1988-11-01
rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction
Thermodynamic Properties of Low-Density {}^{132}Xe Gas in the Temperature Range 165-275 K
NASA Astrophysics Data System (ADS)
Akour, Abdulrahman
2018-01-01
The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165-270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree-Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
75 Easy Physics Demonstrations. Teacher Book.
ERIC Educational Resources Information Center
Kardos, Thomas
This book is a collection of classroom demonstrations in physics designed to present basic scientific ideas on a concrete level. The topics covered include: physical change and properties of matter; energy waves and energy forms; absorption of heat; radiant energy; vacuum bottles; kinetic molecular theory; states of matter; pressure of air; work…
Short-term integrated forecasting system : 1993 model documentation report
DOT National Transportation Integrated Search
1993-12-01
The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the U.S. Energy Department (DOE) developed the STIFS model to generate shor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Wiedner, Eric S.; Helm, Monte L.
Nickel(II) complexes containing chelating N-heterocyclic carbene-phosphine ligands ([NiL2](BPh4)2, for which L = [MeIm(CH2)2PR2]) have been synthesized for the purpose of studying how this class of ligand effects the electrochemical properties compared to the nickel bis- diphosphine analogues. The nickel complexes were synthesized and characterized by x-ray crystallography and electrochemical methods. Based on the half wave potentials (E1/2), substitution of an NHC for one of the phosphines in a diphoshine ligand results in shifts in potential to 0.6 V to 1.2 V more negative than the corresponding nickel bis-diphosphine complexes. These quantitative results highlight the substantial effect that NHC ligands canmore » have upon the electronic properties of the metal complexes. BRG, JCL, and AMA acknowledge the support by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH acknoledges the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Technical Reports Server (NTRS)
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Steam tables for pure water as an ActiveX component in Visual Basic 6.0
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2003-11-01
The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.
Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.
Zahariev, Federico; Levy, Mel
2017-01-12
A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.
Properties of 83mKr conversion electrons and their use in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Vénos, D.; Sentkerestiová, J.; Dragoun, O.; Slezák, M.; Ryšavý, M.; Špalek, A.
2018-02-01
The gaseous 83mKr will be used as a source of monoenergetic conversion electrons for systematic studies and calibration of the energy scale in the KArlsruhe TRItium Neutrino experiment (KATRIN). Using all existing experimental data the adopted values of the electron binding energies for free krypton were established and the basic conversion electron properties in 83mKr decay were compiled. Modes of the measurements with gaseous 83mKr were suggested for KATRIN.
Energy efficiency in light-frame wood construction
Gerald E. Sherwood; Gunard Hans
1979-01-01
This report presents information needed for design and construction of energy-efficient light-frame wood structures. The opening section discusses improving the thermal performance of a house by careful planning and design. A second section of the report provides technical information on the thermal properties of construction materials, and on the basic engineering...
Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model
NASA Astrophysics Data System (ADS)
Jie, Binbin; Sah, Chihtang
Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.
Energy transfer processes between Tm(3+) and Ho(3+) in LiYF4. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Oezen, Goenuel
1991-01-01
The spectroscopic properties of the crystal LiYF4 doped with Thulium (Tm) and Holmium (Ho) ions are studied. The basic processes are discussed that regulate the transfer of energy between these two ions in this crystal. In this system Tm is considered the donor ion and the Ho the acceptor ion. Spectral data were obtained on three samples available: LiYF4:Tm(3+) (0.5 percent), LiYF4:Ho(3+) (1 percent), and LiYF4:Tm(3+) (5 percent), Ho(3+) (0.2 percent). Spectral data, which include absorption, luminescence, excitation, and the response to pulsed excitation in a wide range of temperatures, allowed to look at the energy transfer processes by considering the kinetic evolution of the emission of the two ions (donor and acceptor) involved in the process and the basic spectroscopic properties related to them. This inclusive approach has led to the validation of the physical model.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.
2017-04-01
Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).
Study on Properties of Energy Spectra of the Molecular Crystals
NASA Astrophysics Data System (ADS)
Pang, Xiao-Feng; Chen, Xiang-Rong
The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
NASA Technical Reports Server (NTRS)
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins
NASA Astrophysics Data System (ADS)
Sfampa, I. K.; Polymeris, G. S.; Pagonis, V.; Theodosoglou, E.; Tsirliganis, N. C.; Kitis, G.
2015-09-01
Feldspars stand among the most widely used minerals in dosimetric methods of dating using thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Having very good dosimetric properties, they can in principle contribute to the dating of every site of archaeological and geological interest. The present work studies basic properties of ten naturally occurring K-feldspar samples belonging to three feldspar species, namely sanidine, orthoclase and microcline. The basic properties studied are (a) the influence of blue light and infrared stimulation on the thermoluminescence glow-curves, (b) the growth of OSL, IRSL, residual TL and TL-loss as a function of OSL and IRSL bleaching time and (c) the correlation between the OSL and IRSL signals and the energy levels responsible for the TL glow-curve. All experimental data were fitted using analytical expressions derived from a recently developed tunneling recombination model. The results show that the analytical expressions provide excellent fits to all experimental results, thus verifying the tunneling recombination mechanism in these materials and providing valuable information about the concentrations of luminescence centers.
Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory
NASA Astrophysics Data System (ADS)
Pang, Xiao-Feng; Zhang, Huai-Wu
We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Prediction of plasma properties in mercury ion thrusters
NASA Technical Reports Server (NTRS)
Longhurst, G. R.
1978-01-01
A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1979-01-01
The techniques of fabricating and characterizing the surface properties of electrode materials were investigated. The basic surface properties of these materials were studied with respect to their utilization as thermionic energy converter electrodes. Emphasis was placed on those factors (e.g, cesium disorption kinetic and mechanisms of low work function production) which are of primary concern to thermionic converter performance.
Magnetic circuit modifications in resonant vibration harvesters
NASA Astrophysics Data System (ADS)
Szabo, Zoltan; Fiala, Pavel; Dohnal, Premysl
2018-01-01
The paper discusses the conclusions obtained from a research centered on a vibration-powered milli- or micro generator (MG) operating as a harvester to yield the maximum amount of energy transferred by the vibration of an independent system. The investigation expands on the results proposed within papers that theoretically define the properties characterizing the basic configurations of a generator based on applied Faraday's law of induction. We compared two basic principles of circuit closing in a magnetic circuit that, fully or partially, utilizes a ferromagnetic material, and a large number of generator design solutions were examined and tested. In the given context, the article brings a compact survey of the rules facilitating energy transformation and the designing of harvesters.
Study of the physical properties of Ge-S-Ga glassy alloy
NASA Astrophysics Data System (ADS)
Rana, Anjli; Sharma, Raman
2018-05-01
In the present work, we have studied the effect of Ga doping on the physical properties of Ge20S80-xGax glassy alloy. The basic physical parameters which have important role in determining the structure and strength of the material viz. average coordination number, lone-pair electrons, mean bond energy, glass transition temperature, electro negativity, probabilities for bond distribution and cohesive energy have been computed theoretically for Ge-S-Ga glassy alloy. Here, the glass transition temperature and mean bond energy have been investigated using the Tichy-Ticha approach. The cohesive energy has been calculated by using chemical bond approach (CBA) method. It has been found that while average coordination number increases, all the other parameters decrease with the increase in Ga content in Ge-S-Ga system.
Cygnus X-1: A Case for a Magnetic Accretion Disk?
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.
1996-01-01
With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.
pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid.
Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko
2009-03-01
Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.
Nanoparticles in alumina: Microscopy and Theory
NASA Astrophysics Data System (ADS)
Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.
2007-03-01
Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1986-01-01
Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assessed on the basis of loading capability, energy absorption, and extent of damage.
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
Transformations between Extensive and Intensive Versions of Thermodynamic Relationships
ERIC Educational Resources Information Center
Eberhart, James G.
2010-01-01
Most thermodynamic properties are either extensive (e.g., volume, energy, entropy, amount, etc.) or intensive (e.g., temperature, pressure, chemical potential, mole fraction, etc.). By the same token most of the mathematical relationships in thermodynamics can be written in extensive or intensive form. The basic laws of thermodynamics are usually…
More than Meets the Eye--Infrared Cameras in Open-Ended University Thermodynamics Labs
ERIC Educational Resources Information Center
Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan
2016-01-01
Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property.…
Extensive Air Showers in the Classroom
ERIC Educational Resources Information Center
Badala, A.; Blanco, F.; La Rocca, P.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.
2007-01-01
The basic properties of extensive air showers of particles produced in the interaction of a high-energy primary cosmic ray in the Earth's atmosphere are discussed in the context of educational cosmic ray projects involving undergraduate students and high-school teams. Simulation results produced by an air shower development code were made…
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
3D-Printing ‘Smarter’ Energy Absorbing Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, Eric
2014-08-29
Foams are, by nature, disordered materials studded with air pockets of varying sizes. Lack of control over the material’s architecture at the micrometer or nanometer scale can make it difficult to adjust the foam’s basic properties. But Eric Duoss and a team of Livermore researchers are using additive manufacturing to develop “smarter” silicone cushions. By architecting the structure at the micro scale, they are able to control macro-scale properties previously unachievable with foam materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.
Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how densitymore » functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.
An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
Unit: Making Life Easier, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of three sections: a core relating to a bicycle, tests, and options. The core is concerned with basic properties of a machine such as force multiplication, speed multiplication, energy dissipation, and…
Dielectric properties of battery electrolytes
NASA Technical Reports Server (NTRS)
1971-01-01
An effort was made to determine the effects of electromagnetic radiation on the terminal properties of electrochemical cells. Various constituents of the battery were measured to determine basic electromagnetic properties. These properties were used to predict how much radiation would be absorbed by a battery in a particular field configuration. The frequency range covered from 0 to 40 GHz with the greatest emphasis on the microwave range from 2.6 to 40 GHz. The measurements were made on NiCd, AgZn, and Pb acid cells. Results from observation show nothing which suggested any interaction between radiation and cells, and no incidence of any peaks of energy absorption was observed.
77 FR 5246 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...
Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles
NASA Astrophysics Data System (ADS)
Polanco, Carlos; Lindsay, Lucas
First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.
76 FR 48147 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...
Increasing Costs, Competition May Hinder U.S. Position of Leadership in High Energy Physics.
1980-09-16
achieving that objective; and the level of funding needed should be examined in light of the program’s needs and importance relative to other basic sciences...by an accelerator, in effect, provide a " light " for the physicist 1/One electron volt is the amount of energy gained by a parti- cle of unit charge...the light emit- ted by a charged particle passing through that detector. Each of these detectors has properties which make it especially suitable for
Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets
NASA Astrophysics Data System (ADS)
Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin
Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).
Basic materials physics of transparent conducting oxides.
Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M
2004-10-07
Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.
THE USE OF ARCHITECTURAL ACOUSTICAL MATERIALS, THEORY AND PRACTICE. SECOND EDITION.
ERIC Educational Resources Information Center
Acoustical Materials Association, New York, NY.
THIS DISCUSSION OF THE BASIC FUNCTION OF ACOUSTICAL MATERIALS--THE CONTROL OF SOUND BY SOUND ABSORPTION--IS BASED ON THE WAVE AND ENERGY PROPERTIES OF SOUND. IT IS STATED THAT, IN GENERAL, A MUCH LARGER VOLUME OF ACOUSTICAL MATERIALS IS NEEDED TO REMOVE DISTRACTING NOISE FROM CLASSROOMS AND OFFICES, FOR EXAMPLE, THAN FROM AUDITORIUMS, WHERE A…
Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Lee, J.-H.
1984-01-01
The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are given explicitly. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, is derived by solving the system of master equations accounting for the multiple-level transitions.
Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1985-01-01
The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are explicitly given. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, are derived by solving the system of master equations accounting for the multiple-level transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, K.B.
1987-09-01
The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification.more » This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.« less
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
A computational study on the electronic and nonlinear optical properties of graphyne subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahat, Mehmet, E-mail: bahat@gazi.edu.tr; Güney, Merve Nurhan, E-mail: merveng87@gmail.com; Özbay, Akif, E-mail: aozbay@gazi.edu.tr
2016-03-25
After discovery of graphene, it has been considered as basic material for the future nanoelectronic devices. Graphyne is a two- dimensional carbon allotropes as graphene which expected that its electronic properties is potentialy superior to graphene. The compound C{sub 24}H{sub 12} (tribenzocyclyne; TBC) is a substructure of graphyne. The electronic, and nonlinear optical properties of the C{sub 24}H{sub 12} and its some fluoro derivatives were calculated. The calculated properties are electric dipole moment, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies, polarizability and first hyperpolarizability. All calculations were performed at the B3LYP/6-31+G(d,p) level.
Wang, Hua; Feng, Hongbin; Li, Jinghong
2014-06-12
Being confronted with the energy crisis and environmental problems, the exploration of clean and renewable energy materials as well as their devices are urgently demanded. Two-dimensional (2D) atomically-thick materials, graphene and grpahene-like layered transition metal dichalcogenides (TMDs), have showed vast potential as novel energy materials due to their unique physicochemical properties. In this Review, we outline the typical application of graphene and grpahene-like TMDs in energy conversion and storage fields, and hope to promote the development of 2D TMDs in this field through the analysis and comparisons with the relatively natural graphene. First, a brief introduction of electronic structures and basic properties of graphene and TMDs are presented. Then, we summarize the exciting progress of these materials made in both energy conversion and storage field including solar cells, electrocatalysis, supercapacitors and lithium ions batteries. Finally, the prospects and further developments in these exciting fields of graphene and graphene-like TMDs materials are also suggested. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
75 FR 6369 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...
Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff
2017-12-09
'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
78 FR 38696 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...
Materials characterization with MeV ions
NASA Astrophysics Data System (ADS)
Conlon, T. W.
1989-04-01
The inherent atomic and nuclear properties of energetic ions in materials can be exploited to characterize as well as to modify materials' properties. In nuclear reactors keV ions from neutron collisions damage containment materials. However, basic studies of the interactions of such ions has yielded improved understanding of their properties and has even led to a tailoring of conditions so that the ions can be made to beneficially modify structures (by ion implantation). At higher energies an understanding of the ion-material interaction provides techniques such as PIXE, RBS, and ERD for nondestructive analysis, either in broad beam or "microbeam" mode. At high energies still penetration of the Coulomb barrier opens up activation methods for materials' characterization (CPAA, NRA, TLA etc.). A short discussion of the general properties of energetic ions in materials is followed by a brief introduction to our generic work in these areas, and some examples of current work in the areas of: activation for the radioisotope labelling of nonmetals, mass resolved ERDA using TOF techniques and submicron MeV microprobes.
Atmospheric applications of high-energy lasers
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2005-03-01
It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, many still remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionarey history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.
Atmospheric Propagation of High Energy Lasers and Applications
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2005-04-01
It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, still many remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionary history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.
Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares?
NASA Astrophysics Data System (ADS)
Yang, Huiqin; Liu, Jifeng; Qiao, Erlin; Zhang, Haotong; Gao, Qing; Cui, Kaiming; Han, Henggeng
2018-06-01
Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.
3D-Printing âSmarterâ Energy Absorbing Materials
Duoss, Eric
2018-01-16
Foams are, by nature, disordered materials studded with air pockets of varying sizes. Lack of control over the materialâs architecture at the micrometer or nanometer scale can make it difficult to adjust the foamâs basic properties. But Eric Duoss and a team of Livermore researchers are using additive manufacturing to develop âsmarterâ silicone cushions. By architecting the structure at the micro scale, they are able to control macro-scale properties previously unachievable with foam materials.
Spin manipulation with magnetic semiconductor barriers.
Miao, Guo-Xing; Moodera, Jagadeesh S
2015-01-14
Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.
Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system
NASA Astrophysics Data System (ADS)
Kashif, I.; Ratep, A.; Adel, Gh.
2018-07-01
Glasses having a composition xSiO2 xB2O3 (95-2 x) Bi2O35TeO2 where x = (5, 10, 15, 20, 25) prepared by the melt-quenching technique. Thermal stability, density, optical transmittance, and the refractive index of these glasses investigated. Glass samples were transparent in the visible to near-infrared (NIR) region and had a high refractive index. A number of glass samples have high glass-forming ability. This indicates that the quarterly glasses are suitable for optical applications in the visible to the NIR region. Bi2O3 substituted by B2O3 and SiO2 on optical properties discussed. It suggested that the substitution of Bi2O3 increased the density, molar volume, the molar polarizability, optical basicity and refractive index in addition to, the oxygen packing density, the optical energy gap, and metallization decrease. These results are helpful for designing new optical glasses controlled to have a higher refractive index. All studied glass presented high nonlinearities, and the addition of network modifiers made a little contribution. Results clarified the bandgap energy reduction, which associated with the growth within the non-bridging oxygen content with the addition of the network modifier. An increase in the refractive index nonlinearity explained by the optical basicity and the high electronic polarizability of the modifier ions.
Clar theory and resonance energy
NASA Astrophysics Data System (ADS)
Gutman, Ivan; Gojak, Sabina; Furtula, Boris
2005-09-01
A mathematical model, referred here as the Zhang-Zhang polynomial ζ( x), that embraces all the main concepts encountered in the Clar aromatic sextet theory of benzenoid hydrocarbons, was recently put forward by Zhang and Zhang. We now show that ζ( x) is related to resonance energy, and that ln ζ( x) and RE are best correlated when x ≈ 1. This indicates that ζ(1) could be viewed as a (novel) structure-descriptor, playing a role analogous to the Kekulé structure count in Kekulé-structure-based theories. Some basic properties of ζ(1) are established.
Vorberg, Raffael; Trapp, Nils; Zimmerli, Daniel; Wagner, Björn; Fischer, Holger; Kratochwil, Nicole A; Kansy, Manfred; Carreira, Erick M; Müller, Klaus
2016-10-06
The modulation of pharmacologically relevant properties of N-alkyl-piperidine-2-carboxamides was studied by selective introduction of 1-3 fluorine atoms into the n-propyl and n-butyl side chains of the local anesthetics ropivacaine and levobupivacaine. The basicity modulation by nearby fluorine substituents is essentially additive and exhibits an exponential attenuation as a function of topological distance between fluorine and the basic center. The intrinsic lipophilicity of the neutral piperidine derivatives displays the characteristic response noted for partially fluorinated alkyl groups attached to neutral heteroaryl systems. However, basicity decrease by nearby fluorine substituents affects lipophilicities at neutral pH, so that all partially fluorinated derivatives are of similar or higher lipophilicity than their non-fluorinated parents. Aqueous solubilities were found to correlate inversely with lipophilicity with a significant contribution from crystal packing energies, as indicated by variations in melting point temperatures. All fluorinated derivatives were found to be somewhat more readily oxidized in human liver microsomes, the rates of degradation correlating with increasing lipophilicity. Because the piperidine-2-carboxamide core is chiral, pairs with enantiomeric N-alkyl groups are diastereomeric. While little response to such stereoisomerism was observed for basicity or lipophilicity, more pronounced variations were observed for melting point temperatures and oxidative degradation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
78 FR 6088 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...
Blickhan, Reinhard; Seyfarth, Andre; Geyer, Hartmut; Grimmer, Sten; Wagner, Heiko; Günther, Michael
2007-01-15
Research on the biomechanics of animal and human locomotion provides insight into basic principles of locomotion and respective implications for construction and control. Nearly elastic operation of the leg is necessary to reproduce the basic dynamics in walking and running. Elastic leg operation can be modelled with a spring-mass model. This model can be used as a template with respect to both gaits in the construction and control of legged machines. With respect to the segmented leg, the humanoid arrangement saves energy and ensures structural stability. With the quasi-elastic operation the leg inherits the property of self-stability, i.e. the ability to stabilize a system in the presence of disturbances without sensing the disturbance or its direct effects. Self-stability can be conserved in the presence of musculature with its crucial damping property. To ensure secure foothold visco-elastic suspended muscles serve as shock absorbers. Experiments with technically implemented leg models, which explore some of these principles, are promising.
Thermoelectricity for future sustainable energy technologies
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2017-07-01
Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-05-01
Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.
Thermodynamics of organic compounds
NASA Astrophysics Data System (ADS)
Gammon, B. E.; Smith, N. K.
1982-11-01
This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.
76 FR 41234 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
77 FR 41395 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
75 FR 41838 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...
76 FR 8358 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.
Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya
2013-07-01
The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets. Copyright © 2013 Elsevier B.V. All rights reserved.
Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today
NASA Astrophysics Data System (ADS)
Calonico, Davide
2013-09-01
The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.
Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)
78 FR 47677 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...
Jadoun, Sapana; Verma, Anurakshee; Riaz, Ufana
2018-06-07
With the aim to explore the effect of luminol as a multifunctional dopant for conjugated polymers, the present study reports the ultrasound-assisted doping of polycarbazole (PCz) and poly(o-anisidine) (PAnis) with luminol in basic, acidic and neutral media. The synthesized homopolymers and luminol doped polymers were characterized using FT-IR, UV-visible and XRD studies while the photo-physical properties were investigated via fluorescence spectroscopy. Density functional theory (DFT) calculations were performed to get insights into the structural, optical, and electronic properties of homopolymers of polycarbazole (PCz) and poly(o-anisidine) (PAnis). Vibrational bands B3LYP/6-311G (d,p) level, UV-vis spectral bands and electronic properties such as ionization potentials (IP), electron affinities (EA) and HOMO-LUMO band gap energies of the homopolymers and doped polymers were calculated and compared. Results revealed that luminol doped polymers showed different photo-physical characteristics in acidic, basic and neutral media which could be tuned to obtain near infrared (NIR) emitting polymers. Copyright © 2018 Elsevier B.V. All rights reserved.
Rare isotope accelerator project in Korea and its application to high energy density sciences
NASA Astrophysics Data System (ADS)
Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.
2014-01-01
As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.
Single-Walled Carbon Nanohorns for Energy Applications
Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao
2015-01-01
With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Santanu; Dang, Liem X.
In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occursmore » at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Load-bearing brick-masonry multifamily buildings are prevalent in urban areas across much of the Northeast and mid-Atlantic. In most instances, these buildings are un-insulated unless they have been renovated within the past two decades. Affordable housing capital budgets typically limit what can be spent and energy improvements often take a back seat to basic capital improvements such as interior finish upgrades and basic repairs. The Consortium for Advanced Residential Buildings (CARB) is researching cost effective solution packages for significant energy efficiency and indoor air-quality improvements in these urban buildings. To explore how these low-cost retrofits can effectively integrate energy efficiency upgrades,more » CARB partnered with Columbus Property Management and Development, Inc. on a community-scale gut rehabilitation project located at 56th Street and Walnut Street in Philadelphia, consisting of 32 units in eleven 3-story buildings. These buildings were built in the early 1900s using stone foundations and solid brick-masonry walls. They were renovated in the 1990s to have interior light gauge metal framing with R-13 batt in the above-grade walls, induced-draft furnaces, and central air conditioning.« less
Atwater, Harry (Director, Light-Material Interactions in Energy Conversion (LMI), California Institute of Technology); LMI Staff
2017-12-09
'Light Matters' was submitted by the Center for Light-Material Interactions in Energy Conversion (LMI) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'striking photography and visual impact'. LMI, an EFRC directed by Harry Atwater at the California Institute of Technology is a partnership of scientists from three institutions: CalTech (lead), University of California, Berkeley, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Light-Material Interactions in Energy Conversion is 'to tailor the morphology, complex dielectric structure, and electronic properties of matter to sculpt the flow of sunlight, enabling light conversion to electrical and chemical energy with unprecedented efficiency.' Research topics are: catalysis (imines hydrocarbons), solar photovoltaic, solar fuels, photonic, solid state lighting, metamaterial, optics, phonons, thermal conductivity, solar electrodes, photsynthesis, CO{sub 2} (convert), greenhouse gas, and matter by design.
Summaries of FY 1994 geosciences research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less
Smart Building: Decision Making Architecture for Thermal Energy Management.
Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo
2015-10-30
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1992-01-01
As part of a program to provide reassurance that the cobalt-base superalloy Haynes Alloy 188 can adequately contain a LiF-CaF2 eutectic thermal energy storage salt, 4900- and 10,000-hr exposures of Haynes Alloy 188 to LiF-22CaF2, its vapor, vacuum, and air at 1093 K have been undertaken. Following such exposures, the microstructure has been characterized and the 77 to 1200 K tensile properties measured. In addition, 1050 K vacuum creep-rupture testing of as-received and molten salt- and vacuum-exposed samples has been undertaken. Although slight degradation of the mechanical properties of Haynes Alloy 188 due to prior exposure was observed, basically none of the losses could be ascribed to a particular environment. Hence, observed decreases in properties are due to thermal aging effects, not corrosive attack. In view of these findings, Haynes Alloy 188 is still deemed to be suitable for containment of the eutectic LiF-CaF2 thermal energy storage media.
Code of Federal Regulations, 2010 CFR
2010-07-01
... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...
Coal: Fuel of the Past, Hope of the Future. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Recommended for grades 9-12 science and/or social studies classes, this 13-14 day unit is designed to allow students to explore coal and its properties, examining the nature of coal, where it is found, materials made from coal, and the role of coal in the past and its promise for the future. The unit consists of 11 activities with rationale,…
Investigations of the structure and electromagnetic interactions of few body systems
NASA Astrophysics Data System (ADS)
Harper, E. P.; Lehman, D. R.; Prats, F.
The structure and electromagnetic interactions of few-body systems were investigated. The structural properties of the very light nuclei are examined by developing theoretical models that begin from the basic interactions between the constituents and that are solved exactly (numerically), i.e., full three- or four-body dynamics. Such models are then used in an attempt to understand the details of the strong and electromagnetic interactions of the few-nucleon nuclei after the basic underlying reaction mechanisms are understood with simpler models. Topics included: (1) set up the equations for the low-energy photodisintegration of (3)He and (3)H including final-state interactions and the E1 plus E2 operators; (2) develop a unified picture of the p + d (YIELDS) (3)He + (GAMMA), p + d (YIELDS) (3)He + (PI) (0), p + d (YIELDS) (3)H + (PI) (+) reactions at intermediate energies; (3) calculate the elastic and inelastic (1(+) (YIELDS) 0 (+)) form factors for (6)Li with three-body ((ALPHA)NN) wave functions; (4) calculate static properties (RMS radius, magnetic moment, and quadrupole moment) of (6)Li with three-body wave functions; and (5) develop the theory for the coincidence reactions (6)Li(p,2p)n(ALPHA), (6)Li(e,e'p)n(ALPHA), and (6)Li(e,e'd)(ALPHA).
Magnetization and transport properties of single RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb)
NASA Astrophysics Data System (ADS)
Drachuck, Gil; Boehmer, Anna; Bud'Ko, Sergey L.; Canfield, Paul
Single crystals of RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb) were grown using a self-flux method and were characterized by room-temperature powder X-ray diffraction, anisotropic temperature and field dependent magnetization and temperature dependent in-plane resistivity. Anisotropic magnetic properties, arising mostly from crystal electric field (CEF) effects, were observed for most magnetic rare earths. The experimentally estimated CEF parameters B02 were calculated from the anisotropic paramagnetic θab and θcvalues. Ordering temperatures, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, θave, were extracted from magnetization and resistivity measurements. Work done at Ames Laboratory was supported by US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH111358.
NASA Astrophysics Data System (ADS)
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
The study of changes in structural properties of Cu films under ionizing radiation
NASA Astrophysics Data System (ADS)
Kaliekperov, M.; Kozlovskiy, A.; Shlimas, D.; Kenzhina, I.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Seitbaev, A.; Zdorovets, M.; Kadyrzhanov, K.
2018-05-01
In this paper, we present the results of studies of the irradiation effect with low-energy He+2 ions with an energy of 30 keV (15 keV per charge) on the structural properties of Cu films. Using SEM, EDS, and x-ray diffraction analysis, the surface morphology and structural properties of samples before and after irradiation were studied. As a result of irradiation of initial samples with He+2 ions with a dose of 1·1016 ion cm‑2, a change in the Cu surface morphology of films is observed, and the formation of nanoscale inclusions of hexagonal shape is observed. An increase in the irradiation dose to 1·1017 ion cm‑2 and higher leads to the formation of cracks and amorphous oxide inclusions on the sample surface. It is established that an increase in the irradiation dose leads to a decrease in the degree of crystallinity and a change in the basic crystallographic characteristics. The effect of irradiation on the strength characteristics was estimated.
Chapter 19: Catalysis by Metal Carbides and Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M
Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less
Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.
Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang
2018-04-15
Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.
Transformations in oxides induced by high-energy ball-milling.
Šepelák, Vladimir; Bégin-Colin, Sylvie; Le Caër, Gérard
2012-10-21
This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic materials essentially because of the overall complexity of the oxide structures, of their surfaces, of their defects and of their mechanical behavior.
Geothermal Energy Basics | NREL
Geothermal Energy Basics Geothermal Energy Basics Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... Energy Agency Basic Safety Standards Version 3.0, Draft Safety Requirements DS379 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Public Meeting on the International Atomic Energy Agency Basic... development of U.S. Government comments on this International Atomic Energy Agency (IAEA) draft General Safety...
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-09-01
Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Surface Properties of PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
WoodIII, David L; Rulison, Christopher; Borup, Rodney
2010-01-01
The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2017-10-01
The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.
Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, Jose
2018-06-26
A series of A···water, B···water complexes (A = acid, B =base) are studied at the G4 level of theory to show that water acidity or basicity can be modulated by non-covalent interactions. Protic and non-protic acids interacting with water form hydrogen bonds or other kind of non-covalent interactions, respectively, that may dramatically change the acidity of water up to almost 360 kJ·mol-1 in terms of enthalpy. Similarly, hydrogen bonds responsible for the interaction between typical small nitrogen-containing Lewis bases and water can enhance the proton affinity of water by almost 300 kJ·mol-1. Our results reveal that these large enhancements are linearly related with the binding energy of the charged complexes, and are determined by the Lewis acid-base properties of the molecule involved in the interaction, allowing a quite precise modulation of the corresponding acid-base properties of water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.
1990-01-01
In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.
Testing the Ge Detectors for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
Testing the Ge detectors for the MAJORANA DEMONSTRATOR
Xu, W.; Abgrall, N.; Aguayo, E.; ...
2015-03-24
High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performances of the HPGe crystals. A variety of crystal properties are being investigated, including both basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distribution. In this talk, we will present our measurements that characterize the HPGe crystals. In addition, we will discussmore » the experiment’s simulation package for the detector characterization setup, where additional information is learned from data simulation comparisons.« less
NASA Astrophysics Data System (ADS)
Allen, Rob
2016-09-01
Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy sun falls on the earth in one hour than is used by everyone in the world in one year. A variety of heat from the sun to provide electricity for large power stations. Solar Process Heat These
Thermoelectric Study of Copper Selenide
NASA Astrophysics Data System (ADS)
Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril
2014-03-01
Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.
Subbarrier absorption in a stationary superlattice
NASA Technical Reports Server (NTRS)
Arutyunyan, G. M.; Nerkararyan, K. V.
1984-01-01
The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.
About 3He Ions Predominant Acceleration During the January 20, 2005 Solar Flare
NASA Astrophysics Data System (ADS)
Troitskaya, E. V.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.
We have studied some properties of the powerful solar flare of January 20, 2005 by methods of nuclear lines analysis. The results of temporal profiles investigation in corresponding to neutron capture energy bands allow the supposition about predominant acceleration of 3He ions in the corona, their subsequent propagation to the low chromosphere and the photosphere where the area of 2.223 MeV γ-line effective productions is located. The characteristics of accelerated 3He ions propagation processes and the basic explanation of observable properties of this solar flare due to the variations of 3He content are discussed in the presented article.
Wei, Yong-Kai; Zhao, Xiao-Miao; Li, Meng-Meng; Yu, Jing-Xin; Gurudeeban, Selvaraj; Hu, Yan-Fei; Ji, Guang-Fu; Wei, Dong-Qing
2018-06-01
Aflatoxins are sequential of derivatives of coumarin and dihydrofuran with similar chemical structures and well-known carcinogenic agent. Many studies performed to detoxify aflatoxins, but the result is not ideal. Therefore, we studied structural, infrared spectrum, mechanical, and optical properties of these compounds in the aim of perspective physics. Mulliken charge distributions and infrared spectral analysis performed to understand the structural difference between the basic types of aflatoxins. In addition, the effect of pressure, different polarized, and incident directions on their structural changes was determined. It is found that AFB 1 is most stable structure among four basic types aflatoxins (AFB 1 , AFB 2 , AFG 1 , and AFG 2 ), and IR spectra are analyzed to exhibit the difference on structures of them. The mechanical properties of AFB 1 indicate that the structure of this toxin can be easily changed by pressure. The real [Formula: see text] and imaginary [Formula: see text] parts of the dielectric function, and the absorption coefficient [Formula: see text] and energy loss spectrum [Formula: see text] were also obtained under different polarized and incident directions. Furthermore, biological experiments needed to support the toxic level of AFB 1 using optical technologies.
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Tuning the structural and electronic properties of novel thiophene-pyrrole based 1,2,3,4-tetrazine
NASA Astrophysics Data System (ADS)
Dutta, Rakesh; Kalita, Dhruba Jyoti
2017-04-01
Here, we have studied the structural and optoelectronic behaviour of a series of conjugated heterocyclic polymers. The basic monomer unit of the conjugated polymers contains a backbone of novel thiophene and pyrrole based 1,2,3,4-tetrazine. The other oligomers are designed by substituting the basic monomer unit with different electron-donating and electron-withdrawing groups at the nitrogen and the 3rd C-atom of the pyrrole and the thiophene ring respectively. We have calculated dihedral angles, HOMO-LUMO gaps, excitation energies and oscillator strengths by employing TD-DFT method. Our study reveals that compounds having bulky substituents exhibit larger dihedral angles. This in turn renders an increase in the band gaps (ΔH - L). Presence of the electron-withdrawing substituents also increases the ΔH - L values of the oligomers. However, the electron-donating groups decrease the ΔH - L values of the oligomers. Therefore, small electron-donating substituents have an overwhelming effect on the optoelectronic properties of the conjugated polymers which in turn makes them interesting materials with good conduction properties for fabrication of optoelectronic devices such as OLEDs, OFETs and solar cells.
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
Daniels, J E; Drakopoulos, M
2009-07-01
The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.
NASA Astrophysics Data System (ADS)
Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David
Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.
The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses
NASA Astrophysics Data System (ADS)
Samudrala, Kavitha; Babu Devarasetty, Suresh
2018-05-01
S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.
NASA Astrophysics Data System (ADS)
Barabash, Yu. M.; Lyamets, A. K.
2016-12-01
The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.
Materials Discovery via CALYPSO Methodology
NASA Astrophysics Data System (ADS)
Ma, Yanming
2014-03-01
Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.
Binding energies and modelling of nuclei in semiclassical simulations
NASA Astrophysics Data System (ADS)
Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.
2008-03-01
We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
Compact static stars in minimal dilatonic gravity
NASA Astrophysics Data System (ADS)
Fiziev, Plamen P.
2017-09-01
In the version1 of this paper we presented for the first time the basic equations and relations for relativistic static spherically symmetric stars (SSSS) in the model of minimal dilatonic gravity (MDG). This model is locally equivalent to the f(R) theory of gravity and gives an alternative description of the effects of dark matter and dark energy using the Brans-Dicke dilaton Φ. To outline the basic properties of the MDG model of SSSS and to compare them with general relativistic results, in this paper we use the relativistic equation of state (EOS) of neutron matter as an ideal Fermi neutron gas at zero temperature. We overcome the well-known difficulties of the physics of SSSS in the f(R) theories of gravity2,3 applying novel highly nontrivial nonlinear boundary conditions, which depend on the global properties of the solution and on the EOS. We also introduce two pairs of new notions: cosmological-energy-pressure densities and dilaton-energy-pressure densities, as well as two new EOSs for them: cosmological EOS (CEOS) and dilaton EOS (DEOS). Special attention is paid to the dilatonic sphere (in brief — disphere) of SSSS, introduced in this paper for the first time. Using several realistic EOS for neutron star (NS): SLy, BSk19, BSk20 and BSk21, and current observational two-solar-masses-limit, we derive an estimate for scalar-field-mass mΦ ˜ 10-13eV/c2 ÷ 4 × 10-11eV/c2. Thus, the present version of the paper reflects some of the recent developments of the topic.
The role of Minkowski functionals in the thermodynamics of two-phase systems
NASA Astrophysics Data System (ADS)
Eder, Gerhard
2018-01-01
Within this work quite old concepts from integral geometry are applied to classical equilibrium thermodynamics of two-phase systems. In addition to the area as basic interfacial quantity the full geometric characterization of the interface is used, which includes the two remaining Minkowski functionals, the mean curvature integral and the Euler Poincaré characteristic. The basic energetic characteristic of the interface (i.e. the interfacial tension) is extended by two additional properties: edge force as (up to a factor 4/π) the work necessary to form a right-angled edge of unit length, and item energy as the work to form an additional item in the phase morphology. Both quantities are of increasing importance, when going to micro- and nano-scales. They are subsequently used for interfaces of arbitrary shape to derive a relationship extending the classical Young-Laplace equation. The supplementary contribution is proportional to the Gaussian curvature, with the edge force as proportionality constant. Furthermore, both edge force and item energy are shown to be applicable to the description of crystal nucleation in liquids (extending the classical Becker Döring theory). It turns out, that even above the thermodynamic melting temperature stable nuclei can be present in the liquid phase. They immediately are able to grow when quenched to a temperature below a characteristic temperature. This temperature of spontaneous homogeneous nucleation is simply connected to the edge force, whereas the number of stable clusters per unit volume is dominated by the item energy. Finally, the additional energetic interfacial properties are used in a similar way to characterize the stability of emulsions.
The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Todd D.
The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less
Final Scientific/Technical Report – March 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Neal R.
The Center for Interface Science: Solar Electric Materials (CISSEM) was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) from August 1, 2009 – December 31, 2014 under Award Number DE-SC0001084, as part of a broad set of Energy Frontier Research Centers (EFRCs) designed to underpin the development of economical energy conversion platforms for the 21st century. CISSEM successfully integrated the research groups of 19 principal investigators at The University of Arizona (the lead institution), the Georgia Institute of Technology, Princeton University, the University of Washington, and the National Renewable Energy Laboratory (NREL) into amore » coordinated and synergistic program, while also building a highly productive collaboration with the SLAC National Accelerator Laboratory. Our mission was to advance the understanding of interface science underlying solar energy conversion technologies based on organic and organic-inorganic hybrid materials – specifically in organic photovoltaic solar cells (OPVs); and to inspire, recruit and train future scientists and leaders in the basic science of solar electric energy conversion. CISSEM researchers focused on establishing a foundational understanding of the electronic properties of interfaces in area-scalable, thin-film photovoltaic platforms. Metal oxide interlayers used in OPVs to improve the efficiency of charge harvesting at electrodes was our central focus. A key feature of CISSEM research has been our ability to develop a comprehensive understanding of interfaces and interfacial processes at the atomic and molecular scales. This is a scientific foundation for thin-film photovoltaic technologies and our nation’s pursuit of lowering the costs of transforming the sun’s energy into electricity. Our efforts combined: i) theoretical modeling; ii) new materials development; iii) developing new measurement science approaches to characterize composition, molecular and supramolecular structure, band edge energies, electrical properties, and charge harvesting or injection; and iv) integrating our use-inspired new materials and enhanced knowledge of interfaces and interfacial processes into OPV platforms. The strengths of the characterization methodologies developed in CISSEM were recognized within the EFRC network, and were a major component of our interactions with other DOE-funded programs including EFRCs. CISSEM research has resulted in a legacy of 120+ peer-reviewed publications describing our basic science. Much of this highly collaborative research will now be built upon at CISSEM member institutions, with other extramural funding sources. Furthermore, the state-of-the-art facilities and expertise created for modern interface science, especially as they pertain to energy conversion and energy storage challenges, will ensure their broadest continued impact. DOE EFRC funding has positively impacted and enhanced the training and development of more than 140 graduate students, postdoctoral researchers and research scientists at the five CISSEM institutions, and students from three Colorado universities associated with NREL. Our legacy also includes these student, postdoctoral researcher and scientist alumni who have taken positions of impact and responsibility in technology industries, government agencies and academia in the U.S., Asia and Europe.« less
Smart Building: Decision Making Architecture for Thermal Energy Management
Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo
2015-01-01
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Characteristics of flight simulator visual systems
NASA Technical Reports Server (NTRS)
Statler, I. C. (Editor)
1981-01-01
The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.
Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido
2009-01-01
Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Geothermal Heat Pump Basics | NREL
a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly
Opportunities for electricity storage in deregulating markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, F.; Jenkin, T.; Murphy, D.
1999-10-01
This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-termmore » differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available.« less
Tuning the physical properties in strontium iridate heterostructures
NASA Astrophysics Data System (ADS)
Nichols, John; Meyer, Tricia; Lee, Ho Nyung
2015-03-01
Strontium iridate (Srn+1IrnO3n+1) has received lots of attention recently for its potential to reveal novel physical phenomena due to strong spin-orbital coupling with an interaction energy comparable to that of the on-site Coulomb interaction and crystal field splitting. The coexistence of fundamental interactions has created an exotic Jeff = 1/2 antiferromagnetic insulating ground state in Sr2IrO4. In particular, it is known that this system can be driven into a metallic state with the simultaneous increase in dimensionality (n) and strain. We have investigated the effects of electron confinement by interfacing strontium iridates with other perovskite oxides. We have synthesized thin film heterostructures, SrIrO3/AMO3 (A = Sr, La; B = Ti, Mn, Rh), layer-by-layer with pulsed laser deposition equipped with reflection high-energy electron diffraction. Based on investigations with x-ray diffraction, dc transport, SQUID magnetometry, and various spectroscopic measurements, we will present that the physical properties of the heterostructures are strongly dependent on spatial confinement and epitaxial strain. *This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M.; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-01-01
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed. PMID:28362331
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-03-31
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
Ions interacting in solution: Moving from intrinsic to collective properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.
A crucial determinant of Hofmeister effects is the direct interaction of ions in solution with the charged groups on the surface of larger particles. Understanding ion–ion interactions in solution is therefore a necessary first step to explaining Hofmeister effects. Here, we advocate an approach to modeling these types of properties where state of the art Ab Initio Molecular Dynamics (AIMD) simulation of ions in solution is used to establish benchmark values for the intrinsic properties of ions in solution such as solvation structures and ion–ion Potentials of Mean Force (PMFs). This information can then be combined with or used to parametrize and improve reduced models, which use approximations such as the continuum solvent model.(CSM) These reduced models can then be used to calculate collective and concentration dependent properties of electrolyte solution and so make accurate predictions about complex systems of relevance for direct applications. We provide an example of this approach using AIMD calculations of the sodium chloride dimer to calculate osmotic coefficients of all 20 alkali halide electrolytes. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TD and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MSmore » $$^{3}$$ (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Thermophysical properties of hydrophobised lime plasters - The influence of ageing
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Zemanová, Lucie; Pavlík, Zbyšek
2017-07-01
The building envelope is a principal responsible for buildings energy loses. Lime plasters as the most popular finishing materials of historical buildings and culture monuments influence the thermal behaviour as well as construction material of masonry. On this account, the effect of ageing on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime plaster is tested. The ageing is accelerated with controlled carbonation process to simulate the final plasters properties. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity are experimentally assessed using a transient impulse method. The obtained data revealed the significant changes of the both studied thermal parameters in the dependence on plasters composition and age. The assessed material parameters will be stored in a material database, where will find use as an input data for computational modelling of heat transport in this type of porous building materials and evaluation of energy-savings and sustainability issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn
2015-10-15
Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are the basic safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt
NASA Astrophysics Data System (ADS)
An, Xue-Hui; Cheng, Jin-Hui; Su, Tao; Zhang, Peng
2017-06-01
Molten salts used in high temperatures are more and more interested in the CSP for higher energy conversion efficiency. Thermal physical properties are the basic engineering data of thermal hydraulic calculation and safety analysis. Therefore, the thermophysical performances involving density, specific heat capacity, viscosity and thermal conductivity of FLiNaK, (LiNaK)2CO3 and LiF(NaK)2CO3 molten salts are experimentally determined and through comparison the general rules can be summarized. Density measurement was performed on the basis of Archimedes theory; specific heat capacity was measured using the DSC technique; viscosity was tested based on the rotating method; and the thermal conductivity was gained by laser flash method with combination of the density, specific heat capacity and thermal diffusivity through a formula. Finally, the energy storage capacity and figures of merit are calculated to evaluate their feasibility as TES and HFT media. The results show that FLiNaK has the largest energy storage capacity and best heat transfer performance, LiF(NaK)2CO3 is secondary, and (LiNaK)2CO3 has the smallest.
Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maerzke, Katie A.; McGrath, M. J.; Kuo, I-F W.
2009-09-07
Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and overestimated, respectively. We present a comprehensive density functional theory study to asses the accuracy of two popular exchange correlation functionals on the structure and density of liquid water at ambient conditions This work was supported by the US Department of Energy Office of Basic Energy Science Chemical Sciences Program. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.« less
Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS
NASA Astrophysics Data System (ADS)
Fletcher, Luke; High Energy Density Sciences Collaboration
2017-10-01
Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-01-01
Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
NASA Astrophysics Data System (ADS)
Zahed, I.; Brown, G. E.
We review the recent developments on the Skyrme model in the context of OCD, and analyze their relevance to low-energy phenomenology. The fundamentals of chiral symmetry and PCAC are presented, and their importance in effective chiral models of the Skyrme type discussed. The nature and properties of skyrmions are thoroughly investigated, with particular stress on the basic role of the Wess-Zumino term. The conventional Skyrme model is extended to the low-lying vector meson resonances, and the rudiments of vector meson dominance are elucidated. A detailed account of the static and dynamical properties of nucleons and Δ-isobars is presented. The relevance of the Skyrme model to the nuclear many-body problem is outlined and its importance for boson exchange models stressed.
41 CFR 102-74.10 - What is the basic facility management policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY...
Alternative Fuels Data Center: Electricity Fuel Basics
, coal, nuclear energy, hydropower, natural gas, wind energy, solar energy, and stored hydrogen. Plug-in Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics
Linkov, Pavel; Artemyev, Mikhail; Efimov, Anton E; Nabiev, Igor
2013-10-07
Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.
Latest innovations for tattoo and permanent makeup removal.
Mao, Johnny C; DeJoseph, Louis M
2012-05-01
The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.
The lattice and quantized Yang–Mills theory
Creutz, Michael
2015-11-30
Quantized Yang–Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. In this paper, I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF)
NASA Technical Reports Server (NTRS)
Schattenburg, M. L.; Canizares, C. R.; Dewey, D.; Levine, A. M.; Markert, T. H.
1988-01-01
The use of transmission gratings with grazing-incidence telescopes in celestial X-ray astrononmy is reviewed. The basic properties of transmission grating spectrometers and the use of 'phased' gratings to enhance the diffraction efficiency are outlined. The fabrication of the gratings is examined, giving special attention to the AXAF High Energy Transmission Grating. The performance of finite-period thick gratings is briefly discussed, and the performance of the transmission grating spectrometers planned for SPECTROSAT and AXAF are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-26
The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of amore » two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.« less
Helicity and singular structures in fluid dynamics
Moffatt, H. Keith
2014-01-01
Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175
NASA Astrophysics Data System (ADS)
Cermak, P.; Ruleova, P.; Holy, V.; Prokleska, J.; Kucek, V.; Palka, K.; Benes, L.; Drasar, C.
2018-02-01
Thermoelectric effects are one of the promising ways to utilize waste heat. Novel approaches have appeared in recent decades aiming to enhance thermoelectric conversion. The theory of energy filtering of free carriers by inclusions is among the latest developed methods. Although the basic idea is clear, experimental evidence of this phenomenon is rare. Based on this concept, we searched suitable systems with stable structures showing energy filtering. Here, we report on the anomalous behavior of Cr-doped single-crystal Bi2Se3 that indicates energy filtering. The solubility of chromium in Bi2Se3 was studied, which is the key parameter in the formation process of inclusions. We present recent results on the effect of Cr-doping on the transport coefficients on a wide set of single crystalline samples. Magnetic measurements were used to corroborate the conclusions drawn from the transport and X-ray measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki
2015-05-15
Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.
Electromagnetic jets from stars and black holes
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.; Lupsasca, Alexandru; Rodriguez, Maria J.
2016-02-01
We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.
The uniform quantized electron gas revisited
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Høye, Johan S.
2017-11-01
In this article we continue and extend our recent work on the correlation energy of the quantized electron gas of uniform density at temperature T=0 . As before, we utilize the methods, properties, and results obtained by means of classical statistical mechanics. These were extended to quantized systems via the Feynman path integral formalism. The latter translates the quantum problem into a classical polymer problem in four dimensions. Again, the well known RPA (random phase approximation) is recovered as a basic result which we then modify and improve upon. Here we analyze the condition of thermodynamic self-consistency. Our numerical calculations exhibit a remarkable agreement with well known results of a standard parameterization of Monte Carlo correlation energies.
Properties of immobile hydrogen confined in microporous carbon
Bahadur, Jitendra; Bhabha Atomic Research Centre; Contescu, Cristian I.; ...
2017-03-06
The mobility of H2 confined in microporous carbon was studied as a function of temperature and pressure using inelastic neutron scattering, and the translational and rotational motion of H2 molecules has been probed. At low loading, rotation of H2 molecules adsorbed in the smallest carbon pores (~6 ) is severely hindered, suggesting that the interaction between H2 and the host matrix is anisotropic. At higher loading, H2 molecules behave as nearly free rotor, implying lower anisotropic interactions with adsorption sites. At supercritical temperatures where bulk H2 is a gas, the inelastic spectrum of confined H2 provides evidence of a significantmore » fraction of immobile, solid-like hydrogen. The onset temperature for molecular mobility depends strongly on the loaded amount. The fraction of immobile molecules increases with pressure and attains a plateau at high pressures. Surprisingly, immobile H2 is present even at temperatures as high as ~110 K. This research at ORNL s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. CIC and NCG acknowledge support from the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Erkan kariper, Sultan; Sayin, Koray; Karakaş, Duran
2017-12-01
[Ru(bipy)2(CppH)]2+(1), [Ru(bipy)2(Cpp-NH-Hex-COOH)]2+(2), [Ru(dppz)2(CppH)]2+(3) and [Ru(dppz)2(Cpp-NH-Hex-COOH)]2+(4) were calculated by Hartree-Fock (HF), Density Functional Theory (DFT) hybrid B3LYP and Moller-Plesset Perturbation (MPn n = 2,3) theory method and CEP-4G, CEP-31G, CEP-121G, LANL2DZ, LANL2MB, SDD basic sets and a mixed basic set with the keyword GEN in gas phase and water. Structure parameters obtained from optimized structures were compared with experimental parameters. M062X/(6-31G(d))(CEP-4G) level was taken into account for the most appropriate calculation level. IR, UV-VIS and NMR spectrums were examined for structural characterization. The optimal structure was identified via structure parameters, IR, UV-VIS and NMR spectrums. For the most compatible structure, the highest molecular orbital energy (EHOMO) which one of the most effective chemical determiners on the antitumor activity of the complexes, the lowest molecular orbital energy (ELUMO), LUMO-HOMO energy gap, hardness (η), softness (σ), electronegativity (χ), chemical potential (μ), electrophilicity index (ω), molar volume (V), dipole moment (DM), total negative charge (TNC), enthalpy (H), entropy (S) and total energy (E) were calculated. The causes of anticancer activity of the complexes have been studied.
Zakharov, S D
2013-01-01
According to the last results obtained by small-angle X-ray scattering and X-ray spectroscopy it was suggested that water within the nanometer scale represents a fluctuating mixture of clusters with tetrahedral structure and a subphase with partially broken hydrogen bonds whereas the nuclear configuration of the H20 molecule corresponds to single tetrahedral coordination. The basic reason of such structural partition is not clear until now. Here we show that it can be associated with the existence of two nuclear H2O spin-isomers which have different probability to be in one or another subphase. The para-molecule can transfer an excess of its rotational energy to the environment up to the complete stopping of rotation because its rotational quantum number J = 0 in the basic state. This property is favorable for the formation of clusters with closed H-bonds. Ortho-molecules with odd-numbered J states lack for this property and thus should be predominantly present in the surrounding with distorted bonds.
Food mechanical properties and dietary ecology.
Berthaume, Michael A
2016-01-01
Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Andrei, Armas; Robert, Beilicci; Erika, Beilicci
2017-10-01
MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.
75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...
SteamTables: An approach of multiple variable sets
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2009-10-01
Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction
NASA Astrophysics Data System (ADS)
Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John
The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.
Random bursts determine dynamics of active filaments.
Weber, Christoph A; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S; Bausch, Andreas R; Frey, Erwin
2015-08-25
Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.
The AMIGA enhancement of the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Maldera, S.
2014-06-01
The AMIGA (Auger Muons and Infill for the Ground Array) enhancement of the Auger Surface Detector consists of a 23.5 km2 infill area instrumented with water-Cherenkov detector stations accompanied by 30 m2 of scintillator counters, buried 2.3 m underground. The spacing of 750 m between the surface detectors extends the energy range as low as 3 × 1017 eV, thus allowing the study of the energy region where the transition between galactic and extra-galactic cosmic rays is expected to take place. We describe the reconstruction of the events observed with the infill water-Cherenkov detector array and the derived energy spectrum. We also discuss the basic properties of the muon detector modules obtained from measurements and tests during the construction phase and from the first data in the field.
Random bursts determine dynamics of active filaments
Weber, Christoph A.; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S.; Bausch, Andreas R.; Frey, Erwin
2015-01-01
Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system’s dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model. PMID:26261319
Low temperature magnetic characterization of EuO1-x
NASA Astrophysics Data System (ADS)
Rimal, Gaurab; Tang, Jinke
EuO is a widely studied magnetic semiconductor. It is an ideal case of a Heisenberg ferromagnet as well as a model magnetic polaron system. The interesting aspect of this material is the existance of magnetic polarons in the low temperature region. We study the properties of oxygen deficient EuO prepared by pulsed laser deposition. Besides normal ferromagnetic transitions near 70K and 140K, we observe a different transition at 16K. We also observe a shift in the coercivity for field cooling versus zero field cooling. Possible mechanisms driving these behaviors will be discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DEFG02-10ER46728) and by the School of Energy Resources of the University of Wyoming.
New Directions in Phthalocyanine Pigments
NASA Technical Reports Server (NTRS)
Vandemark, Michael R.
1992-01-01
The objectives were the following: (1) investigation of the synthesis of new phthalocyanines; (2) characterization of the new phthalocyanines synthesized; (3) investigate the properties of the newly synthesized phthalocyanines with emphasis on UV protection of plastics and coatings; and (4) utilize quantum mechanics to evaluate the structural relationships with possible properties and synthetic approaches. The proposed research targeted the synthesis of phthalocyanines containing an aromatic bridge between two phthalocyanine rings. The goal was to synthesize pigments which would protect plastics when exposed to the photodegradation effects of the sun in space. The stability and extended conjugation of the phthalocyanines offer a unique opportunity for energy absorption and numerous radiative and non-radiative energy loss mechanisms. Although the original targeted phthalocyanines were changed early in the project, several new and unique phthalocyanine compounds were prepared. The basic goals of this work were met and some unique and unexpected outcomes of the work were the result of the integral use of quantum mechanics and molecular modeling with the synthetic effort.
Quantum Yang-Mills Dark Energy
NASA Astrophysics Data System (ADS)
Pasechnik, Roman
2016-02-01
In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.
Sorbent control of trace metals in sewage sludge combustion and incineration
NASA Astrophysics Data System (ADS)
Naruse, I.; Yao, H.; Mkilaha, I. S. N.
2003-05-01
Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Aschwanden, Markus J
2006-02-15
Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.
Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing
NASA Astrophysics Data System (ADS)
Kozdera, Michal; Drábková, Sylva; Bojko, Marian
2014-03-01
The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That's why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.
Symmetries and band gaps in nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Tian, Yiteng; Fernando, Gayanath; Kocharian, Armen
In ideal graphene-like systems, time reversal and sublattice symmetries preserve the degeneracies at the Dirac point(s). We have examined such degeneracies in the band structure as well as the transport properties in various arm-twisted (graphene-related) nanoribbons. A twist angle is defined such that at 0 degrees the ribbon is a rectangular ribbon and at 60 degrees the ribbon is cut from a honeycomb lattice. Using model Hamiltonians and first principles calculations in these nanoribbons with Z2 topology, we have monitored the band structure as a function of the twist angle θ. In twisted ribbons, it turns out that the introduction of an extra hopping term leads to a gap opening. We have also calculated the size and temperature broadening effects in similar ribbons in addition to Rashba-induced transport properties. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No.DE-AC02- 98CH10886.
10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.385 Cessation of distribution of a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...
Determination of solute descriptors by chromatographic methods.
Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K
2009-10-12
The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.
Effective constitutive relations for large repetitive frame-like structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1981-01-01
Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.
NASA Astrophysics Data System (ADS)
Sharaf, J. M.; Saleh, H.
2015-05-01
The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.
Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.
Molecular dynamic simulations were carried out to study the sorption, structural properties, and diffusivities of n-hexane and cyclohexane adsorbed in Ni2(dhtp). The results indicated strong interactions between the alkanes and the host material. The free energy perturbation method was employed to investigate the adsorption free energies of methane, ethane, n-butane, n-hexane and cyclohexane. For linear alkanes, the free energy lowered as the length of the carbon chain increased. Also, the adsorption of n-hexane was preferred over cyclohexane, due to its ability to rearrange its structure to maximize contacts with the host. Furthermore, due to the large pore size of Ni2(dhtp),more » higher loadings of alkanes did not significantly affect the alkane structure, and enhanced the free energy of adsorption for subsequent alkanes being loaded. According to our studies, Ni2(dhtp) has a very promising potential for adsorption and storage of alkanes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Summaries of FY 92 geosciences research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries,more » equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less
Concept for a fast analysis method of the energy dissipation at mechanical joints
NASA Astrophysics Data System (ADS)
Wolf, Alexander; Brosius, Alexander
2017-10-01
When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.
Steady and oscillatory plasma properties in the near-field plume of a hollow cathode
NASA Astrophysics Data System (ADS)
Zun, ZHANG; Kan, XIE; Jiting, OUYANG; Ning, GUO; Yu, QIN; Qimeng, XIA; Song, BAI; Xianming, WU; Zengjie, GU
2018-02-01
Hollow cathodes serve as electron sources in Hall thrusters, ion thrusters and other electric propulsion systems. One of the vital problems in their application is the cathode erosion. However, the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood. In this paper, both potential measurements and simulation analyses were performed to explain the formation of high-energy ions. A high-speed camera, a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode. The temporal structure, electron temperature, electron density, and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above. The experimental results show that there exists a potential hill (about 30 V) and also severe potential oscillations in the near-plume region. Moreover, a simple 2D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions. The simulation results show that the energy of ions gained from the static potential background is about 20 eV, but it could reach to 60 eV when the plasma oscillates.
Endoradiotherapy in cancer treatment--basic concepts and future trends.
Zoller, Frederic; Eisenhut, Michael; Haberkorn, Uwe; Mier, Walter
2009-12-25
Endoradiotherapy represents an alternative therapeutic method in cancer treatment with advantageous features compared to chemotherapy and radiation therapy. Intelligent dose delivery concepts using small drugs, peptides or antibodies as radionuclide carriers enable the verification of a selective accumulation in the tumour lesion and to reduce radiation toxicity for the peripheral organs. The development of endoradiotherapeutic agents, especially chelator-conjugated biomolecules, for example ibritumomab tiuxetan or DOTATOC, gains importance due to the stable complexation of versatile radiometals, such as (90)Y or (177)Lu. The rational design of novel target binding sides and their grafting into a drug scaffold is a highly promising strategy, which may promote further implication in endoradiotherapy. This review highlights the basic concepts of endoradiotherapy and discusses the potential of targeted therapy and the properties of energy-rich particles emitted by radionuclides for tumour therapy.
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1981-01-01
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr
2016-09-01
In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic design and construction policy governs Federal agencies? 102-76.10 Section 102-76.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL...
Electronic and structural properties of B i2S e3:Cu
NASA Astrophysics Data System (ADS)
Sobczak, Kamil; Strak, Pawel; Kempisty, Pawel; Wolos, Agnieszka; Hruban, Andrzej; Materna, Andrzej; Borysiuk, Jolanta
2018-04-01
Electronic and structural properties of B i2S e3 and its extension to copper doped B i2S e3:Cu were studied using combined ab initio simulations and transmission electron microscopy based techniques, including electron energy loss spectroscopy, energy filtered transmission electron microscopy, and energy dispersive x-ray spectroscopy. The stability of the mixed phases was investigated for substitutional and intercalation changes of basic B i2S e3 structure. Four systems were compared: B i2S e3 , structures obtaining by Cu intercalation of the van der Waals gap, by substitution of Bi by Cu in quintuple layers, and C u2Se . The structures were identified and their electronic properties were obtained. Transmission electron microscopy measurements of B i2S e3 and the B i2S e3:Cu system identified the first structure as uniform and the second as composite, consisting of a nonuniform lower-Cu-content matrix and randomly distributed high-Cu-concentration precipitates. Critical comparison of the ab initio and experimental data identified the matrix as having a B i2S e3 dominant part with randomly distributed Cu-intercalated regions having 1Cu-B i2S e3 structure. The precipitates were determined to have 3Cu-B i2S e3 structure.
Hao, L; Lawrence, J
2004-03-15
Magnesia partially stabilised zirconia (MgO-PSZ), a bioinert ceramic, exhibits high mechanical strength, excellent corrosion resistance and good biocompatibility, but it does not naturally form a direct bond with bone resulting in a lack of osteointegration. The surface properties and structure of a biomaterial play an essential role in protein adsorption. As such, changes in the surface properties and structure of biomaterials may in turn alter their bioactivity. So, the fundamental reactions at the interface of biomaterials and tissue should influence their integration and bone-bonding properties. To this end, CO2 laser radiation was used to modify the surface roughness, crystal size, phase and surface energy of the MgO-PSZ. The basic mechanisms active in improving the surface energy were analysed and found to be the phase change and augmented surface area. The adsorption of human serum albumin (HSA), which is a non-cell adhesive protein, was compared on the untreated and CO2 laser modified MgO-PSZ. It was observed that the thickness of the adsorbed HSA decreased as the polar surface energy of the MgO-PSZ increased, indicating that HSA adsorbed more effectively on the hydrophobic MgO-PSZ surface than the hydrophilic surface. The current study provided important information regarding protein-biomaterial interactions and possible mechanisms behind the cell interaction and in vivo behaviour.
Energy and Economics. [Revised Edition.
ERIC Educational Resources Information Center
Walstad, William; Gleason, Joyce
This unit is designed to provide high school students with an introduction to topics of energy and economics. A basic premise of the unit is that energy issues and economics are interrelated. It is believed that the application of basic economic concepts to energy issues can provide students with the tools to improve their analysis of problems and…
DOE R&D Accomplishments Database
Goodenough, J. B.; Abruna, H. D.; Buchanan, M. V.
2007-04-04
To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.
Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages
Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles; ...
2017-06-20
The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less
Ruthenium and osmium complexes that bear functional azolate chelates for dye-sensitized solar cells.
Chi, Yun; Wu, Kuan-Lin; Wei, Tzu-Chien
2015-05-01
The preparation of sensitizers for dye-sensitized solar cells (DSSCs) represents an active area of research for both sustainability and renewable energy. Both Ru(II) and Os(II) metal sensitizers offer unique photophysical and electrochemical properties that arise from the intrinsic electronic properties, that is, the higher propensity to form the lower-energy metal-to-ligand charge-transfer (MLCT) transition, and their capability to support chelates with multiple carboxy groups, which serve as a bridge to the metal oxide and enable efficient injection of the photoelectron. Here we present an overview of the synthesis and testing of these metal sensitizers that bear functional azolate chelates (both pyrazolate and triazolate), which are capable of modifying the metal sensitizers in a systematic and beneficial manner. Basic principles of the molecular designs, the structural relationship to the photophysical and electrochemical properties, and performances of the as-fabricated DSSCs are highlighted. The success in the breakthrough of the synthetic protocols and potential applications might provide strong stimulus for the future development of technologies such as DSSCs, organic light-emitting diodes, solar water splitting, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CCmore » self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.« less
Refining and end use study of coal liquids I - pilot plant studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erwin, J.; Moulton, D.S.
1995-12-31
The Office of Fossil Energy, Pittsburgh Energy Technology Center is examining the ways in which coal liquids may best be integrated into the refinery of the 2000-2015 time frame and what performance and emission properties will prevail among the slate of fuels produced. The study consists of a Basic Program administered by Bechtel Group, Inc. to build a linear programming refinery model and provide processing and fuel properties data through subcontractors Southwest Research Institute, Amoco Oil R&D, and M.W. Kellogg Company. The model will be used in an Option 1 to devise a slate of test fuels meeting advanced specifications,more » which will be produced and tested for physical ASTM-type properties, engine performance, and vehicle emissions. Three coal liquids will be included: a direct liquid from bituminous coal, another from subbituminous, and a Fischer-Tropsch indirect liquefaction product. This paper reports the work to date on fractions of the first direct liquid including naphtha hydrotreating, heavy distillate hydrotreating, FCC of the heavy distillate hydrotreater products. Also reported are the first stages of work on the indirect liquefaction wax including feed preparation and FCC tests of blends with petroleum FCC feed.« less
Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles
The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less
Brownmillerite CaCoO2.5: Synthesis, Re-entrant Structural Transitions and Magnetic properties
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Hong; Malliakas, Christos; Allred, Jared; Ren, Yang; Li, Qing'an; Han, Tianheng; Mitchell, John
2015-03-01
Cobalt oxides attract both fundamental and technological attention due to their physical properties including thermoelectricity, giant magnetoresistance, superconductivity and multiferroicity. Here we report the first synthesis of CaCoO2.5 single crystals using a high pressure optical-image floating zone technique. We find that it is an ordered oxygen-deficient perovskite of the brownmillerite type, and it undergoes an unprecedented re-entrant structural phase transitions (Pcmb --> P2/c11 --> P121/m1 --> Pcmb) with decreasing temperature. We describe its temperature-dependent structural, thermal, and magnetic properties, including AFM ordering near 240 K, with a weakly spin canted ferromagnet ground state below 140 K. The magnetic response of CaCoO2.5 depends markedly on the cooling rate and field history. Magnetization data also imply the potential of a distinct, field-induced phase arising uniquely from the P121/m1 structure, revealed as kinetically trapped by a rapid-cooling protocol. Work in the Materials Science Division at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering.
[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures
NASA Astrophysics Data System (ADS)
Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-05-01
Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.
Semiconductor electrolyte photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Anderson, L. B.
1975-01-01
Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.
Transport properties of two-dimensional metal-phthalocyanine junctions: An ab initio study
NASA Astrophysics Data System (ADS)
Liu, Shuang-Long; Wang, Yun-Peng; Li, Xiang-Guo; Cheng, Hai-Ping
We study two dimensional (2D) electronic/spintronic junctions made of metal-organic frameworks via first-principles simulation. The system consists of two Mn-phthalocyanine leads and a Ni-phthalocyanine center. A 2D Mn phthalocyanine sheet is ferromagnetic half metal and a 2D Ni phthalocyanine sheet is nonmagnetic semiconductor. Our results show that this system has a large tunnel magnetic resistance. The transmission coefficient at Fermi energy decays exponentially with the length of the central region which is not surprising. However, the transmission of the junction can be tuned using gate voltage by up to two orders of magnitude. The origin of the change lies in the mode matching between the lead and the center electronic states. Moreover, the threshold gate voltage varies with the length of the center region which provides a way of engineering the transport properties. Finally, we combine non-equilibrium Green's function and Boltzmann transport equation to compute conductance of the junction. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. Computations were done using the utilities of NERSC and University of Florida Research Computing.
Firearms, bullets, and wound ballistics: an imaging primer.
Hanna, Tarek N; Shuaib, Waqas; Han, Tatiana; Mehta, Ajeet; Khosa, Faisal
2015-07-01
Based on its intrinsic mass and velocity, a bullet has an upper limit of wounding potential. Actual wound severity is a function of the bullet construction and trajectory, as well as the properties of the tissues traversed. Interpreting physicians must evaluate the bullet trajectory and describe patterns of injury resulting from the effect of energy transfer from the projectile into living tissue. A basic understanding of firearms, projectiles, and wound ballistics can help the interpreting physicians in conceptualizing these injuries and interpreting these cases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).
Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT
NASA Technical Reports Server (NTRS)
Thompson, David J.
2015-01-01
The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.
A mean field approach to the Ising chain in a transverse magnetic field
NASA Astrophysics Data System (ADS)
Osácar, C.; Pacheco, A. F.
2017-07-01
We evaluate a mean field method to describe the properties of the ground state of the Ising chain in a transverse magnetic field. Specifically, a method of the Bethe-Peierls type is used by solving spin blocks with a self-consistency condition at the borders. The computations include the critical point for the phase transition, exponent of magnetisation and energy density. All results are obtained using basic quantum mechanics at an undergraduate level. The advantages and the limitations of the approach are emphasised.
1988-01-01
Synthetic Motor Oils Basic Research on Mist Flamma- AFLRL-97 A046345 Sep 77 D.W. Naegeli bility--Phase I, Experimental W.D. Weatherford, Jr. Facility...Fuels on Combustor Properties D.W. Naegeli Application of Energy Dispersive AFLRL-102 A062792 Feb 78 M.K. Greenberg X-Ray Fluorescence Spectroscopy...the Literature J.P. Cuellar, Jr. Military Fuels Refined From AFLRL-131 A101069 Mar 81 J.N. Bowden Paraho-Il Shale Oil E.C. Owens D.W. Naegeli L.L
Multilayer coatings for flexible high-barrier materials
NASA Astrophysics Data System (ADS)
Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike
2009-06-01
A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.
Galactic Winds and the Role Played by Massive Stars
NASA Astrophysics Data System (ADS)
Heckman, Timothy M.; Thompson, Todd A.
Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.
Hydration of nonelectrolytes in binary aqueous solutions
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.
2010-10-01
Literature data on the thermodynamic properties of binary aqueous solutions of nonelectrolytes that show negative deviations from Raoult's law due largely to the contribution of the hydration of the solute are briefly surveyed. Attention is focused on simulating the thermodynamic properties of solutions using equations of the cluster model. It is shown that the model is based on the assumption that there exists a distribution of stoichiometric hydrates over hydration numbers. In terms of the theory of ideal associated solutions, the equations for activity coefficients, osmotic coefficients, vapor pressure, and excess thermodynamic functions (volume, Gibbs energy, enthalpy, entropy) are obtained in analytical form. Basic parameters in the equations are the hydration numbers of the nonelectrolyte (the mathematical expectation of the distribution of hydrates) and the dispersions of the distribution. It is concluded that the model equations adequately describe the thermodynamic properties of a wide range of nonelectrolytes partly or completely soluble in water.
Final Technical Report for Riedo Georgia Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedo, Elisa
Nanosheets, nanotubes, nanowires, and nanoparticles are gaining a large interest in the scientific community for their exciting properties, and they hold the potential to become building blocks in integrated nano-electronic and photonic circuits, nano-sensors, batteries electrodes, energy harvesting nano-systems, and nano-electro-mechanical systems (NEMS). While several experiments and theoretical calculations have revealed exciting novel phenomena in these nanostructures, many scientific and technological questions remain open. A fundamental objective guiding the study of nanoscale materials is understanding what are the new rules governing nanoscale properties and at what extent well-known physical macroscopic laws still apply in the nano-world. The vision of thismore » DoE research program is to understand the mechanical properties of nanoscale materials by exploring new experimental methods and theoretical models at the boundaries between continuum mechanics and atomistic models, with the overarching goal of defining the basic laws of mechanics at the nanoscale.« less
Simple liquid models with corrected dielectric constants
Fennell, Christopher J.; Li, Libo; Dill, Ken A.
2012-01-01
Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlovcak, J.T.
1994-12-31
Acetylene continues to be the most widely used fuel in the oxyfuel cutting and welding industry. It displays properties that enhance its benefits to the industry, but at the same time, present potential hazards that have to be addressed. The presentation explores the main properties or characteristics of acetylene -- odor, toxicity, flammability, composition, and manufacture. it expands on those properties that are unique to acetylene and which account for its main value to the user or which constitute the chief concern for safe use of acetylene. The presentation explains characteristics such as anosmia, flammable or explosive range, ignition energy,more » autoignition temperature, and flame temperature, comparing these values for acetylene to other common gaseous fuels. it explains the unique property of acetylene to decompose explosively in the absence of air or oxygen. The toxicological aspects of acetylene is discussed, including anesthetic effect and simple asphyxiant, showing the increasing severity of symptoms to increasing levels of oxygen deficiency. The main value of this basic review of the properties of acetylene is to remind people of the benefits of acetylene due to its unique properties, and to realert them to the potential hazards that also have to be addressed to control the properties of acetylene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, G.
1995-10-30
The objective of the workshop was to promote discussions between experts and research managers on developing approaches for assessing the impact of DOE`s basic energy research upon the energy mission, applied research, technology transfer, the economy, and society. The purpose of this impact assessment is to demonstrate results and improve ER research programs in this era when basic research is expected to meet changing national economic and social goals. The questions addressed were: (1) By what criteria and metrics does Energy Research measure performance and evaluate its impact on the DOE mission and society while maintaining an environment that fostersmore » basic research? (2) What combination of evaluation methods best applies to assessing the performance and impact of OBES basic research? The focus will be upon the following methods: Case studies, User surveys, Citation analysis, TRACES approach, Return on DOE investment (ROI)/Econometrics, and Expert panels. (3) What combination of methods and specific rules of thumb can be applied to capture impacts along the spectrum from basic research to products and societal impacts?« less
ERIC Educational Resources Information Center
Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.
This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…
41 CFR 102-78.10 - What basic historic preservation policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... governs Federal agencies? To protect, enhance and preserve historic and cultural property under their... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic historic preservation policy governs Federal agencies? 102-78.10 Section 102-78.10 Public Contracts and Property...
NASA Astrophysics Data System (ADS)
Zhou, Mi; Yang, Songtao; Jiang, Tao; Xue, Xiangxin
2015-05-01
The effect of basicity on high-chromium vanadium-titanium magnetite (V-Ti-Cr) sintering was studied via sintering pot tests. The sinter rate, yield, and productivity were calculated before determining sinter strength (TI) and reduction degradation index (RDI). Furthermore, the effect of basicity on V-Ti-Cr sinter mineralogy was clarified using metallographic microscopy, x-ray diffraction, and scanning electron microscopy-energy-dispersive x-ray spectroscopy. The results indicate that increasing basicity quickly increases the sintering rate from 25.4 mm min-1 to 28.9 mm min-1, yield from 75.3% to 87.2%, TI from 55.4% to 64.8%, and productivity from 1.83 t (m2 h)-1 to 1.94 t (m2 h)-1 before experiencing a slight drop. The V-Ti-Cr sinter shows complex mineral composition, with main mineral phases such as magnetite, hematite, silicate (dicalcium silicate, Ca-Fe olivine, glass), calcium and aluminum silico-ferrite (SFCA/SFCAI) and perovskite. Perovskite is notable because it lowers the V-Ti sinter strength and RDI. The well intergrowths between magnetite and SFCA/SFCAI, and the decrease in perovskite and secondary skeletal hematite are the key for improving TI and RDI. Finally, a comprehensive index was calculated, and the optimal V-Ti-Cr sinter basicity also for industrial application was 2.55.
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
This instructional unit contains four classroom lessons dealing with energy for use in grades six and seven. The overall objective is to provide students with a comparative overview of two basic energy concepts: energy is a basic need in all cultures; and energy use affects the way people live. In the lessons, which can easily be integrated into…
Pulsed radiolysis of model aromatic polymers and epoxy based matrix materials
NASA Technical Reports Server (NTRS)
Gupta, A.; Moacanin, J.; Liang, R.; Coulter, D.
1982-01-01
Models of primary processes leading to deactivation of energy deposited by a pulse of high energy electrons were derived for epoxy matrix materials and polyl-vinyl naphthalene. The basic conclusion is that recombination of initially formed charged states is complete within 1 nanosecond, and subsequent degradation chemistry is controlled by the reactivity of these excited states. Excited states in both systems form complexes with ground state molecules. These excimers or exciplexes have their characteristics emissive and absorptive properties and may decay to form separated pairs of ground state molecules, cross over to the triplet manifold or emit fluorescence. ESR studies and chemical analyses subsequent to pulse radiolysis were performed in order to estimate bond cleavage probabilities and net reaction rates. The energy deactivation models which were proposed to interpret these data have led to the development of radiation stabilization criteria for these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less
NASA Astrophysics Data System (ADS)
Puligheddu, Marcello; Gygi, Francois; Galli, Giulia
The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.
Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul
2017-01-01
In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned. PMID:28884063
Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul; Krishnan, Venkata
2017-01-01
In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned.
Controlling Oxygen Mobility in Ruddlesden–Popper Oxides
Lee, Dongkyu; Lee, Ho Nyung
2017-01-01
Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP) oxides (A2BO4) are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides. PMID:28772732
Terahertz technology for imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.
2006-05-01
The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.
Foundations of radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Mihalas, D.; Mihalas, B. W.
This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.
Inhibition of Photocatalytic Activity of Basic Blue-41 by ZnO Modified Surface with Amino Silane
NASA Astrophysics Data System (ADS)
Limsapapkasiphon, S.; Sirisaksoontorn, W.; Songsasen, A.
2018-03-01
The reduction of the photo catalytic efficiency of ZnO can be achieved by modifying its surface with amino silane, which synthesized through condensation reaction under basic condition. The pH of solution was varied from 8 to 14 during the synthesis and was found that pH 12 was the most suitable pH for the preparation. All of ZMAS were characterized by Elemental Analysis which showed the highest percentage of nitrogen at 3.1064% and IR technique which indicated the Si-O-Zn bond at about 1000 cm-1. The photodegradation property of ZMAS prepared at pH 8-12 toward basic blue 41 was retarded when compared with the unmodified ZnO. Effect of mole ratio of ZnO:APTES (1:0.1, 1:0.5, 1:1, and 1:2) in the preparation of ZMAS was investigated. The photodegration activity of ZMAS prepared at mole ratio of ZnO:APTES as 1:0.5 to 1:2 toward basic blue 41 was retarded when compared with the unmodified ZnO. The coating of amino silane on ZnO surface did not have much effect on the band gap energy of modified ZnO. The absorption edge of ZMAS was only slightly shifted from 392 to 397 nm.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
Droplet localization in the random XXZ model and its manifestations
NASA Astrophysics Data System (ADS)
Elgart, A.; Klein, A.; Stolz, G.
2018-01-01
We examine many-body localization properties for the eigenstates that lie in the droplet sector of the random-field spin- \\frac 1 2 XXZ chain. These states satisfy a basic single cluster localization property (SCLP), derived in Elgart et al (2018 J. Funct. Anal. (in press)). This leads to many consequences, including dynamical exponential clustering, non-spreading of information under the time evolution, and a zero velocity Lieb-Robinson bound. Since SCLP is only applicable to the droplet sector, our definitions and proofs do not rely on knowledge of the spectral and dynamical characteristics of the model outside this regime. Rather, to allow for a possible mobility transition, we adapt the notion of restricting the Hamiltonian to an energy window from the single particle setting to the many body context.
Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus
2017-01-01
Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555
A Tutorial Review on Fractal Spacetime and Fractional Calculus
NASA Astrophysics Data System (ADS)
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
Saving Energy around the House = Tien Tan Trong Viec Tieu Thu Nang Luc Trong Nha.
ERIC Educational Resources Information Center
Noyes, Marilyn; Jarrett, Von
This bilingual booklet is intended to help Vietnamese refugees learn basic energy conservation skills. Included in the booklet are Vietnamese and English translations of basic energy conservation practices related to the following areas: heating, cooling, cooking, using refrigerators and freezers, lighting, water heating, doing laundry, pursuing…
Power-law distributions for the areas of the basins of attraction on a potential energy landscape.
Massen, Claire P; Doye, Jonathan P K
2007-03-01
Energy landscape approaches have become increasingly popular for analyzing a wide variety of chemical physics phenomena. Basic to many of these applications has been the inherent structure mapping, which divides up the potential energy landscape into basins of attraction surrounding the minima. Here, we probe the nature of this division by introducing a method to compute the basin area distribution and applying it to some archetypal supercooled liquids. We find that this probability distribution is a power law over a large number of decades with the lower-energy minima having larger basins of attraction. Interestingly, the exponent for this power law is approximately the same as that for a high-dimensional Apollonian packing, providing further support for the suggestion that there is a strong analogy between the way the energy landscape is divided into basins, and the way that space is packed in self-similar, space-filling hypersphere packings, such as the Apollonian packing. These results suggest that the basins of attraction provide a fractal-like tiling of the energy landscape, and that a scale-free pattern of connections between the minima is a general property of energy landscapes.
First-principles Studies of Ferroelectricity in BiMnO3 Thin Films
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Cheng, Hai-Ping
The ferroelectricity in BiMnO3 thin films is a long-standing problem. We employed a first-principles density functional theory with inclusion of the local Hubbard Coulomb (U) and exchange (J) terms. The parameters U and J are optimized to reproduce the atomic structure and the energy gap of bulk C2/c BiMnO3. With these optimal U and J parameters, the calculated ferromagnetic Curie temperature and lattice dynamics properties agree with experiments. We then studied the ferroelectricity in few-layer BiMnO3 thin films on SrTiO3(001) substrates. Our calculations identified ferroelectricity in monolayer, bilayer and trilayer BiMnO3 thin films. We find that the energy barrier for 90° rotation of electric polarization is about 3 - 4 times larger than that of conventional ferroelectric materials. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. Computations were done using the utilities of the National Energy Research Scientific Computing Center (NERSC).
Effect of Intrinsic Twist on Length of Crystalline and Disordered Regions in Cellulose Microfibrils
NASA Astrophysics Data System (ADS)
Nili, Abdolmadjid; Shklyaev, Oleg; Zhao, Zhen; Zhong, Linghao; Crespi, Vincent
2013-03-01
Cellulose is the most abundant biological material in the world. It provides mechanical reinforcement for plant cell wall, and could potentially serve as renewable energy source for biofuel. Native cellulose forms a non-centrosymmetric chiral crystal due to lack of roto-inversion symmetry of constituent glucose chains. Chirality of cellulose crystal could result in an overall twist. Competition between unwinding torsional/extensional and twisting energy terms leads to twist induced frustration along fibril's axis. The accumulated frustration could be the origin of periodic disordered regions observed in cellulose microfibrils. These regions could play significant role in properties of cellulose bundles and ribbons as well as biological implications on plant cell walls. We propose a mechanical model based on Frenkel-Kontorova mechanism to investigate effects of radius dependent twist on crystalline size in cellulose microfibrils. Parameters of the model are adjusted according to all-atom molecular simulations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center
NASA Astrophysics Data System (ADS)
Pham, Hang; Iwamoto, Takeshi
2015-09-01
TRIP (Transformation-induced Plasticity) steel is nowadays in widespread use in the automobile industry because of their favorable mechanical properties such as high strength, excellent formability and toughness because of strain-induced martensitic transformation. Moreover, when TRIP steel is applied to the components of the vehicles, it is expected that huge amount of kinetic energy will be absorbed into both plastic deformation and martensitic transformation during the collision. Basically, bending deformation due to buckling is one of the major crash deformation modes of automobile structures. Thus, an investigation of energy absorption during bending deformation at high impact velocity for TRIP steel is indispensable. Although TRIP steel have particularly attracted the recent interest of the scientific community, just few studies can be found on the energy absorption characteristic of TRIP steel, especially at impact loading condition. In present study, experimental investigations of bending deformation behaviors of TRIP steel are conducted in the three-point bending tests for both smooth and pre-cracked specimen. Then, energy absorption characteristic during plastic deformation and fracture process at high impact velocity in TRIP steel will be discussed.
Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Wood, J. L.; Yates, S. W.
2018-06-01
Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.
A dissipative random velocity field for fully developed fluid turbulence
NASA Astrophysics Data System (ADS)
Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe
2016-11-01
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.
Transparent Conducting Oxides: Status and Opportunities in Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutts, T. J.; Perkins, J. D.; Ginley, D.S.
1999-08-01
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Bobela, David C.; Yang, Ye
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
Chen, Chao; Bobela, David C.; Yang, Ye; ...
2017-03-17
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Tuning the acid/base properties of nanocarbons by functionalization via amination.
Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng
2010-07-21
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.
Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo
2017-02-23
Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing-thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.
Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo
2017-01-01
Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation. PMID:28772580
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
NASA Astrophysics Data System (ADS)
Mugisidi, Dan; Heriyani, Okatrina
2018-02-01
Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.
FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, George A.; Simmons, Jerry A.
2006-07-01
This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.
... A calorie is a unit of energy. Most foods and beverages contain calories. To lose weight you need to: • ... Combine the two for the best results The foods you eat and the beverages you drink provide energy and nutrients. The basic ...
Fissioning uranium plasmas and nuclear-pumped lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Thom, K.
1975-01-01
Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei
We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc.more » 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Sing; Green, Michael E.
2011-01-01
Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 watermore » molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these potentials are used in Molecular Dynamics simulations.« less
Dosimetric evaluation of Plastic Water Diagnostic-Therapy.
Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K
2008-04-29
High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.
NASA Technical Reports Server (NTRS)
Weiland, J.L.; Hill, R.S.; Odegard, 3.; Larson, D.; Bennett, C.L.; Dunkley, J.; Jarosik, N.; Page, L.; Spergel, D.N.; Halpern, M.;
2008-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) is a Medium-Class Explorer (MIDEX) satellite aimed at elucidating cosmology through full-sky observations of the cosmic microwave background (CMB). The WMAP full-sky maps of the temperature and polarization anisotropy in five frequency bands provide our most accurate view to date of conditions in the early universe. The multi-frequency data facilitate the separation of the CMB signal from foreground emission arising both from our Galaxy and from extragalactic sources. The CMB angular power spectrum derived from these maps exhibits a highly coherent acoustic peak structure which makes it possible to extract a wealth of information about the composition and history of the universe. as well as the processes that seeded the fluctuations. WMAP data have played a key role in establishing ACDM as the new standard model of cosmology (Bennett et al. 2003: Spergel et al. 2003; Hinshaw et al. 2007: Spergel et al. 2007): a flat universe dominated by dark energy, supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this universe are determined by five numbers: the density of matter, the density of atoms. the age of the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations, and their scale dependence. By accurately measuring the first few peaks in the angular power spectrum, WMAP data have enabled the following accomplishments: Showing the dark matter must be non-baryonic and interact only weakly with atoms and radiation. The WMAP measurement of the dark matter density puts important constraints on supersymmetric dark matter models and on the properties of other dark matter candidates. With five years of data and a better determination of our beam response, this measurement has been significantly improved. Precise determination of the density of atoms in the universe. The agreement between the atomic density derived from WMAP and the density inferred from the deuterium abundance is an important test of the standard big bang model. Determination of the acoustic scale at redshift z = 1090. Similarly, the recent measurement of baryon acoustic oscillations (BAO) in the galaxy power spectrum (Eisenstein et al. 2005) has determined the acoustic scale at redshift z approx. 0.35. When combined, these standard rulers accurately measure the geometry of the universe and the properties of the dark energy. These data require a nearly flat universe dominated by dark energy consistent with a cosmological constant. Precise determination of the Hubble Constant, in conjunction with BAO observations. Even when allowing curvature (Omega(sub 0) does not equal 1) and a free dark energy equation of state (w does not equal -1), the acoustic data determine the Hubble constant to within 3%. The measured value is in excellent agreement with independent results from the Hubble Key Project (Freedman et al. 2001), providing yet another important consistency test for the standard model. Significant constraint of the basic properties of the primordial fluctuations. The anti-correlation seen in the temperature/polarization (TE) correlation spectrum on 4deg scales implies that the fluctuations are primarily adiabatic and rule out defect models and isocurvature models as the primary source of fluctuations (Peiris et al. 2003).
Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses
NASA Astrophysics Data System (ADS)
Edathazhe, Akhila B.; Shashikala, H. D.
2018-04-01
This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.
Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
Ismail-Beigi, Sohrab
2017-09-27
The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.
ERIC Educational Resources Information Center
St. John, Jeanne
The guidelines are intended to familiarize educators with the basics of acupressure and to suggest ways in which the principles may help relieve anxiety and stress in school students. Eight energy exercises are introduced, followed by a review of the basic principles of energy and guidelines for giving and receiving acupressure. Illustrations of…
Linear and nonlinear dynamo properties of time-dependent ABC flows
NASA Astrophysics Data System (ADS)
Brummell, N. H.; Cattaneo, F.; Tobias, S. M.
2001-04-01
The linear and nonlinear dynamo properties of a class of periodically forced flows is considered. The forcing functions are chosen to drive, in the absence of magnetic effects (kinematic regime), a time-dependent version of the ABC flow with A= B= C=1. The time-dependence consists of a harmonic displacement of the origin along the line x= y= z=1 with amplitude ɛ and frequency Ω. The finite-time Lyapunov exponents are computed for several values of ɛ and Ω. It is found that for values of these parameters near unity chaotic streamlines occupy most of the volume. In this parameter range, and for moderate kinetic and magnetic Reynolds numbers, the basic flow is both hydrodynamically and hydromagnetically unstable. However, the dynamo instability has a higher growth rate than the hydrodynamic one, so that the nonlinear regime can be reached with negligible departures from the basic ABC flow. In the nonlinear regime, two distinct classes of behaviour are observed. In one, the exponential growth of the magnetic field saturates and the dynamo settles to a stationary state whereby the magnetic energy is maintained indefinitely. In the other the velocity field evolves to a nondynamo state and the magnetic field, following an initial amplification, decays to zero. The transition from the dynamo to the nondynamo state can be mediated by the hydrodynamic instability or by magnetic perturbations. The properties of the ensuing nonlinear dynamo states are investigated for different parameter values. The implications for a general theory of nonlinear dynamos are discussed.
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic design and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL... must be timely, efficient, and cost effective. (b) Use a distinguished architectural style and form in...
Hyeon-Deuk, Kim; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
NASA Astrophysics Data System (ADS)
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Energy dissipation in Ni-containing concentrated solid solutions.
NASA Astrophysics Data System (ADS)
Samolyuk, German; Mu, Sai; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm
Due to high disorder the diffusion processes are noticeably suppressed concentrated solid solution, so called high entropy alloys. It makes these alloys promising candidate for energy application under extreme conditions. Understanding of the energy dissipation in these alloys during the irradiation or interaction with laser bean is extremely important. In the metals and alloys the main channel of energy dissipation is provided by the electronic subsystem. The first principles approach was used to investigate the electronic structure properties of the alloys. The obtained results were used to calculate the electronic part of thermal resistivity caused by scattering of electrons on atomic disorder, magnetic and phonon excitations The contribution of last two excitations to the temperature dependence of thermal resistivity is discussed. The importance of magnetism in 3d transition metals based alloy was demonstrated. In particular, it was shown that antiferromagnetic ordering of chromium or manganese leads to significant increase of electron scattering in alloy containing these elements. It results in significant reduction of conductivity in chromium or manganese containing alloys. The comparison with the existing experimental data is discussed. This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.
Code of Federal Regulations, 2010 CFR
2010-01-01
... definitions are provided for purposes of this part— Basic and applied research means basic and applied research and that part of development not related to the development of specific systems or products. The... ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM...
Operational properties of fluctuation X-ray scattering data
Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.
2015-03-20
X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less
Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, David; Luketa, Anay; Wocken, Chad
2015-03-01
Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crudemore » oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank« less
The effect of gyrolite additive on the hydration properties of Portland cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisinas, A., E-mail: anatolijus.eisinas@ktu.lt; Baltakys, K.; Siauciunas, R.
2012-01-15
The influence of gyrolite additive on the hydration properties of ordinary Portland cement was examined. It was found that the additive of synthetic gyrolite accelerates the early stage of hydration of OPC. This compound binds alkaline ions and serves as a nucleation site for the formation of hydration products (stage I). Later on, the crystal lattice of gyrolite becomes unstable and turns into C-S-H, with higher basicity (C/S {approx} 0.8). This recrystallization process is associated with the consumption of energy (the heat of reaction) and with a decrease in the rate of heat evolution of the second exothermic reaction (stagemore » II). The experimental data and theoretical hypothesis were also confirmed by thermodynamic and the apparent kinetic parameters of the reaction rate of C{sub 3}S hydration calculations. The changes occur in the early stage of hydration of OPC samples and do not have a significant effect on the properties of cement stone.« less
NASA Astrophysics Data System (ADS)
Los, J. H.; Kroes, J. M. H.; Albe, K.; Gordillo, R. M.; Katsnelson, M. I.; Fasolino, A.
2017-11-01
We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added to improve the dependence of bonding on the chemical environment, leads to an accurate description of point defects in hexagonal BN (h -BN) and cubic BN (c -BN). We have implemented this potential in the molecular dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h -BN and the elastic properties of defective h -BN as a function of defect density at zero temperature. Our results show that there is a strong correlation between the size of the static corrugation induced by the defects and the weakening of the in-plane elastic moduli.
Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing
Shang, Yang
2015-01-01
Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909
Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.
Shang, Yang; Guo, Lin
2015-10-01
Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.
More than Meets the Eye - Infrared Cameras in Open-Ended University Thermodynamics Labs
NASA Astrophysics Data System (ADS)
Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan
2016-12-01
Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property. One potential source of students' challenges with thermal science is the lack of opportunity to visualize energy transfer in intuitive ways with traditional measurement equipment. Thermodynamics laboratories have typically depended on point measures of temperature by use of thermometers (detecting heat conduction) or pyrometers (detecting heat radiation). In contrast, thermal imaging by means of an infrared (IR) camera provides a real-time, holistic image. Here we provide some background on IR cameras and their uses in education, and summarize five qualitative investigations that we have used in our courses.
An investigation of quasi-inertial attitude control for a solar power satellite
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Wang, S. J.
1982-01-01
An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.
NASA Astrophysics Data System (ADS)
Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle
2011-03-01
Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
Western Shallow Oil Zone, Elk Hills Field, Kern County, California:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, K.B.
1987-09-01
The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have beenmore » determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.« less
Thermodynamics--A Practical Subject.
ERIC Educational Resources Information Center
Jones, Hugh G.
1984-01-01
Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)
Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors
Levitsky, Igor A.; Krivoshlykov, Sergei G.
2004-02-03
A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2012 CFR
2012-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2010 CFR
2010-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Code of Federal Regulations, 2011 CFR
2011-01-01
... test more than one unit of a basic model to determine the efficiency of that basic model, the... one ampere and the test current is limited to 15 percent of the winding current. Connect the... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption...
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Interface induced ferromagnetism in topological insulator above room temperature
NASA Astrophysics Data System (ADS)
Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing
The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Beerten, Koen; Vanhavere, Filip
2010-08-01
New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.
NASA Astrophysics Data System (ADS)
Gao, Da; Ray, Asok
2007-03-01
The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.
High-Energy-Density Shear Flow and Instability Experiments
NASA Astrophysics Data System (ADS)
Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.
2017-10-01
High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.
NASA Astrophysics Data System (ADS)
Vasoya, Manish; Lazarus, Véronique; Ponson, Laurent
2016-10-01
The effect of strong toughness heterogeneities on the macroscopic failure properties of brittle solids is investigated in the context of planar crack propagation. The basic mechanism at play is that the crack is locally slowed down or even trapped when encountering tougher material. The induced front deformation results in a selection of local toughness values that reflect at larger scale on the material resistance. To unravel this complexity and bridge micro to macroscale in failure of strongly heterogeneous media, we propose a homogenization procedure based on the introduction of two complementary macroscopic properties: An apparent toughness defined from the loading required to make the crack propagate and an effective fracture energy defined from the rate of energy released by unit area of crack advance. The relationship between these homogenized properties and the features of the local toughness map is computed using an iterative perturbation method. This approach is applied to a circular crack pinned by a periodic array of obstacles invariant in the radial direction, which gives rise to two distinct propagation regimes: A weak pinning regime where the crack maintains a stationary shape after reaching an equilibrium position and a fingering regime characterized by the continuous growth of localized regions of the fronts while the other parts remain trapped. Our approach successfully bridges micro to macroscopic failure properties in both cases and illustrates how small scale heterogeneities can drastically affect the overall failure response of brittle solids. On a broader perspective, we believe that our approach can be used as a powerful tool for the rational design of heterogeneous brittle solids and interfaces with tailored failure properties.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less
Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo
NASA Astrophysics Data System (ADS)
Mancini, Joshua A.
Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles to the maquettes both in vitro and in vivo. Design principles are also established for increasing the amount of linear tetrapyrrole attachment to the maquette as well as modulating their photophysical properties. Fast and tight binding of cofactors, high cofactor attachment yields, and control of cofactor photophysical properties are all prerequisites for the maquettes to be successful in vivo photosynthetic light harvesting and signaling proteins.
Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
NASA Astrophysics Data System (ADS)
Wang, Tianju; Zhong, Zhong; Wang, Ju
2018-05-01
Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.
Organohalide Perovskites for Solar Energy Conversion.
Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul
2016-03-15
Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency, fill factor, and ultimately the all-important power conversion efficiency. Finally, we address the key challenges pertinent to actually delivering a new and viable solar cell technology. These include long-term cell stability, scaling to the module level, and the toxicity associated with lead. Organohalide perovskites not only offer exciting possibilities for next generation optoelectronics and photovoltaics, but are an intriguing class of material crossing the boundaries of molecular solids and banded inorganic semiconductors. This is a potential area of rich new chemistry, materials science, and physics.
Effect of Graphene with Nanopores on Metal Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hu; Chen, Xianlang; Wang, Lei
Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
The Path of Carbon in Photosynthesis [Nobel Prize Lecture
DOE R&D Accomplishments Database
Calvin, Melvin
1961-12-11
It is almost sixty years since Emil Fischer was describing on a platform such as this one some of the work which led to the basic knowledge of the structure of glucose and its relatives. Today we will be concerned with a description of the experiments which have led to a knowledge of the principal reactions by which those carbohydrate structures are created by photosynthetic organisms from carbon dioxide and water, using the energy of light. The speculations on the way in which carbohydrate was built from carbon dioxide began not long after the recognition of the basic reaction and were carried forward first by Justus von Liebig and then by Adolf von Baeyer and, finally, by Richard Wilstatter and Arthur Stoll into this century. Actually, the route by which animal organisms performed the reverse reaction, that is, the combustion of carbohydrate to carbon dioxide and water with the utilization of the energy resulting from this combination, turned out to be the first one to be successfully mapped, primarily by Otto Meyerhoi and Hans Krebs. Our own interest in the basic process of solar energy conversion by green plants began some time in the years between 1935 and 1937, during my postdoctoral studies with Professor Michael Polanyi at Manchester. It was there I first became conscious of the remarkable properties of coordinated metal compounds, particularly metalloporphyins as represented by heme and chlorophyll. A study was begun at that time, which is still continuing, on the electronic behavior of such metalloporphyrins. It was extended and generalized by the stimulus of Professor Gilbert N. Lewis upon my arrival in Berkeley. I hope these continuing studies may one day contribute to the understanding of the precise way in which chlorophyll and its relatives accomplish the primary quantum conversion into chemical potential which is used to drive the carbohydrate synthesis reaction.
Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.
2017-01-01
We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Definitions. 605.3 Section 605.3 Energy DEPARTMENT OF... § 605.3 Definitions. In addition to the definitions provided in 10 CFR part 600, the following definitions are provided for purposes of this part— Basic and applied research means basic and applied...
Chemical Biodynamics Division. Annual report 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.
Understanding nanofluid stability through molecular simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan
We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than themore » molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
NASA Astrophysics Data System (ADS)
Carminati, Federico; Perret-Gallix, Denis; Riemann, Tord
2014-06-01
Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: • The importance of having various licensing models in academic research; • The basic value of proper recognition and attribution of intellectual property, including scientific software; • The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion.
Lectures on Dark Matter Physics
NASA Astrophysics Data System (ADS)
Lisanti, Mariangela
Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.
Drying and heat decomposition of biomass during the production of biochar
NASA Astrophysics Data System (ADS)
Lyubov, V. K.; Popova, E. I.
2017-11-01
The process of wood torrefaction provides an opportunity to combine properties of biofuel and steam coal. Different degrees of biofuel heat treating leads to varied outcomes and varied biochar heating value. Therefore, the torrefaction process requires optimal operation that ensures the highest heating value of biochar with the lowest energy loss. In this paper we present the experimental results of drying cycle and thermal decomposition of particles of spruce stem wood and hydrolytic lignin in argon under various temperature conditions and basic material humidity as well as changes in the morphological structure of the biomass and its grain size composition during the torrefaction.
Evaluation of experimental epoxy monomers
NASA Technical Reports Server (NTRS)
Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.
1985-01-01
Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.
Optimization of cascade blade mistuning. I - Equations of motion and basic inherent properties
NASA Technical Reports Server (NTRS)
Nissim, E.
1985-01-01
Attention is given to the derivation of the equations of motion of mistuned compressor blades, interpolating aerodynamic coefficients by means of quadratic expressions in the reduced frequency. If the coefficients of the quadratic expressions are permitted to assume complex values, excellent accuracy is obtained and Pade rational expressions are obviated. On the basis of the resulting equations, it is shown analytically that the sum of all the real parts of the eigenvalues is independent of the mistuning introduced into the system. Blade mistuning is further treated through the aerodynamic energy approach, and the limiting vibration modes associated with alternative mistunings are identified.
Advances in antihydrogen physics.
Charlton, Mike; Van der Werf, Dirk Peter
2015-01-01
The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarillo-Herrero, Pablo
This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulkmore » carriers in most TI compounds as well as degradation during device fabrication.« less
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-01-01
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. PMID:28772809
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-04-25
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW)-at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with "river-flow" patterns and characteristic fatigue striations.
Alternative Fuels Characterization | Transportation Research | NREL
. Research at NREL focuses on the basic properties of these fuels and what levels of oxygen can be tolerated conventional cars and on understanding the performance of flex-fuel vehicles that can operate on ethanol levels basic properties of these fuels, as well as determining what levels of oxygen can be tolerated in drop
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2014 CFR
2014-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2012 CFR
2012-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2011 CFR
2011-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
John F. Hunt
1998-01-01
The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.
ERIC Educational Resources Information Center
Opfer, John E.; Siegler, Robert S.
2004-01-01
Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labios, Liezel A.; Heiden, Zachariah M.; Mock, Michael T.
2015-05-04
The synthesis of a series of P EtP NRR' (P EtP NRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated atmore » Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes provides further insight into the proton affinity values of the metal center, N₂ ligand, and pendant amine sites to rationalize the differing reactivity profiles. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Ultralight porous metals: From fundamentals to applications
NASA Astrophysics Data System (ADS)
Lu, Tianjian
2002-10-01
Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts. The main aim is to develop lightweight structures which are stiff, strong, able to absorb large amount of energy and cheap for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious consideration for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find a widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to be included in a design. This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams.
Electronic properties of new topological quantum materials
NASA Astrophysics Data System (ADS)
Kaminski, Adam
Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.
Data-driven discovery of new Dirac semimetal materials
NASA Astrophysics Data System (ADS)
Yan, Qimin; Chen, Ru; Neaton, Jeffrey
In recent years, a significant amount of materials property data from high-throughput computations based on density functional theory (DFT) and the application of database technologies have enabled the rise of data-driven materials discovery. In this work, we initiate the extension of the data-driven materials discovery framework to the realm of topological semimetal materials and to accelerate the discovery of novel Dirac semimetals. We implement current available and develop new workflows to data-mine the Materials Project database for novel Dirac semimetals with desirable band structures and symmetry protected topological properties. This data-driven effort relies on the successful development of several automatic data generation and analysis tools, including a workflow for the automatic identification of topological invariants and pattern recognition techniques to find specific features in a massive number of computed band structures. Utilizing this approach, we successfully identified more than 15 novel Dirac point and Dirac nodal line systems that have not been theoretically predicted or experimentally identified. This work is supported by the Materials Project Predictive Modeling Center through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less
Room-temperature ballistic transport in III-nitride heterostructures.
Matioli, Elison; Palacios, Tomás
2015-02-11
Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.
Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.
2016-01-01
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541
Optical properties of InN thin films
NASA Astrophysics Data System (ADS)
Malakhov, Vladislav Y.
2000-04-01
The basic optical properties of low temperature plasma enhanced chemical reactionary sputtered (PECRS) InN thin films are presented. Optical absorption and reflectance spectra of InN polycrystalline films at room temperature in visible and near infrared (NIR) regions were taken to determine direct band gap energy (2.03 eV), electron plasma resonances energy (0.6 eV), damping constant (0.18 eV), and optical effective mass of electrons (0.11). In addition the UV and visible reflectance spectra have been used to reproduce accurately dielectric function of wurtzite InN for assignments of the peak structures to interband transitions (1.5 - 12.0 eV) as well as to determine dielectric constant (9.3) and refractive index (>3.0). The revealed reflectance peaks at 485 and 590 cm-1 respectively in IR spectra are connected with TO and LO optical vibration modes of InN films. Some TO (485 cm-1) and LO (585 cm-1) phonon features of indium nitride polycrystalline films on ceramics were observed in Raman spectra and also discussed. The excellent possibilities of InN polycrystalline layers for potential application in optoelectronic devices such as LEDs based InGaAlN and high efficiency solar cells are confirmed.
High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.
NASA Astrophysics Data System (ADS)
Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof
Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses
NASA Astrophysics Data System (ADS)
Venkatesh, G.; Meera, B. N.; Eraiah, B.
2018-04-01
xBi2O3-(15-x)V2O5-45B2O3-40Na2O glasses have been prepared using melt quenching technique. Amorphous nature of the glasses is verified using powder XRD. Densities and molar volume have been determined as a function of bismuth content and interestingly both increases as a function of bismuth content. Further oxygen packing density (OPD) is found to decrease with bismuth content. The increase in the molar volume as a function of bismuth content may be due to structural changes in the glass network. The optical properties performed from the optical absorption spectra were recorded in the wavelength range 200-1100 nm using UV-Visible spectrophotometer. The theoretical optical basicity of the oxides have also been estimated. The calculated energy band gap values increases with increase in Bi2O3 content.
Properties of JP=1/2+ baryon octets at low energy
NASA Astrophysics Data System (ADS)
Kaur, Amanpreet; Gupta, Pallavi; Upadhyay, Alka
2017-06-01
The statistical model in combination with the detailed balance principle is able to phenomenologically calculate and analyze spin- and flavor-dependent properties like magnetic moments (with effective masses, with effective charge, or with both effective mass and effective charge), quark spin polarization and distribution, the strangeness suppression factor, and \\overline{d}-\\overline{u} asymmetry incorporating the strange sea. The s\\overline{s} in the sea is said to be generated via the basic quark mechanism but suppressed by the strange quark mass factor ms>m_{u,d}. The magnetic moments of the octet baryons are analyzed within the statistical model, by putting emphasis on the SU(3) symmetry-breaking effects generated by the mass difference between the strange and non-strange quarks. The work presented here assumes hadrons with a sea having an admixture of quark gluon Fock states. The results obtained have been compared with theoretical models and experimental data.
Hoffmann, Axel; Schultheiß, Helmut
2014-12-17
Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less
Optical properties of medium size noble and transition metal nanoparticles
NASA Astrophysics Data System (ADS)
Idrobo, Juan C.; Pantelides, Sokrates T.
2009-03-01
Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.
A Stable Polymer Burnable Poison Material With Special Attributes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulenko, James S.; Baney, Ronald H.; Pressley, Linda
2002-07-01
The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials which appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA) and also Spent Fuel Containers (SFC). This new material ('Carborane') has the special properties of containing a tailored amount of boron, an extremely high hydrogen content, and being extremely stable to high temperatures. 'Carborane' reduces the water displacement penalty by 59% by the hydrogen present in the 'Carborane'. In addition to increasing safety margins, a cost benefit of approximately $500,000 per two-yearmore » cycle is projected from reduced enrichments, resulting from the use of this burnable poison material, making it no longer necessary to offset the water displacement reactivity penalty. This research program is supported by a Department of Energy NEER grant. (authors)« less
NASA Astrophysics Data System (ADS)
Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.
2016-09-01
We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
Nuclear spectroscopy of r-process nuclei around N = 126 using KISS
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.
2017-09-01
The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, N. S.; Crabtree, G.; Nozik, A. J.
2005-04-21
World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less
Window Insulation: How to Sort Through the Options.
ERIC Educational Resources Information Center
Miller, Barbara
This two-part report explores the efforts of businesses and individuals to improve the thermal performance of windows. Part I discusses the basics of what makes a window product insulate or save energy. Topic areas addressed include saving energy lost through windows, key components of window insulation, three basic types of window insulation,…
10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of commercial HVAC and WH equipment, distribution transformers, and central air conditioners and heat... overrate the efficiency of a basic model. For each basic model of distribution transformer that has a... voltage at which the transformer is rated to operate. (b) Testing. Testing for each covered product or...
10 CFR 430.24 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... efficiency ratio or other measure of energy consumption of a basic model for which consumers would favor..., and (ii) Any represented value of the annual fuel utilization efficiency or other measure of energy... tested basic models by only the design of oven doors the use of which leads to improved efficiency and...
NASA Astrophysics Data System (ADS)
Mori, Ryo; Marshall, Patrick; Isaac, Brandon; Denlinger, Jonathan; Stemmer, Susanne; Lanzara, Alessandra
The confined electron system in the quantum well of the transition metal oxide, SrTiO3, embedded in the rare earth titanate, SmTiO3, shows unique properties, such as high carrier density, fermi liquid to non-fermi liquid transition, and pseudo-gap, which can be controlled by changing the shape of the quantum well. We will present a distinct difference in the electronic structures between the different quantum well structures obtained by angle-resolved photoemission spectroscopy (ARPES) measurements, suggesting the possibility to control the orbital character and the electron correlation near the interface as well as carrier density. The work was supported by the Quantum Materials Program at LBNL, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.;
2016-01-01
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
NASA Astrophysics Data System (ADS)
Gaitho, Francis M.; Mola, Genene T.; Pellicane, Giuseppe
2018-02-01
Organic solar cells have the ability to transform solar energy efficiently and have a promising energy balance. Producing these cells is economical and makes use of methods of printing using inks built on solvents that are well-matched with a variety of cheap materials like flexible plastic or paper. The primary materials used to manufacture organic solar cells include carbon-based semiconductors, which are good light absorbers and efficient charge generators. In this article, we review previous research of interest based on morphology of polymer blends used in bulk heterojunction (BHJ) solar cells and introduce their basic principles. We further review computational models used in the analysis of surface behavior of polymer blends in BHJ as well as the trends in the field of polymer surface science as applied to BHJ photovoltaics. We also give in brief, the opportunities and challenges in the area of polymer blends on BHJ organic solar cells.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
NASA Astrophysics Data System (ADS)
Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Mulyana, C.
2017-05-01
The increasing in world population and the industrial sector led to increased demand for energy sources. To do this by utilizing the agricultural waste as a fuel source of alternative energy in the form of bio briquette. The aim at this study was to obtain data onto the characteristics of a wide variety of biomass briquettes from waste agricultural industry. The basic ingredients used are biomass waste from coconut husks, sawdust, rice husks and coffee husks. Each of these biomass residues are dried, crushed, then mixed with starch adhesives. This mixture is molded and dried using sunlight. Each type of briquettes was characterized and analyzed the physical-chemical properties, including calorific value, water content, fixed carbon content and the results were compared with charcoal and coal that was used as fuel in public. The results showed that bio briquettes from coconut husks get the highest calorific value of 4,451 cal/g.
NASA Technical Reports Server (NTRS)
Dibartolo, B.
1988-01-01
New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.
The limits of life on Earth and searching for life on Mars
NASA Technical Reports Server (NTRS)
Nealson, K. H.
1997-01-01
Considerations of basic properties of bacteria such as size, structure, and metabolic versatility allow one to understand how these remarkable life-forms are so adaptable to environments previously thought to be uninhabitable. It is now appreciated that bacteria on Earth can utilize almost any redox couple that yields energy, taking advantage of this energy, while transforming the elements during metabolism. The ability to grow at the expense of inorganic redox couples allows the microbes to occupy niches not available to the more metabolically constrained eukaryotes. Furthermore, the simplicity of the bacterial structure allows them considerably more resistance to environmental variables (pH, salinity, temperature) that are toxic or lethal to more complex organisms. This information can be used to explain the predominance of prokaryotes in extreme environments on Earth, and to speculate as to simple types of metabolism and biogeochemical cycles that may exist on this planet, Mars, and perhaps other non-Earth environments.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.;
2016-01-01
Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.
NASA Astrophysics Data System (ADS)
Bemiller, James N.
Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).
Magnetoresistance in Permalloy Connected Brickwork Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Park, Jungsik; Le, Brian; Chern, Gia-Wei; Watts, Justin; Leighton, Chris; Schiffer, Peter
Artificial spin ice refers to a two-dimensional array of elongated ferromagnetic elements in which frustrated lattice geometry induces novel magnetic behavior. Here we examine room-temperature magnetoresistance properties of connected permalloy (Ni81Fe19) brickwork artificial spin ice. Both the longitudinal and transverse magnetoresistance of the nanostructure demonstrate an angular sensitivity that has not been previously observed. The observed magnetoresistance behavior can be explained from micromagnetic modelling using an anisotropic magnetoresistance model (AMR). As part of this study, we find that the ground state of the connected brickwork artificial spin ice can be reproducibly created by a simple field sweep in a narrow range of angles, and manifests in the magnetotransport with a distinct signal. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant Number DE-SC0010778. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-1420013, and DMR-1507048.
Li, Chi-Lin; Lu, Chia-Jung
2009-08-15
Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (p<0.05) preference to hydrogen-bond acidic molecules. Through dipole-dipole attraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.
The cybernetics of viability: an overview
NASA Astrophysics Data System (ADS)
Nechansky, Helmut
2011-10-01
A three-level approach to viability is developed, considering (1) living systems, (2) a niche, understood as the area within the reach of their actions, and (3) an environment. A systematic analysis of the interrelations between these levels shows that living systems emerge with matter/energy processing systems. These can add controller structures when producing excess energy. A three-sensor controller structure enables a living system to deal with unfavourable and scarce environments. Further evolution of these controller structures offers improved ways to act on niches. Maintaining niches in scarce environments can require technology or economy. So social systems emerge, which are understood as aggregates of living systems. Basic patterns of interactions within social systems are analysed. So the introduction of the notion of the niche into the discussion of viability allows us to explain phenomena ranging from properties of single living systems to societal organization.
The limits of life on Earth and searching for life on Mars.
Nealson, K H
1997-10-25
Considerations of basic properties of bacteria such as size, structure, and metabolic versatility allow one to understand how these remarkable life-forms are so adaptable to environments previously thought to be uninhabitable. It is now appreciated that bacteria on Earth can utilize almost any redox couple that yields energy, taking advantage of this energy, while transforming the elements during metabolism. The ability to grow at the expense of inorganic redox couples allows the microbes to occupy niches not available to the more metabolically constrained eukaryotes. Furthermore, the simplicity of the bacterial structure allows them considerably more resistance to environmental variables (pH, salinity, temperature) that are toxic or lethal to more complex organisms. This information can be used to explain the predominance of prokaryotes in extreme environments on Earth, and to speculate as to simple types of metabolism and biogeochemical cycles that may exist on this planet, Mars, and perhaps other non-Earth environments.
A Concise Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2018-02-01
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
NASA Astrophysics Data System (ADS)
Pukhovskaya, S. G.; Ivanova, Yu. B.; Nam, Dao The; Vashurin, A. S.
2014-10-01
Spectrophotometric titration is used to study the basic properties of a series of porphyrins with a continuously increasing degree of macrocycle deformation resulting from the introduction of strong electron-withdrawing substituents: 2,3,7,8,12,13,17,18-octaethylporphyrin ( I), 5-nitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( II), 5,15-dinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( III), 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( IV), and 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( V). It is found that the values of log K b (total basicity constants) obtained for the investigated compounds consistently diminish with an increase in the number of meso-substituents: 11.85 ( I) > 10.45 ( II) > 10.31 ( III) > 10.23 ( IV) > 9.56 ( V). It is shown that two opposing factors, the steric and electronic effects of the substituents, change the basic properties of the above series of compounds.
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Technetium-99m: basic nuclear physics and chemical properties.
Castronovo, F P
1975-05-01
The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.
Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Development of CCT Diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbley, L Scott
2011-08-20
One of the most energy intensive industries in the U.S. today is in the melting and casting of steel alloys for use in our advanced technological society. While the majority of steel castings involve low or mild carbon steel for common construction materials, highly-alloyed steels constitute a critical component of many industries due to their excellent properties. However, as the amount of alloying additions increases, the problems associated with casting these materials also increases, resulting in a large waste of energy due to inefficiency and a lack of basic information concerning these often complicated alloy systems. Superaustenitic stainless steels constitutemore » a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (³) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. Knowledge of the times and temperatures at which these detrimental phases form is imperative if a company is to efficiently produce castings of high quality in the minimum amount of time, using the lowest amount of energy possible, while producing the least amount of material waste. Anecdotal evidence from company representatives revealed that large castings frequently had to be scrapped due to either lower than expected corrosion resistance or extremely low fracture toughness. It was suspected that these poor corrosion and / or mechanical properties were directly related to the type, amount, and location of various intermetallic phases that formed during either the cooling cycle of the castings or subsequent heat treatments. However, no reliable data existed concerning either the time-temperature-transformation (TTT) diagrams or the continuous-cooling-transformation (CCT) diagrams of the super-austenitics. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3McuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). In this way TTT and CCT diagrams could be developed for the matrix of samples chosen. As this study consisted of basic research into the development of TTT and CCT diagrams as an aid to the US steel casting industry, there is no formal commercialization plan associated with this task other than presentations and publications via the Steel Founders Society of America to their members. The author is confident that the data contained in this report can be used by steel foundries to refine their casting procedures in such a way as to reduce the amount of waste produced and energy wasted by significantly reducing or eliminating the need for remelting or recasting of material due to unwanted, premature intermetallic formation. This development of high alloy steel CCT diagrams was predicted to result in an average energy savings of 0.05 trillion BTU's/year over a 10 year period (with full funding). With 65% of the proposed funding, current (2011) annual energy saving estimates, based on initial dissemination to the casting industry in 2011and market penetration of 97% by 2020, is 0.14 trillion BTU's/year. The reduction of scrap and improvement in casting yield will also result in a reduction of environmental emissions associated with the melting and pouring of the steel. The average annual estimate of CO2 reduction per year through 2020 is 0.003 Million Metric Tons of Carbon Equivalent (MM TCE)« less
Nap, R J; Tagliazucchi, M; Szleifer, I
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.
NASA Astrophysics Data System (ADS)
Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.
2009-08-01
A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.
Order-of-magnitude physics of neutron stars. Estimating their properties from first principles
NASA Astrophysics Data System (ADS)
Reisenegger, Andreas; Zepeda, Felipe S.
2016-03-01
We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.
Properties of the Equatorial Magnetotail Flanks ˜50-200 RE Downtail
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Wang, C.-P.; Zelenyi, L. M.
2017-12-01
In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large-scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun-Earth Explorer-3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (˜55 Earth radii, RE, downtail) to as far downtail as ˜200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.
A Method for Direct-Measurement of the Energy of Rupture of Impact Specimens
1953-01-01
CONTENTS SECTION A - Poreword SFCTION B » ObjectiTes of the Current Investigation SECTION C - Basic Elements of an Impact Testing System ...SECTION D - Discussion lo Linear System 2 c Rotary System 3o Methods for Ifeasui ing the Energy of Rupture SECTION E « The Energy Measuring System ...has followed and to siironarize our techni<»l findings, Co BASIC ELEKEMTS OF AN IMPACT TESTING SYSTEM For the analytical purposes of this
Basic Science for a Secure Energy Future
NASA Astrophysics Data System (ADS)
Horton, Linda
2010-03-01
Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.
Diphasic acido-basic properties of D(octylphenyl)phosphoric acid (DOPPA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sella, C.; Cote, G.; Bauer, D.
1995-07-01
In the first part of this work, the diphasic acido-basic constant (pka*) of di(octylphenyl)phosphoric acid, denoted hereafter DOPPA or HL, is determined from its experimental diphasic neutralization curve. The pka* value of DOPPA appears to be equal to 2.6 in the presence of 1 mol/dm{sup 3} sodium salt. Such a value is significantly lower than that previously determined for di(2-ethylhexyl) phosphoric acid (DEHPA, pka* = 5.2), 2-ethylhexylphosphonic acid, mono-2-ethylhexyl ester (PC88A, pka* = 7.1) and di(2,4,4-trimethylpentyl)phosphinic acid (CYANEX 272, pka* = 8.7). DOPPA (HL) is definitely more acidic than the other organophosphorus acids because its acidic proton can be easilymore » exchanged with sodium cation to form Na{sup +}HL{sub 2}{sup -} species in organic phase. In the second and final part of the work, molecular modelling is used to model the dimers of various organophosphorus acids. A structure-activity relationship is obtained between the association energies of modelled dimers and their diphasic acido-basic constants. This relationship is then used for predicting the pka* values of DOPPOA and DOPPIA which are the phosphonic and phosphinic analogs of DOPPA, respectively. 16 refs., 5 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
Fahimirad, Bahareh; Asghari, Alireza; Rajabi, Maryam
2017-05-15
In this work, the lanthanum oxide-aluminum oxide (La 2 O 3 -Al 2 O 3 ) nanocomposite is introduced as an efficient photocatalyst for the photo-degradation of the dyes basic green 1 (BG1) and basic red 46 (BR46) in their binary aqueous solution under the UV light irradiation. The properties of this catalyst are determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and UV-visible spectrophotometry. The first-order derivative spectra are used for the simultaneous analysis of the dyes in their binary solution. The screening investigations indicate that five parameters including the catalyst dosage, concentration of the dyes, irradiation time, and solution pH have significant effects on the photo-degradation of the dyes. The effects of these variables together with their interactions in the photo-degradation of the dyes are studied using the Box-Behnken design (BBD). Under the optimum experimental conditions, obtained via the desirability function, the photo-catalytic activities of La 2 O 3 -Al 2 O 3 and pure Al 2 O 3 are also investigated. The results obtained show an enhancement in the photo-catalytic activity when La 2 O 3 nanoparticles are loaded on the surface of Al 2 O 3 nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Basic Energy Sciences FY 2011 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2012 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2014 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Atomic Energy Basics, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…
ERIC Educational Resources Information Center
Ortleb, Edward P.; And Others
The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's energy resources. The visual aids,…
The Effective Concepts on Students' Understanding of Chemical Reactions and Energy
ERIC Educational Resources Information Center
Ayyildiz, Yildizay; Tarhan, Leman
2012-01-01
The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…
NASA Astrophysics Data System (ADS)
Babenko, D. D.; Dmitriev, A. S.; Makarov, P. G.; Mikhailova, I. A.
2017-11-01
In recent years, a great scientific and practical interest is caused by functional energy surfaces, modified for certain technological problems. The urgency of the work is to develop promising technologies for thermal and nuclear power engineering, methods for converting solar energy, cooling low-current and high-current electronics devices, energy storage and transport systems on the basis of studying and developing new ways of creating and modifying the functional surfaces of heat exchange and other devices. Modified functional surfaces must have a number of new mechanical and thermophysical properties, including mechanical strength, a new surface morphology for controlling the processes of wetting and spreading working fluids on them, and have high efficiency from the viewpoint of thermohydrodynamic processes of flow and heat and mass transfer of working fluids to them. Among the various ways of modifying surfaces, recently, the method of surface exposure to femtosecond laser pulses (FLI) has become widespread. The technology of femtosecond laser surface treatment (FLPO) of solid materials has shown high efficiency, reliability, high productivity and a huge variety of modification methods. The paper presents new results on the study of thermophysical phenomena - the wetting and spreading of drops of various liquids, the study of the hysteresis of the contact angle, the study of evaporation and boiling processes on functional energy surfaces modified by femtosecond laser pulses. It is shown that in the majority of cases the presence of regular or stochastic nanostructures on the surface leads to a very strong change in the basic properties of the surface, which makes it possible to use such a technology to quickly and efficiently modify and obtain functional energy surfaces for certain predetermined purposes.
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Machine learning properties of materials and molecules with entropy-regularized kernels
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip
Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).
NASA Astrophysics Data System (ADS)
Hu, Shouxiang
In bulk high-T_{rm c } superconductors, weak links at the grain boundaries and weak flux pinning are the two major causes of low critical current density (J_{ rm c}) at 77 K. In the present study, various processes designed and developed to address these problems are discussed. The novel pressurized-partial -melt-growth process, which leads to a relatively large improvement in the microstructure as well as in the superconducting properties of bulk Y-Ba-Cu-O superconductors, is described. The effects of introducing foreign elements to serve as pinning centers are reported, and the associated anomalous superconducting phenomena are explained on the basis of a detailed study of basic pinning mechanisms related to the presence of small defects. It is demonstrated that in certain cases the pinning force induced by the compression of the vortex line may be comparable to, or even larger than, the usually recognized pinning force due to the condensation energy. Studies of the pinning mechanism corresponding to large boundary defects show that boundary defects associated with certain non-superconducting inclusions and isolated weak links have a very positive role in the enhancement of both the critical current density and the effective activation energy for flux creep. However, even optimized theoretical estimates show that it will be difficult to reach J_ {rm c} values of 5 times 10^5 A/cm^2 at 77 K and H = 1 T by increasing the number of Y_2BaCuO inclusions alone. Although even higher J_{rm c} values may be achieved by introducing other types of defects using alternative approaches such as irradiation, and, probably, chemical doping, the presence of large amount of boundary defects is very important in causing a large increase in the effective activation energy for flux creep. Also studied are the anisotropic electromagnetic features of the grain-aligned YBa_2Cu _3O_{rm x} bulk superconductors. The development of novel processing methods guided by improved understanding of the basic mechanisms involved opens the way for the preparation of high-quality bulk high-T_{rm c} superconducting materials for a wide variety of applications.
GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications
NASA Astrophysics Data System (ADS)
Adachi, Sadao
1985-08-01
The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.
Abrahamson, John
2002-01-15
The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact.
Spectroscopic and optical properties of the VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system
NASA Astrophysics Data System (ADS)
Swapna; Upender, G.; Sreenivasulu, V.; Prasad, M.
2016-04-01
Studies such as optical absorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and Differential scanning calorimetry (DSC) were carried out on VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system. Raman and FTIR spectra of the glasses revealed the presence of [TeO3], [TeO4] and [NbO6] structural units in the glass network. The Urbach energy (Δ E), cut-off wavelength (λ c ), optical band gap ( E opt ), optical basicity (Λ) and electron polarizability ( α) of the glasses were determined from optical absorption studies. The density ( ρ), molar volume ( V m ), oxygen molar volume ( V o ) and refractive index ( n) were also measured. Spin-Hamiltonian parameters were calculated from the EPR studies. When Nb2O5 was increased at the expense of ZnO, the density, optical band gap and Urbach energy of the glasses increased, and the electronic polarizability and optical basicity decreased. The EPR spectra clearly showed that vanadium was in the glass as VO2+ and occupied octahedral sites with tetrahedral compression. Spin-Hamiltonian parameters g‖ and g⊥ decreased as Nb2O5 content increased in the glass. The glass transition temperature ( T g ) also increased with increasing Nb2O5 content in the glass.
Theoretical proposal for a magnetic resonance study of charge transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Mkhitaryan, Vagharsh
Charge transport in disordered organic semiconductors occurs via carrier incoherent hops in a band of localized states. In the framework of continuous-time random walk the carrier on-site waiting time distribution (WTD) is one of the basic characteristics of diffusion. Besides, WTD is fundamentally related to the density of states (DOS) of localized states, which is a key feature of a material determining the optoelectric properties. However, reliable first-principle calculations of DOS in organic materials are not yet available and experimental characterization of DOS and WTD is desirable. We theoretically study the spin dynamics of hopping carriers and propose measurement schemes directly probing WTD, based on the zero-field spin relaxation and the primary (Hahn) spin echo. The proposed schemes are possible because, as we demonstrate, the long-time behavior of the zero-field relaxation and the primary echo is determined by WTD, both for the hyperfine coupling dominated and the spin-orbit coupling dominated spin dynamics. We also examine the dispersive charge transport, which is a non-Markovian sub-diffusive process characterized by non-stationarity. We show that the proposed schemes unambiguously capture the effects of non-stationarity, e.g., the aging behavior of random walks. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.
Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu
2017-01-07
In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.
The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt
Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu
2017-01-01
In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained. PMID:28772406
Pyroelectricity of silicon-doped hafnium oxide thin films
NASA Astrophysics Data System (ADS)
Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.
2018-04-01
Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.
Test bench for measurements of NOvA scintillator properties at JINR
NASA Astrophysics Data System (ADS)
Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.
2018-04-01
The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Mehta, Neeraj
2017-06-01
The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.
NASA Astrophysics Data System (ADS)
Nlebedim, Cajetan; Jiles, David
2015-03-01
Understanding how to influence the physics of magnetism, especially the relationship between magnetic susceptibility and stress, can be very useful in designing non-contact stress and torque sensors using magnetoelastic materials. This is particularly important considering that materials rarely occur in states desirable for direct applications. In this work we show that the magnetoelastic properties of cobalt ferrite are strongly dependent on the valence states and site preferences of substituted cations. It was found that co-substitution of magnetic and non-magnetic cations, is key to achieving simultaneous improvement in magnetostriction amplitude and strain sensitivity to applied magnetic field. Nevertheless, Curie temperature decreased, irrespective of the valence state, site preference or co-substitution. This presentation will show why tetravalent Ge resulted in superior magnetostrictive properties compared to other tetravalent, trivalent and divalent cations substituted into the crystal lattice of cobalt ferrite. This work was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at Ames Laboratory, operated for the USDoE by Iowa State University (Contract #DE-AC02-07CH11358).
48 CFR 970.2201 - Basic labor policies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Basic labor policies. 970.2201 Section 970.2201 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Application of Labor Policies 970.2201 Basic labor policies. ...
Density-functional theory based on the electron distribution on the energy coordinate
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki
2018-03-01
We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process
NASA Astrophysics Data System (ADS)
Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.
2012-12-01
Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.
Shi, Baoli; Wang, Yue; Jia, Lina
2011-02-11
Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result. © 2010 Elsevier B.V. All rights reserved.
To determine the end point of wet granulation by measuring powder energies and thermal properties.
Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D
2012-04-01
Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, T.; Rabitz, H.
1996-02-01
A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easilymore » extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Othman, H. A.; Arzumanyan, G. M.; Möncke, D.
2016-12-01
Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.
NASA Astrophysics Data System (ADS)
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil
2017-04-06
A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.
A Computational Approach to Investigate Properties of Estimators
ERIC Educational Resources Information Center
Caudle, Kyle A.; Ruth, David M.
2013-01-01
Teaching undergraduates the basic properties of an estimator can be difficult. Most definitions are easy enough to comprehend, but difficulties often lie in gaining a "good feel" for these properties and why one property might be more desired as compared to another property. Simulations which involve visualization of these properties can…
Magnetostrictive direct drive motors
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1992-01-01
A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.
Experimental Overview of Direct Photon Results in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Novitzky, Norbert
2016-07-01
Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.
Computer simulation of liquid metals
NASA Astrophysics Data System (ADS)
Belashchenko, D. K.
2013-12-01
Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.
Using Force to Punch Holes: Mechanics of Contractile Nanomachines.
Brackmann, Maximilian; Nazarov, Sergey; Wang, Jing; Basler, Marek
2017-09-01
Using physical force to translocate macromolecules across a membrane has the advantage of being a universal solution independent of the properties of the target membrane. However, physically punching a stiff membrane is not a trivial task and three things are necessary for success: a sharp tip, a source of energy, and the ability to strongly bind to the target. In this review we describe the basic mechanism of membrane puncturing by contractile nanomachines with a focus on the T4 phage, R-type pyocin, and the bacterial Type VI secretion system (T6SS) based on recent studies of the structures and dynamics of their assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advances in nanowire bioelectronics
NASA Astrophysics Data System (ADS)
Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.
2017-01-01
Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.
Arbitrary electron acoustic waves in degenerate dense plasmas
NASA Astrophysics Data System (ADS)
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
Graphene and graphene oxide: biofunctionalization and applications in biotechnology.
Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe
2011-05-01
Graphene is the basic building block of 0D fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)
NASA Astrophysics Data System (ADS)
Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Vescovo, Elio
2013-03-01
Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F
2015-06-07
We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.
On Landauer's Principle and Bound for Infinite Systems
NASA Astrophysics Data System (ADS)
Longo, Roberto
2018-04-01
Landauer's principle provides a link between Shannon's information entropy and Clausius' thermodynamical entropy. Here we set up a basic formula for the incremental free energy of a quantum channel, possibly relative to infinite systems, naturally arising by an Operator Algebraic point of view. By the Tomita-Takesaki modular theory, we can indeed describe a canonical evolution associated with a quantum channel state transfer. Such evolution is implemented both by a modular Hamiltonian and a physical Hamiltonian, the latter being determined by its functoriality properties. This allows us to make an intrinsic analysis, extending our QFT index formula, but without any a priori given dynamics; the associated incremental free energy is related to the logarithm of the Jones index and is thus quantised. This leads to a general lower bound for the incremental free energy of an irreversible quantum channel which is half of the Landauer bound, and to further bounds corresponding to the discrete series of the Jones index. In the finite dimensional context, or in the case of DHR charges in QFT, where the dimension is a positive integer, our lower bound agrees with Landauer's bound.
Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-04-01
The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Electrical properties of epoxies used in hybrid microelectronics
NASA Technical Reports Server (NTRS)
Stout, C. W.
1976-01-01
The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.
ERIC Educational Resources Information Center
Swinson, John V.
2000-01-01
Intellectual property is a term that covers a number of different rights. Considers issues such as what are the basic forms of intellectual property; who owns the intellectual property created by a teacher; who owns intellectual property created by students; and use of downloaded materials from the internet. (Author/LM)
Effect of mechanical denaturation on surface free energy of protein powders.
Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R
2016-10-01
Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
41 CFR 301-73.106 - What are the basic services that should be covered by a TMS?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., confirmation of reservations, etc.). (b) Provide basic management information, such as— (1) Number of... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the basic... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2012 CFR
2012-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2014 CFR
2014-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2011 CFR
2011-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What is the basic real...
An Independent Evaluation of the Technical Features of the Basic Reading Inventory
ERIC Educational Resources Information Center
Bieber, Gregg; Hulac, David M.; Schweinle, William
2015-01-01
The present study investigated some psychometric properties of the Basic Reading Inventory (BRI), a widely used informal reading inventory. The BRI and Dynamic Indicators of Basic Early Literacy Skills (DIBELS) probes were administered to 149 third, fourth, and fifth graders. Test--retest and alternate forms reliability analyses indicated adequate…
Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein
NASA Astrophysics Data System (ADS)
Filikov, Anton V.; James, Thomas L.
1998-05-01
A methodology has been developed for designing ligands to bind a flexible basic protein domain where the structure of the domain is essentially known. It is based on an empirical binding free energy function developed for highly charged complexes and on Monte Carlo simulations in internal coordinates with both the ligand and the receptor being flexible. HIV-1 encodes a transactivating regulatory protein called Tat. Binding of the basic domain of Tat to TAR RNA is required for efficient transcription of the viral genome. The structure of a biologically active peptide containing the Tat basic RNA-binding domain is available from NMR studies. The goal of the current project is to design a ligand which will bind to that basic domain and potentially inhibit the TAR-Tat interaction. The basic domain contains six arginine and two lysine residues. Our strategy was to design a ligand for arginine first and then a superligand for the basic domain by joining arginine ligands with a linker. Several possible arginine ligands were obtained by searching the Available Chemicals Directory with DOCK 3.5 software. Phytic acid, which can potentially bind multiple arginines, was chosen as a building block for the superligand. Calorimetric binding studies of several compounds to methylguanidine and Arg-/Lys-containing peptides were performed. The data were used to develop an empirical binding free energy function for prediction of affinity of the ligands for the Tat basic domain. Modeling of the conformations of the complexes with both the superligand and the basic domain being flexible has been carried out via Biased Probability Monte Carlo (BPMC) simulations in internal coordinates (ICM 2.6 suite of programs). The simulations used parameters to ensure correct folding, i.e., consistent with the experimental NMR structure of a 25-residue Tat peptide, from a random starting conformation. Superligands for the basic domain were designed by joining together two molecules of phytic acid with peptidic and peptidomimetic linkers. The linkers were refined by varying the length and side chains of the linking residues, carrying out BPMC simulations, and evaluation of the binding free energy for the best energy conformation. The dissociation constant of the best ligand designed is estimated to be in the low- to mid-nanomolar range.
Solar Photovoltaic Technology Basics | NREL
For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.
NASA Astrophysics Data System (ADS)
Huang, Ran
The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.
García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K
2018-02-15
Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"Electricity: the Energy of Tomorrow" was submitted by the Energy Materials Center at Cornell (emc2) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs)more » in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff
2017-12-09
'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Waxman, S R; Lynch, E B; Casey, K L; Baer, L
1997-11-01
Basic level categories are a rich source of inductive inference for children and adults. These 3 experiments examine how preschool-age children partition their inductively rich basic level categories to form subordinate level categories and whether these have inductive potential. Children were taught a novel property about an individual member of a familiar basic level category (e.g., a collie). Then, children's extensions of that property to other objects from the same subordinate (e.g., other collies), basic (e.g., other dogs), and superordinate (e.g., other animals) level categories were examined. The results suggest (a) that contrastive information promotes the emergence of subordinate categories as a basis of inductive inference and (b) that newly established subordinate categories can retain their inductive potential in subsequent reasoning over a week's time.
NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface.
Ingebrigtsen, Trond S; Toxvaerd, Søren; Heilmann, Ole J; Schrøder, Thomas B; Dyre, Jeppe C
2011-09-14
An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid. © 2011 American Institute of Physics
Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A
2008-01-01
The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH). For OAD and KAE, pK(a1) and pK(a2) correspond to the acidic side chains. For all three compounds in both solvents, the pK(a1) value is remarkably lower than the pK(a) of a compound modeling the respective isolated side chain, which can be explained by the influence of the electrostatic field from positively charged ornithine or lysine side chains. The experimental titration curves are reproduced well by the MD/GB/pH approach, the agreement being better if restraints derived from NMR measurements are incorporated in the conformational search. Poorer agreement is achieved by the EDMC/PB/pH method.
Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.
Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui
2009-05-15
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.
Electrical conductivity of MgH2 at multiple shock compression
NASA Astrophysics Data System (ADS)
Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir
2011-06-01
The electrical conductivity of MgH2 has been studied under multishock compression. Earlier we had been experimentally studied metallization possibility of alane at high pressures in conditions quasiisentropic compression up to 100 GPa. A study of thermodynamic properties of MgH2 under multishock compression has been carried out also. High pressures and temperatures were obtained with an explosive device, which accelerates the metallic impactor up to 3 km/s. Identification of the hydride in experiments was made on the basis of calculations of phase trajectories loading a material in the area of existence of polymorphic phases including high-pressure phases of magnesium hydride (α and γ MgH2, hP1 and hP2). It is shown that occurrence of magnesium hydride electrical conductivity occurs in the field of existence of high-pressure hP2 phase This work was partially supported by the Presidium of the Russian Academy of Sciences within the Program of Basic Research ``Thermal Physics and Mechanics of Extreme Energy Effects and Physics of Strongly Compressed Matter and Russian Foundation for Basic Research Grant No. 10-02-01078.''
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
[Research on basic questions of intellectual property rights of acupuncture and moxibustion].
Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin
2011-12-01
Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.
Roth, Michal
2016-12-06
High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.
Temperature-driven Phase Transformation in Y3Co: Neutron Scattering and DFT Studies
NASA Astrophysics Data System (ADS)
Podlesnyak, A.; Ehlers, G.; Cao, H.; Matsuda, M.; Frontzek, M.; Zaharko, O.; Kazantsev, V. A.; Gubkin, A. F.; Baranov, N. V.
2013-03-01
The effects of a crystal structure deformation due to subtle atomic displacements have attracted much attention because they can result in colossal changes of the electronic and magnetic properties of solids. The R3Co binary intermetallic systems exhibit a number of complicated phenomena, including field-induced magnetic phase transitions (R=Er, Ho, Tb), giant magnetoresistance (R=Dy), a substantial magnetocaloric effect (R=Gd) and superconductivity (R=La). Contrary to previous studies that defined the ground state crystal structure of the entire R3Co series as orthorhombic Pnma, we find that Y3Co undergoes a structural phase transition upon cooling around Tc 160K. Density functional theory calculations reveal a dynamical instability of the Pnma structure of Y3Co. Employing inelastic neutron scattering measurements we find a strong damping of the (00 ξ) acoustic phonon mode below the critical temperature Tc. We suggest that some other members of the R3Co series (or even all of them) have ground state crystal symmetry lower than reported Pnma. This raises a question about the true magnetic structures and hence the influence of magnetic properties of the entire R3Co series. The research at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Photonically driven DNA nanomachine with hybrid functions towards cell measurement
NASA Astrophysics Data System (ADS)
Ogura, Yusuke; Nishimura, Takahiro; Yamada, Kenji; Tanida, Jun
2018-02-01
Physical properties of a cell are often valuable information about the status of the cell, and developing technologies to measure such properties is important to enhance the progress in, for example, diagnosis of diseases. In this paper, we present a photonically driven DNA nanomachine with hybrid functions: providing a physical operation to a cell and reporting the cell's response. The DNA nanomachine can be controlled according to optical signals, and therefore the measurement is achieved locally at designated positions and at desired times. Black hole quenchers (BHQs) are introduced to drive the DNA nanomachine using light. When the DNA nanomachine is irradiated with the light at the excitation wavelength of the BHQs, the thermal energy is produced from the BHQs to drive the DNA nanomachine. To demonstrate a basic functionality, we constructed a DNA nanomachine that transformed between a linear conformation and a hairpin-like conformation depending on the presence or absence of a controlling DNA. This conformation change will be able to provide a force to deform cells as a physical operation. The response of the cell is reported as fluorescence resonance energy transfer (FRET) signals. An experimental result demonstrated that the FRET signal changed according to the presence or absence of the controlling DNA. The method is expected to be useful in measuring the stiffness of a cell.
Mathematical modeling of a process the rolling delivery
NASA Astrophysics Data System (ADS)
Stepanov, Mikhail A.; Korolev, Andrey A.
2018-03-01
An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.
NASA Astrophysics Data System (ADS)
Mansbach, Rachael; Ferguson, Andrew
Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.
The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.
Music Tune Restoration Based on a Mother Wavelet Construction
NASA Astrophysics Data System (ADS)
Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.
2017-01-01
It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Gary A.
"The Center for Frontiers of Subsurface Energy Security (CFSES)" was submitted to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conductmore » fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff
2017-12-09
'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Burns, Peter (Director, Materials Science of Actinides); MSA Staff
2017-12-09
'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
ERIC Educational Resources Information Center
Umar, Yunusa
2014-01-01
A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…
41 CFR 102-85.25 - What is the basic principle governing OAs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... principle governing OAs? 102-85.25 Section 102-85.25 Public Contracts and Property Management Federal... POLICY FOR OCCUPANCY IN GSA SPACE Pricing Policy-General § 102-85.25 What is the basic principle governing OAs? The basic principle governing OAs is to adopt the private sector practice of capturing in a...
Contract Award on Initial Proposals
1988-09-30
3 2. Competition in Contracting Act ... ......... 6 3. Federal Property and Administrative Services Act 10 B. Basic Rules for Award Without...Discussions Before CICA . 11 C. Basic Rules for Award Without Discussions After Passage of CICA .......... ........................ ... 12 D. Award...controlled by statute. This chapter will explore those statutes and their antecedents. The basic rules for awarding contracts without discussions
Threshold collision-induced dissociation and theoretical study of protonated azobenzene
NASA Astrophysics Data System (ADS)
Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.
2017-10-01
Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.
Mass Uncertainty and Application For Space Systems
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.
Information Fluxes as Concept for Categorizations of Life
NASA Astrophysics Data System (ADS)
Hildenbrand, Georg; Hausmann, M.
2012-05-01
Definitions of life are controversially discussed; however, they are mostly depending on bio- evolutionary driven arguments. Here, we propose a systematic, theoretical approach to the question what life is, by categorization and classification of different levels of life. This approach is mainly based on the analysis of information flux occurring in systems being suspicious to be alive, and on the analysis of their power of environmental control. In a first step, we show that all biological definitions of life can be derived from basic physical principles of entropy (number of possible states of a thermodynamic system) and of the energy needed for controlling entropic development. In a next step we discuss how any process where information flux is generated, regardless of its materialization is defined and related to classical definitions of life. In a third step we resume the proposed classification scheme in its most basic way, looking only for existence of data storage, its processing, and its environmental control. We join inhere a short discussion how the materialization of information fluxes can take place depending on the special properties of the four basic physical forces. Having done all this we are able to give everybody a classification catalogue at hand that one can categorize the kind of life one is talking about, thus overcoming the obstacles deriving from the simple appearing question whether something is alive or not. On its most basic level as presented here, our scheme offers a categorization for fire, crystals, prions, viruses, spores, up to cells and even tardigrada and cryostases.
Basics of Solar Heating & Hot Water Systems.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…
Criticality Safety Basics for INL FMHs and CSOs
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. L. Putman
2012-04-01
Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.« less
Chitnis, Dipti; Kalyani, N Thejo; Dhoble, Sanjay
2018-05-31
We report on the comprehension of novel europium activated hybrid organic Eu(dmh) 3 phen (Eu: europium, dmh: 2,6-dimethyl-3,5-heptanedione, phen: 1,10 phenanthroline) organo-metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV-vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV-vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross-section σ(λ), radiative lifetime (τ 0 ) and oscillator strength (f) were calculated from UV-vis spectra. The relative intensity ratio (R-ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light-emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert-Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid-state lighting. Copyright © 2018 John Wiley & Sons, Ltd.
Field Evaluation of Programmable Thermostats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, O.; Tiefenbeck, V.; Duvier, C.
2012-12-01
Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. The Fraunhofer team hypothesized that home occupants with high-usability thermostats would be more likely to use them to save energy than people with a basic thermostats. In this report, the team discusses results of a project in which the team monitored and compared programmable thermostats with basic thermostats in an affordable housing apartment complex.
Tran, N L; Bohrer, F I; Trogler, W C; Kummel, A C
2009-05-28
Density functional theory (DFT) simulations were used to determine the binding strength of 12 electron-donating analytes to the zinc metal center of a zinc phthalocyanine molecule (ZnPc monomer). The analyte binding strengths were compared to the analytes' enthalpies of complex formation with boron trifluoride (BF(3)), which is a direct measure of their electron donating ability or Lewis basicity. With the exception of the most basic analyte investigated, the ZnPc binding energies were found to correlate linearly with analyte basicities. Based on natural population analysis calculations, analyte complexation to the Zn metal of the ZnPc monomer resulted in limited charge transfer from the analyte to the ZnPc molecule, which increased with analyte-ZnPc binding energy. The experimental analyte sensitivities from chemiresistor ZnPc sensor data were proportional to an exponential of the binding energies from DFT calculations consistent with sensitivity being proportional to analyte coverage and binding strength. The good correlation observed suggests DFT is a reliable method for the prediction of chemiresistor metallophthalocyanine binding strengths and response sensitivities.
None
2018-05-30
See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.
Basic Steps to Using the Energy Savings Plus Health Guidelines
he Energy Savings Plus Health Guide equips school districts to integrate indoor air quality protections into school energy efficiency retrofits and other building upgrade projects. This document describes steps to using the Energy Savings Plus Health guide
78 FR 77442 - Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board AGENCY: Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy... Board was established to provide advice and recommendations to the Secretary on the Department's basic...
77 FR 2053 - Secretary of Energy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy... Board was reestablished to provide advice and recommendations to the Secretary on the Department's basic...
Division of energy biosciences: Annual report and summaries of FY 1995 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less
Raman Signatures of Polytypism in Molybdenum Disulfide.
Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik
2016-02-23
Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.
Nonlinear dynamics of charged particles in the magnetotail
NASA Technical Reports Server (NTRS)
Chen, James
1992-01-01
An important region of the earth's magnetosphere is the nightside magnetotail, which is believed to play a significant role in energy storage and release associated with substorms. The magnetotail contains a current sheet which separates regions of oppositely directed magnetic field. Particle motion in the collisionless magnetotail has been a long-standing problem. Recent research from the dynamical point of view has yielded considerable new insights into the fundamental properties of orbits and of particle distribution functions. A new framework of understanding magnetospheric plasma properties is emerging. Some novel predictions based directly on nonlinear dynamics have proved to be robust and in apparent good agreement with observation. The earth's magnetotail may serve as a paradigm, one accessible by in situ observation, of a broad class of boundary regions with embedded current sheets. This article reviews the nonlinear dynamics of charged particles in the magnetotail configuration. The emphasis is on the relationships between the dynamics and physical observables. At the end of the introduction, sections containing basic material are indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles-Wrenn, M.B.
2003-10-06
The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the U.S. Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on composite materials consisting of polyurethane reinforced with E-glass. Current focus of the project is on composite materials reinforced with carbon fibers. The primary purpose of this report is to provide the individual specimen test date. Basic mechanical property testing and results for two chopped-fiber composite materials, one reinforced with glass- and themore » other with carbon fiber are provided. Both materials use the same polyurethane matrix. Preforms for both materials were produced using the P4 process. Behavioral trends, effects of temperature and environment, and corresponding design knockdown factors are established for both materials. Effects of prior short-time loads and of prior thermal cycling are discussed.« less
NASA Technical Reports Server (NTRS)
Canuto, V.
1975-01-01
The papers deal with the role of magnetism in astrophysics and the properties of matter in the presence of unusually large magnetic fields. Topics include a quantum-mechanical treatment of high-energy charged particles radiating in a homogeneous magnetic field, the solution and properties of the Dirac equation for magnetic fields of any strength up to 10 to the 13th power gauss, experimental difficulties encountered and overcome in generating megagauss fields, the effect of strong radiation damping for an ultrarelativistic charge in an external electromagnetic field, magnetic susceptibilities of nuclei and elementary particles, and Compton scattering in strong external electromagnetic fields. Other papers examine static uniform electric and magnetic polarizabilities of the vacuum in arbitrarily strong magnetic fields, quantum-mechanical processes in neutron stars, basic ideas of mean-field magnetohydrodynamics, helical MHD turbulence, relations between cosmic and laboratory plasma physics, and insights into the nature of magnetism provided by relativity and cosmology. Individual items are announced in this issue.
Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł
2016-01-01
Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726
Twenty-Five Centuries of Quantum Physics: From Pythagoras to Us, and from Subjectivism to Realism
NASA Astrophysics Data System (ADS)
Bunge, Mario
Three main theses are proposed. The first is that the idea of a quantum or minimal unit is not peculiar to quantum theory, since it already occurs in the classical theories of elasticity and electrolysis. Second, the peculiarities of the objects described by quantum theory are the following: their basic laws are probabilistic; some of their properties, such as position and energy, are blunt rather than sharp; two particles that were once together continue to be associated even after becoming spatially separated; and the vacuum has physical properties, so that it is a kind of matter. Third, the orthodox or Copenhagen interpretation of the theory is false, and may conveniently be replaced with a realist (though not classicist) interpretation. Heisenberg's inequality, Schrödinger's cat and Zeno's quantum paradox are discussed in the light of the two rival interpretations. It is also shown that the experiments that falsified Bell's inequality do not refute realism but the classicism inherent in hidden variables theories.
Interpreting Electromagnetic Reflections In Glaciology
NASA Astrophysics Data System (ADS)
Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.
Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physicalchemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.
Basic functional trade-offs in cognition: An integrative framework.
Del Giudice, Marco; Crespi, Bernard J
2018-06-14
Trade-offs between advantageous but conflicting properties (e.g., speed vs. accuracy) are ubiquitous in cognition, but the relevant literature is conceptually fragmented, scattered across disciplines, and has not been organized in a coherent framework. This paper takes an initial step toward a general theory of cognitive trade-offs by examining four key properties of goal-directed systems: performance, efficiency, robustness, and flexibility. These properties define a number of basic functional trade-offs that can be used to map the abstract "design space" of natural and artificial cognitive systems. Basic functional trade-offs provide a shared vocabulary to describe a variety of specific trade-offs including speed vs. accuracy, generalist vs. specialist, exploration vs. exploitation, and many others. By linking specific features of cognitive functioning to general properties such as robustness and efficiency, it becomes possible to harness some powerful insights from systems engineering and systems biology to suggest useful generalizations, point to under-explored but potentially important trade-offs, and prompt novel hypotheses and connections between disparate areas of research. Copyright © 2018 Elsevier B.V. All rights reserved.
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
Interactions of molecules and the properties of crystals
NASA Astrophysics Data System (ADS)
McConnell, Thomas Daniel Leigh
In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used to model the system are discussed and the simplifications to the Taylor expansion coefficients due to crystal symmetry are detailed. Four potential parameters are chosen to be fitted to four lattice properties, representing zero, first and second order Taylor expansion coefficients. The supplementary tests of a given fitted potential are detailed. A number of forms for the electrostatic interaction of carbonyl sulphide are considered, each combined with a standard atom-atom potential. The success of the molecular octupole model is considered and the inability of more complex electrostatic potentials to improve on this simple model is noted. The anisotropic Berne-Pechukas potential, which provides an increased estimate of the compressibility is considered as being an improvement on the various atom-atom potentials. The effect of varying the exponents in the atom-atom (or molecule-molecule) potential, representing a systematic variation of the repulsion and dispersion energy models, is examined and a potential which is able to reproduce all of the given lattice properties for carbonyl sulphide is obtained. The molecular crystal of cyanogen iodide is investigated. Superficially it is similar to the crystal of carbonyl sulphide and the potentials used with success for the latter are applied to cyanogen iodide to determine whether they are equally as effective models for this molecule. These potentials are found to be far less successful, in all cases yielding a number of unrealistic results. Reasons for the failure of the model are considered, in particular the 3 differences between the electrostatic properties of the two molecules are discussed. It is concluded that some of the simplifications which proved satisfactory for carbonyl sulphide are invalid for simple extension to the case of cyanogen iodide. A first estimate of the differences in the electrostatic properties is attempted, calculating the induction energies of the two molecules. The assumption that the induction energy may be neglected is justified for the case of carbonyl sulphide but found to be far less satisfactory for cyanogen iodide. Finally details of ab initio calculations are outlined. The amount of experimental data available for the electrostatic properties of the two molecules under consideration is relatively small and the experimental data which is available is supplemented by values obtained from these calculations.
Energy-absorbing car seat designs for reducing whiplash.
Himmetoglu, S; Acar, M; Bouazza-Marouf, K; Taylor, A J
2008-12-01
This study presents an investigation of anti-whiplash features that can be implemented in a car seat to reduce whiplash injuries in the case of a rear impact. The main emphasis is on achieving a seat design with good energy absorption properties. A biofidelic 50th percentile male multi-body human model for rear impact is developed to evaluate the performance of car seat design concepts. The model is validated using the responses of 7 volunteers from the Japanese Automobile Research Institute (JARI) sled tests, which were performed at an impact speed of 8 kph with a rigid seat and without head restraint and seatbelt. A generic multi-body car seat model is also developed to implement various seatback and recliner properties, anti-whiplash devices, and head restraints. Using the same driving posture and the rigid seat in the JARI sled tests as the basic configuration, several anti-whiplash seats are designed to allow different types of motion for the seatback and seat-pan. The anti-whiplash car seat design concepts limit neck internal motion successfully until the head-to-head restraint contact occurs and they exhibit low NIC(max) values (7 m(2)/s(2) on average). They are also effective in reducing neck compression forces and T1 forward accelerations. In principle, these car seat design concepts employ controlled recliner rotation and seat-pan displacement to limit the formation of S-shape. This is accomplished by using anti-whiplash devices that absorb the crash energy in such a way that an optimum protection is provided at different severities. The results indicate that the energy absorbing car seat design concepts all demonstrate good whiplash-reducing performances at the IIWPG standard pulse. Especially in higher severity rear impacts, two of the car seat design concepts reduce the ramping of the occupant considerably.
Electrical detection of proton-spin motion in a polymer device at room temperature
NASA Astrophysics Data System (ADS)
Boehme, Christoph
With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier comparedmore » to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.« less
Navarro, Amparo; Fernández-Liencres, M Paz; Peña-Ruiz, Tomás; García, Gregorio; Granadino-Roldán, José M; Fernández-Gómez, Manuel
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.
Refractories for high alkali environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Cloer, F.
1996-12-31
Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.
Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.
ERIC Educational Resources Information Center
Cappiello, Jane E.; O'Neil, Karen E.
This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…
Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Dang, Liem X.
2014-09-04
In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extendingmore » its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
NASA Astrophysics Data System (ADS)
Saad, Houda; Charrier, Bertrand; Ayed, Naceur; Charrier-El-Bouhtoury, Fatima
2017-10-01
Alfa leaves are important renewable raw materials in Tunisia where they are used basically in handcrafts and paper industry. Sumac is also an abundant species in Tunisia known for its high tannin content and is basically used in traditional medicine. To valorize these natural resources, we studied, for the first time, the possibility of making insulating panels based on alfa fibres and sumac tannins based adhesive. Firstly, alfa leaves were treated with an alkali solution as it is one of the standard procedures commonly used in the paper industry to extract cellulosic fibres. Mercerization effects were studied by characterizing fibres thermal properties and fibres surface morphology. Secondly, the sumac tannin based resin was formulated and characterized. Finally, the insulating panel was elaborated and characterized by determining its thermal conductivity. The thermal gravimetric analysis results show improvement in the thermal stability of fibres after alkali treatment. Environmental Scanning Electron Microscopy showed changes on treated alfa surface which could promote the fibre-matrix adhesion. The reactivity of sumac tannins to formaldehyde test (Stiasny number) showed the possible use of sumac tannins in wood adhesive formulation. Thermomechanical analysis and strength analysis of sumac tannin/hexamin based resin highlighted acceptable bonding properties. The thermal conductivity measurement showed an average value equal to 0.110 W/m K. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
16 CFR 305.21 - Test data records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... each basic model, or the light output, energy usage, correlated color temperature, and life ratings and, for fluorescent lamps, the color rendering index, for each basic model or lamp type were derived. [52...