Sample records for basic engineering design

  1. Integrated Curriculum Design Reform of Civil Engineering Management Discipline Based on Inter-disciplinary Professional Training

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen

    2018-05-01

    In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.

  2. Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan

    DTIC Science & Technology

    2010-11-01

    applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied

  3. Engine Development Design Margins Briefing Charts

    NASA Technical Reports Server (NTRS)

    Bentz, Chuck

    2006-01-01

    New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose ways to hold competing engine manufacturers more accountable for engine hot section design margins during the entire Engine Development process as well as provide tools to assess the design temperature margins in the hot section parts of Service Engines.

  4. Theo Jansen Project in Engineering Design Course and a Design Example

    ERIC Educational Resources Information Center

    Liu, Yucheng; Artigue, Aaron; Sommers, Jeremy; Chambers, Terence

    2011-01-01

    Objectives of a project-oriented mechanical engineering course, Engineering Design, were achieved through a design project, where students designed, built and demonstrated an extreme version of a basic Theo Jansen device. Through this project, junior students in the University of Louisiana fully developed the capability of applying mathematic and…

  5. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    ERIC Educational Resources Information Center

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  6. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...

  7. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...

  8. Thermodynamics of a Simple Rubber-Band Heat Engine

    ERIC Educational Resources Information Center

    Mullen, J. G.; And Others

    1975-01-01

    Outlines the basic engine design and nomenclature, develops some relations between the state parameters of the rubber-band system, defines engine efficiency, and compares the Archibald engine with the Carnot engine. (GS)

  9. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  10. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  11. Engineering Design Handbook. Propellant Actuated Devices.

    DTIC Science & Technology

    1975-09-30

    DA 016 716 ENGINEERING DESIGN HANDBOOK PROPELLANT ACTUATED DEVICES ARMY MATERIEL COMMAND ALEXANDRIA, VIRGINIA SEPTEMBER 1975 Best Available Copy... DESIGN HANDBOOK PROPELLANT ACTUATED DEVICES TABLE OF CONTENTS Paragraph Pae "LIST OF ILLUSTRATIONS .................. I LIST OF TABLES...Tramcmission in Systems ................. 2-18 References ............................... 2-18 CHAPTER 3. BASIC DESIGN CONSIDERATIONS 3-1 General

  12. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  13. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  14. Fuel Cell Car Design Project for Freshman Engineering Courses

    ERIC Educational Resources Information Center

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  15. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  16. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  17. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  18. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  19. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  20. Three-Dimensional Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  1. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  2. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  3. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  4. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  5. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  6. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  7. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  8. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  9. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...

  10. Engine design considerations for 2nd generation supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.

  11. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  12. Analysis of liquid-propellant rocket engines designed by F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.; Moshkin, Y. K.

    1977-01-01

    The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.

  13. ''Math in a Can'': Teaching Mathematics and Engineering Design

    ERIC Educational Resources Information Center

    Narode, Ronald B.

    2011-01-01

    Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…

  14. Research on reform plan of civil engineering adult education graduation design

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Sun, Shengnan; Cui, Shicai

    2017-12-01

    As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.

  15. 40 CFR 1042.205 - Application requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  16. 40 CFR 1042.205 - Application requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  17. 40 CFR 1042.205 - Application requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  18. 40 CFR 1042.205 - Application requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  19. 40 CFR 1042.205 - Application requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...

  20. The Improvement of the Learning Process of Basic Disciplines at the Engineering Design.

    ERIC Educational Resources Information Center

    de Oliveira, Vanderli Fava; Borges, Marcos Martins; Naveiro, Ricardo Manfredi

    The goal of this paper is to reflect upon Engineering Education, starting from experiments that have been carried out at the Federal University of Juiz de Fora (UFJF), aiming to improve the learning process of the content of basic drawing disciplines concerned with graphic representation, which are subjects of the initial terms of the courses of…

  1. Sociotechnical Systems Design: An Engineering Program for Social-Science Students.

    ERIC Educational Resources Information Center

    Harrison, Howard L.; And Others

    The University of Wisconsin College of Engineering's Sociotechnical Systems Design (STSD) Program, which was developed to provide social science students with systems concepts and basic technological skills necessary for attacking these problems, is considered. The need for such professionals, current educational responses, the organization of the…

  2. Collaborative engineering-design support system

    NASA Technical Reports Server (NTRS)

    Lee, Dong HO; Decker, D. Richard

    1994-01-01

    Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.

  3. Review of jet engine emissions

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1972-01-01

    A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.

  4. GENENG 2: A program for calculating design and off-design performance of two- and three-spool turbofans with as many as three nozzles

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Koenig, R. W.

    1972-01-01

    A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.

  5. A Student Experiment Method for Learning the Basics of Embedded Software Technologies Including Hardware/Software Co-design

    NASA Astrophysics Data System (ADS)

    Kambe, Hidetoshi; Mitsui, Hiroyasu; Endo, Satoshi; Koizumi, Hisao

    The applications of embedded system technologies have spread widely in various products, such as home appliances, cellular phones, automobiles, industrial machines and so on. Due to intensified competition, embedded software has expanded its role in realizing sophisticated functions, and new development methods like a hardware/software (HW/SW) co-design for uniting HW and SW development have been researched. The shortfall of embedded SW engineers was estimated to be approximately 99,000 in the year 2006, in Japan. Embedded SW engineers should understand HW technologies and system architecture design as well as SW technologies. However, a few universities offer this kind of education systematically. We propose a student experiment method for learning the basics of embedded system development, which includes a set of experiments for developing embedded SW, developing embedded HW and experiencing HW/SW co-design. The co-design experiment helps students learn about the basics of embedded system architecture design and the flow of designing actual HW and SW modules. We developed these experiments and evaluated them.

  6. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  7. Standardized Radiation Shield Design Methods: 2005 HZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  8. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  9. [Theories and methodologies of engineering designs on sustainable agricultural land consolidation project--a case study of Xuemeiyang land consolidation project in Changtai County, Fujian Province].

    PubMed

    Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui

    2002-09-01

    The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.

  10. Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    design-In this design, the energy conversion unit and an electric propulsion system are connected . Series design-In this design, the primary engine is connected to a generator that produces electricity

  11. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  12. Constructing an Evidence-Base for Future CALL Design with "Engineering Power": The Need for More Basic Research and Instrumental Replication

    ERIC Educational Resources Information Center

    Handley, Zöe

    2014-01-01

    This paper argues that the goal of Computer-Assisted Language Learning (CALL) research should be to construct a reliable evidence-base with "engineering power" and generality upon which the design of future CALL software and activities can be based. In order to establish such an evidence base for future CALL design, it suggests that CALL…

  13. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.

  14. Design Control for Clinical Translation of 3D Printed Modular Scaffolds

    PubMed Central

    Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.

    2015-01-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  15. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  16. Stationary Engineering Laboratory Manual--2.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 was designed for vocational/technical high school students who have received instruction in the basics of stationary engineering. It was developed for students who will be operating a live plant and who will be responsible for supplying steam for heating, cooking, and baking. Each lesson in the manual…

  17. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  18. Research on Visualization Design Method in the Field of New Media Software Engineering

    NASA Astrophysics Data System (ADS)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  19. Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support

    ERIC Educational Resources Information Center

    Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse

    2014-01-01

    The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…

  20. DNA-binding specificity prediction with FoldX.

    PubMed

    Nadra, Alejandro D; Serrano, Luis; Alibés, Andreu

    2011-01-01

    With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  2. Preloaded joint analysis methodology for space flight systems

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1995-01-01

    This report contains a compilation of some of the most basic equations governing simple preloaded joint systems and discusses the more common modes of failure associated with such hardware. It is intended to provide the mechanical designer with the tools necessary for designing a basic bolted joint. Although the information presented is intended to aid in the engineering of space flight structures, the fundamentals are equally applicable to other forms of mechanical design.

  3. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  4. Kuwaiti Engineers' Perspectives of the Engineering Senior Design (Capstone) Course as Related to Their Professional Experiences

    ERIC Educational Resources Information Center

    AlSagheer, Abdullah

    2010-01-01

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design…

  5. Conflict Management in Collaborative Engineering Design: Basic Research in Fundamental Theory, Modeling Framework, and Computer Support for Collaborative Engineering Activities

    DTIC Science & Technology

    2002-01-01

    behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe

  6. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  7. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    ERIC Educational Resources Information Center

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  8. SimEngine v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Hai D.

    2017-03-02

    SimEngine provides the core functionalities and components that are key to the development of discrete event simulation tools. These include events, activities, event queues, random number generators, and basic result tracking classes. SimEngine was designed for high performance, integrates seamlessly into any Microsoft .Net development environment, and provides a flexible API for simulation developers.

  9. Stationary Engineering Laboratory--2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 Teacher's Guide was designed as an aid to the instructors of vocational-technical high school students who have received instruction in the basics of stationary engineering. The course of study was developed for students who will be operating a live plant and who will be responsible for supplying…

  10. Flight Engineer. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) to be used by FAA testing centers and FAA-designated written test examiners when administering the flight engineer written test. The book can be used to test applicants in the following flight engineer knowledge areas: basic, turbojet powered, turbopropeller powered, and…

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  12. Application of IPAD to missile design

    NASA Technical Reports Server (NTRS)

    Santa, J. E.; Whiting, T. R.

    1974-01-01

    The application of an integrated program for aerospace-vehicle design (IPAD) to the design of a tactical missile is examined. The feasibility of modifying a proposed IPAD system for aircraft design work for use in missile design is evaluated. The tasks, cost, and schedule for the modification are presented. The basic engineering design process is described, explaining how missile design is achieved through iteration of six logical problem solving functions throughout the system studies, preliminary design, and detailed design phases of a new product. Existing computer codes used in various engineering disciplines are evaluated for their applicability to IPAD in missile design.

  13. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  14. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  15. Integrated design and manufacturing for the high speed civil transport

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT configuration. AE6352: Aerospace Systems Design Two was a continuation of Aerospace Systems Design One in which wing concepts were researched and analyzed in more detail. FLOPS and ACSYNT were again used at the system level while other off-the-shelf computer codes were used for more detailed wing disciplinary analysis and optimization. The culmination of all efforts and submission of this report conclude the first year's efforts of Georgia Tech's NASA USRA ADP. It will hopefully provide the foundation for next year's efforts concerning continuous improvement of integrated design and manufacturing for the HSCT.

  16. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  17. Rail Safety/Equipment Crashworthiness : Volume 2. Design Guide.

    DOT National Transportation Integrated Search

    1978-07-01

    The second of four volumes, has been prepared to assist design engineers in understanding the basic problems associated with the development of crashworthy interiors of locomotives, cabooses and passenger railcars. Rail vehicle accident conditions ar...

  18. Effects of Human Factors in Engineering and Design for Teaching Mathematics: A Comparison Study of Online and Face-to-Face at a Technical College

    ERIC Educational Resources Information Center

    Mativo, John M.; Hill, Roger B.; Godfrey, Paul W.

    2013-01-01

    The focus of this study was to examine four characteristics for successful and unsuccessful students enrolled in basic mathematics courses at a technical college. The characteristics, considered to be in part effects of human factors in engineering and design, examined the preferred learning styles, computer information systems competency,…

  19. The Design of a Practical Enterprise Safety Management System

    NASA Astrophysics Data System (ADS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko

    This book presents design guidelines and implementation approaches for enterprise safety management system as integrated within enterprise integrated systems. It shows new model-based safety management where process design automation is integrated with enterprise business functions and components. It proposes new system engineering approach addressed to new generation chemical industry. It will help both the undergraduate and professional readers to build basic knowledge about issues and problems of designing practical enterprise safety management system, while presenting in clear way, the system and information engineering practices to design enterprise integrated solution.

  20. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  1. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  2. Mechanisms, applications, and perspectives of antiviral RNA silencing in plants

    PubMed Central

    Garcia-Ruiz, Hernan; Ruiz, Mayra Teresa Garcia; Peralta, Sergio Manuel Gabriel; Gabriel, Cristina Betzabeth Miravel; El-Mounadi, Kautar

    2017-01-01

    Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering. PMID:28890589

  3. Application of Function-Failure Similarity Method to Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  4. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  5. Turbojet-engine Starting and Acceleration

    NASA Technical Reports Server (NTRS)

    Mc Cafferty, R. J.; Straight, D. M.

    1956-01-01

    From considerations of safety and reliability in performance of gas-turbine aircraft, it is clear that engine starting and acceleration are of utmost importance. For this reason extensive efforts have been devoted to the investigation of the factors involved in the starting and acceleration of engines. In chapter III it is shown that certain basic combustion requirements must be met before ignition can occur; consequently, the design and operation of an engine must be tailored to provide these basic requirements in the combustion zone of the engine, particularly in the vicinity of the ignition source. It is pointed out in chapter III that ignition by electrical discharges is aided by high pressure, high temperature, low gas velocity and turbulence, gaseous fuel-air mixture, proper mixture strength, and-an optimum spark. duration. The simultaneous achievement of all these requirements in an actual turbojet-engine combustor is obviously impossible, yet any attempt to satisfy as many requirements as possible will result in lower ignition energies, lower-weight ignition systems, and greater reliability. These factors together with size and cost considerations determine the acceptability of the final ignition system. It is further shown in chapter III that the problem of wall quenching affects engine starting. For example, the dimensions of the volume to be burned must be larger than the quenching distance at the lowest pressure and the most adverse fuel-air ratio encountered. This fact affects the design of cross-fire tubes between adjacent combustion chambers in a tubular-combustor turbojet engine. Only two chambers in these engines contain spark plugs; therefore, the flame must propagate through small connecting tubes between the chambers. The quenching studies indicate that if the cross-fire tubes are too narrow the flame will not propagate from one chamber to another. In order to better understand the role of the basic factors in actual engine operation, many investigations have been conducted in single combustors from gas-turbine engines and in full-scale engines in altitude tanks and in flight. The purpose of the present chapter is to discuss the results of such studies and, where possible, to interpret these results qualitatively in terms of the basic requirements reported in chapter III. The discussion parallels the three phases of turbojet engine starting: (1) Ignition of the fuel-air mixture (2) Propagation of flame throughout the combustion zone (3) Acceleration of the engine to operating speed.

  6. Implementation of a Broadband Cable System on a University Campus.

    ERIC Educational Resources Information Center

    Rhoadarmer, Michael

    1995-01-01

    Discusses broadband communications; broadband coaxial cable and its utility in the media center; basic electronics of radio signals (radio frequency, radio band, bandwidth, MHz, skimming, decibels, sloped amplifiers); engineering basics (insertion loss, splitter, tap, and three beats); and factors to consider before designing a campus broadband…

  7. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  8. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  9. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  10. 15 KW Small Turboelectric Power Generation System

    DTIC Science & Technology

    2006-08-18

    1 hour per response, including the time for reviewing instnlctions, searching existing data sources, gathering and maintaining the data needed, and...pressure rise is consistent with data from the baseline compressor and a large body of published diffuser data . Table 1 LTS22 Compressor Preliminary... data on designs of 150 HP, 60 HP, and 5 HP engine size class, and in subsequent engine testing. The design methodology encompasses basic sizing

  11. A Study of Al-Mn Transition Edge Sensor Engineering for Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; et al.

    2013-11-10

    The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.

  12. Technical Feasibility of Loitering Lighter-Than-Air Near-Space Maneuvering Vehicles

    DTIC Science & Technology

    2005-03-01

    one year [7]. NASA’s superpressure design consists of a pumpkin shaped balloon (Figure 8) to minimize envelope material stresses. Figure 8: NASA...Figure 12: Turbojet Engine In addition to the pure turbojet engine, the basic gas turbine core is also used to power turboprop and turbofan

  13. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  14. Mass Uncertainty and Application For Space Systems

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey

    2013-01-01

    Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.

  15. General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century

    NASA Technical Reports Server (NTRS)

    Burkardt, Leo A.

    1998-01-01

    Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.

  16. Application for certification 1988 model year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings that describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems.

  17. Auxiliary engine digital interface unit (DIU)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.

  18. An Undergraduate Survey Course on Asynchronous Sequential Logic, Ladder Logic, and Fuzzy Logic

    ERIC Educational Resources Information Center

    Foster, D. L.

    2012-01-01

    For a basic foundation in computer engineering, universities traditionally teach synchronous sequential circuit design, using discrete gates or field programmable gate arrays, and a microcomputers course that includes basic I/O processing. These courses, though critical, expose students to only a small subset of tools. At co-op schools like…

  19. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg.

  20. Multivariable control altitude demonstration on the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.

    1979-01-01

    The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.

  1. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  2. Alternate Propulsion Subsystem Concepts Tripropellant Comparison Study

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1995-01-01

    A study was conducted under MSFC contract NAS8-39210 to compare tripropellant and bipropellant engine configurations for the SSTO mission. The objective was to produce an 'apples-to-apples' comparison to isolate the effects of design implementation, designing company, year of design, or technologies included from the basic tripropellant/bipropellant comparison. Consequently, identical technologies were included (e.g., jet pumps) and the same design groundrules and practices were used. Engine power cycles were examined as were turbomachinery/preburner arrangements for each cycle. The bipropellant approach and two tripropellant approaches were separately optimized in terms of operating parameters: exit pressures, mixture ratios, thrust splits, etc. This briefing presents the results of the study including engine weights for both tripropellant and bipropellant engines; dry vehicle weight performance for a range of engine chamber pressures; discusses the basis for the results; examines vehicle performance due to engine cycles and the margin characteristics of various cycles; and identifies technologies with significant payoffs for this application.

  3. Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  4. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  5. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  6. The auditors are coming: a practical guide for engineering projects

    NASA Technical Reports Server (NTRS)

    Webster, J.

    2003-01-01

    This paper presents a description of the typical audit process, a list of do's and don'ts for projects undergoing an audit, how to design basic audit preparations into the project's design, and resources for further information on auditing issues.

  7. Teaching Reaction Engineering Using the Attainable Region

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Glasser, David; Hausberger, Brendon; Hildebrandt, Diane

    2007-01-01

    Ask a graduating chemical engineering student the following question: What makes one reactor different from the next? The answers received will often be unsatisfactory and will vary widely in scope. Some may cite the difference between the basic design equations, others may point out a PFR is "longer," and still others may state that it…

  8. Engineering Aid 3 & 2, Vol. 1. Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Washington, DC.

    Designed for individual study and not formal classroom instruction, this rate training manual provides subject matter that relates directly to the occupational qualifications of the Engineering Aid (EA) rating. This eight-chapter volume focuses on administrative matters, mathematics, and basic drafting. Chapter 1 discusses the scope of the EA…

  9. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  10. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the... as described in the application (including the test procedures, test parameters, and test fuels) to... other basic parameters of the engine's design and emission controls. List the fuel type on which your...

  11. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the... as described in the application (including the test procedures, test parameters, and test fuels) to... other basic parameters of the engine's design and emission controls. List the fuel type on which your...

  12. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scheduled maintenance you did. (g) List the specifications of the test fuel to show that it falls within the... as described in the application (including the test procedures, test parameters, and test fuels) to... other basic parameters of the engine's design and emission controls. List the fuel type on which your...

  13. Synthetic Organic Electrochemistry: Calling All Engineers.

    PubMed

    Yan, Ming; Kawamata, Yu; Baran, Phil S

    2018-04-09

    Unmet potential: Electrochemistry is the most simple and basic way of altering the redox-states of organic molecules. Despite extensive studies and its demonstrated promise, it has yet to take off in mainstream synthesis. The reason is due to engineering challenges in instrument design. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Engineering Data Compendium. Human Perception and Performance, Volume 1

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses.

  15. Engineering Data Compendium. Human Perception and Performance, Volume 2

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a Research and Development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 2, which contains sections on Information Storage and Retrieval, Spatial Awareness, Perceptual Organization, and Attention and Allocation of Resources.

  16. Engineering data compendium. Human perception and performance, volume 3

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual).

  17. Engineering data compendium. Human perception and performance. User's guide

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use.

  18. Use of a New "Moodle" Module for Improving the Teaching of a Basic Course on Computer Architecture

    ERIC Educational Resources Information Center

    Trenas, M. A.; Ramos, J.; Gutierrez, E. D.; Romero, S.; Corbera, F.

    2011-01-01

    This paper describes how a new "Moodle" module, called "CTPracticals", is applied to the teaching of the practical content of a basic computer organization course. In the core of the module, an automatic verification engine enables it to process the VHDL designs automatically as they are submitted. Moreover, a straightforward…

  19. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part III Control of Jet Engines. Part 3; Control of Jet Engines

    NASA Technical Reports Server (NTRS)

    Kuehl, H.

    1947-01-01

    The basic principles of the control of TL ongincs are developed on .the basis of a quantitative investigation of the behavior of these behavior under various operating conditions with particular consideration of the simplifications pormissible in each case. Various possible means of control of jet engines are suggested and are illustrated by schematic designs.

  20. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  1. Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1988-01-01

    The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.

  2. Summary of atmospheric wind design criteria for wind energy conversion system development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Turner, R. E.

    1979-01-01

    Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.

  3. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... alterations: (i) Changes in blade design. (ii) Changes in hub design. (iii) Changes in the governor or control... alterations: (i) Wings. (ii) Tail surfaces. (iii) Fuselage. (iv) Engine mounts. (v) Control system. (vi... the basic design of the fuel, oil, cooling, heating, cabin pressurization, electrical, hydraulic, de...

  4. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alterations: (i) Changes in blade design. (ii) Changes in hub design. (iii) Changes in the governor or control... alterations: (i) Wings. (ii) Tail surfaces. (iii) Fuselage. (iv) Engine mounts. (v) Control system. (vi... the basic design of the fuel, oil, cooling, heating, cabin pressurization, electrical, hydraulic, de...

  5. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... alterations: (i) Changes in blade design. (ii) Changes in hub design. (iii) Changes in the governor or control... alterations: (i) Wings. (ii) Tail surfaces. (iii) Fuselage. (iv) Engine mounts. (v) Control system. (vi... the basic design of the fuel, oil, cooling, heating, cabin pressurization, electrical, hydraulic, de...

  6. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... alterations: (i) Changes in blade design. (ii) Changes in hub design. (iii) Changes in the governor or control... alterations: (i) Wings. (ii) Tail surfaces. (iii) Fuselage. (iv) Engine mounts. (v) Control system. (vi... the basic design of the fuel, oil, cooling, heating, cabin pressurization, electrical, hydraulic, de...

  7. Artist Concept of Mars 2020 Rover

    NASA Image and Video Library

    2013-07-09

    Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.

  8. 49 CFR 579.4 - Terminology.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uses to designate a discrete model of vehicle, irrespective of the calendar year in which the vehicle..., etc.), and mounting elements (such as brackets, fasteners, etc.). Platform means the basic structure... elements of the engine compartment. The term includes a structure that a manufacturer designates as a...

  9. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  10. High temperature NASP engine seals: A technology review

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Tong, Mike

    1991-01-01

    Progress in developing advanced high temperature engine seal concepts and related sealing technologies for advanced hypersonic engines are reviewed. Design attributes and issues requiring further development for both the ceramic wafer seal and the braided ceramic rope seal are examined. Leakage data are presented for these seals for engine simulated pressure and temperature conditions and compared to a target leakage limit. Basic elements of leakage flow models to predict leakage rates for each of these seals over the wide range of pressure and temperature conditions anticipated in the engine are also presented.

  11. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  12. Artist Concept of Mars 2020 Rover, Annotated

    NASA Image and Video Library

    2013-07-09

    Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.

  13. A Framework for Automating Cost Estimates in Assembly Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calton, T.L.; Peters, R.R.

    1998-12-09

    When a product concept emerges, the manufacturing engineer is asked to sketch out a production strategy and estimate its cost. The engineer is given an initial product design, along with a schedule of expected production volumes. The engineer then determines the best approach to manufacturing the product, comparing a variey of alternative production strategies. The engineer must consider capital cost, operating cost, lead-time, and other issues in an attempt to maximize pro$ts. After making these basic choices and sketching the design of overall production, the engineer produces estimates of the required capital, operating costs, and production capacity. 177is process maymore » iterate as the product design is refined in order to improve its pe~ormance or manufacturability. The focus of this paper is on the development of computer tools to aid manufacturing engineers in their decision-making processes. This computer sof~are tool provides aj?amework in which accurate cost estimates can be seamlessly derivedfiom design requirements at the start of any engineering project. Z+e result is faster cycle times through first-pass success; lower ll~e cycie cost due to requirements-driven design and accurate cost estimates derived early in the process.« less

  14. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  15. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hub design. (iii) Changes in the governor or control design. (iv) Installation of a propeller governor.... (iv) Engine mounts. (v) Control system. (vi) Landing gear. (vii) Hull or floats. (viii) Elements of an... of gravity limits of the aircraft. (xii) Changes to the basic design of the fuel, oil, cooling...

  16. Theory and Design of Flight-Vehicle Engines

    NASA Technical Reports Server (NTRS)

    Zhdanov, V. T. (Editor); Kurziner, R. I. (Editor)

    1987-01-01

    Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines.

  17. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    engineering circles, the trend in the design of new tyres of combustion chambers is to combine the use of aerodynamics , ;he science of heat transfer and...7. FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AF8 ON F/6 21/2 BASIC AERODYNAMICS OF COMBUSTION CHAMBERS,(U) MAY 81 N HUANG UNCLASSIFIED FTD-ID(RS)T...160󈨔 NL so EEEEEE 0hEEEEEEmollllmmlllll mEImmmmmEEE mEEEEEmmEEmmmE IilillilillEEE FTD-1D(RS)T-1684-80 FOREIGN TECHNOLOGY DIVISION BASIC AERODYNAMICS CF

  18. Engineering Information Infrastructure for Product Lifecycle Managment

    NASA Astrophysics Data System (ADS)

    Kimura, Fumihiko

    For proper management of total product life cycle, it is fundamentally important to systematize design and engineering information about product systems. For example, maintenance operation could be more efficiently performed, if appropriate parts design information is available at the maintenance site. Such information shall be available as an information infrastructure for various kinds of engineering operations, and it should be easily accessible during the whole product life cycle, such as transportation, marketing, usage, repair/upgrade, take-back and recycling/disposal. Different from the traditional engineering database, life cycle support information has several characteristic requirements, such as flexible extensibility, distributed architecture, multiple viewpoints, long-time archiving, and product usage information, etc. Basic approaches for managing engineering information infrastructure are investigated, and various information contents and associated life cycle applications are discussed.

  19. Biofiltration for air pollution control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devinny, J.; Deshusses, M.; Webster, T.

    1998-12-31

    The book details biofilter design and operation concepts used by engineers and others; conveys a basic understanding of how biofiltration works by means of contaminant adsorption and biodegradation; and includes otherwise hard-to-find information on the economics of choosing among various biofiltration systems, including details on important designs used in the field.

  20. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    EPA Science Inventory

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  1. The first of a series of high efficiency, high bmep, turbocharged two-stroke cycle diesel engines; the general motors EMD 645FB engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.

    1983-01-01

    The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.

  2. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  3. Comprehensive Erosion and Sediment Control Training Program for Engineers, Architects and Planners.

    ERIC Educational Resources Information Center

    Porter, Harry L., Jr.

    This program training text was designed to provide uniform instruction to the engineer, architect, planner, and others who will be helping to implement an erosion and sediment control program. Although tailored for use in Virginia, the basic principles covered are universal, and the material is adaptable to meet the needs in any State. The 11…

  4. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  5. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  6. An engineering design approach to systems biology.

    PubMed

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  7. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  8. Parts plus pipes: synthetic biology approaches to metabolic engineering

    PubMed Central

    Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345

  9. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  10. Optics in engineering education: stimulating the interest of first-year students

    NASA Astrophysics Data System (ADS)

    Blanco-García, Jesús; Vazquez-Dorrío, Benito

    2014-07-01

    The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.

  11. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the bookmore » presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?« less

  12. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  13. Linear Quadratic Gaussian Controller Design Using a Graphical User Interface: Application to the Beam-Waveguide Antennas

    NASA Astrophysics Data System (ADS)

    Maneri, E.; Gawronski, W.

    1999-10-01

    The linear quadratic Gaussian (LQG) design algorithms described in [2] and [5] have been used in the controller design of JPL's beam-waveguide [5] and 70-m [6] antennas. This algorithm significantly improves tracking precision in a windy environment. This article describes the graphical user interface (GUI) software for the design LQG controllers. It consists of two parts: the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.

  14. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  15. Program Evolves from Basic CAD to Total Manufacturing Experience

    ERIC Educational Resources Information Center

    Cassola, Joel

    2011-01-01

    Close to a decade ago, John Hersey High School (JHHS) in Arlington Heights, Illinois, made a transition from a traditional classroom-based pre-engineering program. The new program is geared towards helping students understand the entire manufacturing process. Previously, a JHHS student would design a project in computer-aided design (CAD) software…

  16. Energy efficiency in light-frame wood construction

    Treesearch

    Gerald E. Sherwood; Gunard Hans

    1979-01-01

    This report presents information needed for design and construction of energy-efficient light-frame wood structures. The opening section discusses improving the thermal performance of a house by careful planning and design. A second section of the report provides technical information on the thermal properties of construction materials, and on the basic engineering...

  17. Realization of station for testing asynchronous three-phase motors

    NASA Astrophysics Data System (ADS)

    Wróbel, A.; Surma, W.

    2016-08-01

    Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.

  18. Practical quality control tools for curves and surfaces

    NASA Technical Reports Server (NTRS)

    Small, Scott G.

    1992-01-01

    Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.

  19. Application of neural networks to group technology

    NASA Astrophysics Data System (ADS)

    Caudell, Thomas P.; Smith, Scott D. G.; Johnson, G. C.; Wunsch, Donald C., II

    1991-08-01

    Adaptive resonance theory (ART) neural networks are being developed for application to the industrial engineering problem of group technology--the reuse of engineering designs. Two- and three-dimensional representations of engineering designs are input to ART-1 neural networks to produce groups or families of similar parts. These representations, in their basic form, amount to bit maps of the part, and can become very large when the part is represented in high resolution. This paper describes an enhancement to an algorithmic form of ART-1 that allows it to operate directly on compressed input representations and to generate compressed memory templates. The performance of this compressed algorithm is compared to that of the regular algorithm on real engineering designs and a significant savings in memory storage as well as a speed up in execution is observed. In additions, a `neural database'' system under development is described. This system demonstrates the feasibility of training an ART-1 network to first cluster designs into families, and then to recall the family when presented a similar design. This application is of large practical value to industry, making it possible to avoid duplication of design efforts.

  20. Design review - A tool for all seasons.

    NASA Technical Reports Server (NTRS)

    Liberman, D. S.

    1972-01-01

    The origins of design review are considered together with questions of definitions. The main characteristics which distinguish the concept of design review discussed from the basic master-apprentice relationship include competence, objectivity, formality, and a systematic approach. Preliminary, major, and final reviews are the steps used in the management of the design and development process in each company. It is shown that the design review is generically a systems engineering milestone review with certain unique characteristics.

  1. Engineering Information System (EIS)

    DTIC Science & Technology

    1992-01-31

    be availabe and usefu for creating powerful tailored contro and mangeen functions. Mode and Framwork Wirth further elaboration of the EIS portio of...control data and activities of the engineering process. The EIM is a conceptual model of administrative and electroic design information. It records...of the access opeations are derived from the instance variable name and type. An attribute conceptually holds one or more instances of a basic type

  2. Advanced Vehicles and Fuels Basics | NREL

    Science.gov Websites

    different ways. For example, we can create designs that will lower a vehicle's weight and aerodynamic drag tires. We can improve the combustion efficiency of the engine. And we can use a different propulsion

  3. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, O J

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less

  4. Preliminary scramjet design for hypersonic airbreathing missile application

    NASA Technical Reports Server (NTRS)

    Carlson, C. H.

    1983-01-01

    A conceptual design study of a scramjet engine was conducted for a hypersonic surface to air missile (HYSAM). The definition of the engine was based upon the requirements of accelerating the HYSAM from Mach 4 at 20,000 feet to Mach 6 at 100,000 feet and the cruise conditions at Mach 6. The resulting external and internal environmental conditions were used by various engineering disciplines performing design, stress and heat transfer analysis. A detailed structural analysis was conducted along with an indepth thermal analysis. Structurally all the components within the system exhibit positive margins of safety. A feasible concept was defined which uses state-of-the-art materials and existing TMC technology. The engine basically consists of a three dimensional carbon/carbon combustor/nozzle secured to an FS-85 columbium inlet. The carbon/carbon liner is sheathed with carbon felt insulation to thermally protect the FS-85 structure and skin. The thermal analysis of the engine indicates that a thermally viable configuration exists.

  5. Bioenvironmental Engineering: An Interdisciplinary Approach to Training Environmental Engineers at Rutgers University

    NASA Astrophysics Data System (ADS)

    Uchrin, Christoph; Krogmann, Uta; Gimenez, Daniel

    2010-05-01

    It is becoming increasingly apparent that environmental problems have become extremely complex, involving inter- and multidisciplinary expertise. Furthermore, the nature of environmental episodes requires practitioners who are flexible in designing appropriate solution approaches. As a result, there is a high demand for environmental engineering graduates in the professional sector as well as graduate schools. At Rutgers University, we have designed and are now delivering an undergraduate curriculum that melds a strong background in basic and applied sciences with a rigorous sequence of design oriented engineering courses, all focused on producing graduates who view the environment in a holistic sense, rather than a narrow, medium oriented manner. Since the implementation of the program in 2004 student numbers have doubled and half of the students graduate with honors. The undergraduate program is complemented by the new Environmental Engineering option of the Graduate Program in Environmental Sciences. The undergraduate program and the graduate option are served by a highly committed faculty of seven full-time members and one part-time member.

  6. The Importance of Engine External's Health

    NASA Technical Reports Server (NTRS)

    Stoner, Barry L.

    2006-01-01

    Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.

  7. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  8. Demand, Energy, and Power Factor

    DTIC Science & Technology

    1994-08-01

    POWER FACTOR DEFINITION I Basically , power factor (pf) is a measure of how effectively the plant uses the electricity it purchases from the utility. It...not be made available by the plant. U 24 This video is relatively short, less than fifteen-minutes, and covers the basics on demand, block extenders...designing, implementing, and evaluation of the resultant project. 1 2. Thumann, Albeit. Plant Engineer and Managers Guide to Energv Conservation, 5th ed

  9. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.

    2005-01-01

    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  10. Rotary wave-ejector enhanced pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  11. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  12. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  13. Hydrogen powered sports car series (internal combustion engine and fuel cells)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotthold, J.P.

    The electric hybrid vehicle can solve the problems which today make the pure electric car limited in its acceptance. The primary limitations are excess weight and short range due to a heavy battery pack of limited energy density. Our basic vehicular design makes use of three power technologies in a balanced way. The chassis is the standard Volkswagen Beetle type which carried many millions of the {open_quotes}beetles{close_quotes} across all the Earth`s continents. The body is a fiberfab replica of a 1970s design sports car which provides three compartments from it`s original mid engine design and a classic aerodynamic shape.

  14. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.

  15. Engineering design aspects of the heat-pipe power system

    NASA Technical Reports Server (NTRS)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  16. Linking mathematics with engineering applications at an early stage - implementation, experimental set-up and evaluation of a pilot project

    NASA Astrophysics Data System (ADS)

    Rooch, Aeneas; Junker, Philipp; Härterich, Jörg; Hackl, Klaus

    2016-03-01

    Too difficult, too abstract, too theoretical - many first-year engineering students complain about their mathematics courses. The project MathePraxis aims to resolve this disaffection. It links mathematical methods as they are taught in the first semesters with practical problems from engineering applications - and thereby shall give first-year engineering students a vivid and convincing impression of where they will need mathematics in their later working life. But since real applications usually require more than basic mathematics and first-year engineering students typically are not experienced with construction, mensuration and the use of engineering software, such an approach is hard to realise. In this article, we show that it is possible. We report on the implementation of MathePraxis at Ruhr-Universität Bochum. We describe the set-up and the implementation of a course on designing a mass damper which combines basic mathematical techniques with an impressive experiment. In an accompanying evaluation, we have examined the students' motivation relating to mathematics. This opens up new perspectives how to address the need for a more practically oriented mathematical education in engineering sciences.

  17. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    NASA Astrophysics Data System (ADS)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused on issues related to the Senior Design (Capstone) Course. Future researchers should focus on developing the project-based course in earlier stages of students' educational program by investigating more about the relationship between student achievement and the market demand.

  18. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  19. Radiation 101: Effects on Hardware and Robotic Systems

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2015-01-01

    We present basic information on different types of radiation effects, including total ionizing dose, displacement damage, and single-event effects. The content is designed to educate space weather professionals, space operations professionals, and other science and engineering stakeholders.

  20. Mars Robotics and Things I Wished I Had Learned in College

    NASA Technical Reports Server (NTRS)

    Baker, John D.

    2016-01-01

    John D. Baker will explore how Mars robotic missions are designed and operated. He will also discuss a few basic concepts that will help future engineers and scientists develop key skills to use in aerospace projects.

  1. Guidelines for the use of visualization

    DOT National Transportation Integrated Search

    1998-12-01

    This document is the product of a research project into visualization in the design and public review of transportation facilities. The project's goal was to provide NCDOT engineers and managers with a basic primer on this relatively new technology i...

  2. Rock blasting and overbreak control

    DOT National Transportation Integrated Search

    1991-01-01

    This handbook is specifically designed as a guide to highway engineers and blasting practitioners working with highway applications. It was used as a handbook for the FHWA course of the above title. The handbook is a basic review of explosives and th...

  3. Quiet Clean Short-haul Experimental Engine (QCSEE) composite fan frame design report

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.

    1978-01-01

    An advanced composite frame which is flight-weight and integrates the functions of several structures was developed for the over the wing (OTW) engine and for the under the wing (UTW) engine. The composite material system selected as the basic material for the frame is Type AS graphite fiber in a Hercules 3501 epoxy resin matrix. The frame was analyzed using a finite element digital computer program. This program was used in an iterative fashion to arrive at practical thicknesses and ply orientations to achieve a final design that met all strength and stiffness requirements for critical conditions. Using this information, the detail design of each of the individual parts of the frame was completed and released. On the basis of these designs, the required tooling was designed to fabricate the various component parts of the frame. To verify the structural integrity of the critical joint areas, a full-scale test was conducted on the frame before engine testing. The testing of the frame established critical spring constants and subjected the frame to three critical load cases. The successful static load test was followed by 153 and 58 hours respectively of successful running on the UTW and OTW engines.

  4. Digital design of scaffold for mandibular defect repair based on tissue engineering*

    PubMed Central

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-01-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future. PMID:21887853

  5. Digital design of scaffold for mandibular defect repair based on tissue engineering.

    PubMed

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-09-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  6. Reverse engineering of aircraft wing data using a partial differential equation surface model

    NASA Astrophysics Data System (ADS)

    Huband, Jacalyn Mann

    Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other generates a PDE surface model with spline boundary functions from an arbitrary set of grid points. Our numerical tests show that the reverse PDE surface model and the reverse PDE surface algorithms can be used for the reverse engineering of aircraft wing data.

  7. (Development of advanced models of the MCC full expansion (quiet) engine): First quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the first quarterly report to the Department of Energy on the progress associated with the development of advanced models of the MCC full expansion (quiet) engine. These models will be evaluated in successive steps and eventually incorporated into a lawn mower for the purpose of commercializing the engine for small wheeled lawn and garden applications. During the first three months of the program (July 1 thru Sept 30), the Phase I design was basically completed with the exception of some engine/lawn mower interface hardware which will be completed during the final stages of the development program after wemore » have selected a lawn mower deck. Rick Erickson, the design engineer for the program, completed the initial parts drawings utilizing the computer drafting system together with guidance from Fredrick Erickson, the program principal engineer and Jeff Erickson, who is in charge of manufacturing the engines. A miniature copy of these drawings is included in the appendix for your review.« less

  8. Synthetic biology: new engineering rules for an emerging discipline

    PubMed Central

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572

  9. Synthetic biology: new engineering rules for an emerging discipline.

    PubMed

    Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron

    2006-01-01

    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.

  10. Holographic aids for internal combustion engine flow studies

    NASA Technical Reports Server (NTRS)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  11. PhysioNet: physiologic signals, time series and related open source software for basic, clinical, and applied research.

    PubMed

    Moody, George B; Mark, Roger G; Goldberger, Ary L

    2011-01-01

    PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.

  12. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  13. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  14. A High School Level Course On Robot Design And Construction

    NASA Astrophysics Data System (ADS)

    Sadler, Paul M.; Crandall, Jack L.

    1984-02-01

    The Robotics Design and Construction Class at Sehome High School was developed to offer gifted and/or highly motivated students an in-depth introduction to a modern engineering topic. The course includes instruction in basic electronics, digital and radio electronics, construction skills, robotics literacy, construction of the HERO 1 Heathkit Robot, computer/ robot programming, and voice synthesis. A key element which leads to the success of the course is the involvement of various community assets including manpower and financial assistance. The instructors included a physics/electronics teacher, a computer science teacher, two retired engineers, and an electronics technician.

  15. Tissue Engineering in Orthopaedics

    PubMed Central

    Tatara, Alexander M.; Mikos, Antonios G.

    2016-01-01

    ➤ It is important to carefully select the most appropriate combination of scaffold, signals, and cell types when designing tissue engineering approaches for an orthopaedic pathology. ➤ Although clinical studies in which the tissue engineering paradigm has been applied in the treatment of orthopaedic diseases are limited in number, examining them can yield important lessons. ➤ While there is a rapid rate of new discoveries in the basic sciences, substantial regulatory, economic, and clinical issues must be overcome with more consistency to translate a greater number of technologies from the laboratory to the operating room. PMID:27385687

  16. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  17. Power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.

    1974-01-01

    A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.

  18. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  19. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering.

  20. A hingeless rotor XV-15 design integration feasibility study. Volume 1: Engineering design studies

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1978-01-01

    A design integration feasibility study was carried out to investigate what modifications to the basic XV-15 were necessary to accomplish a flight demonstration of the XV-15 with a Boeing hingeless rotor. Also investigated were additional modifications which would exploit the full capability provided by the combination of the new rotor and the existing T53 engine. An evaluation of the aircraft is presented and the data indicate improved air vehicle performance, acceptable aeroelastic margins, lower noise levels and improved flying qualities compared with the XV-15 aircraft. Inspection of the rotor system data provided shows an essentially unlimited life rotor for the flight spectrum anticipated for the XV-15.

  1. Design and development status of ETS-7, an RVD and space robot experiment satellite

    NASA Technical Reports Server (NTRS)

    Oda, M.; Inagaki, T.; Nishida, M.; Kibe, K.; Yamagata, F.

    1994-01-01

    ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.

  2. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  3. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    NASA Technical Reports Server (NTRS)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  4. Undergraduate Electronics Projects Based on the Design of an Optical Wireless Audio Transmission System

    ERIC Educational Resources Information Center

    Oliveira, Luis Bica; Paulino, Nuno; Oliveira, João P.; Santos-Tavares, Rui; Pereira, Nuno; Goes, João

    2017-01-01

    The two projects presented in this paper can be used either as two separate assignments in two different semesters or as a final assignment for undergraduate students of electrical engineering. They have two main objectives: first, to teach basic electronic circuit design concepts and, second, to motivate the students to learn more about analog…

  5. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  6. Engineering the System and Technical Integration

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  7. Development status of LE-7 fuel turbopump

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Nagao, R.; Ohta, T.; Warashina, S.; Watanabe, H.; Oguchi, H.

    The liquid hydrogen turbopump (LH2 T/P) for the LE-7 engine has been developed since 1984. The component PDR was held in June 1988 and the basic troubles occurred at the development test were solved. Next, the component CDR-1 was held in December 1989 in order to feed back the test results of prototype LH2 T/P model to the design of qualification phase T/P. So, the production of these turbopumps was admitted. Recently, the component CDR-2 was held in February 1992 to reflect the counterparts adopted for some troubles (impeller and turbine blade cracks and so on) in long-time engine tests to the design of qualification phase T/P. In the qualification phase, the hydraulic characteristics and strength in the engine operating range were examined at the LH2 T/P component test, and its endurance confirmed at the engine tests. The LH2 turbopump component test was held at NASDA Kakuda and the engine test at Tashiro and Tanegashima. This paper describes the development status of LH2 T/P, containing the design description and the content of some troubles and its counterplans.

  8. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 5: Design of the IPAD system. Part 2: System design. Part 3: General purpose utilities, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.

  9. Multidimensional computer simulation of Stirling cycle engines

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.

    1990-01-01

    The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.

  10. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  11. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  12. Basic stages in the development of the theory of Ramjet Engines (RJE)

    NASA Technical Reports Server (NTRS)

    Merkulov, I. A.

    1977-01-01

    Basic periods in the history of the development of ramjet engine theory are cited. The periods include the first experimental tests as well as the development of basic ideas and theoretical development of the cosmic ramjet engine.

  13. How to Make a Synthetic Multicellular Computer

    PubMed Central

    Macia, Javier; Sole, Ricard

    2014-01-01

    Biological systems perform computations at multiple scales and they do so in a robust way. Engineering metaphors have often been used in order to provide a rationale for modeling cellular and molecular computing networks and as the basis for their synthetic design. However, a major constraint in this mapping between electronic and wet computational circuits is the wiring problem. Although wires are identical within electronic devices, they must be different when using synthetic biology designs. Moreover, in most cases the designed molecular systems cannot be reused for other functions. A new approximation allows us to simplify the problem by using synthetic cellular consortia where the output of the computation is distributed over multiple engineered cells. By evolving circuits in silico, we can obtain the minimal sets of Boolean units required to solve the given problem at the lowest cost using cellular consortia. Our analysis reveals that the basic set of logic units is typically non-standard. Among the most common units, the so called inverted IMPLIES (N-Implies) appears to be one of the most important elements along with the NOT and AND functions. Although NOR and NAND gates are widely used in electronics, evolved circuits based on combinations of these gates are rare, thus suggesting that the strategy of combining the same basic logic gates might be inappropriate in order to easily implement synthetic computational constructs. The implications for future synthetic designs, the general view of synthetic biology as a standard engineering domain, as well as potencial drawbacks are outlined. PMID:24586222

  14. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  15. The role of failure/problems in engineering: A commentary of failures experienced - lessons learned

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1992-01-01

    The written version of a series of seminars given to several aerospace companies and three NASA centers are presented. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been mission technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhanced philosophy. Fourteen principles are addressed with problems experienced and are used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM).

  16. Joint US/Russia TU-144 Engine Ground Tests

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.

    1997-01-01

    Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.

  17. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  18. The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Desch, Jeremy D.

    1995-01-01

    The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.

  19. Use of human engineering standards in design

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.; Armstrong, R.

    1977-01-01

    Results are presented for a research study intended to assess the impact of present human engineering standards on product design. The approach consisted of three basic steps: a comparison of two display panels to determine if, in fact, products designed to the same standards are truly standardized; a review of two existing standards to determine how well their information can be used to solve design problems; and a survey of human factors specialists to assess their opinions about standards. It is shown that standards have less than the desired influence on product design. This is evidenced by a lack of standardization between hardware designed under common standards, by deficiencies within the standards that detract from their usefulness and encourage users to ignore them, and by the respondents of the survey who consider standards less valuable than other reference sources for design implementation. Recommendations aimed at enhancing the use of standards are set forth.

  20. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  1. Electronic circuits for communications systems: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.

  2. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  3. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  4. Process control systems at Homer City coal preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shell, W.P.

    1983-03-01

    An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.

  5. Title I preliminary engineering for: A. S. E. F. solid waste to methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-01-01

    An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less

  6. 40 CFR 86.085-37 - Production vehicles and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transmission class. (2) Base level means a unique combination of basic engine, inertia weight, and transmission class. (3) Vehicle configuration means a unique combination of basic engine, engine code, inertia weight...

  7. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  8. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  9. Proven and novel strategies for efficient editing of the human genome.

    PubMed

    Mussolino, Claudio; Mlambo, Tafadzwa; Cathomen, Toni

    2015-10-01

    Targeted gene editing with designer nucleases has become increasingly popular. The most commonly used designer nuclease platforms are engineered meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and the clustered regularly interspaced short palindromic repeat/Cas9 system. These powerful tools have greatly facilitated the generation of plant and animal models for basic research, and harbor an enormous potential for applications in biotechnology and gene therapy. This review recapitulates proven concepts of targeted genome engineering in primary human cells and elaborates on novel concepts that became possible with the dawn of RNA-guided nucleases and RNA-guided transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  11. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model C

    NASA Technical Reports Server (NTRS)

    Hultberg, R. S.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin g tunnel are presented in plotted form for a 1/6 scale, single engine, high wing, general aviation model. The configurations tested included the basic airplane and control deflections, wing leading edge devices, tail designs, and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering a spin coefficient range from 0 to 0.9.

  12. A Grand Sale: $12 for a Dozen Experiments in CRE.

    ERIC Educational Resources Information Center

    Guo-Tai, Zhang; Shau-Drang, Hau

    1984-01-01

    Introduces a procedure for a whole class of experiments which require very simple and inexpensive equipment and which illustrate one of the basic problems of chemical reaction engineering. The reactions are designed to allow development of a kinetic rate equation from laboratory data. (JM)

  13. SLRV Engineering Tests at Department of Transportation Transportation Test Center : Volume 1. Introduction.

    DOT National Transportation Integrated Search

    1979-01-01

    The Standard Light Rail Vehicle (SLRV) is a 71-foot vehicle, articulated to negotiate curves down to 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operatin...

  14. Maintaining the competitive edge; Use of computers for undergraduate instruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, F.; Miller, M.; Podlo, A.L.

    1991-11-01

    There is a revolution in U.S. undergraduate engineering curricula, one marked by a renaissance of interest in liberal arts education, re-emphasis on basic education, and a new emphasis on computer training. The Dept. of Petroleum Engineering at the U. of Texas recognized its weaknesses and in Sept. 1987 designed and implemented new curricula incorporating computer and technical communications skills for undergraduate students. This paper provides details of the curricula changes. The results of this 4-year program demonstrate that problem-solving skills of petroleum engineering students are sharpened through computerized education and proficient communication.

  15. Experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Gleason, C. C.

    1975-01-01

    Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.

  16. SNL Mechanical Computer Aided Design (MCAD) guide 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Brandon; Pollice, Stephanie L.; Martinez, Jack R.

    2007-12-01

    This document is considered a mechanical design best-practice guide to new and experienced designers alike. The contents consist of topics related to using Computer Aided Design (CAD) software, performing basic analyses, and using configuration management. The details specific to a particular topic have been leveraged against existing Product Realization Standard (PRS) and Technical Business Practice (TBP) requirements while maintaining alignment with sound engineering and design practices. This document is to be considered dynamic in that subsequent updates will be reflected in the main title, and each update will be published on an annual basis.

  17. STS Case Study Development Support

    NASA Technical Reports Server (NTRS)

    Rosa de Jesus, Dan A.; Johnson, Grace K.

    2013-01-01

    The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.

  18. Multilayer scaffolds in orthopaedic tissue engineering.

    PubMed

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  19. Elementary students' engagement in failure-prone engineering design tasks

    NASA Astrophysics Data System (ADS)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  20. SLRV Engineering Tests at Department of Transportation, Transportation Test Center : Volume 4. Data Logs.

    DOT National Transportation Integrated Search

    1979-02-01

    The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to a 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operat...

  1. Computer Applications in Balancing Chemical Equations.

    ERIC Educational Resources Information Center

    Kumar, David D.

    2001-01-01

    Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)

  2. SLRV Engineering Tests at Department of Transportation Transportation Test Center : Volume 2. Performance and Power Consumption Tests.

    DOT National Transportation Integrated Search

    1979-02-01

    The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operatin...

  3. A Content-Oriented Model for Science Exhibit Engineering

    ERIC Educational Resources Information Center

    Achiam, Marianne Foss

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful in prompting visitors to carry out intended…

  4. Stafford Technical Center: Designing a Future for Architects and Builders

    ERIC Educational Resources Information Center

    Lucci, William, Jr.

    2005-01-01

    The Engineering Technology Academy (ETA) program at Stafford Technical Center in Rutland, Vermont, offers benefits beyond the conventional high school learning experience. In September, at the beginning of the program, students learn the traditional skills of using tools, line weights and lettering. Once they develop these basic skills, students…

  5. "Now" We Have an App for That

    ERIC Educational Resources Information Center

    Schaen, Richard J.; Hayden, Garry; Zydney, Janet M.

    2016-01-01

    The best Science, Technology, Engineering, and Mathematics (STEM) design challenges are student centered, with students themselves making the key decisions. But with young children who are still learning basic academic and social skills, implementing projects where they truly take the lead can be quite challenging. To give students at one…

  6. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  8. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  9. Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors

    DTIC Science & Technology

    2008-03-13

    the Doctoral Thesis Committee of the doctoral student. 3 3.0 Technical Background A strong incentive exists to reduce airfoil count in aircraft engine ...Advanced Turbine Engine ). A basic constraint on blade reduction is seen from the Euler turbine equation, which shows that, although a design can be carried...on the vane to rotor blade ratio of 8:11). Within the MSU Turbo code, specifying a small number of time steps requires more iteration at each time

  10. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  11. [Simulation and Design of Infant Incubator Assembly Line].

    PubMed

    Ke, Huqi; Hu, Xiaoyong; Ge, Xia; Hu, Yanhai; Chen, Zaihong

    2015-11-01

    According to current assembly situation of infant incubator in company A, basic industrial engineering means such as time study was used to analyze the actual products assembly production and an assembly line was designed. The assembly line was modeled and simulated with software Flexsim. The problem of the assembly line was found by comparing simulation result and actual data, then through optimization to obtain high efficiency assembly line.

  12. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  13. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  14. Small Engine Repair. Two-Stroke and Four-Stroke Cycle.

    ERIC Educational Resources Information Center

    Hires, Bill; And Others

    This curriculum guide is intended to assist persons teaching a course in repairing two- and four-stroke cycle small engines. Addressed in the individual units of instruction are the following topics: safety, tools, fasteners, and measurement techniques; basic small engine theory (engine identification and inspection, basic engine principles and…

  15. An Introduction to Transient Engine Applications Using the Numerical Propulsion System Simulation (NPSS) and MATLAB

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.; Haller, William J.; Seidel, Jonathan A.

    2016-01-01

    This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets.

  16. What is the Final Verification of Engineering Requirements?

    NASA Technical Reports Server (NTRS)

    Poole, Eric

    2010-01-01

    This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.

  17. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  18. A designed repeat protein as an affinity capture reagent

    PubMed Central

    Speltz, Elizabeth B.; Brown, Rebecca S.H.; Hajare, Holly S.; Schlieker, Christian; Regan, Lynne

    2017-01-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class - tetratricopeptide repeat (TPR) proteins. In previous work we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena 2011; Main 2003]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena 2009; Cortajarena 2008; Jackrel 2009; Kajander 2007]. Here we focus on the development of one such TPR-peptide interaction for a practical application – affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  19. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  20. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  1. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  2. Dual throat engine design for a SSTO launch vehicle

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salmon, J. W.

    1980-01-01

    A propulsion system analysis of a dual fuel, dual throat engine for launch vehicle application was conducted. Basic dual throat engine characterization data are presented to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined. Dual throat engine performance, envelope, and weight parametric data were generated over the parametric range of thrust from 890 to 8896 KN (200K to 2M lb-force), chamber pressure from 6.89 million to 34.5 million N/sq m (1000 to 5000 psia) thrust ratio from 1.2 to 5, and a range of mixture ratios for the two tripropellant combinations: LO2/RP-1 + LH2 and LO2/LCH4 + LH2. The results of the study indicate that the dual fuel dual throat engine is a viable single stage to orbit candidate.

  3. Application for certification 1980 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  4. Application for certification, 1990 model-year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  5. Application for certification 1993 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  6. Application for certification, 1991 model-year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model-year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application containsmore » the results of emission testing, a statement of compliance to the regulations, production engine parameters and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  7. Application for certification 1981 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  8. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  9. Application for certification 1987 model year light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. The engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. They also provide information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  10. Application for certification 1981 model year light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  11. The near-term hybrid vehicle program, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.

  12. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  13. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  14. Generalized dynamic engine simulation techniques for the digital computers

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1975-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.

  15. Application of the Deming management method to equipment-inspection processes.

    PubMed

    Campbell, C A

    1996-01-01

    The Biomedical Engineering staff at the Washington Hospital Center has designed an inspection process that optimizes timely completion of scheduled equipment inspections. The method used to revise the process was primarily Deming, but certainly the method incorporates the re-engineering concept of questioning the basic assumptions around which the original process was designed. This effort involved a review of the existing process in its entirety by task groups made up of representatives from all involved departments. Complete success in all areas has remained elusive. However, the lower variability of inspection completion ratios follows Deming's description of a successfully revised process. Further CQI efforts targeted at specific areas with low completion ratios will decrease this variability even further.

  16. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, T. J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  17. Rotary balance data for a typical single-engine general aviation design for an angle of attack range of 8 deg to 90 deg. 1: Low wing model C. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Mulcay, W. J.; Rose, R. A.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine, low wing, general aviation model (model C). The configurations tested included the basic airplane and control deflections, wing leading edge and fuselage modification devices, tail designs and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering an omega b/2v range from 0 to .9.

  18. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  19. Rotary balance data for a typical single-engine low-wing general aviation design for an angle-of-attack range of 30 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.

    1978-01-01

    Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.

  20. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: High-wing model B

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.

  1. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  2. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  3. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  4. Synthetic metabolism: metabolic engineering meets enzyme design.

    PubMed

    Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

    2017-04-01

    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation.

  6. Basics of applied geothermal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1976-01-01

    The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)

  7. Experience gained from the application of basic quality assurance procedures in a Greek university engineering department

    NASA Astrophysics Data System (ADS)

    Stamatelos, A. M.

    2010-06-01

    During the last decade, significant funding has become available to Greek public universities to support the convergence to the common European space of higher education. In a number of departments, this funding was wisely invested in the development of a quality culture, covering not only the educational process, but also the services offered by the department's administration and technical support staff. This paper presents the design and implementation of a quality-oriented studies' reform plan in the Mechanical Engineering Department, University of Thessaly in the period 2002-2008. Based on the successful experience from its application, a significant part of the personnel and students have become acquainted with basic quality assurance procedures and performance evaluation. Experience and lessons learnt from this effort are reported and discussed in this paper.

  8. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  9. Engineman 3 & 2. Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Thayer, C. B.; Farris, C. L.

    This Navy training and self-study manual is designed to provide a basic theoretical and practical understanding of primarily diesel engines and associated equipment, the main emphasis being on shipboard types and operations. Each chapter offers verbal and pictorial description of machinery, with both schematic and equipment-specific depiction of…

  10. Portable Life Support System: PLSS 101

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen A.

    2011-01-01

    This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.

  11. SLRV Engineering Tests at Department of Transportation Transportation Test Center : Volume 3. Ride Quality, Noise, and Radio Frequency Interference ..

    DOT National Transportation Integrated Search

    1979-02-01

    The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to a 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operat...

  12. An Open Specification for Space Project Mission Operations Control Architectures

    NASA Technical Reports Server (NTRS)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  13. Derivation of Performance Statements for the Automotive Mechanics Basic Trade Course: Research Documentation.

    ERIC Educational Resources Information Center

    Fox, A. P.; Kuhl, D. H.

    A project was conducted to derive a comprehensive list of the performances of a competence mechanic to satisfy the planning needs of automotive engineering lecturers, curriculum committees, researchers, course designers, and staff developers. A list of 127 tasks together with information about their relative importance and the frequency with which…

  14. Computer Based Data Acquisition in the Undergraduate Lab.

    ERIC Educational Resources Information Center

    Wepfer, William J.; Oehmke, Roger L. T.

    1987-01-01

    Describes a data acquisition system developed for an undergraduate engineering students' instructional laboratory at Georgia Tech. Special emphasis is placed on the design of an A/D Converter Board used to measure the viscosity and temperature of motor oil. The Simons' BASIC Program Listing for the Commodore 64 microcomputer is appended. (LRW)

  15. From Basking Ridge to the Jupiter Trojans

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2017-01-01

    This presentation describes the activities of the Global Trajectory Optimization Lab, a subdivision of the Navigation and Mission Design Branch at NASA GSFC. The students will learn the basics of interplanetary trajectory optimization and then, as an example, the Lucy mission to the Jupiter Trojans will be described from both a science and engineering perspective.

  16. Reverse engineering of wörner type drilling machine structure.

    NASA Astrophysics Data System (ADS)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  17. Circulation control propellers for general aviation, including a BASIC computer program

    NASA Technical Reports Server (NTRS)

    Taback, I.; Braslow, A. L.; Butterfield, A. J.

    1983-01-01

    The feasibility of replacing variable pitch propeller mechanisms with circulation control (Coanada effect) propellers on general aviation airplanes was examined. The study used a specially developed computer program written in BASIC which could compare the aerodynamic performance of circulation control propellers with conventional propellers. The comparison of aerodynamic performance for circulation control, fixed pitch and variable pitch propellers is based upon the requirements for a 1600 kg (3600 lb) single engine general aviation aircraft. A circulation control propeller using a supercritical airfoil was shown feasible over a representative range of design conditions. At a design condition for high speed cruise, all three types of propellers showed approximately the same performance. At low speed, the performance of the circulation control propeller exceeded the performance for a fixed pitch propeller, but did not match the performance available from a variable pitch propeller. It appears feasible to consider circulation control propellers for single engine aircraft or multiengine aircraft which have their propellers on a common axis (tractor pusher). The economics of the replacement requires a study for each specific airplane application.

  18. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  19. Wind/Tornado Guidelines Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.; Holman, G.S.

    1991-10-01

    This report documents the strategy employed to develop recommended wind/tornado hazard design guidelines for a New Production Reactor (NRP) currently planned for either the Idaho National Engineering Laboratory (INEL) or the Savannah River (SR) site. The Wind/Tornado Working Group (WTWG), comprising six nationally recognized experts in structural engineering, wind engineering, and meteorology, formulated an independent set of guidelines based on site-specific wind/tornado hazard curves and state-of-the-art tornado missile technology. The basic philosophy was to select realistic wind and missile load specifications, and to meet performance goals by applying conservative structural response evaluation and acceptance criteria. Simplified probabilistic risk analyses (PRAs)more » for wind speeds and missile impact were performed to estimate annual damage risk frequencies for both the INEL and SR sites. These PRAs indicate that the guidelines will lead to facilities that meet the US Department of Energy (DOE) design requirements and that the Nuclear Regulatory Commission guidelines adopted by the DOE for design are adequate to meet the NPR safety goals.« less

  20. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  1. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  2. Doing Systems Engineering Without Thinking About It at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta; Kilp, Stephen; Chun, Peggy; Mizukami, Masashi

    2004-01-01

    When asked about his processes in designing a new airplane, Burt Rutan responded: ...there is always a performance requirement. So I start with the basic physics of an airplane that can get those requirements, and that pretty much sizes an airplane... Then I look at the functionality... And then I try a lot of different configurations to meet that, and then justify one at a time, throwing them out... Typically I'll have several different configurations... But I like to experiment, certainly. I like to see if there are other ways to provide the utility. This kind of thinking engineering as a total systems engineering approach is what is being instilled in all engineers at the NASA Dryden Flight Research Center.

  3. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  4. High Pressure Earth Storable Rocket Technology Program: Basic Program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.

    1995-01-01

    The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.

  5. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  6. Concepts, requirements, and design approaches for building successful planning and scheduling systems

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Willoughby, John K.

    1991-01-01

    Traditional practice of systems engineering management assumes requirements can be precisely determined and unambiguously defined prior to system design and implementation; practice further assumes requirements are held static during implementation. Human-computer decision support systems for service planning and scheduling applications do not conform well to these assumptions. Adaptation to the traditional practice of systems engineering management are required. Basic technology exists to support these adaptations. Additional innovations must be encouraged and nutured. Continued partnership between the programmatic and technical perspective assures proper balance of the impossible with the possible. Past problems have the following origins: not recognizing the unusual and perverse nature of the requirements for planning and scheduling; not recognizing the best starting point assumptions for the design; not understanding the type of system that being built; and not understanding the design consequences of the operations concept selected.

  7. Lead/acid battery development for heat engine/electric hybrid vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, J.; Taylor, A.H.; Goebel, F.

    A program was undertaken to develop a lead/acid battery system for use in a hybrid heat engine/electric vehicle. The basic requirements are that the battery be capable of supplying high-rate power pulses and of accepting high-rate charge pulses, both of short duration. The feasibility of developing a bipolar lead/acid battery system which conforms to these specifications was investigated by using a modular approach to system design. In the preferred design, a vertical array of lead strips placed on either side of each substrate are connected with adjacent strips on the opposite side only over the top of the substrate tomore » provide electrical conduction through the substrate. The following topics are discussed concerning this system: study of electrochemical problem areas relevant to design of a high-power-density battery; corrosion of substrate materials; development and mechanical testing of structures; life testing; design and preliminary cost analysis.« less

  8. Liquid Propulsion: Propellant Feed System Design. Chapter 2.3.11

    NASA Technical Reports Server (NTRS)

    Cannon, James L.

    2010-01-01

    The propellant feed system of a liquid rocket engine determines how the propellants are delivered from the tanks to the thrust chamber. They are generally classified as either pressure fed or pump fed. The pressure-fed system is simple and relies on tank pressures to feed the propellants into the thrust chamber. This type of system is typically used for space propulsion applications and auxiliary propulsion applications requiring low system pressures and small quantities of propellants. In contrast, the pump-fed system is used for high pressure, high performance applications. The selection of one propellant feed system over another is determined based on design trade studies at both the engine and vehicle levels. This chapter first provides a brief overview of the basic configurations of pressure-fed systems. Pump-fed systems are then discussed with greater detail given to the turbomachinery design. Selected design requirements and configurations are provided.

  9. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  10. Spread spectrum communications. Volume 1, 2 & 3

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Levitt, B. K.; Omura, J. K.; Scholtz, R. A.

    1985-01-01

    The design and operation of spread-spectrum (SS) communication systems are examined in an introductory text intended for graduate engineering students and practicing engineers. Chapters are devoted to an overview of SS systems, the historical origins of SS, basic concepts and system models, antijam communication systems, pseudonoise generators, coherent direct-sequence systems, noncoherent frequency-hopped systems, coherent and differentially coherent modulation techniques, pseudonoise acquisition and tracking in direct-sequence receivers, time and frequency synchronization of frequency-hopped receivers, low-probability-of-intercept communication, and multiple-access communication. Graphs, diagrams, and photographs are provided.

  11. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    NASA Technical Reports Server (NTRS)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  12. Propellant injection systems and processes

    NASA Technical Reports Server (NTRS)

    Ito, Jackson I.

    1995-01-01

    The previous 'Art of Injector Design' is maturing and merging with the more systematic 'Science of Combustion Device Analysis.' This technology can be based upon observation, correlation, experimentation and ultimately analytical modeling based upon basic engineering principles. This methodology is more systematic and far superior to the historical injector design process of 'Trial and Error' or blindly 'Copying Past Successes.' The benefit of such an approach is to be able to rank candidate design concepts for relative probability of success or technical risk in all the important combustion device design requirements and combustion process development risk categories before committing to an engine development program. Even if a single analytical design concept cannot be developed to predict satisfying all requirements simultaneously, a series of risk mitigation key enabling technologies can be identified for early resolution. Lower cost subscale or laboratory experimentation to demonstrate proof of principle, critical instrumentation requirements, and design discriminating test plans can be developed based on the physical insight provided by these analyses.

  13. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges

    PubMed Central

    Parker, Robert S.; Clermont, Gilles

    2010-01-01

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made. PMID:20147315

  14. The Design and Analysis of the Hydraulic-pressure Seal of the Engine Box

    NASA Astrophysics Data System (ADS)

    Chen, Zhenya; Shen, Xingquan; Xin, Zhijie; Guo, Tingting; Liao, Kewei

    2017-12-01

    According to the sealing requirements of engine casing, using NX software to establish three-dimensional solid model of the engine box. Designing two seals suppress schemes basing on analyzing the characteristics of the case structure, one of seal is using two pins on one side to localize, the other is using cylinder to top tight and fasten, Clarifying the reasons for the using the former scheme have a lower cost. At the same time analysesing of the forces and deformation of the former scheme using finite element analysis software and the NX software, results proved that the pressure scheme can meet the actual needs of the program. It illustrated the composition of the basic principles of manual pressure and hydraulic system, verifed the feasibility of the seal program using experiment, providing reference for the experimental program of hydrostatic pressure in the future.

  15. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges.

    PubMed

    Parker, Robert S; Clermont, Gilles

    2010-07-06

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made.

  16. Application for certification, 1988 model year light-duty vehicles - Volkswagen, Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission-control systems. Information is also provided on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application containsmore » the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  17. Application for certification, 1986 model year light-duty vehicles - Volkswagen/Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  18. Application for certification, 1993 model-year light-duty trucks - Grumman Olson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. The report deals with light-duty trucks from Grumman Olson Company. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirementsmore » to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  19. Application for certification, 1992 model-year light-duty vehicles - Grumman Olson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines that he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of themore » application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  20. Application for certification, 1990 model-year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  1. Application for certification, 1989 model year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  2. Scale-Up of GRCop: From Laboratory to Rocket Engines

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  3. MATH77, Version 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.

    1994-01-01

    MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.

  4. Creating Interactive Web-Based Environments to Scaffold Creative Reasoning and Meaningful Learning: From Physics to Products

    ERIC Educational Resources Information Center

    Jou, Min; Chuang, Chien-Pen; Wu, Yu-Shiang

    2010-01-01

    With the evolution of the surrounding world market, engineers have to propose innovations in products and processes. Industrial innovation frequently results from an improved understanding of basic physics. In this paper, an approach to accelerate inventive preliminary design is presented. This method combines the main advantages of CBR (Case…

  5. SDLDS--System for Digital Logic Design and Simulation

    ERIC Educational Resources Information Center

    Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.

    2013-01-01

    This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…

  6. A New "Moodle" Module Supporting Automatic Verification of VHDL-Based Assignments

    ERIC Educational Resources Information Center

    Gutierrez, Eladio; Trenas, Maria A.; Ramos, Julian; Corbera, Francisco; Romero, Sergio

    2010-01-01

    This work describes a new "Moodle" module developed to give support to the practical content of a basic computer organization course. This module goes beyond the mere hosting of resources and assignments. It makes use of an automatic checking and verification engine that works on the VHDL designs submitted by the students. The module automatically…

  7. CRISPR/Cas system for yeast genome engineering: advances and applications

    PubMed Central

    Stovicek, Vratislav; Holkenbrink, Carina

    2017-01-01

    Abstract The methods based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system have quickly gained popularity for genome editing and transcriptional regulation in many organisms, including yeast. This review aims to provide a comprehensive overview of CRISPR application for different yeast species: from basic principles and genetic design to applications. PMID:28505256

  8. The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009

    NASA Astrophysics Data System (ADS)

    Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.

    2010-12-01

    The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.

  9. Great Lakes Steel -- PCI facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less

  10. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  11. Boehringer Mannheim award lecture 1995. La conference Boehringer Mannheim 1995. De novo design of alpha-helical proteins: basic research to medical applications.

    PubMed

    Hodges, R S

    1996-01-01

    The two-stranded alpha-helical coiled-coil is a universal dimerization domain used by nature in a diverse group of proteins. The simplicity of the coiled-coil structure makes it an ideal model system to use in understanding the fundamentals of protein folding and stability and in testing the principles of de novo design. The issues that must be addressed in the de novo design of coiled-coils for use in research and medical applications are (i) controlling parallel versus antiparallel orientation of the polypeptide chains, (ii) controlling the number of helical strands in the assembly (iii) maximizing stability of homodimers or heterodimers in the shortest possible chain length that may require the engineering of covalent constraints, and (iv) the ability to have selective heterodimerization without homodimerization, which requires a balancing of selectivity versus affinity of the dimerization strands. Examples of our initial inroads in using this de novo design motif in various applications include: heterodimer technology for the detection and purification of recombinant peptides and proteins; a universal dimerization domain for biosensors; a two-stage targeting and delivery system; and coiled-coils as templates for combinatorial helical libraries for basic research and drug discovery and as synthetic carrier molecules. The universality of this dimerization motif in nature suggests an endless number of possibilities for its use in de novo design, limited only by the creativity of peptide-protein engineers.

  12. Interactive learning media based on flash for basic electronic engineering development for SMK Negeri 1 Driyorejo - Gresik

    NASA Astrophysics Data System (ADS)

    Mandigo Anggana Raras, Gustav

    2018-04-01

    This research aims to produce a product in the form of flash based interactive learning media on a basic electronic engineering subject that reliable to be used and to know students’ responses about the media. The target of this research is X-TEI 1 class at SMK Negeri 1 Driyorejo – Gresik. The method used in this study is R&D that has been limited into seven stages only (1) potential and problems, (2) data collection, (3) product design, (4) product validation, (5) product revision, (6) field test, and (7) analysis and writing. The obtained result is interactive learning media named MELDASH. Validation process used to produce a valid interactive learning media. The result of media validation state that the interactive learning media has a 90.83% rating. Students’ responses to this interactive learning media is really good with 88.89% rating.

  13. Optical circulator analysis and optimization: a mini-project for physical optics

    NASA Astrophysics Data System (ADS)

    Wan, Zhujun

    2017-08-01

    One of the mini-projects for the course of physical optics is reported. The project is designed to increase comprehension on the basics and applications of polarized light and birefringent crystal. Firstly, the students are required to analyze the basic principle of an optical circulator based on birefringent crystal. Then, they need to consider the engineering optimization problems. The key tasks include analyzing the polarization transforming unit (composed of a half-waveplate and a Faraday rotator) based on Jones matrix, maximizing the walk-off angle between e-ray and o-ray in birefringent crystal, separating e-ray and o-ray symmetrically, employment of a transformed Wollaston prism for input/output coupling of optical beams to fibers. Three years' practice shows that the project is of moderate difficulty, while it covers most of the related knowledge required for the course and helps to train the engineering thinking.

  14. GLobal Integrated Design Environment

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  15. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  16. Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering

    PubMed Central

    Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993

  17. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  18. Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Christiansen, Frederik V.; Rump, Camilla

    2008-11-01

    Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.

  19. Synthesis study of nondestructive testing devices for use in overlay thickness design of flexible pavements

    NASA Astrophysics Data System (ADS)

    Smith, R. E.; Lytton, R. L.

    1984-04-01

    A ready reference for highway engineers who are interested in purchasing nondestructive testing (NDT) equipment for use in designing overlays for flexible pavements was prepared. All commercially available equipment is described. Information includes basic descriptions plus current prices quoted by the manufacturers/distributors. To determine user comments, a questionnaire was sent to nine State agencies, and one Federal agency. The responses to these questionnaires are summarized. Overlay thickness design procedures for flexible pavements are reviewed. Important components related to the use of NDT deflection measuremnts in overlay design are identified and addressed. Summary tables of equipment characteristics and overlay design procedures are presented.

  20. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the statusmore » of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).« less

  1. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  2. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  3. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder

    NASA Astrophysics Data System (ADS)

    Haun, Robert E.

    2017-12-01

    A historical look at the melt processing of gamma titanium aluminides is presented first, followed by recent advances in melting equipment design by Retech to produce 50-mm and 100-mm-diameter ingots up to 1000 mm long. Equipment design for the economical production of gamma titanium aluminide powder is then discussed. The focus in industry has shifted away from basic research to cost-effective production of these titanium alloys for aerospace and automotive engine applications.

  4. Computer-Aided Design (CAD) Tools to Support the Human Factors Design Teams

    NASA Technical Reports Server (NTRS)

    Null, Cynthia H.; Jackson, Mariea D.; Perry, Trey; Quick, Jason C.; Stokes, Jack W.

    2014-01-01

    The scope of this assessment was to develop a library of basic 1-Gravity (G) human posture and motion elements used to construct complex virtual simulations of ground processing and maintenance tasks for spaceflight vehicles, including launch vehicles, crewed spacecraft, robotic spacecraft, satellites, and other payloads. The report herein describes the task, its purpose, performance, findings, NASA Engineering and Safety Center (NESC) recommendations, and conclusions in the definition and assemblage of the postures and motions database (PMD).

  5. The development of internet based ship design support system for small and medium sized shipyards

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Chul; Lee, Soon-Sup; Kang, Dong-Hoon; Lee, Kyung-Ho

    2012-03-01

    In this paper, a prototype of ship basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. The system is designed from the user requirements. Consequently, standardized development environment and tools are selected. These tools are used for the system development to define and evaluate core application technologies. The system will contribute to increasing competitiveness of small and medium sized shipyards in the 21st century industrial en-vironment.

  6. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  7. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  8. Virtual Construction of Space Habitats: Connecting Building Information Models (BIM) and SysML

    NASA Technical Reports Server (NTRS)

    Polit-Casillas, Raul; Howe, A. Scott

    2013-01-01

    Current trends in design, construction and management of complex projects make use of Building Information Models (BIM) connecting different types of data to geometrical models. This information model allow different types of analysis beyond pure graphical representations. Space habitats, regardless their size, are also complex systems that require the synchronization of many types of information and disciplines beyond mass, volume, power or other basic volumetric parameters. For this, the state-of-the-art model based systems engineering languages and processes - for instance SysML - represent a solid way to tackle this problem from a programmatic point of view. Nevertheless integrating this with a powerful geometrical architectural design tool with BIM capabilities could represent a change in the workflow and paradigm of space habitats design applicable to other aerospace complex systems. This paper shows some general findings and overall conclusions based on the ongoing research to create a design protocol and method that practically connects a systems engineering approach with a BIM architectural and engineering design as a complete Model Based Engineering approach. Therefore, one hypothetical example is created and followed during the design process. In order to make it possible this research also tackles the application of IFC categories and parameters in the aerospace field starting with the application upon the space habitats design as way to understand the information flow between disciplines and tools. By building virtual space habitats we can potentially improve in the near future the way more complex designs are developed from very little detail from concept to manufacturing.

  9. The Control System for the X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

    1998-01-01

    The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

  10. Application for certification for 1979 model year for light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles or heavy-duty engines submits to EPA an application for certification. The application consists of two parts. In the part I, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. The part I also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements tomore » be followed during testing. The part II application submitted after emission testing is completed, contains the results of emission testing, a statement of compliance to the regulations, and maintenance instructions to be followed by the ultimate owners of the vehicles.« less

  11. Application for certification for 1979 model year for light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles or heavy-duty engines submits to EPA an application for certification. The application consists of two parts. In the part I, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. The part I also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements tomore » be followed during testing. The part II application, submitted after emission testing is completed, contains the results of emission testing, a statement of compliance to the regulations, and maintenance instructions to be followed by the ultimate owners of the vehicles.« less

  12. Solar Collector Thermal Power System. Volume 3. Basic Study and Experimental Evaluation of Thermal Train Components

    DTIC Science & Technology

    1974-11-01

    15. Lumsden, J., "Thermodynamics of Molten Salt Mixtures," Academic Press, London, 1966. 16. TRW Final Report, " Brayton Cycle Cavity Receiver Design...Applications, WADD TR 61-96, Nov. 1961. 20. C. T. Ewig, et al., - Journal of Chemical and Engineering Data 11, pg. 468, 1966. 21. J. W. Taylor , The

  13. Building a Relationship between Elements of Product Form Features and Vocabulary Assessment Models

    ERIC Educational Resources Information Center

    Lo, Chi-Hung

    2016-01-01

    Based on the characteristic feature parameterization and the superiority evaluation method (SEM) in extension engineering, a product-shape design method was proposed in this study. The first step of this method is to decompose the basic feature components of a product. After that, the morphological chart method is used to segregate the ideas so as…

  14. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  15. Battery thermal management unit

    NASA Astrophysics Data System (ADS)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  16. The IMPELA TM 10 MeV, 50 kW electron linac: launching an industrial accelerator product

    NASA Astrophysics Data System (ADS)

    Stirling, Andrew J.

    1991-05-01

    In the previous conferences there has been no shortage of ideas, experiments and prototypes for industrial accelerators. Indeed, physicists propose new ideas at a rate faster than industry can get irradiators to the market. Certainly, the basic physics design must be sound, but this is a far from sufficient condition for an accelerator to succeed. Good physics design is needed to provide a good combination of electrical efficiency and useable power within the scan width. It may, however, be counterproductive if high performance compromises inherent reliability. From the engineering discipline is required an engineered control interface, an engineered product control and dosimetry system and traceable quality assurance. Just as important, the industrial client seeks an irradiator that is built quickly, and will be supported over a long service life (10-20 years). It is also necessary to assist the client in facility design, licencing and process verification. Providing these additional functions is a challenge for the business champions which equals what the technical champions face in obtaining full beam power.

  17. Configuration evaluation and criteria plan. Volume 2: Evaluation critera plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. The evaluation and selection process involves the following functions: (1) determining if a configuration can satisfy basic STME requirements (yes/no); (2) defining the evaluation criteria; (3) selecting the criteria relative importance or weighting; (4) determining the weighting sensitivities; and (5) establishing a baseline for engine evaluation. The criteria weighting and sensitivities are cost related and are based on mission models and vehicle requirements. The evaluation process is used as a coarse screen to determine the candidate engines for the parametric studies and as a fine screen to determine concept(s) for conceptual design. The criteria used for the coarse and fine screen evaluation process is shown. The coarse screen process involves verifying that the candidate engines can meet the yes/no screening requirements and a semi-subjective quantitative evaluation. The fine screen engines have to meet all of the yes/no screening gates and are then subjected to a detailed evaluation or assessment using the quantitative cost evaluation processes. The option exists for re-cycling a concept through the quantitative portion of the screening and allows for some degree of optimization. The basic vehicle is a two stage LOX/HC, LOX/LH2 parallel burn vehicle capable of placing 150,000 lbs in low Earth orbit (LEO).

  18. Rotary balance data for a single-engine trainer design for an angle-of-attack range of 8 deg to 90 deg. [conducted in langely spin tunnel

    NASA Technical Reports Server (NTRS)

    Pantason, P.; Dickens, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.

  19. Regenerative endodontics and tissue engineering: what the future holds?

    PubMed

    Goodis, Harold E; Kinaia, Bassam Michael; Kinaia, Atheel M; Chogle, Sami M A

    2012-07-01

    The work performed by researchers in regenerative endodontics and tissue engineering over the last decades has been superb; however, many questions remain to be answered. The basic biologic mechanisms must be elucidated that will allow the development of dental pulp and dentin in situ. Stress must be placed on the many questions that will lead to the design of effective, safe treatment options and therapies. This article discusses those questions, the answers to which may become the future of regenerative endodontics. The future remains bright, but proper support and patience are required. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  1. Biomedical engineering continues to make the future.

    PubMed

    Fantini, Sergio; Bennis, Caoimhe; Kaplan, David

    2011-01-01

    Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths.

  2. The upside of noise: engineered dissipation as a resource in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2017-09-01

    Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.

  3. A Basic Comparison of the Space Shuttle Main Engine and the J-2X Engine

    NASA Technical Reports Server (NTRS)

    Ayer, Adam

    2007-01-01

    With the introduction of the new manned space effort through the Constellation Program, there is an interest to have a basic comparison of the current Space Shuttle Main Engine (SSME) to the J-2X engine used for the second stage of both the Ares I and Ares V rockets. This paper seeks to compare size, weight and thrust capabilities while drawing simple conclusions on differences between the two engines.

  4. An Introduction to Thermal-Fluid Engineering

    NASA Astrophysics Data System (ADS)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  5. Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines

    NASA Astrophysics Data System (ADS)

    Boldea, I.; Nasar, S. A.

    1987-01-01

    The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.

  6. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  7. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  8. High-temperature microelectromechanical pressure sensors based on a SOI heterostructure for an electronic automatic aircraft engine control system

    NASA Astrophysics Data System (ADS)

    Sokolov, Leonid V.

    2010-08-01

    There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.

  9. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.

    PubMed

    Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F

    2014-01-01

    Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.

  10. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  11. Conceptual studies for a mercury target circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less

  12. New Principles and Basic Approaches for the Curricula of Engineering Degree Courses.

    ERIC Educational Resources Information Center

    Gargione, Luiz Antonio

    This paper presents new principles and basic approaches for the curricula of engineering degree courses. The accentuated evolution of engineering, the fast technological transformations and, still, the impact provoked by government regulations in the field of education in Brazil have called attention to these issues. Following these changes, it…

  13. Laser engines operating by resonance absorption. [thermodynamic feasibility study

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Pechersky, M. J.

    1976-01-01

    Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.

  14. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  15. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  16. Application for certification, 1991 model year light-duty vehicles - Sports Car America, Puma Division Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. The report deals with light-duty vehicles from Sports Car America, PUMA Division Incorporated. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, andmore » proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  17. Recent advances in automated protein design and its future challenges.

    PubMed

    Setiawan, Dani; Brender, Jeffrey; Zhang, Yang

    2018-04-25

    Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.

  18. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology

    PubMed Central

    Re, Angela

    2017-01-01

    Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery. PMID:28894736

  19. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  20. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.

    PubMed

    Khan, Zohaib Amjad; Kamal, Nabeel; Hameed, Asad; Mahmood, Amama; Zainab, Rida; Sadia, Bushra; Mansoor, Shamyl Bin; Hasan, Osman

    2017-09-01

    Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  2. Advances and Computational Tools towards Predictable Design in Biological Engineering

    PubMed Central

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694

  3. USSR Report, Electronics and Electrical Engineering, No. 104

    DTIC Science & Technology

    1983-06-13

    shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed

  4. Security Engineering Project

    DTIC Science & Technology

    2015-01-31

    from a wireless joystick console broadcasting at 2.4 GHz. Figure 6. GTRI Airborne Unmanned Sensor System As shown in Figure 7 the autopilot has a...generating wind turbines , and video reconnaissance systems on unmanned aerial vehicles (UAVs). The most basic decision problem in designing a...chosen test UAV case was the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft. The GAUSS platform is a small research UAV with a widely used

  5. Rotary balance data for a single engine general aviation design having a high aspect-ratio canard for an angle-of-attack range of 30 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Mulcay, W. J.; Rose, R.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form. The configurations tested included the basic airplane, various control deflections, two canard locations, and wing leading edge modifications, as well as airplane components.

  6. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  7. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as regards to systems approach to aircraft design and these include lack of basic scientific/practical models and tools for interfacing and integrating the components of SE and within a given component, for example, life cycle cost, basic models for linking the key drivers. The paper will review the current state of art in SE approach to aircraft design and identify some of the major challenges, the current state of the art and visions for the future. The review moves from an initial basis in traditional engineering design processes to consideration of costs and manufacturing in this integrated environment. Issues related to the implementation of integration in design at the detailed physics level are discussed in the case studies.

  8. An Educational Multimedia Presentation on the Introduction to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Lin, E.; dePayrebrune, M.

    2004-01-01

    Over the last few decades, significant knowledge has been gained in how to protect spacecraft from charging; however, the continuing technical advancement in the design and build of satellites requires on-going effort in the study of spacecraft charging. A situation that we have encountered is that not all satellite designers and builders are familiar with the problem of spacecraft charging. The design of a satellite involves many talented people with diverse backgrounds, ranging from manufacturing and assembly to engineering and program management. The complex design and build of a satellite system requires people with highly specialized skills such that cross-specialization is often not achievable. As a result, designers and builders of satellites are not usually familiar with the problems outside their specialization. This is also true for spacecraft charging. Not everyone is familiar with the definition of spacecraft charging and the damage that spacecraft charging can cause. Understanding the problem is an important first step in getting everyone involved in addressing the appropriate spacecraft charging issues during the satellite design and build phases. To address this important first step, an educational multimedia presentation has been created to inform the general engineering community about the basics of spacecraft charging. The content of this educational presentation is based on relevant published technical papers. The presentation was developed using Macromedia Flash. This software produces a more dynamic learning environment than a typical slide show , resulting in a more effective learning experience. The end result is that the viewer will have learned about the basics of spacecraft charging. This presentation is available to the public through our website, www.dplscience.com, free of charge. Viewers are encouraged to pass this presentation to colleagues within their own work environment. This paper describes the content of the multimedia presentation.

  9. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  10. Microbiome Therapeutics – Advances and Challenges

    PubMed Central

    Mimee, Mark; Citorik, Robert J.; Lu, Timothy K.

    2016-01-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. PMID:27158095

  11. Microbiome therapeutics - Advances and challenges.

    PubMed

    Mimee, Mark; Citorik, Robert J; Lu, Timothy K

    2016-10-01

    The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. Copyright © 2016. Published by Elsevier B.V.

  12. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch

    PubMed Central

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and ‘memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch. PMID:20212522

  13. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    PubMed

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.

  14. A fuzzy-match search engine for physician directories.

    PubMed

    Rastegar-Mojarad, Majid; Kadolph, Christopher; Ye, Zhan; Wall, Daniel; Murali, Narayana; Lin, Simon

    2014-11-04

    A search engine to find physicians' information is a basic but crucial function of a health care provider's website. Inefficient search engines, which return no results or incorrect results, can lead to patient frustration and potential customer loss. A search engine that can handle misspellings and spelling variations of names is needed, as the United States (US) has culturally, racially, and ethnically diverse names. The Marshfield Clinic website provides a search engine for users to search for physicians' names. The current search engine provides an auto-completion function, but it requires an exact match. We observed that 26% of all searches yielded no results. The goal was to design a fuzzy-match algorithm to aid users in finding physicians easier and faster. Instead of an exact match search, we used a fuzzy algorithm to find similar matches for searched terms. In the algorithm, we solved three types of search engine failures: "Typographic", "Phonetic spelling variation", and "Nickname". To solve these mismatches, we used a customized Levenshtein distance calculation that incorporated Soundex coding and a lookup table of nicknames derived from US census data. Using the "Challenge Data Set of Marshfield Physician Names," we evaluated the accuracy of fuzzy-match engine-top ten (90%) and compared it with exact match (0%), Soundex (24%), Levenshtein distance (59%), and fuzzy-match engine-top one (71%). We designed, created a reference implementation, and evaluated a fuzzy-match search engine for physician directories. The open-source code is available at the codeplex website and a reference implementation is available for demonstration at the datamarsh website.

  15. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.

    2005-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  16. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.

    2003-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  17. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  18. A compendium of solar dish/Stirling technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less

  19. Audio gunshot detection and localization systems: History, basic design, and future possibilities

    NASA Astrophysics Data System (ADS)

    Graves, Jordan R.

    For decades, law enforcement organizations have increasingly utilized audio detection and localization systems to identify potential gunshot incidents and to respond accordingly. These systems have grown from simple microphone configurations used to estimate location into complex arrays that seem to pinpoint gunfire to within mere feet of its actual occurrence. Such technology comes from a long and dynamic history of developing equipment dating back to the First World War. Additionally, though basic designs require little in terms of programming or engineering experience, the mere presence of this tool invokes a firestorm of debate amongst economists, law enforcement groups, and the general public, which leads to questions about future possibilities for its use. The following pages will retell the history of these systems from theoretical conception to current capabilities. This work will also dissect these systems to reveal fundamental elements of their inner workings, in order to build a basic demonstrative system. Finally, this work will discuss some legal and moral points of dissension, and will explore these systems’ roles in society now and in the future, in additional applications as well.

  20. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  1. Design and application of BIM based digital sand table for construction management

    NASA Astrophysics Data System (ADS)

    Fuquan, JI; Jianqiang, LI; Weijia, LIU

    2018-05-01

    This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.

  2. Liquid Sloshing Dynamics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raouf A.

    2005-06-01

    The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.

  3. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2009-07-01

    Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.

  4. Basic research on machinery fault diagnostics: Past, present, and future trends

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Wang, Shibin; Qiao, Baijie; Chen, Qiang

    2018-06-01

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

  5. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  6. Composite containment systems for jet engine fan blades

    NASA Technical Reports Server (NTRS)

    Smith, G. T.

    1981-01-01

    The use of composites in fan blade containment systems is investigated and the associated structural benefits of the composite system design are identified. Two basic types of containment structures were investigated. The short finned concept was evaluated using Kevlar/epoxy laminates for fins which were mounted in a 6061 T-6 aluminum ring. The long fin concept was evaluated with Kevlar/epoxy, 6Al4V titanium, and 2024 T-3 aluminum fins. The unfinned configurations consisted of the base-line steel sheet, a circumferentially oriented aluminum honeycomb, and a Kevlar cloth filled ring. Results obtained show that a substantial reduction in the fan blade containment system weight is possible. Minimization of damage within the engine arising from impact interaction between blade debris and the engine structure is also achieved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A new steel jacket design by Aker Engineering A.S. suitable for use in construction of platforms in 50m of water results in a 47% saving of steel as compared to conventional designs. Modifications of the design extends its usefulness to 150m of water with steel savings of 20 to 30%. A node design is used, and all nodes except the top and bottom ones are identical. The basic shape is a tetrahedron and all steel members are cylindrical with the same outside diameter but with different wall thickness where more or less strength is needed. Other advantages of this designmore » are ease and speed of fabrication. The tetratower is compared with the more conventional 8-legged jacket. (BLM)« less

  8. General purpose optimization software for engineering design

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1990-01-01

    The author has developed several general purpose optimization programs over the past twenty years. The earlier programs were developed as research codes and served that purpose reasonably well. However, in taking the formal step from research to industrial application programs, several important lessons have been learned. Among these are the importance of clear documentation, immediate user support, and consistent maintenance. Most important has been the issue of providing software that gives a good, or at least acceptable, design at minimum computational cost. Here, the basic issues developing optimization software for industrial applications are outlined and issues of convergence rate, reliability, and relative minima are discussed. Considerable feedback has been received from users, and new software is being developed to respond to identified needs. The basic capabilities of this software are outlined. A major motivation for the development of commercial grade software is ease of use and flexibility, and these issues are discussed with reference to general multidisciplinary applications. It is concluded that design productivity can be significantly enhanced by the more widespread use of optimization as an everyday design tool.

  9. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  10. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales.

    PubMed

    Noy, Dror; Moser, Christopher C; Dutton, P Leslie

    2006-02-01

    Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.

  11. The Effect of Enhanced Visualization Instruction on First Grade Students' Scores on the North Carolina Standard Course Assessment

    ERIC Educational Resources Information Center

    Thompson, Amber Cole

    2012-01-01

    Visualization was once thought to be an important skill for professions only related to engineering, but due to the realization of concurrent design and the fast pace of technology, it is now desirable in other professions as well. The importance of learning basic knowledge of geometrical concepts has a greater impact than it did prior to the 21st…

  12. Transducer technology transfer to bio-engineering applications. [aerospace stress transducer for heart function analysis

    NASA Technical Reports Server (NTRS)

    Duran, E. N.; Lewis, G. W.; Feldstein, C.; Corday, E.; Meerbaum, S.; Lang, T.

    1973-01-01

    The results of a technology transfer of a miniature unidirectional stress transducer, developed for experimental stress analysis in the aerospace field, to applications in bioengineering are reported. By modification of the basic design and innovations in attachment techniques, the transducer was successfully used in vivo on the myocardium of large dogs to record the change in contractile force due to coronary occlusion, reperfusion, and intervention.

  13. Real-time CO2 sensor for the optimal control of electronic EGR system

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul

    2013-12-01

    In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.

  14. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.

  15. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.

  16. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  17. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  18. Building a pipeline of talent for operating radio observatories

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  19. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  20. Towards do-it-yourself planar optical components using plasmon-assisted etching.

    PubMed

    Chen, Hao; Bhuiya, Abdul M; Ding, Qing; Johnson, Harley T; Toussaint, Kimani C

    2016-01-27

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  1. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  2. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  3. Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)

    2003-01-01

    Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.

  4. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  5. Neoproteoglycans in tissue engineering.

    PubMed

    Weyers, Amanda; Linhardt, Robert J

    2013-05-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.

  6. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  7. Performance retention of the RB211 powerplant in service

    NASA Technical Reports Server (NTRS)

    Astridge, B. L.; Pinder, J. T.

    1981-01-01

    An understanding of the mechanisms of deterioration is essential in order that features to counteract performance degradation can be built into the basic design of an engine and nacelle. Furthermore, the interpretation must be continued in service for effective feedback to provide modifications which may be necessary in maintaining a satisfactory performance retention program. The in service assessment must be accurate as to magnitude and causes and this requires consideration of: (1) the powerplant as a complete entity, i.e., the engine components and nacelle including the thrust reverser; (2) measurement of performance in flight rather than by sole reliance on the scaling of test cell data to flight conditions (although some correlation should be possible); and (3) the relationship of engine parts condition to overhaul performance and in flight deterioration level of that engine. These aspects are addressed by consideration of the RB211 engine in service in both the Lockheed L1011 Tristar and Boeing 747 aircraft.

  8. Evaluation of a staged fuel combustor for turboprop engines

    NASA Technical Reports Server (NTRS)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  9. From biomedical-engineering research to clinical application and industrialization

    NASA Astrophysics Data System (ADS)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  10. Software Re-Engineering of the Human Factors Analysis and Classification System - (Maintenance Extension) Using Object Oriented Methods in a Microsoft Environment

    DTIC Science & Technology

    2001-09-01

    replication) -- all from Visual Basic and VBA . In fact, we found that the SQL Server engine actually had a plethora of options, most formidable of...2002, the new SQL Server 2000 database engine, and Microsoft Visual Basic.NET. This thesis describes our use of the Spiral Development Model to...versions of Microsoft products? Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000 database engine, and Microsoft

  11. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study.

    PubMed

    Rulifson, Greg; Bielefeldt, Angela R

    2018-03-20

    Engineers should learn how to act on their responsibility to society during their education. At present, however, it is unknown what students think about the meaning of socially responsible engineering. This paper synthesizes 4 years of longitudinal interviews with engineering students as they progressed through college. The interviews revolved broadly around how students saw the connections between engineering and social responsibility, and what influenced these ideas. Using the Weidman Input-Environment-Output model as a framework, this research found that influences included required classes such as engineering ethics, capstone design, and some technical courses, pre-college volunteering and familial values, co-curricular groups such as Engineers Without Borders and the Society of Women Engineers, as well as professional experiences through internships. Further, some experiences such as technical courses and engineering internships contributed to confine students' understanding of an engineer's social responsibility. Overall, students who stayed in engineering tended to converge on basic responsibilities such as safety and bettering society as a whole, but tended to become less concerned with improving the lives of the marginalized and disadvantaged. Company loyalty also became important for some students. These results have valuable, transferable contributions, providing guidance to foster students' ideas on socially responsible engineering.

  12. Opportunities for Multidisciplinary Research in Partnership with Rock Engineers at the Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Laughton, C.

    2008-12-01

    For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.

  13. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  14. Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics

    NASA Astrophysics Data System (ADS)

    Wang, Kaiwei; Wang, Xiaoping

    2017-08-01

    In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.

  15. Onsite biological treatment of an industrial landfill leachate: Microbiological and engineering considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skladany, G.J.

    Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less

  16. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    NASA Astrophysics Data System (ADS)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  17. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  18. MEDISIGN: Educating designers for the operating room.

    PubMed

    Goossens; Lange; Kleinrensink

    2004-06-01

    One of the interesting things about medical technology is that it addresses so many diverse subjects, which is indeed the case in all departments of a hospital, in general practice and in other care agencies. Medical technology contributes to the diagnosis, treatment and prevention of disease and disorders. Designing for medical applications demands a high level of creativity and inventivity, both in low-tech and in high-tech applications. In over 200 projects with hospitals and companies in the medical field the Delft industrial designer has therefore played an important part in designing innovative products [1]. In the new program Medisign the expertise and networks that have been built up in this area over the past 20 years are being passed on to students. The program is based upon the idea that education of engineers in human anatomy, physiology, medical technoloy, health care systems and even basic surgical techniques will lead to better communication with the medical professionals and to better design solutions in this area. To our knowledge this is the first initiative in Europe in which structural education in anatomy is offered to industrial design engineers.

  19. Role of strategic planning in engineering management

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1993-01-01

    Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.

  20. DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Daniele, C. J.

    1975-01-01

    The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.

  1. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    ERIC Educational Resources Information Center

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  2. Strengthening Environmental Engineering Education in Afghanistan through Cooperating Military Academies

    NASA Astrophysics Data System (ADS)

    Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.

    2007-12-01

    Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.

  3. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  4. Synthetic Biology Open Language (SBOL) Version 2.1.0.

    PubMed

    Beal, Jacob; Cox, Robert Sidney; Grünberg, Raik; McLaughlin, James; Nguyen, Tramy; Bartley, Bryan; Bissell, Michael; Choi, Kiri; Clancy, Kevin; Macklin, Chris; Madsen, Curtis; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Roehner, Nicholas; Samineni, Meher; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Gennari, John H; Myers, Chris; Sauro, Herbert; Wipat, Anil

    2016-09-01

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year's JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.

  5. Synthetic Biology Open Language (SBOL) Version 2.1.0.

    PubMed

    Beal, Jacob; Cox, Robert Sidney; Grünberg, Raik; McLaughlin, James; Nguyen, Tramy; Bartley, Bryan; Bissell, Michael; Choi, Kiri; Clancy, Kevin; Macklin, Chris; Madsen, Curtis; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Roehner, Nicholas; Samineni, Meher; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Gennari, John; Myers, Chris; Sauro, Herbert; Wipat, Anil

    2016-12-18

    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year’s JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  7. Innovation Online Teaching Module Plus Digital Engineering Kit with Proteus Software through Hybrid Learning Method to Improve Student Skills

    NASA Astrophysics Data System (ADS)

    Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza

    2018-04-01

    Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.

  8. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    PubMed

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  9. Motivating first-year university students by interdisciplinary study projects

    NASA Astrophysics Data System (ADS)

    Koch, Franziska D.; Dirsch-Weigand, Andrea; Awolin, Malte; Pinkelman, Rebecca J.; Hampe, Manfred J.

    2017-01-01

    In order to increase student commitment from the beginning of students' university careers, the Technische Universität Darmstadt has introduced interdisciplinary study projects involving first-year students from the engineering, natural, social and history, economics and/or human sciences departments. The didactic concept includes sophisticated task design, individual responsibility and a differentiated support system. Using a self-determination theory framework, this study examined the effects of the projects based on survey findings from two projects with more than 1000 students. The results showed that the projects were successful in fulfilling students' basic psychological needs and in promoting students' academic engagement. Basic psychological needs were found to be significant predictors of academic engagement. These findings suggest that interdisciplinary study projects can potentially contribute to improving higher education as they fulfil students' basic psychological needs for competence, relatedness and autonomy and enhance students' academic engagement.

  10. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  11. Research on rebuilding the data information environment for aeronautical manufacturing enterprise

    NASA Astrophysics Data System (ADS)

    Feng, Xilan; Jiang, Zhiqiang; Zong, Xuewen; Shi, Jinfa

    2005-12-01

    The data environment on integrated information system and the basic standard on information resource management are the key effectively of the remote collaborative designing and manufacturing for complex product. A study project on rebuilding the data information environment for aeronautical manufacturing enterprise (Aero-ME) is put forwarded. Firstly, the data environment on integrated information system, the basic standard on information resource management, the basic establishment on corporation's information, the development on integrated information system, and the information education are discussed profoundly based on the practical requirement of information resource and technique for contemporary Aero-ME. Then, the idea and method with the data environment rebuilding based on I-CASE in the corporation is put forward, and the effective method and implement approach for manufacturing enterprise information is brought forwards. It will also the foundation and assurance that rebuilding the corporation data-environment and promoting standardizing information resource management for the development of Aero-ME information engineering.

  12. Basic Snow Pressure Calculation

    NASA Astrophysics Data System (ADS)

    Hao, Shouzhi; Su, Jian

    2018-03-01

    As extreme weather rising in recent years, the damage of large steel structures caused by weather is frequent in China. How to consider the effect of wind and snow loads on the structure in structural design has become the focus of attention in engineering field. In this paper, based on the serious snow disasters in recent years and comparative analysis of some scholars, influence factors and the value of the snow load, the probability model are described.

  13. CrossTalk. The Journal of Defense Software Engineering. Volume 13, Number 6, June 2000

    DTIC Science & Technology

    2000-06-01

    Techniques for Efficiently Generating and Testing Software This paper presents a proven process that uses advanced tools to design, develop and test... optimal software. by Keith R. Wegner Large Software Systems—Back to Basics Development methods that work on small problems seem to not scale well to...Ability Requirements for Teamwork: Implications for Human Resource Management, Journal of Management, Vol. 20, No. 2, 1994. 11. Ferguson, Pat, Watts S

  14. Tailoring Systems Engineering for Rapid Acquisition

    DTIC Science & Technology

    2014-03-27

    center’s focus would be the collection of lessons learned and the dissemination of the basic knowledge to the members who are conducting rapid acquisition...dictates that they rarely do lessons learned . Adding in the turnover of personnel and they reported that they make the same mistakes over and over...weapon system program of record designated by the CSAF. This is where the interviewee heard the phrase “when skating on thin ice your best asset is

  15. Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows

    DTIC Science & Technology

    2011-01-01

    systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include

  16. Key Problems of Fire Safety Enforcement in Traffic and Communication Centers (TCC)

    NASA Astrophysics Data System (ADS)

    Medyanik, M.; Zosimova, O.

    2017-10-01

    A Traffic and Communication Center (TCC) means facilities designed and used to distribute and redirect flows of humans and motor vehicles while they get serviced and operate. This paper sets forth the basic problems of fire safety enforcement on the TCC, and the causes that slow down human and vehicle traffic speeds. It proposes ways to solve the problems of fire safety enforcement on the TCC, in the Russian Federation and elsewhere. Engineering solutions are proposed for TCC design, with key outlooks of TCC future development as an alternative way to organize access in transportation.

  17. Computer-aided engineering of semiconductor integrated circuits

    NASA Astrophysics Data System (ADS)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  18. Performance estimates of a Boeing 747-100 transport mated with an outsize cargo pod

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1980-01-01

    The design mission performance of a Boeing 747-100 aircraft mated with an outsize cargo pod was studied. The basic design requirement was the rapid deployment of a combat loaded mobile bridge launcher from a United States east coast staging base to Europe. Weight was minimized by stripping the aircraft of unneeded, quick removal items and by utilizing graphite-epoxy composite materials for most pod components. The mission analysis was based on wind tunnel data and full scale carrier aircraft and engine data. The results are presented in tabular and graphic form.

  19. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  20. Laboratory and Industrial Ventilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This handbook supplements the Facilities Engineering Handbook (NHB 7320.1) and provides additional policies and criteria for uniform application to ventilation systems. It expands basic requirements, provides additional design and construction guidance, and places emphasis on those design considerations which will provide for greater effectiveness in the use of these systems. The provisions of this handbook are applicable to all NASA field installations and the Jet Propulsion Laboratory. Since supply of this handbook is limited, abstracts of the portion or portions applicable to a given requirement will be made for the individual specific needs encountered rather than supplying copies of the handbook as has been past practice.

  1. Distributed fiber optic system for oil pipeline leakage detection

    NASA Astrophysics Data System (ADS)

    Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.

    2003-02-01

    We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.

  2. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  3. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  4. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.

    PubMed

    Loo, Yihua; Goktas, Melis; Tekinay, Ayse B; Guler, Mustafa O; Hauser, Charlotte A E; Mitraki, Anna

    2015-11-18

    Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vascular tissue engineering: towards the next generation vascular grafts.

    PubMed

    Naito, Yuji; Shinoka, Toshiharu; Duncan, Daniel; Hibino, Narutoshi; Solomon, Daniel; Cleary, Muriel; Rathore, Animesh; Fein, Corey; Church, Spencer; Breuer, Christopher

    2011-04-30

    The application of tissue engineering technology to cardiovascular surgery holds great promise for improving outcomes in patients with cardiovascular diseases. Currently used synthetic vascular grafts have several limitations including thrombogenicity, increased risk of infection, and lack of growth potential. We have completed the first clinical trial evaluating the feasibility of using tissue engineered vascular grafts (TEVG) created by seeding autologous bone marrow-derived mononuclear cells (BM-MNC) onto biodegradable tubular scaffolds. Despite an excellent safety profile, data from the clinical trial suggest that the primary graft related complication of the TEVG is stenosis, affecting approximately 16% of grafts within the first seven years after implantation. Continued investigation into the cellular and molecular mechanisms underlying vascular neotissue formation will improve our basic understanding and provide insights that will enable the rationale design of second generation TEVG. Published by Elsevier B.V.

  6. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A

    NASA Technical Reports Server (NTRS)

    Lamping, R. K.; Manning, I.; Myers, D.; Tjoa, B.

    1980-01-01

    Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm.

  7. Mass drivers. 3: Engineering

    NASA Technical Reports Server (NTRS)

    Arnold, W.; Bowen, S.; Cohen, S.; Fine, K.; Kaplan, D.; Kolm, M.; Kolm, H.; Newman, J.; Oneill, G. K.; Snow, W.

    1979-01-01

    The last of a series of three papers by the Mass-Driver Group of the 1977 Ames Summer Study is presented. It develops the engineering principles required to implement the basic mass-driver. Optimum component mass trade-offs are derived from a set of four input parameters, and the program used to design a lunar launcher. The mass optimization procedures is then incorporated into a more comprehensive mission optimization program called OPT-4, which evaluates an optimized mass-driver reaction engine and its performance in a range of specified missions. Finally, this paper discusses, to the extent that time permitted, certain peripheral problems: heating effects in buckets due to magnetic field ripple; an approximate derivation of guide force profiles; the mechanics of inserting and releasing payloads; the reaction mass orbits; and a proposed research and development plan for implementing mass drivers.

  8. Fundamentals of biomechanics in tissue engineering of bone.

    PubMed

    Athanasiou, K A; Zhu, C; Lanctot, D R; Agrawal, C M; Wang, X

    2000-08-01

    The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.

  9. Increasing the reliability of labor of railroad engineers

    NASA Technical Reports Server (NTRS)

    Genes, V. S.; Madiyevskiy, Y. M.

    1975-01-01

    It has been shown that the group of problems related to temporary overloads still require serious development with respect to further automating the basic control operation - programmed selection of speed and braking. The problem of systems for warning the engineer about the condition of the unseen track segments remains a very serious one. Systems of hygenic support of the engineer also require constructive development. The problems of ensuring the reliability of work of engineers in periods of low information load, requiring motor acts, can basically be considered theoretically solved.

  10. Concise review: carbon nanotechnology: perspectives in stem cell research.

    PubMed

    Pryzhkova, Marina V

    2013-05-01

    Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering.

  11. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  12. Synthetic biology expands chemical control of microorganisms.

    PubMed

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter

    NASA Astrophysics Data System (ADS)

    Erickson, James K.

    1990-09-01

    An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.

  14. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.

  15. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User Training Materials version 2013.0 release was used to complete the Trick tutorial. Multiple network privilege and repository permission requests were required in order to access previous simulation models. The project was also an introduction to computer programming and the Linux operating system. Basic C++ and Python syntax was used during the completion of the Trick tutorial. Trick's engineering analysis and Monte Carlo simulation capabilities were observed and basic space mission planning procedures were applied in the conceptual design phase. Multiple professional development opportunities were completed in addition to project duties during this internship through the System for Administration, Training, and Education Resources for NASA (SATERN). Topics include: JSC Risk Management Workshop, CCP Risk Management, Basic Radiation Safety Training, X-Ray Radiation Safety, Basic Laser Safety, JSC Export Control, ISS RISE Ambassador, Basic SharePoint 2013, Space Nutrition and Biochemistry, and JSC Personal Protective Equipment. Additionally, this internship afforded the opportunity for formal project presentation and public speaking practice. This was my first experience at a NASA center. After completing this internship I have a much clearer understanding of certain aspects of the agency's processes and procedures, as well as a deeper appreciation from spaceflight simulation design and testing. I will continue to improve my technical skills so that I may have another opportunity to return to NASA and Johnson Space Center.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaney, Mike

    Statistically designed experiments can save researchers time and money by reducing the number of necessary experimental trials, while resulting in more conclusive experimental results. Surprisingly, many researchers are still not aware of this efficient and effective experimental methodology. As reported in a 2013 article from Chemical & Engineering News, there has been a resurgence of this methodology in recent years (http://cen.acs.org/articles/91/i13/Design-Experiments-Makes-Comeback.html?h=2027056365). This presentation will provide a brief introduction to statistically designed experiments. The main advantages will be reviewed along with the some basic concepts such as factorial and fractional factorial designs. The recommended sequential approach to experiments will be introducedmore » and finally a case study will be presented to demonstrate this methodology.« less

  17. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  18. Basic Drafting: Book One.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The first of a two-book course in drafting, this manual consists of 13 topics in the following units: introduction to drafting, general safety, basic tools and lines, major equipment, applying for a job, media, lettering, reproduction, drawing sheet layout, architect's scale usage, civil engineer's scale usage, mechanical engineer's scale usage,…

  19. An overview of very high level software design methods

    NASA Technical Reports Server (NTRS)

    Asdjodi, Maryam; Hooper, James W.

    1988-01-01

    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.

  20. Development of advanced lightweight containment systems

    NASA Technical Reports Server (NTRS)

    Stotler, C.

    1981-01-01

    Parametric type data were obtained on advanced lightweight containment systems. These data were used to generate design methods and procedures necessary for the successful development of such systems. The methods were then demonstrated through the design of a lightweight containment system for a CF6 size engine. The containment concept evaluated consisted basically of a lightweight structural sandwich shell wrapped with dry Kevlar cloth. The initial testing was directed towards the determination of the amount of Kevlar required to result in threshold containment for a specific set of test conditions. A relationship was then developed between the thickness required and the energy of the released blade so that the data could be used to design for conditions other than those tested.

  1. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  2. Fundamentals of Digital Engineering: Designing for Reliability

    NASA Technical Reports Server (NTRS)

    Katz, R.; Day, John H. (Technical Monitor)

    2001-01-01

    The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples

  3. Basic Study on Engine with Scroll Compressor and Expander

    NASA Astrophysics Data System (ADS)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  4. The results of a low-speed wind tunnel test to investigate the effects of the Refan JT8D engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Kupcis, E. A.

    1974-01-01

    The effects of the Refan JT8D side engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane were investigated using the Boeing-Vertol 20 x 20 ft Low-Speed Wind Tunnel. A powered model of the 727-200 was tested in groud effect in the landing configuration. The Refan target reverser configuration was evaluated relative to the basic production 727 airplane with its clamshell-deflector door thrust reverser design. The Refan configuration had slightly improved directional control characteristics relative to the basic airplane. Clocking the Refan thrust reversers 20 degrees outboard to direct the reverser flow away from the vertical tail, had little effect on directional control. However, clocking them 20 degrees inboard resulted in a complete loss of rudder effectiveness for speeds greater than 90 knots. Variations in Refan reverser lip/fence geometry had a minor effect on directional control.

  5. Application of E-learning tools for the teaching of Natural Science. A case related to Astronomy

    NASA Astrophysics Data System (ADS)

    Goldes, G.; Gallino, M.; Britos, D.; Lago, D.; Tavella, G.; Vidal, E.; Morales, S.; Nicotra, M.

    The requirements, recent experiences and projections of the application of virtual learning techniques and environments for the teaching of basic sciences at the National University of Córdoba, Argentina, are described. The reasons to still consider basic science E-learning as an institutional vacancy area are discussed. Present activities designed to revert this situation are also discussed. A particular experience about the application of tics as a complementary resource for teaching astronomy at the University is described and discussed on the basis of both strengths and limitations. The organization of E-learning activities at the Faculty of Engineering, Biology and Geology ("Facultad de Ciencias Exactas, Físicas y Naturales") is discussed in some detail.

  6. Human Factors in Virtual Reality Development

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    This half-day tutorial will provide an overview of basic perceptual functioning as it relates to the design of virtual environment systems. The tutorial consists of three parts. First, basic issues in visual perception will be presented, including discussions of the visual sensations of brightness and color, and the visual perception of depth relationships in three-dimensional space (with a special emphasis on motion -specified depth). The second section will discuss the importance of conducting human-factors user studies and evaluations. Examples and suggestions on how best to get help with user studies will be provided. Finally, we will discuss how, by drawing on their complementary competencies, perceptual psychologists and computer engineers can work as a team to develop optimal VR systems, technologies, and techniques.

  7. Application of hazard and effects management tools and links to the HSE case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gower-Jones, A.D.; Graaf, G.C. van der; Milne, D.J.

    1996-12-31

    Many tools and techniques are promoted for the analysis and management of hazards and their effects. The proliferation in the last 5-6 years of these tools has resulted in an overload on designers, engineers and operators of E&P activities and assets to the extent that they are unsure what to do when and how this fits together. This paper starts from the basic E&P business (a business model) the basic structure of any accidental event (bow tie) and maps the tools and techniques to analyze the hazards and effects for both asset and activity HSE management. The links to developingmore » an HSE case within the HSE-MS for assets and activities are given.« less

  8. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  9. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not suffice. Current market penetration of new engine technologies is simply too slow—it must be dramatically accelerated. These challenges present a unique opportunity to marshal U.S. leadership in science-based simulation to develop predictive computational design tools for use by the transportation industry. The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness. In 2007 Cummins achieved a milestone in engine design by bringing a diesel engine to market solely with computer modeling and analysis tools. The only testing was after the fact to confirm performance. Cummins achieved a reduction in development time and cost. As important, they realized a more robust design, improved fuel economy, and met all environmental and customer constraints. This important first step demonstrates the potential for computational engine design. But, the daunting complexity of engine combustion and the revolutionary increases in efficiency needed require the development of simulation codes and computation platforms far more advanced than those available today. Based on these needs, a Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) convened over 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories to focus on two critical areas of advanced simulation, as identified by the U.S. automotive and engine industries. First, modern engines require precise control of the injection of a broad variety of fuels that is far more subtle than achievable to date and that can be obtained only through predictive modeling and simulation. Second, the simulation, understanding, and control of these stochastic in-cylinder combustion processes lie on the critical path to realizing more efficient engines with greater power density. Fuel sprays set the initial conditions for combustion in essentially all future transportation engines; yet today designers primarily use empirical methods that limit the efficiency achievable. Three primary spray topics were identified as focus areas in the workshop: The fuel delivery system, which includes fuel manifolds and internal injector flow, The multi-phase fuel–air mixing in the combustion chamber of the engine, and The heat transfer and fluid interactions with cylinder walls. Current understanding and modeling capability of stochastic processes in engines remains limited and prevents designers from achieving significantly higher fuel economy. To improve this situation, the workshop participants identified three focus areas for stochastic processes: Improve fundamental understanding that will help to establish and characterize the physical causes of stochastic events, Develop physics-based simulation models that are accurate and sensitive enough to capture performance-limiting variability, and Quantify and manage uncertainty in model parameters and boundary conditions. Improved models and understanding in these areas will allow designers to develop engines with reduced design margins and that operate reliably in more efficient regimes. All of these areas require improved basic understanding, high-fidelity model development, and rigorous model validation. These advances will greatly reduce the uncertainties in current models and improve understanding of sprays and fuel–air mixture preparation that limit the investigation and development of advanced combustion technologies. The two strategic focus areas have distinctive characteristics but are inherently coupled. Coordinated activities in basic experiments, fundamental simulations, and engineering-level model development and validation can be used to successfully address all of the topics identified in the PreSICE workshop. The outcome will be: New and deeper understanding of the relevant fundamental physical and chemical processes in advanced combustion technologies, Implementation of this understanding into models and simulation tools appropriate for both exploration and design, and Sufficient validation with uncertainty quantification to provide confidence in the simulation results. These outcomes will provide the design tools for industry to reduce development time by up to 30% and improve engine efficiencies by 30% to 50%. The improved efficiencies applied to the national mix of transportation applications have the potential to save over 5 million barrels of oil per day, a current cost savings of $500 million per day.« less

  10. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  11. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  12. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    NASA Astrophysics Data System (ADS)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  13. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1995-01-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  14. Structural Analysis Made 'NESSUSary'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Everywhere you look, chances are something that was designed and tested by a computer will be in plain view. Computers are now utilized to design and test just about everything imaginable, from automobiles and airplanes to bridges and boats, and elevators and escalators to streets and skyscrapers. Computer-design engineering first emerged in the 1970s, in the automobile and aerospace industries. Since computers were in their infancy, however, architects and engineers during the time were limited to producing only designs similar to hand-drafted drawings. (At the end of 1970s, a typical computer-aided design system was a 16-bit minicomputer with a price tag of $125,000.) Eventually, computers became more affordable and related software became more sophisticated, offering designers the "bells and whistles" to go beyond the limits of basic drafting and rendering, and venture into more skillful applications. One of the major advancements was the ability to test the objects being designed for the probability of failure. This advancement was especially important for the aerospace industry, where complicated and expensive structures are designed. The ability to perform reliability and risk assessment without using extensive hardware testing is critical to design and certification. In 1984, NASA initiated the Probabilistic Structural Analysis Methods (PSAM) project at Glenn Research Center to develop analysis methods and computer programs for the probabilistic structural analysis of select engine components for current Space Shuttle and future space propulsion systems. NASA envisioned that these methods and computational tools would play a critical role in establishing increased system performance and durability, and assist in structural system qualification and certification. Not only was the PSAM project beneficial to aerospace, it paved the way for a commercial risk- probability tool that is evaluating risks in diverse, down- to-Earth application

  15. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Astrophysics Data System (ADS)

    Duffy, Stephen F.

    1995-08-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  16. The application of CFD to rotary wing flow problems

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1990-01-01

    Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed-wing work must be gleaned for many of the basic methods.

  17. Mental Models and Cooperative Problem Solving with Expert Systems,

    DTIC Science & Technology

    1984-09-01

    THIS PAGE ( "o Do le Entera) READINSTRUCTION- REPORT DOCUMENTATION PAGE BRE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO- I. RECIPIENT’S CATALOG...the user’s con- ceptual understanding of the basic principle of the system s problem solving processes. An experimental study is described that strongly...design :A principles that lead to the optimal user engineering of future expert systems. The central theory discussed below is that the nature of the

  18. Surface and interface modification science and technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  19. IAC user manual

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Beste, D. L.; Gregg, J.

    1984-01-01

    The User Manual for the Integrated Analysis Capability (IAC) Level 1 system is presented. The IAC system currently supports the thermal, structures, controls and system dynamics technologies, and its development is influenced by the requirements for design/analysis of large space systems. The system has many features which make it applicable to general problems in engineering, and to management of data and software. Information includes basic IAC operation, executive commands, modules, solution paths, data organization and storage, IAC utilities, and module implementation.

  20. ECOSTRESS Unbagging

    NASA Image and Video Library

    2018-04-10

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

Top