel, David

    2007-01-01

    In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the γ range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depends on their location on the dendritic tree of the neurons, the intrinsic properties of the neurons and the connectivity of the network. The goal of the present paper is to show that this versatility in the synchronizing ability of electrical synapses is greatly reduced when the neurons also interact via inhibition. To this end, we study a model network comprising two-compartment conductance-based neurons interacting with both types of synapses. We investigate the effect of electrical synapses on the dynamical state of the network as a function of the strength of the inhibition. We find that for weak inhibition, electrical synapses reinforce inhibition-generated synchrony only if they promote synchrony when they are alone. In contrast, when inhibition is sufficiently strong, electrical synapses improve synchrony even if when acting alone they would stabilize asynchronous firing. We clarify the mechanism underlying this cooperative interplay between electrical and inhibitory synapses. We show that it is relevant in two physiologically observed regimes: spike-to-spike synchrony, where neurons fire at almost every cycle of the population oscillations, and stochastic synchrony, where neurons fire irregularly and at a rate which is substantially lower than the frequency of the global population rhythm. PMID:18946530

  18. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eleven: Capacitance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on capacitance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Seven lessons are included in the module:…

  19. Mathematics Course Requirements and Performance Levels in the Navy's Basic Electricity and Electronics Schools. Technical Report, March 1980-December 1980.

    ERIC Educational Resources Information Center

    Baker, Meryl S.

    Instructors in the Navy's Basic Electricity and Electronics (BE/E) schools were presented with a list of 70 mathematical skills and asked to indicate: (1) how important they were to successful BE/E school performance, and (2) whether they were prerequisite, reviewed, or taught in the schools. Also, they were asked to state the number and type of…

  20. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Two: Voltage. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on voltage is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module: (1)…

  1. Final Report - Navajo Electrification Demonstration Project - FY2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth L. Craig, Interim General Manager

    2007-03-31

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

  2. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Ten: Transformers. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on transformers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module:…

  3. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Six: Parallel Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  4. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  5. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  6. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  7. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  8. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  9. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  10. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  11. [Role of rhythmicity in infant development].

    PubMed

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the experience of discontinuity is not overly disorganizing. For instance, if an object is absent for more than a certain amount of time, it is no longer alive in the infant's mind and despair is inevitable. This prompts us to think carefully about the separation experiences we impose upon babies and their duration. Rhythms of security set in right from the beginning of early childhood, or even in utero. The author gives an example of recourse to inner rhythmicity in an 8 - or 9-month-old baby, which serves to ground the baby's sense of security. In infants, as in each one of us, rhythmicity organizes a foundation of permanence and bridges the gap created by separation. If leaning on sensations and creating neo-rhythms fails to repair the discontinuities, the baby will plunge into experiences of chaos and confusion, as seen, for example, in inconsolability. Even in this latter case, one can find a rhythmicity in the infant's crying, for example, as if the baby didn't want to be separated from the sorrow, a sort of paradoxical companion. Traces of all these primitive defenses can be found in the older child and in adult psychopathology. The importance of rhythmicity is stressed in relation to learning, which involves the experience of otherness and reality, and the rhythmic patterns of engagement and withdrawal support the integration process. The same holds true for the caretaking relationship: rhythmic involvement supports coming together, sharing, and understanding. In all of these situations, the parent, the teacher, the caregiver, must adapt to the child, the pupil, the patient; the external rhythms must fit the internal rhythm of the subject. Copyright © 2015 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  12. Cutting power costs starts with basic analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, M.

    1996-10-07

    Oil and gas production departments should already be reducing their power costs. Regardless of how US deregulation of electricity finally shakes out, power costs are a large portion of total operating expense. Much has been written in recent months about the rosy days, ahead, when electric utilities will be fully deregulated. But this will only be an extension of the opportunities available today; although, after deregulation, many new options will add both opportunities along with complexities. There is no magic to reducing power costs. It is simply a matter of working at it. Recommended steps for lowering power costs ismore » shown. The paper discusses electricity basics, power bills, managing power cost, field equipment changes, electrical equipment changes and deregulation.« less

  13. Didactic Problems in the Concept of Electric Potential Difference and an Analysis of Its Philogenesis.

    ERIC Educational Resources Information Center

    Gomez, Enrique Jimenez; Duran, Eugenio Fernandez

    1998-01-01

    Analyzes didactic problems related to the inseparability of electric charge from the mass, the impossibility of its direct observation, and the meaning associated with the basic concepts of electricity. Contains 44 references. (DDR)

  14. Another place, another timer: Marine species and the rhythms of life

    PubMed Central

    Tessmar-Raible, Kristin; Raible, Florian; Arboleda, Enrique

    2011-01-01

    The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves. PMID:21254149

  15. The circatidal rhythm persists without the optic lobe in the mangrove cricket Apteronemobius asahinai.

    PubMed

    Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko

    2014-02-01

    Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.

  16. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    PubMed

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  17. Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs

  18. Ionic mechanisms and Ca2+ dynamics underlying the glucose response of pancreatic β cells: a simulation study

    PubMed Central

    Cha, Chae Young; Nakamura, Yasuhiko; Himeno, Yukiko; Wang, JianWu; Fujimoto, Shinpei; Inagaki, Nobuya; Earm, Yung E

    2011-01-01

    To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca2+ dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst–interburst electrical events accompanied by Ca2+ transients, and continuous firing of action potentials over [G] ranges of 0–6, 7–18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca2+ transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst–interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate–sensitive K+ current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca2+- or Na+-dependent currents, which were generated by the plasma membrane Ca2+ pump, Na+/K+ pump, Na+/Ca2+ exchanger, and TRPM channel. Accumulation and release of Ca2+ by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings. PMID:21708953

  19. Phenotypically silent Cre recombination within the postnatal ventricular conduction system.

    PubMed

    Bhattacharyya, Samadrita; Bhakta, Minoti; Munshi, Nikhil Vilas

    2017-01-01

    The cardiac conduction system (CCS) is composed of specialized cardiomyocytes that initiate and maintain cardiac rhythm. Any perturbation to the normal sequence of electrical events within the heart can result in cardiac arrhythmias. To understand how cardiac rhythm is established at the molecular level, several genetically modified mouse lines expressing Cre recombinase within specific CCS compartments have been created. In general, Cre driver lines have been generated either by homologous recombination of Cre into an endogenous locus or Cre expression driven by a randomly inserted transgene. However, haploinsufficiency of the endogenous gene compromises the former approach, while position effects negatively impact the latter. To address these limitations, we generated a Cre driver line for the ventricular conduction system (VCS) that preserves endogenous gene expression by targeting the Contactin2 (Cntn2) 3' untranslated region (3'UTR). Here we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice recombine floxed alleles within the VCS and that Cre expression faithfully recapitulates the spatial distribution of Cntn2 within the heart. We further demonstrate that Cre expression initiates after birth with preservation of native Cntn2 protein. Finally, we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice maintain normal cardiac mechanical and electrical function. Taken together, our results establish a novel VCS-specific Cre driver line without the adverse consequences of haploinsufficiency or position effects. We expect that our new mouse line will add to the accumulating toolkit of CCS-specific mouse reagents and aid characterization of the cell-autonomous molecular circuitry that drives VCS maintenance and function.

  20. Magnetism and Electricity Activity "Attracts" Student Interest

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…

  1. Electric moisture meters for wood

    Treesearch

    William L. James

    1963-01-01

    Common methods of measuring the moisture content of wood are described briefly, and a short historical account of the development of electric moisture meters is given. Electrical properties of wood are discussed briefly, and the basic operation of the resistance type and the radio- frequency types of moisture meter is outlined. Data relating the electrical resistance...

  2. A Curriculum Guide for Intermediate and Secondary Level Programs. Industrial Arts: Electricity-Electronics.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Education, Jefferson City.

    Units of instruction at four levels are designed for use by teachers preparing industrial arts courses in electricity and electronics in junior high and high school. Exploring Electricity-Electronics introduces the subject with attention to circuits, laws, and applications. Basic Electricity-Electronics covers batteries, magnetism, transformers,…

  3. Electrical. Teacher's Guide. Building Maintenance Units of Instruction.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This teaching guide on electrical building maintenance, one in a series of six publications designed for building maintenance instructors in Texas, is designed to give students an understanding of electricity in order to know how to make basic repairs to the electrical systems in a building. Introductory material provides teachers with information…

  4. Electrical Occupations and Residential Electricity. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains eight units that provide the basic curriculum components required to develop lesson plans for the electrical occupations/residential electricity curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the…

  5. Electrical Systems. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  6. Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…

  7. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  8. Basic Electronics I.

    ERIC Educational Resources Information Center

    Robertson, L. Paul

    Designed for use in basic electronics programs, this curriculum guide is comprised of twenty-nine units of instruction in five major content areas: Orientation, Basic Principles of Electricity/Electronics, Fundamentals of Direct Current, Fundamentals of Alternating Current, and Applying for a Job. Each instructional unit includes some or all of…

  9. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  10. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 32: Intermediate Oscillators; Module 33: Special Devices; Module 34: Linear Integrated Circuits. Students Guide.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This student guidebook is designed for use with the study booklets in modules 32 through 34 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…

  11. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies; Module 31: RF, IF, and Video Amplifiers. Students Guide.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This student guidebook is designed for use with the study booklets in modules 30-31 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Five: Relationships of Current, Voltage, and Resistance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on the relationships of current, voltage, and resistance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptaticn to vocational instructional and curriculum development in a civilian setting.…

  13. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 20: Solid State Power Supplies; 20T: Electron Tube Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in the…

  14. Genetic variants in post myocardial infarction patients presenting with electrical storm of unstable ventricular tachycardia.

    PubMed

    Rangaraju, Advithi; Krishnan, Shuba; Aparna, G; Sankaran, Satish; Mannan, Ashraf U; Rao, B Hygriv

    2018-01-30

    Electrical storm (ES) is a life threatening clinical situation. Though a few clinical pointers exist, the occurrence of ES in a patient with remote myocardial infarction (MI) is generally unpredictable. Genetic markers for this entity have not been studied. In the present study, we carried out genetic screening in patients with remote myocardial infarction presenting with ES by next generation sequencing and identified 25 rare variants in 19 genes predominantly in RYR2, SCN5A, KCNJ11, KCNE1 and KCNH2, CACNA1B, CACNA1C, CACNA1D and desmosomal genes - DSP and DSG2 that could potentially be implicated in electrical storm. These genes have been previously reported to be associated with inherited syndromes of Sudden Cardiac Death. The present study suggests that the genetic architecture in patients with remote MI and ES of unstable ventricular tachycardia may be similar to that of Ion channelopathies. Identification of these variants may identify post MI patients who are predisposed to develop electrical storm and help in risk stratification. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  15. Evaluation of Cardiopulmonary Resuscitation (CPR) for Patient Outcomes and their Predictors

    PubMed Central

    Singh, Swati; Grewal, Anju; Gautam, Parshotam L; Luthra, Neeru; Tanwar, Gayatri; Kaur, Amarpreet

    2016-01-01

    Introduction Cardiac arrest continues to be a common cause of in-hospital deaths. Even small improvements in survival can translate into thousands of lives saved every year. Aim The aim of our prospective observational study was to elicit the outcomes and predictors of in-hospital cardiopulmonary resuscitation among adult patients. Settings and Design All in-hospital adult patients (age >14) who suffered cardiac arrest & were attended by a Code Blue Team between 1st January 2012 & 30th April 2013 were part of the study. Materials and Methods The cardiopulmonary resuscitation (CPR) was assessed in terms of: Response time, Presenting initial rhythm, Time to first defibrillation, Duration of CPR and Outcome (Return of spontaneous circulation (ROSC), Glasgow outcome scale (GOS) at discharge). Statistical Analysis Age, GOS and mean response time were analysed using t-test and ANOVA. Logistic regression was applied to determine the significance of the various factors in determining mortality. Results ROSC was achieved in 44% of a total of 127 patients included in our study. Asystole/Pulseless electrical activity (PEA) was the most common presenting rhythm (87.5%). The survival to discharge was seen in 7.1% patients of whom only 3.9% patients had good neurological outcome. Regression and survival analysis depicted achievement of ROSC during CPR, absence of co-morbidities and shorter response time of code blue team as predictors of good outcome. Conclusion We found poor outcome of CPR after in-hospital cardiac arrest. This was mainly attributed to an initial presenting rhythm of Asystole/PEA in most cases and delayed response times. PMID:26894150

  16. [PATHOGENETIC ASPECTS OF REHABILITATION OF PATIENTS AFTER CHOLECYSTECTOMY].

    PubMed

    Efendiyeva, M T; Abdurakhmanova, A Z

    2015-01-01

    Investigation of efficiency of liquid synbiotics and structure-resonance electric magnetic therapy (SRMT) among patients after cholecystectomy. 90 patients after cholecystectomy have been investigated (CE). Along with general clinical meth-ods of investigation, patients passed US investigation of abdomen, biochemical blood tests, bacteriological test of faeces, investigation of short-chain fatty acids (SCFA) by gas-liquid osteal chromatographic analysis. State of vegetative nervous system passed analysis according to variability of heart rhythm (VHR) by spectral analysis method using "Cardiac technic 4000 AD" cardiac monitor in frame of 24-hr ECG monitoring. Estimation of life quality (LQ) of patients after cholecystectomy has been conducted by "SF-36 Health status survey". Patients have been divided into 3 groups, comparable according to the main clinical and functional indicators. Patients of first group (30 people) passed correction of dysbiosis by liquid synbiotics. Patients of a second group (30 persons) passed complex treatment of SRMT and liquid synbiotics. Control group was composed by 30 patients after cholecystectomy who had been receiving diet therapy. In term of investigation 90% of patients have shown decrease of number and methabolic activity of microflora, change of activity of anaerobic microorganisms. Analysis of variability of heart rhythm have displayed relative prevalence of sympathetic modulation of a rhythm on the background of elevated ergotropic component of the total capacity of a spectrum; estimation of life quality (LQ) has shown that limitation of physical activity is a most considerable contribution to decrease of LQ among patients after cholecystectomy. After a course of liquid synbiotics and SMRT recovery and improvement of intestines and improvement of all indicator of life quality is observed.

  17. Practice guideline summary: Reducing brain injury following cardiopulmonary resuscitation: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.

    PubMed

    Geocadin, Romergryko G; Wijdicks, Eelco; Armstrong, Melissa J; Damian, Maxwell; Mayer, Stephan A; Ornato, Joseph P; Rabinstein, Alejandro; Suarez, José I; Torbey, Michel T; Dubinsky, Richard M; Lazarou, Jason

    2017-05-30

    To assess the evidence and make evidence-based recommendations for acute interventions to reduce brain injury in adult patients who are comatose after successful cardiopulmonary resuscitation. Published literature from 1966 to August 29, 2016, was reviewed with evidence-based classification of relevant articles. For patients who are comatose in whom the initial cardiac rhythm is either pulseless ventricular tachycardia (VT) or ventricular fibrillation (VF) after out-of-hospital cardiac arrest (OHCA), therapeutic hypothermia (TH; 32-34°C for 24 hours) is highly likely to be effective in improving functional neurologic outcome and survival compared with non-TH and should be offered (Level A). For patients who are comatose in whom the initial cardiac rhythm is either VT/VF or asystole/pulseless electrical activity (PEA) after OHCA, targeted temperature management (36°C for 24 hours, followed by 8 hours of rewarming to 37°C, and temperature maintenance below 37.5°C until 72 hours) is likely as effective as TH and is an acceptable alternative (Level B). For patients who are comatose with an initial rhythm of PEA/asystole, TH possibly improves survival and functional neurologic outcome at discharge vs standard care and may be offered (Level C). Prehospital cooling as an adjunct to TH is highly likely to be ineffective in further improving neurologic outcome and survival and should not be offered (Level A). Other pharmacologic and nonpharmacologic strategies (applied with or without concomitant TH) are also reviewed. © 2017 American Academy of Neurology.

  18. Electrocardiographic parameters of captive lions (Panthera leo) and tigers (Panthera tigris) immobilized with ketamine plus xylazine.

    PubMed

    Larsson, Maria Helena M A; Coelho, Fernanda M; Oliveira, Valéria M C; Yamaki, Fernanda L; Pereira, Guilherme G; Soares, Elaine C; Fedullo, José Daniel L; Pereira, Roberto C; Ito, F H

    2008-09-01

    Twenty-seven healthy captive lions (Panthera leo) and 13 healthy captive tigers (Panthera tigris) from São Paulo Zoo (Fundação Parque Zoológico de Sã Paulo, São Paulo, Brazil) collection were selected for this study. They were anesthetized with ketamine (10 mg/kg) combined with xylazine (1-2 mg/kg) for physical examinations, hematologic and serum chemical analysis and electrocardiogram recording. The main aim of this research was to gather initial information about normal electrocardiographic parameters of large felids. Standard P-QRS-T deflections on leads described for domestic carnivores were analyzed, and they did not greatly differ from those of large felids, taking into account the greater weight and corporal mass of large felids. Heart rate of lions ranged from 42 to 76 beats per minute (bpm). Heart rate of tigers ranged from 56 to 97 bpm. In both species, the most common rhythm detected was normal sinus rhythm followed by sinus arrhythmia; wandering pacemaker was also observed with normal sinus rhythm or sinus arrhythmia. Mean electrical axis lay between +60 degrees and +120 degrees. QRS complexes were predominantly positive in leads DI, DII, DIII, and AVF, and negative in AVR and AVL. This study provides insights into normal electrocardiograms of large felids. Wider investigations on the same subject are necessary to establish criteria for the recognition of abnormalities in these species and should include other anesthetic drug(s) combinations and reports of electrocardiographic features of animals with cardiac disease and electrolytes disturbances.

  19. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    PubMed Central

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165

  20. Dynamic correlations between heart and brain rhythm during Autogenic meditation.

    PubMed

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  1. The Validity and Reliability of Rhythm Measurements in Automatically Scoring the English Rhythm Proficiency of Chinese EFL Learners

    ERIC Educational Resources Information Center

    Chen, Jin; Lin, Jianghao; Li, Xinguang

    2015-01-01

    This article aims to find out the validity of rhythm measurements to capture the rhythmic features of Chinese English. Besides, the reliability of the valid rhythm measurements applied in automatically scoring the English rhythm proficiency of Chinese EFL learners is also explored. Thus, two experiments were carried out. First, thirty students of…

  2. Electronics Technology. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Campbell, Guy

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 20 terminal objectives for a basic electronics technology course. The materials were developed for a two-semester course (2 hours daily) designed to include instruction in basic electricity and electronic fundamentals, and to develop skills and…

  3. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  4. Section I: Basic Electricity. Syllabus in Trade Electricity-Electronics.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    This section describes the first of a three part curriculum in trade electricity-electronics (each part is described in a separate volume). It presents a unit of 6 to 10 weeks duration which develops only those competencies necessary to all electricity or electronics employment. A flow chart indicates how an individual student's program can be…

  5. Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric

    Science.gov Websites

    ... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability vehicles do. When measuring well-to-wheel emissions, the electricity source is important: for PHEVs and EVs , part or all of the power provided by the battery comes from off-board sources of electricity. There are

  6. Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course

    ERIC Educational Resources Information Center

    Moya, A. A.

    2018-01-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…

  7. Electricity for a Developing World: New Directions. Worldwatch Paper 70.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    The nature, scope, and problems of electrical programs are examined in this report on developing nations. Electric power is recognized as a crucial component of the economy in most Third World countries with the potential to affect some of the most basic issues facing these countries today. Topic areas covered include: (1) electric power…

  8. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    PubMed

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  9. From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    NASA Astrophysics Data System (ADS)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-03-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  10. Solar Photovoltaic Technology Basics | NREL

    Science.gov Websites

    For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the

  11. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  12. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  13. Standardized Curriculum for Electricity/Electronics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents are provided for two courses in Mississippi: electricity/electronics I and II. The first course contains the following units: (1) orientation, safety, and leadership; (2) basic principles of electricity/electronics; (3) direct current (DC) theory; (4) magnetism and DC motors; (5)…

  14. Information services for comparative analysis of biorhythm research

    NASA Technical Reports Server (NTRS)

    1972-01-01

    References and full text documents are presented in support of continuing research and research planning for the NASA behavioral physiology program. Areas covered include: (1) desynchronosis and performance; (2) effects of alcohol, common colds, drugs, and toxic hazards on performance; (3) effects of stress on rhythm of plasma steroids; (4) data processing of biological rhythms; (5) pharmacology and biological rhythms; (6) mechanisms of biological rhythms; and (7) development of biological rhythms.

  15. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    PubMed

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  16. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  17. Melatonin and circadian rhythms in autism: Case report.

    PubMed

    Zuculo, Gabriela Melloni; Gonçalves, Bruno S B; Brittes, Clay; Menna-Barreto, Luiz; Pinato, Luciana

    2017-01-01

    Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.

  18. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    PubMed Central

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  19. Vitamin B12 treatment for sleep-wake rhythm disorders.

    PubMed

    Okawa, M; Mishima, K; Nanami, T; Shimizu, T; Iijima, S; Hishikawa, Y; Takahashi, K

    1990-02-01

    Vitamin B12 (VB12) was administered to two patients suffering for many years from different sleep-wake rhythm disorders. One patient was a 15-year-old blind girl suffering from a free-running sleep-wake rhythm (hypernychthemeral syndrome) with a period of about 25 h. In spite of repeated trials to entrain her sleep-wake cycle to the environmental 24-h rhythm, her free-running rhythm persisted for about 13 years. When she was 14 years old, administration of VB12 per os was started at the daily dose of 1.5 mg t.i.d. Shortly thereafter, her sleep-wake rhythm was entrained to the environmental 24-h rhythm, and her 24-h sleep-wake rhythm was maintained while she was on the medication. Within 2 months of the withholding of VB12, her free-running sleep-wake rhythm reappeared. The VB12 level in the serum was within the normal range both before and after treatment. The other patient was a 55-year-old man suffering from delayed sleep phase syndrome since 18 years of age. After administration of VB12 at the daily doses of 1.5 mg, his sleep-wake rhythm disorder was improved. The good therapeutic effect lasted for more than 6 months while he was on the medication.

  20. Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives

    PubMed Central

    Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039

  1. Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.

    PubMed

    Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L

    2009-11-24

    The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).

  2. Computational analysis of thresholds for magnetophosphenes

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-10-01

    In international guidelines, basic restriction limits on the exposure of humans to low-frequency magnetic and electric fields are set with the objective of preventing the generation of phosphenes, visual sensations of flashing light not caused by light. Measured data on magnetophosphenes, i.e. phosphenes caused by a magnetically induced electric field on the retina, are available from volunteer studies. However, there is no simple way for determining the retinal threshold electric field or current density from the measured threshold magnetic flux density. In this study, the experimental field configuration of a previous study, in which phosphenes were generated in volunteers by exposing their heads to a magnetic field between the poles of an electromagnet, is computationally reproduced. The finite-element method is used for determining the induced electric field and current in five different MRI-based anatomical models of the head. The direction of the induced current density on the retina is dominantly radial to the eyeball, and the maximum induced current density is observed at the superior and inferior sides of the retina, which agrees with literature data on the location of magnetophosphenes at the periphery of the visual field. On the basis of computed data, the macroscopic retinal threshold current density for phosphenes at 20 Hz can be estimated as 10 mA m-2 (-20% to  + 30%, depending on the anatomical model); this current density corresponds to an induced eddy current of 14 μA (-20% to  + 10%), and about 20% of this eddy current flows through each eye. The ICNIRP basic restriction limit for the induced electric field in the case of occupational exposure is not exceeded until the magnetic flux density is about two to three times the measured threshold for magnetophosphenes, so the basic restriction limit does not seem to be conservative. However, the reasons for the non-conservativeness are purely technical: removal of the highest 1% of electric field values by taking the 99th percentile as recommended by the ICNIRP leads to the underestimation of the induced electric field, and there are difficulties in applying the basic restriction limit for the retinal electric field.

  3. Mapping of Cardiac Electrical Activation with Electromechanical Wave Imaging: An in silico-in vivo Reciprocity Study

    PubMed Central

    Provost, Jean; Gurev, Viatcheslav; Trayanova, Natalia; Konofagou, Elisa E.

    2011-01-01

    Background Electromechanical Wave Imaging (EWI) is an entirely non-invasive, ultrasound-based imaging method capable of mapping the electromechanical activation sequence of the ventricles in vivo. Given the broad accessibility of ultrasound scanners in the clinic, the application of EWI could constitute a flexible surrogate for the 3D electrical activation. Objective The purpose of this report is to reproduce the electromechanical wave (EW) using an anatomically-realistic electromechanical model, and establish the capability of EWI to map the electrical activation sequence in vivo when pacing from different locations. Methods EWI was performed in one canine during pacing from three different sites. A high-resolution dynamic model of coupled cardiac electromechanics of the canine heart was used to predict the experimentally recorded electromechanical wave. The simulated 3D electrical activation sequence was then compared with the experimental EW. Results The electrical activation sequence and the EW were highly correlated for all pacing sites. The relationship between the electrical activation and the EW onset was found to be linear with a slope of 1.01 to 1.17 for different pacing schemes and imaging angles. Conclusions The accurate reproduction of the EW in simulations indicates that the model framework is capable of accurately representing the cardiac electromechanics and thus testing new hypotheses. The one-to-one correspondence between the electrical activation sequence and the EW indicates that EWI could be used to map the cardiac electrical activity. This opens the door for further exploration of the technique in assisting in the early detection, diagnosis and treatment monitoring of rhythm dysfunction. PMID:21185403

  4. The space shuttle payload planning working groups. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Life Sciences working group of the space shuttle payload planning activity are presented. The objectives of the Life Sciences investigations are: (1) to continue the research directed at understanding the origin of life and the search for extraterrestrial evidence of life, (2) biomedical research to understand mechanisms and provide criteria for support of manned flight, (3) technology development for life support, protective systems, and work aids for providing environmental control, and (4) to study basic biological functions at all levels or organization influenced by gravity, radiation, and circadian rhythms. Examples of candidate experimental schedules and the experimental package functional requirements are included.

  5. Treatment Failure With Rhythm and Rate Control Strategies in Patients With Atrial Fibrillation and Congestive Heart Failure: An AF-CHF Substudy.

    PubMed

    Dyrda, Katia; Roy, Denis; Leduc, Hugues; Talajic, Mario; Stevenson, Lynne Warner; Guerra, Peter G; Andrade, Jason; Dubuc, Marc; Macle, Laurent; Thibault, Bernard; Rivard, Lena; Khairy, Paul

    2015-12-01

    Rate and rhythm control strategies for atrial fibrillation (AF) are not always effective or well tolerated in patients with congestive heart failure (CHF). We assessed reasons for treatment failure, associated characteristics, and effects on survival. A total of 1,376 patients enrolled in the AF-CHF trial were followed for 37  ±  19 months, 206 (15.0%) of whom failed initial therapy leading to crossover. Rhythm control was abandoned more frequently than rate control (21.0% vs. 9.1%, P < 0.0001). Crossovers from rhythm to rate control were driven by inefficacy, whereas worsening heart failure was the most common reason to crossover from rate to rhythm control. In multivariate analyses, failure of rhythm control was associated with female sex, higher serum creatinine, functional class III or IV symptoms, lack of digoxin, and oral anticoagulation. Factors independently associated with failure of rate control were paroxysmal (vs. persistent) AF, statin therapy, and presence of an implantable cardioverter-defibrillator. Crossovers were not associated with cardiovascular mortality (hazard ratio [HR] 1.11 from rhythm to rate control; 95% confidence interval [95% CI, 0.73-1.73]; P = 0.6069; HR 1.29 from rate to rhythm control; 95% CI, 0.73-2.25; P = 0.3793) or all-cause mortality (HR 1.16 from rhythm to rate control, 95% CI [0.79-1.72], P = 0.4444; HR 1.15 from rate to rhythm control, 95% [0.69, 1.91], P = 0.5873). Rhythm control is abandoned more frequently than rate control in patients with AF and CHF. The most common reasons for treatment failure are inefficacy for rhythm control and worsening heart failure for rate control. Changing strategies does not impact survival. © 2015 Wiley Periodicals, Inc.

  6. Effects of Neuroactive Drugs in the Discharge Patterns of Microsternarchus (Hypopomidae: Gymnotiformes) Electric Organ.

    PubMed

    de Jesus, Isac Silva; Ferreira, Milena; Silva-Júnior, Urbano Lopes; Alves-Gomes, José Antônio

    2017-12-01

    Considering the conserved nature of synaptic physiology among vertebrates, we tested the effects of three psychotropics (diazepam, doxapram, and nicotine) on Microsternarchus cf. bilineatus, measuring 10 parameters associated to the electric organ discharges rhythm and waveform before and after the administration of each drug and a control group. There were statistically significant differences (p < 0.005) among all the experimental groups, F (70, 22619.25) = 77.7, between the two experimental phases within their respective drug treatment, F (80, 24604.51) = 16.0, and among the six experimental hours within their respective phases and groups, F (320, 37124.15) = 4.1. We observed a common general trend of reduction in the electric organ's (EO) firing rate, regardless of the expected stimulant or depressor effect of the drugs on the central nervous system (CNS). The intensity of the response changed with the treatment. The observed changes in the fishes' behavior may be a result of the drugs' direct action on the CNS or a combination of this with systemic effects of each substance tested, also in the EO.

  7. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. On-line telemetry: prospective assessment of accuracy in an all-volunteer emergency medical service system.

    PubMed

    Hollander, J E; Delagi, R; Sciammarella, J; Viccellio, P; Ortiz, J; Henry, M C

    1995-04-01

    To evaluate the need for on-line telemetry control in an all-volunteer, predominantly advanced emergency medical technician (A-EMT) ambulance system. Emergency medical service (EMS) advanced life support (ALS) providers were asked to transmit the ECG rhythms of monitored patients over a six-month period in 1993. The ECG rhythm interpretations of volunteer EMS personnel were compared with those of the on-line medical control physician. All discordant readings were reviewed by a panel of physicians to decide whether the misdiagnosis would have resulted in treatment aberrations had transmission been unavailable. Patients were monitored and rhythms were transmitted in 1,825 cases. 1,642 of 1,825 rhythms were correctly interpreted by the EMS providers (90%; 95% CI 89-91%). The accuracy of the EMS providers was dependent on the patient's rhythm (chi-square, p < 0.00001), the chief complaint (chi-square, p = 0.0001), and the provider's level of training (chi-square, p = 0.02). Correct ECG rhythm interpretations were more common when the out-of-hospital interpretation was sinus rhythm (95%), ventricular fibrillation (87%), paced rhythm (94%), or agonal rhythm (96%). The EMS providers were frequently incorrect when the out-of-hospital rhythm interpretation was atrial fibrillation/flutter (71%), supraventricular tachycardia (46%), ventricular tachycardia (59%), or atrioventricular block (50%). Of the 183 discordant cases, 124 (68%) involved missing a diagnosis of, or incorrectly diagnosing, atrial fibrillation/flutter. Review of the discordant readings identified 11 cases that could have resulted in treatment errors had the rhythms not been transmitted, one of which might have resulted in an adverse outcome. In this all-volunteer, predominantly A-EMT ALS system, patients with a field interpretation of a sinus rhythm do not require ECG rhythm transmission. Field interpretations of atrial fibrillation/flutter, supraventricular tachycardia, ventricular tachycardia, and atrioventricular blocks are frequently incorrect and should continue to be transmitted.

  9. Maternal and infant activity: Analytic approaches for the study of circadian rhythm

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan

    2015-01-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72 h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R2, NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta2) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and circadian parameters in the study of maternal and infant activity rhythm. PMID:26360916

  10. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  11. 10 CFR 431.20 - Department of Energy recognition of nationally recognized certification programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for the competence of calibration and testing laboratories. (4) Expertise in electric motor test... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials... to assure that basic models of electric motor continue to conform to the efficiency levels for which...

  12. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.445 Determination of small... the mechanical and electrical characteristics of that basic model, and (ii) Based on engineering or... Department of Energy records showing the method or methods used; the mathematical model, the engineering or...

  13. Rhythm in language acquisition.

    PubMed

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine if the free-running circadian rhythm in body temperature (Tb) results from coordinated changes in HP and HL rhythms in thermoneutrality (27 degrees C) as well as mild cold (17 degrees C). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of Tb and activity. Feeding was also measured. Rhythms of HP, HL, and conductance were tightly coupled with the circadian Tb rhythm at both ambient temperatures (TA). At 17 degrees C, increased HP compensated for higher HL at all phases of the Tb rhythm, resulting in only minor changes to Tb. Parallel compensatory changes of HP and HL were seen at all rhythm phases at both TA. Similar time courses of Tb, HP, and HL in their respective rhythms and the relative stability of Tb during both active and rest periods suggest action of the circadian timing system on Tb set point.

  15. Circadian Rhythm in Bipolar Disorder: A review of the literature.

    PubMed

    Takaesu, Yoshikazu

    2018-06-05

    Sleep disturbances and circadian rhythm dysfunction have been widely demonstrated in patients with bipolar disorder (BD). Irregularity of the sleep-wake rhythm, eveningness chronotype, abnormality of melatonin secretion, vulnerability of clock genes, and the irregularity of social time cues have also been well-documented in BD. Circadian rhythm dysfunction is prominent in BD compared with that in major depressive disorders, implying that circadian rhythm dysfunction is a trait marker of BD. In the clinical course of BD, the circadian rhythm dysfunctions may act as predictors for the first onset of BD and the relapse of mood episodes. Treatments focusing on sleep disturbances and circadian rhythm dysfunction in combination with pharmacological, psychosocial, and chronobiological treatments are believed to be useful for relapse prevention. Further studies are therefore warranted to clarify the relationship between circadian rhythm dysfunction and the pathophysiology of BD to develop treatment strategies for achieving recovery in BD patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  17. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  18. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech.

    PubMed

    Borrie, Stephanie A; Lansford, Kaitlin L; Barrett, Tyson S

    2017-03-01

    The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception (initial intelligibility) and learning (intelligibility improvement) of naturally dysrhythmic speech, dysarthria. Fifty young adults with typical hearing participated in 3 key tests, including a rhythm perception test, a receptive vocabulary test, and a speech perception and learning test, with standard pretest, familiarization, and posttest phases. Initial intelligibility scores were calculated as the proportion of correct pretest words, while intelligibility improvement scores were calculated by subtracting this proportion from the proportion of correct posttest words. Rhythm perception scores predicted intelligibility improvement scores but not initial intelligibility. On the other hand, receptive vocabulary scores predicted initial intelligibility scores but not intelligibility improvement. Expertise in rhythm perception appears to provide an advantage for processing dysrhythmic speech, but a familiarization experience is required for the advantage to be realized. Findings are discussed in relation to the role of rhythm in speech processing and shed light on processing models that consider the consequence of rhythm abnormalities in dysarthria.

  19. Perspectives on the rhythm-grammar link and its implications for typical and atypical language development.

    PubMed

    Gordon, Reyna L; Jacobs, Magdalene S; Schuele, C Melanie; McAuley, J Devin

    2015-03-01

    This paper reviews the mounting evidence for shared cognitive mechanisms and neural resources for rhythm and grammar. Evidence for a role of rhythm skills in language development and language comprehension is reviewed here in three lines of research: (1) behavioral and brain data from adults and children, showing that prosody and other aspects of timing of sentences influence online morpho-syntactic processing; (2) comorbidity of impaired rhythm with grammatical deficits in children with language impairment; and (3) our recent work showing a strong positive association between rhythm perception skills and expressive grammatical skills in young school-age children with typical development. Our preliminary follow-up study presented here revealed that musical rhythm perception predicted variance in 6-year-old children's production of complex syntax, as well as online reorganization of grammatical information (transformation); these data provide an additional perspective on the hierarchical relations potentially shared by rhythm and grammar. A theoretical framework for shared cognitive resources for the role of rhythm in perceiving and learning grammatical structure is elaborated on in light of potential implications for using rhythm-emphasized musical training to improve language skills in children. © 2015 New York Academy of Sciences.

  20. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  1. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus).

    PubMed

    Nielsen, B L; Erhard, H W; Friggens, N C; McLeod, J E

    2008-07-01

    A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.

  2. Development of a Multiple Linear Regression Model to Forecast Facility Electrical Consumption at an Air Force Base.

    DTIC Science & Technology

    1981-09-01

    corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John

  3. Opportunities and challenges of current electrophysiology research: a plea to establish 'translational electrophysiology' curricula.

    PubMed

    Lau, Dennis H; Volders, Paul G A; Kohl, Peter; Prinzen, Frits W; Zaza, Antonio; Kääb, Stefan; Oto, Ali; Schotten, Ulrich

    2015-05-01

    Cardiac electrophysiology has evolved into an important subspecialty in cardiovascular medicine. This is in part due to the significant advances made in our understanding and treatment of heart rhythm disorders following more than a century of scientific discoveries and research. More recently, the rapid development of technology in cellular electrophysiology, molecular biology, genetics, computer modelling, and imaging have led to the exponential growth of knowledge in basic cardiac electrophysiology. The paradigm of evidence-based medicine has led to a more comprehensive decision-making process and most likely to improved outcomes in many patients. However, implementing relevant basic research knowledge in a system of evidence-based medicine appears to be challenging. Furthermore, the current economic climate and the restricted nature of research funding call for improved efficiency of translation from basic discoveries to healthcare delivery. Here, we aim to (i) appraise the broad challenges of translational research in cardiac electrophysiology, (ii) highlight the need for improved strategies in the training of translational electrophysiologists, and (iii) discuss steps towards building a favourable translational research environment and culture. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. Lightning

    ERIC Educational Resources Information Center

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  5. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  6. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  7. Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation.

    PubMed

    Datko, Michael; Pineda, Jaime A; Müller, Ralph-Axel

    2018-03-01

    Autism has been characterized by atypical task-related brain activation and functional connections, coinciding with deficits in sociocommunicative abilities. However, evidence of the brain's experience-dependent plasticity suggests that abnormal activity patterns may be reversed with treatment. In particular, neurofeedback training (NFT), an intervention based on operant conditioning resulting in self-regulation of brain electrical oscillations, has shown increasing promise in addressing abnormalities in brain function and behavior. We examined the effects of ≥ 20 h of sensorimotor mu-rhythm-based NFT in children with high-functioning autism spectrum disorders (ASD) and a matched control group of typically developing children (ages 8-17). During a functional magnetic resonance imaging imitation and observation task, the ASD group showed increased activation in regions of the human mirror neuron system following the NFT, as part of a significant interaction between group (ASD vs. controls) and training (pre- vs. post-training). These changes were positively correlated with behavioral improvements in the ASD participants, indicating that mu-rhythm NFT may be beneficial to individuals with ASD. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. The normal electrocardiogram of four species of conscious raptors.

    PubMed

    Talavera, J; Guzmán, M J; del Palacio, M J Fernández; Albert, A P; Bayón, A

    2008-02-01

    The aim of this study was to describe normal ECG patterns and values in four species of conscious raptors (Eurasian kestrel, Griffon vulture, Little owl, and Eurasian Eagle owl). Electrocardiograms were carried out in 75 conscious birds belonging to four species of raptors. Lead II waveforms were analysed to determine amplitudes and durations of waves and intervals. Morphologic patterns of P-QRS-T deflections were analysed in the six limb leads. Rhythm, heart rate, mean electrical axis, presence of Ta wave, ST slurring, and P-on-T phenomenon were also studied. The influence of species, body weight and heart rate in electrocardiographic variables were statistically analysed (P < 0.05). Sinus rhythm was present in all tracings, showing sinus arrhythmia in four cases. Ta wave was present in six tracings and P-on-T phenomenon in four. ST segment could be identified in all tracings, being mainly high above baseline. Significant differences between species were found for all the electrocardiographic parameters. The heart rate and body weight were also found to be a significant influence in most parameters. This study provides electrocardiographic data for four species of raptors that can be used to establish comparisons for clinical purposes.

  9. Management of recent-onset sustained atrial fibrillation: pharmacologic and nonpharmacologic strategies.

    PubMed

    Lau, Dennis H; Kalman, Jonathan; Sanders, Prashanthan

    2014-09-01

    Recent studies have highlighted significant variations in the management of recent-onset sustained atrial fibrillation (AF). We aim to provide a succinct and clear management algorithm for physicians treating patients with recent-onset sustained AF. We performed a comprehensive search of the literature on the management of recent-onset sustained AF with focus on studies reporting cardioversion of AF, antiarrhythmic agents, and anticoagulation. We also reviewed recent practice guidelines on AF management. This review provides a guide on a tailored management approach of patients with recent-onset sustained AF. After initial detailed clinical assessment, optimal rate and rhythm control options can be provided, depending on hemodynamic stability, duration of AF episode, and AF stroke risk. Issues surrounding electrical and pharmacologic cardioversion are discussed in detail. We emphasize the importance of thromboembolic risk assessment and appropriate anticoagulation surrounding the point of cardioversion. Last, we highlighted the need for appropriate specialized follow-up care after acute AF management. Despite the highly heterogeneous clinical presentations, management of recent-onset sustained AF must include stroke risk assessment, appropriate anticoagulation, and follow-up care in all patients beyond optimum rate and rhythm control strategies. Copyright © 2014. Published by Elsevier Inc.

  10. 24-HOUR ACTIVITY RHYTHM AND SLEEP DISTURBANCES IN DEPRESSION AND ANXIETY: A POPULATION-BASED STUDY OF MIDDLE-AGED AND OLDER PERSONS.

    PubMed

    Luik, Annemarie I; Zuurbier, Lisette A; Direk, Neşe; Hofman, Albert; Van Someren, Eus J W; Tiemeier, Henning

    2015-09-01

    Disturbed circadian rhythms have been associated with depression and anxiety, but it is unclear if disturbances in the 24-hr activity rhythm and sleep are independently and specifically related to these disorders. In 1,714 middle-aged and elderly participants of the Rotterdam Study, we collected actigraphy recordings of at least 96 hr (138 ± 14 hr, mean ± standard deviation). Activity rhythms were quantified calculating the fragmentation of the rhythm, stability of the rhythm over days, and timing of the rhythm. Total sleep time, sleep onset latency, and wake after sleep onset were also estimated with actigraphy. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression scale, persons with clinically relevant depressive symptoms were interviewed to diagnose DSM-IV-depressive disorder. Anxiety disorders were determined with the Munich version of the Composite International Diagnostic Interview. More fragmented rhythms were associated with clinically relevant depressive symptoms (odds ratio (OR): 1.27, 95% confidence interval (CI): 1.04;1.54) and anxiety disorders (OR: 1.39, 95% CI: 1.14;1.70) after covariate adjustment. Less stable rhythms, longer sleep onset latency, and more wake after sleep onset were related to clinically relevant depressive symptoms or anxiety disorders only if not adjusted for covariates and other activity rhythm and sleep indicators. Our study in middle-aged and elderly persons suggests that fragmentation of the 24-hr activity rhythm is associated with depression and anxiety. Moreover, this association also largely accounts for the effect of disturbed sleep on these psychiatric disorders. © 2015 Wiley Periodicals, Inc.

  11. Chronic stress induces brain region specific alterations of molecular rhythms in mice that correlate with depression-like behavior

    PubMed Central

    Logan, Ryan W.; Edgar, Nicole; Gillman, Andrea G.; Hoffman, Daniel; Zhu, Xiyu; McClung, Colleen A.

    2015-01-01

    Background Emerging evidence implicates circadian abnormalities as a component of the pathophysiology of major depressive disorder (MDD). The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates rhythms throughout the brain and body. On a cellular level, rhythms are generated by transcriptional, translational, and post-translational feedback loops of core circadian genes and proteins. In patients with MDD, recent evidence suggests reduced amplitude of molecular rhythms in extra-SCN brain regions. We investigated whether unpredictable chronic mild stress (UCMS), an animal model that induces a depression-like physiological and behavioral phenotype, induces circadian disruptions similar to those seen with MDD. Methods Activity and temperature rhythms were recorded in C57BL/6J mice before, during, and after exposure to UCMS, and brain tissue explants were collected from Period2 luciferase (Per2::luc) mice following UCMS to assess cellular rhythmicity. Results UCMS significantly decreased circadian amplitude of activity and body temperature in mice, similar to findings in MDD patients and these changes directly correlate with depression-related behavior. While amplitude of molecular rhythms in the SCN was decreased following UCMS, surprisingly, rhythms in the nucleus accumbens were amplified with no changes seen in the prefrontal cortex or amygdala. These molecular rhythm changes in the SCN and the nucleus accumbens (NAc) also directly correlated with mood-related behavior. Conclusions These studies find that circadian rhythm abnormalities directly correlate with depression-related behavior following UCMS and suggest a desynchronization of rhythms in the brain with an independent enhancement of rhythms in the NAc. PMID:25771506

  12. Does Melody Assist in the Reproduction of Novel Rhythm Patterns?

    ERIC Educational Resources Information Center

    Kinney, Daryl W.; Forsythe, Jere L.

    2013-01-01

    We examined music education majors' ability to reproduce rhythmic stimuli presented in melody and rhythm only conditions. Participants reproduced rhythms of two-measure music examples by immediately echo-performing through a method of their choosing (e.g., clapping, tapping, vocalizing). Forty examples were presented in melody and rhythm only…

  13. The impact of cardiac rhythm on the mitral valve area and gradient in patients with mitral stenosis.

    PubMed

    Arı, Hasan; Arı, Selma; Karakuş, Alper; Camcı, Sencer; Doğanay, Kübra; Tütüncü, Ahmet; Melek, Mehmet; Bozat, Tahsin

    2017-08-01

    The aim of this study was to evaluate the effect of cardiac rhythm on the echocardiographic mitral valve area (MVA) and transmitral gradient calculation in relation to net atrioventricular compliance (Cn). Patients (n=22) with mild or moderate pure rheumatic mitral stenosis (MS) (MVA <2 cm2 and MVA >1 cm2) and atrial fibrillation (AF) were evaluated. All patients underwent transthoracic electrical DC cardioversion under amiodarone treatment. Nineteen of the 22 patients were successfully converted to sinus rhythm (SR). The patients were evaluated with transthoracic echocardiography before and two to three days after DC cardioversion. In order to deal with variable R-R intervals, the measurements were averaged on five to eight consecutive beats in AF. Cn was calculated with a previously validated equation [Cn (mL/mm Hg)=1.270 x MVA/E-wave downslope]. The Cn difference between AF and SR was calculated as follows: [(AF Cn-SR Cn)/AF Cn] x 100. The percentage gradient (mean or maximal) difference between AF and SR was calculated as follows: [AF gradient (mean or maximal) - SR gradient (mean or maximal)]/[AF gradient (mean or maximal)] x 100. The MVA was lower (MVA planimetric; 1.62±0.29 vs. 1.54±0.27; p=.003, MVA PHT; 1.66±0.30 vs. 1.59±0.26; p=0.01) but transmitral gradient (mean gradient; 6.49±2.51 vs. 8.89±3.52; p=0.001, maximal gradient: 16.94±5.11 vs. 18.57±4.54; p=0.01) and Cn values (5.37±0.77 vs. 6.26±0.64; p<0.001) were higher in the AF than SR. There was a significant correlation between Cn difference and transmitral gradient difference (mean and maximal) (Cn difference-mean gradient difference; r=0.46; p=0.05; Cn difference-maximal gradient difference; r=0.72; p=0.001). Cardiac rhythm has a significant impact on echocardiographic evaluation of MVA, transmitral gradient, and Cn in patients with MS.

  14. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

    PubMed Central

    Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.

    2016-01-01

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. PMID:27927961

  15. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.

    PubMed

    Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A

    2016-12-07

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. Copyright © 2016 the authors 0270-6474/16/3612448-20$15.00/0.

  16. Association between left atrial phasic conduit function and early atrial fibrillation recurrence in patients undergoing electrical cardioversion.

    PubMed

    Degiovanni, Anna; Boggio, Enrico; Prenna, Eleonora; Sartori, Chiara; De Vecchi, Federica; Marino, Paolo N

    2018-04-01

    Diastolic dysfunction promotes atrial fibrillation (AF) inducing left atrial (LA) remodeling, with chamber dilation and fibrosis. Predominance of LA phasic conduit (LAC) function should reflect not only chamber alterations but also underlying left ventricular (LV) filling impairment. Thus, LAC was tested as possible predictor of early AF relapse after electrical cardioversion (EC). 96 consecutive patients, who underwent EC for persistent non-valvular AF, were prospectively enrolled. Immediately after successful EC (3 h ± 15 min), an echocardiographic apical four-chamber view was acquired with transmitral velocities, annular tissue Doppler and simultaneous LV and LA three-dimensional full-volume datasets. Then, from LA-LV volumetric curves we computed LAC as: [(LV maximum - LV minimum) - (LA maximum - LA minimum) volume], expressed as % LV stroke volume. LA pump, immediately post-EC, was assumed and verified as being negligible. Sinus rhythm persistence at 1 month was checked with ECG-Holter monitoring. At 1 month 62 patients were in sinus rhythm and 34 in AF. AF patients presented pre-EC higher E/é values (p = 0.012), no major LA volume differences (p = NS), but a stiffer LV cavity (p = 0.012) for a comparable LV capacitance (p = 0.461). Conduit contributed more (p < 0.001) to LV stroke volume in AF subpopulation. Multiple regression revealed LAC as the most significant AF predictor (p = 0.013), even after correction for biometric characteristics and pharmacotherapy (p = 0.008). Our data suggest that LAC larger contribution to LV filling soon after EC reflects LA-LV stiffening, which skews atrioventricular interaction leading to AF perpetuation and makes conduit dominance a powerful predictor of early AF recurrence.

  17. Possibilities of the method of irreversible electroporation in treatment of the local and widespread pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Anaskin, S. G.; Ivanov, Yu V.; Panchenkov, D. N.; Chertyuk, V. B.; Astakhov, D. A.; Nechunayev, A. A.; Geraskin, V. S.; Fedotova, T. Y.

    2017-01-01

    Methods of a local destruction of tumors didn’t find till today wide circulation in treatment of patients with formations of the pancreas (P). It is bound to features of blood supply, anatomical and histological structure of PZh, and also a large number of complications and a recurrence. The technique of the irreversible elektroporation (IE) represents a new unique method of not thermal ablyation at which impact on tissues is carried out by short electric impulses of high voltage (to 3 kV) that involves irreversible rising of permeability of cellular membranes and death of cells. The optimum mechanism of rising of permeability of a cellular membrane electric impulses concerning their frequency or repetitions is yet not up to the end clear; it is recognized that outcomes depend on amplitude, duration and number of impulses. Influence has to be synchronized with a cordial rhythm in order to avoid development of an arrhythmia. Existence at the patient of an arrhythmia and the artificial driver of a rhythm is contraindication to carrying out an elektroporation. We have experience of use of a technique for 18 patients with a locally-spread pancreatic cancer. It was succeeded to reflect the main advantages of a new technique in our experience, such as comparative simplicity of workmanship, safety for vascular and pro-current structures, the minimum impact on function of a pancreas. Efficiency of a destruction is proved to ultrasonic, computer and morphological researches in the postoperative period. The maximum term of observation made 19 months. Though exact indications to use of NE still accurately aren’t defined, the international experience and the first own data allow to state efficiency of new technology in palliative surgical treatment of perivascular tumors of a pancreas, and also its safety.

  18. Trends in Survival After In-Hospital Cardiac Arrest

    PubMed Central

    Girotra, Saket; Nallamothu, Brahmajee K.; Spertus, John A.; Li, Yan; Krumholz, Harlan M.; Chan, Paul S.

    2012-01-01

    BACKGROUND Despite numerous advances in resuscitation care in recent years, it remains unknown whether survival and neurological function after in-hospital cardiac arrest has improved over time. METHODS We identified all adults with an index in-hospital cardiac arrest at 374 hospitals in the Get With The Guidelines-Resuscitation registry between 2000 and 2009. Using multivariable regression, we examined temporal trends in risk-adjusted rates of survival to discharge. Additional analyses explored whether trends: (1) were due to improved survival during the acute resuscitation or post-resuscitation care and (2) occurred at the expense of greater neurological disability among survivors. RESULTS Among 84,625 hospitalized patients with cardiac arrest, 67,135 (79.3%) had an initial rhythm of asystole or pulseless electrical activity while 17,490 (20.7%) had ventricular fibrillation or pulseless ventricular tachycardia. The proportion of cardiac arrests due to asystole or pulseless electrical activity increased over time (P for trend <0.001). Risk-adjusted rates of survival to discharge in the overall cohort increased from 13.7% in 2000 to 22.4% in 2009 (adjusted rate-ratio per 1-year: 1.04, 95% CI [1.02–1.05]; P for trend <0.001). Survival improvement was similar in both rhythm groups and largely due to improved survival from the acute resuscitation (risk-adjusted rates: 42.7% in 2000, 54.1% in 2009; adjusted rate-ratio per 1-year: 1.03, 95% CI [1.02–1.04]; P for trend <0.001). Importantly, rates of neurological disability among survivors decreased over time (risk-adjusted rates: 32.9% in 2000, 28.1% in 2009; P for trend=0.02). CONCLUSIONS Both survival and neurological outcomes after in-hospital cardiac arrest have improved over the past decade. PMID:23150959

  19. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Physiological response of cardiac tissue to bisphenol a: alterations in ventricular pressure and contractility

    PubMed Central

    Brooks, Daina; Chandra, Akhil; Jaimes, Rafael; Sarvazyan, Narine; Kay, Matthew

    2015-01-01

    Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10−9-10−4 M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca2+ transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca2+ handling within whole hearts (reduced diastolic and systolic Ca2+ transient potentiation) and neonatal cardiomyocytes (reduced Ca2+ transient amplitude and prolonged Ca2+ transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca2+ handing, and ventricular contractility. PMID:25980024

  1. Society for Research on Biological Rhythms (1st) Held on May 11-14, 1988 in Charleston, South Carolina

    DTIC Science & Technology

    1988-08-10

    and applied research in all aspects of biological 8:00 a.m. to 1:00 p.m., May 12-14 and from 4:30 - 6 :30 rhythms , to disseminate important research...NUCLEUS (SCN) NEU- RONS IN VITRO WITHOUT ALTERING THE GLUCOSE Workshop 6 : UTILIZATION RHYTHM OR PHASE OF THE RHYTHM Involvement of Protein Synthesis in...Medical Science, Seta-Tsukinowa, Otsu- city, Shiga, Japan. Circadian Rhythms 74 RUNNING WHEEL AVAILABILITY ENTRAINS SLEEP- 65 PHASE RESPONSE CURVES AS

  2. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  3. The circadian clock of Neurospora crassa.

    PubMed

    Baker, Christopher L; Loros, Jennifer J; Dunlap, Jay C

    2012-01-01

    Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  5. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  6. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  7. Transformers and the Electric Utility System

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    For electric energy to get from the generating station to a home, it must pass through a transformer, a device that can change voltage levels easily. This article describes how transformers work, covering the following topics: (1) the magnetism-electricity link; (2) transformer basics; (3) the energy seesaw; (4) the turns ratio rule; and (5)…

  8. Learning Activity Packets for Auto Mechanics II. Section B--Electrical Systems.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Six learning activity packets (LAPs) are provided for the instructional area of electrical systems in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these six units: (1) basic electrical theory, (2) battery service, (3) starting system, (4)…

  9. INSTRUCTIONAL GUIDE FOR ELECTRICITY, JUNIOR HIGH SCHOOL INDUSTRIAL ARTS.

    ERIC Educational Resources Information Center

    GOLDSMITH, J. LYMAN

    THIS GUIDE IS DESIGNED TO PROVIDE A PRACTICAL REFERENCE FOR TEACHERS PLANNING INSTRUCTION CONCERNING ELECTRICITY IN JUNIOR HIGH SCHOOL INDUSTRIAL ARTS CLASSES. THE GUIDE IS FOR A 10-WEEK COURSE DESIGNED TO PROVIDE THE STUDENT WITH EXPLORATORY EXPERIENCES INVOLVING THE BASIC PRINCIPLES AND APPLICATIONS OF ELECTRICITY AND ELECTRONICS. THE PROPER USE…

  10. Rhythms that Speed You Up

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-01-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…

  11. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    ERIC Educational Resources Information Center

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  12. The Effect of Pitch and Rhythm Difficulty on Vocal Sight-Reading Performance

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2011-01-01

    Singing music at sight is a complex skill, requiring the singer to perform pitch and rhythm simultaneously. Previous research has identified difficulty levels for pitch and rhythm skills individually but not in combination. In this study, the author sought to determine the relationship between pitch and rhythm tasks occurring concurrently. High…

  13. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception…

  14. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    PubMed

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  16. Mid-Term Results of Surgical Treatment of Atrial Fibrillation in Valvular Heart Disease Assesed by Speckle Tracking Echocardiography

    PubMed Central

    Lorenzo, Natalia; Mendez, Irene; Taibo, Mikel; Martinis, Gianfranco; Badia, Sara; Reyes, Guillermo; Aguilar, Rio

    2018-01-01

    Background Atrial fibrillation frequently affects patients with valvular heart disease. Ablation of atrial fibrillation during valvular surgery is an alternative for restoring sinus rhythm. Objectives This study aimed to evaluate mid-term results of successful atrial fibrillation surgical ablation during valvular heart disease surgery, to explore left atrium post-ablation mechanics and to identify predictors of recurrence. Methods Fifty-three consecutive candidates were included. Eligibility criteria for ablation included persistent atrial fibrillation <10 years and left atrium diameter < 6.0 cm. Three months after surgery, echocardiogram, 24-hour Holter monitoring and electrocardiograms were performed in all candidates who maintained sinus rhythm (44 patients). Echo-study included left atrial deformation parameters (strain and strain rate), using 2-dimensional speckle-tracking echocardiography. Simultaneously, 30 healthy individuals (controls) were analyzed with the same protocol for left atrial performance. Significance was considered with a P value of < 0.05. Results After a mean follow up of 17 ± 2 months, 13 new post-operative cases of recurrent atrial fibrillation were identified. A total of 1,245 left atrial segments were analysed. Left atrium was severely dilated in the post-surgery group and, mechanical properties of left atrium did not recover after surgery when compared with normal values. Left atrial volume (≥ 64 mL/m2) was the only independent predictor of atrial fibrillation recurrence (p = 0.03). Conclusions Left atrial volume was larger in patients with atrial fibrillation recurrence and emerges as the main predictor of recurrences, thereby improving the selection of candidates for this therapy; however, no differences were found regarding myocardial deformation parameters. Despite electrical maintenance of sinus rhythm, left atrium mechanics did not recover after atrial fibrillation ablation performed during valvular heart disease surgery. PMID:29561964

  17. Changes in paced signals may predict in-hospital cardiac arrest.

    PubMed

    Attin, Mina; Rosero, Spencer Z; Ding, Jimmy; Nolan, Scot; Tucker, Rebecca

    2018-01-01

    An increasing number of patients with chronic illnesses have implanted cardiac rhythm devices such as pacemakers and implantable cardioverter-defibrillators (ICDs). This study was conducted to identify potentially useful predictors of in-hospital cardiac arrest (I-HCA) within paced electrocardiogram (ECG) signals from cardiovascular patients with implanted medical devices. In this retrospective study of 17 subjects, full-disclosure ECG traces prior to the time of documented I-HCA were analyzed to determine R-R intervals and QRS durations (QRSd). Ventricular paced QRSd prolongation was observed prior to I-HCA in 10/16 (63%) subjects. QRSd was significantly greater immediately preceding cardiac arrest than during each of the 8 hours prior to cardiac arrest (P < 0.05). Heart rate changes (measured using standard deviation) within 15 minutes of cardiac arrest were significantly greater in subjects with pulseless electrical activity (PEA)/asystolic arrest compared to those with cardiac arrests due to ventricular tachycardia/ventricular fibrillation (VT/VF) (10.13 vs 3.31; P  =  0.024). Significant differences over the 8 hours preceding cardiac arrest in heart rate (74 vs 86 beats/min; P  =  0.002) and QRS duration (172 ms vs 137 ms; P < 0.001) were observed between subjects with initial rhythms of VT/VF and those with initial rhythms of PEA/asystole. Patterns of diagnostic ECG features can be extracted from the telemetry data of patients with implanted medical devices prior to adverse events including I-HCA. The detection of these significant changes might have an immediate prognostic impact on the timely treatment of some patients at risk of adverse events. © 2017 Wiley Periodicals, Inc.

  18. [Prognostic factors for in-hospital cardiopulmonary arrests. A review of 760 cases].

    PubMed

    Fontanals, Jaume; Magaldi, Marta; Caballero, Ángel; Fontanals, Montserrat

    2016-07-15

    The aim of this study is to analyse in-hospital cardiopulmonary arrests (CA) that took place in conventional wards and evaluate their prognostic factors. Retrospective review of in-hospital CA which occurred in our hospital over a 9-year period. CA that took place in intensive care areas, emergency rooms and operating theatres were excluded from the study. The following data were collected: demographic data, cause and initial rhythm of CA, internal control data, time, place, methods and results after cardiopulmonary resuscitation (CPR) (recovery of spontaneous circulation, [ROSC], and survival at discharge [SAD]) and neurologic performance at discharge. Results were analysed with SPSS(®) v. 20 predictive analytics software. Average age was 66.9±17.5 years; 63.5% male. CA team arrived in 1.75±0.74min on average, and the average length of CPR was 25.8±16.10min. First rhythm: a) shockable rhythms=22.1%; b) asystole=66.2%, and c) pulseless electrical activity=11.7%. ROSC=51% and SAD=24.8%. Factors associated with a better prognostic (P<.05): age, reason for hospital admission, patient's previous physical condition, principal cause of CA, number of defibrillations and average length of CPR. Despite having studied several variables as prognostic factors for CA and some of them being statistically significant, early prediction for survival for an in-hospital CA remains uncertain. Our study suggests that applying rational organisational measures, 25% of in-hospital CA could be discharged from hospital in good condition, and therefore, these organisational and educational measures should be extended to large hospitals. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  19. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  20. Loss of atrial contractility is primary cause of atrial dilatation during first days of atrial fibrillation.

    PubMed

    Schotten, Ulrich; de Haan, Sunniva; Neuberger, Hans-Ruprecht; Eijsbouts, Sabine; Blaauw, Yuri; Tieleman, Robert; Allessie, Maurits

    2004-11-01

    Atrial fibrillation (AF) induces a progressive dilatation of the atria which in turn might promote the arrhythmia. The mechanism of atrial dilatation during AF is not known. To test the hypothesis that loss of atrial contractile function is a primary cause of atrial dilatation during the first days of AF, eight goats were chronically instrumented with epicardial electrodes, a pressure transducer in the right atrium, and piezoelectric crystals to measure right atrial diameter. AF was induced with the use of repetitive burst pacing. Atrial contractility was assessed during sinus rhythm, atrial pacing (160-, 300-, and 400-ms cycle length), and electrically induced AF. The compliance of the fibrillating right atrium was measured during unloading the atria with diuretics and loading with 1 liter of saline. All measurements were repeated after 6, 12, and 24 h of AF and then once a day during the first 5 days of AF. Recovery of the observed changes after spontaneous cardioversion was also studied. After 5 days of AF, atrial contractility during sinus rhythm or slow atrial pacing was greatly reduced. During rapid pacing (160 ms) or AF, the amplitude of the atrial pressure waves had declined to 20% of control. The compliance of the fibrillating atria increased twofold, whereas the right atrial pressure was unchanged. As a result, the mean right atrial diameter increased by approximately 12%. All changes were reversible within 3 days of sinus rhythm. We conclude that atrial dilatation during the first days of AF is due to an increase in atrial compliance caused by loss of atrial contractility during AF. Atrial compliance and size are restored when atrial contractility recovers after cardioversion of AF.

Top